JP2015056721A - Millimeter wave band filter and wide area attenuation method for millimeter wave band - Google Patents

Millimeter wave band filter and wide area attenuation method for millimeter wave band Download PDF

Info

Publication number
JP2015056721A
JP2015056721A JP2013188139A JP2013188139A JP2015056721A JP 2015056721 A JP2015056721 A JP 2015056721A JP 2013188139 A JP2013188139 A JP 2013188139A JP 2013188139 A JP2013188139 A JP 2013188139A JP 2015056721 A JP2015056721 A JP 2015056721A
Authority
JP
Japan
Prior art keywords
waveguide
frequency
wave band
band
millimeter wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013188139A
Other languages
Japanese (ja)
Other versions
JP5997117B2 (en
Inventor
尚志 河村
Hisashi Kawamura
尚志 河村
寛 下田平
Hiroshi Shimotahira
寛 下田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2013188139A priority Critical patent/JP5997117B2/en
Publication of JP2015056721A publication Critical patent/JP2015056721A/en
Application granted granted Critical
Publication of JP5997117B2 publication Critical patent/JP5997117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain an easy-to-manufacture millimeter wave band filter which allows for sufficient wide area attenuation characteristics in a frequency band exceeding 100GHz.SOLUTION: First waveguide 21 and second waveguide 22 are arranged to pass each other in parallel while closing one ends 21a, 22a of a waveguide having a rectangular cross section and propagating electromagnetic waves of a predetermined frequency or more in the millimeter wave band, respectively, and facing the side faces (inner side face) 21b, 22b on the short side surrounding the one end side thereof each other. A manifold 23 couples the side faces on the short side of the first waveguide 21 and second waveguide 22 by a waveguide of a predetermined caliber, and regulates transmission ratio to the second waveguide 22 so as to decrease as the frequency of electromagnetic waves incident to the first waveguide 21 increases.

Description

本発明は、ミリ波帯の高域を減衰させるための技術に関する。   The present invention relates to a technique for attenuating the high band of the millimeter wave band.

近年、ユビキタスネットワーク社会を迎え、電波利用ニーズが高まる中、家庭内のワイヤレスブロードバンド化を実現するWPAN(ワイヤレスパーソナルエリアネットワーク)や安全・安心な運転をサポートするミリ波レーダー等のミリ波帯無線システムが利用され始めている。また、100GHz超無線システム実現への取組も積極的に行われてきている。   In recent years, with the ubiquitous network society and the increasing need for radio wave use, WPAN (wireless personal area network) that realizes wireless broadband in the home and millimeter wave radio systems such as millimeter wave radar that supports safe and secure driving Has begun to be used. In addition, efforts to realize a 100 GHz super wireless system have been actively carried out.

その一方で、60〜70GHz帯の無線システムの2次高調波評価や100GHz超の周波数帯における無線信号の評価については、周波数が高くなるにつれ測定器の雑音レベル及びミキサの変換損失が増加するとともに周波数精度が低下するため、100GHzを超える無線信号の高感度、高精度測定技術が確立されていない状況となっている。しかも、これまでの測定技術では局部発振の高調波を測定結果から分離することができず、不要発射等の厳密な測定が困難となっている。   On the other hand, for the second harmonic evaluation of the radio system in the 60-70 GHz band and the evaluation of the radio signal in the frequency band exceeding 100 GHz, the noise level of the measuring instrument and the conversion loss of the mixer increase as the frequency increases. Since the frequency accuracy is lowered, a high-sensitivity and high-precision measurement technique for wireless signals exceeding 100 GHz has not been established. Moreover, the conventional measurement techniques cannot separate the local oscillation harmonics from the measurement results, making it difficult to accurately measure unwanted emissions.

これらの技術課題を克服し、100GHz超帯域無線信号の高感度・高精度測定を実現するためには、アンプやミキサへの帯域外信号の入力を抑圧するフィルタが必要であり、特に、上記周波数帯で用いられる基本的な伝送線路である導波管は、基本的にハイパスフィルタとして働くので、高域の帯域外信号を抑圧するローパス型(ハイカット型)のフィルタの開発が必要となる。   In order to overcome these technical problems and realize high-sensitivity and high-accuracy measurement of a 100 GHz super-band wireless signal, a filter that suppresses the input of an out-of-band signal to an amplifier or a mixer is required. Since a waveguide, which is a basic transmission line used in a band, basically functions as a high-pass filter, it is necessary to develop a low-pass type (high-cut type) filter that suppresses high-band out-of-band signals.

これを簡単に説明すると、導波管の基本的な特性は、例えば図14のG1ように約70GHzから1000GHzを超える範囲まで通過帯域が延びたハイパス型であり、その広い通過帯域内で実際に使用する帯域の信号を選択的に通過させるために、導波管内に共振用素子を設けて例えば100GHzを通過中心周波数とするバンドパスフィルタの特性を与えることが考えられるが、この種のバンドバスフィルタは、その構造的な理由で、図14のG2のように、所望帯域だけでなく、その整数倍の帯域(通過中心200GHz、300GHz、…)でも選択特性を示す。   To briefly explain this, the basic characteristic of a waveguide is a high-pass type in which the pass band extends from about 70 GHz to over 1000 GHz as shown in G1 of FIG. 14, for example. In order to selectively pass a signal in a band to be used, it is conceivable to provide a characteristic of a band pass filter having a resonance element in the waveguide and having a pass center frequency of, for example, 100 GHz. For the structural reason, the filter exhibits a selection characteristic not only in a desired band but also in an integral multiple band (passage centers 200 GHz, 300 GHz,...) As indicated by G2 in FIG.

このため、所望帯域より高い周波数帯に不要信号があると、これを除去することができない。そのために、図14のG3で示すように、例えば120GHzを越える周波数領域で高域減衰特性を有するフィルタが必要となる。   For this reason, if there is an unnecessary signal in a frequency band higher than the desired band, it cannot be removed. Therefore, as indicated by G3 in FIG. 14, for example, a filter having a high-frequency attenuation characteristic in a frequency region exceeding 120 GHz is required.

この目的で使用可能なフィルタとして、導波管を用いたワッフルアイアン型のフィルタが知られている(特許文献1、2)。   As a filter that can be used for this purpose, a waffle iron type filter using a waveguide is known (Patent Documents 1 and 2).

特開2007−194912号公報JP 2007-194912 A 特開2007−088574号公報JP 2007-088574 A

しかしながら、上記ワッフルアイアン型のフィルタは、導波管の内部に複数の溝を高精度に設ける必要があり、周波数が高くなるにつれてその製作難易度が高まり、100GHzを越える周波数帯域で十分な減衰特性が得られないという問題があった。   However, the waffle iron type filter needs to be provided with a plurality of grooves with high accuracy inside the waveguide, and its difficulty increases as the frequency increases. Sufficient attenuation characteristics in a frequency band exceeding 100 GHz There was a problem that could not be obtained.

本発明は、この課題を解決して、100GHzを越える周波数帯域で十分な高域減衰特性が得られ、製造が容易なミリ波帯フィルタおよびミリ波帯の高域減衰方法を提供することを目的としている。   An object of the present invention is to solve this problem and to provide a millimeter-wave band filter and a millimeter-wave band high-frequency attenuation method which can obtain sufficient high-frequency attenuation characteristics in a frequency band exceeding 100 GHz and are easy to manufacture. It is said.

前記目的を達成するために、本発明の請求項1のミリ波帯フィルタは、
ミリ波帯の所定周波数以上の電磁波を伝搬させる断面長方形の導波路の一端側がそれぞれ閉鎖され、それぞれの前記一端側の導波路を囲む短辺側の側面を互いに対向させた状態ですれ違うように配置した第1導波管(21)および第2導波管(22)と、
前記第1導波管と第2導波管の前記短辺側の側面の間に、前記第1導波管の導波路と前記第2導波管の導波路との間を所定口径の導波路で連結させて、前記第1導波管に入射された電磁波の周波数が高くなる程、前記第2導波管への伝搬割合が小さくなるように規制する連結管(23)とを備えている。
In order to achieve the above object, the millimeter waveband filter according to claim 1 of the present invention comprises:
One end side of a rectangular waveguide that propagates electromagnetic waves of a predetermined frequency or higher in the millimeter wave band is closed, and the short sides surrounding each one end side waveguide are arranged so that they face each other. The first waveguide (21) and the second waveguide (22),
A guide having a predetermined diameter is provided between the waveguide of the first waveguide and the waveguide of the second waveguide between the side surfaces of the first waveguide and the second waveguide on the short side. A coupling tube (23) that is coupled by a waveguide and regulates so that a propagation rate to the second waveguide decreases as the frequency of the electromagnetic wave incident on the first waveguide increases. Yes.

また、本発明の請求項2のミリ波帯フィルタは、請求項1記載のミリ波帯フィルタにおいて、
前記連結管は、その口径中心から前記第1導波管と前記第2導波管の少なくとも一方の導波管の閉鎖された一端までの距離が、通過させたい周波数の管内波長の1/4の奇数倍となる位置で、前記第1導波管と第2導波管の導波路間を連結していることを特徴とする。
The millimeter waveband filter according to claim 2 of the present invention is the millimeter waveband filter according to claim 1,
The connecting tube has a distance from the center of its aperture to the closed end of at least one of the first waveguide and the second waveguide of ¼ of the in-tube wavelength of the frequency to be passed. The waveguides of the first waveguide and the second waveguide are connected at a position that is an odd multiple of.

また、本発明の請求項3のミリ波帯フィルタは、請求項1または請求項2記載のミリ波帯フィルタにおいて、
前記第1導波管または第2導波管の内部に所定間隔でピンを立設し、該ピンの間隔によって決まる周波数帯を選択的に通過させるバンドパスフィルタを形成したことを特徴とする。
The millimeter wave band filter according to claim 3 of the present invention is the millimeter wave band filter according to claim 1 or 2,
Pins are erected at predetermined intervals inside the first waveguide or the second waveguide, and a band-pass filter that selectively passes a frequency band determined by the interval between the pins is formed.

また、本発明の請求項4のミリ波帯フィルタは、請求項1〜3のいずかに記載のミリ波帯フィルタにおいて、
前記第1導波管または第2導波管の内壁に所定深さの溝を設け、該溝の深さによって決まる周波数帯の通過を阻止するバンドリジェクションフィルタを形成したことを特徴とする。
Moreover, the millimeter waveband filter of Claim 4 of this invention is a millimeter waveband filter in any one of Claims 1-3,
A groove having a predetermined depth is provided on the inner wall of the first waveguide or the second waveguide, and a band rejection filter that blocks passage of a frequency band determined by the depth of the groove is formed.

また、本発明の請求項5のミリ波帯の高域減衰方法は、
ミリ波帯の所定周波数以上の電磁波を伝搬させる断面長方形の導波路の一端側がそれぞれ閉鎖された第1導波管(21)および第2導波管(22)を、それぞれの前記一端側の導波路を囲む短辺側の側面を互いに対向させた状態ですれ違うように配置し、
前記第1導波管と第2導波管の前記短辺側の側面の間に設けた連結管(23)により、前記第1導波管の導波路と前記第2導波管の導波路との間を所定口径の導波路で連結させて、前記第1導波管に入射された電磁波の周波数が高くなる程、前記第2導波管への伝搬割合が小さくなるように規制することを特徴としている。
Further, the high-frequency attenuation method of the millimeter wave band according to claim 5 of the present invention,
A first waveguide (21) and a second waveguide (22), each of which is closed at one end of a waveguide having a rectangular cross section for propagating an electromagnetic wave having a predetermined frequency or higher in the millimeter wave band, are respectively connected to the one end. Arranged so that the sides on the short side surrounding the waveguide face each other,
The waveguide of the first waveguide and the waveguide of the second waveguide are provided by a connecting tube (23) provided between the short-side surfaces of the first waveguide and the second waveguide. Are connected to each other by a waveguide having a predetermined diameter, and the rate of propagation to the second waveguide decreases as the frequency of the electromagnetic wave incident on the first waveguide increases. It is characterized by.

このように、本発明では、導波路が閉鎖されたそれぞれの一端側の短辺側の側面同士が対向する状態ですれ違うように配置された第1導波管と第2導波管のその短辺側の側面間に設けた連結管により、第1導波管と第2導波管の導波路の間を所定口径の導波路で連結することで、第1導波管に入射された電磁波の周波数が高くなる程、第2導波管への伝搬割合が小さくなるように規制している。   As described above, according to the present invention, the short sides of the first waveguide and the second waveguide arranged so as to pass each other in a state where the short side surfaces on one end side where the waveguides are closed face each other. An electromagnetic wave incident on the first waveguide is formed by connecting the waveguides of the first waveguide and the second waveguide with a waveguide having a predetermined diameter by a coupling tube provided between the side surfaces on the side. The higher the frequency is, the lower the propagation ratio to the second waveguide is.

このため、二つの導波管の導波路の短辺側の側面間を所定口径の導波路で連結するという極めて簡単な構造で、一方の導波管に入射されたミリ波帯の電磁波のうち、所望の高域成分を減衰させることができる。   For this reason, it is an extremely simple structure in which the short side surfaces of the waveguides of the two waveguides are connected by a waveguide having a predetermined aperture, and the electromagnetic wave in the millimeter wave band incident on one of the waveguides. The desired high frequency component can be attenuated.

本発明の実施形態の斜視図A perspective view of an embodiment of the present invention 実施形態のミリ波帯フィルタの平面図およびその断面図Plan view and sectional view of millimeter wave band filter of embodiment 実施形態のミリ波帯フィルタの要部の寸法図Dimensional drawing of main part of millimeter-wave band filter of embodiment 実施例のミリ波帯フィルタの通過特性図Passing characteristic diagram of millimeter waveband filter of embodiment 本発明のミリ波帯フィルタの別の構造例を示す図The figure which shows another structural example of the millimeter wave band filter of this invention 図5の構造のミリ波帯フィルタの通過特性図Passage characteristics diagram of millimeter-wave band filter with the structure of FIG. 図5の構造のミリ波帯フィルタに他のフィルタを組み込んだ構造例を示す図The figure which shows the structural example which incorporated another filter in the millimeter wave band filter of the structure of FIG. 図7の断面構造を示す図The figure which shows the cross-section of FIG. 図7、図8の構造のミリ波帯フィルタの通過特性図Passage characteristics diagram of millimeter-wave band filter with the structure of FIGS. 図9の一部を拡大した図An enlarged view of a part of FIG. 本発明のミリ波帯フィルタの連結管の口径高さを変化させたときの通過特性図Passage characteristic diagram when the diameter of the connecting pipe of the millimeter wave band filter of the present invention is changed 本発明のミリ波帯フィルタの連結管の長さを変化させたときの通過特性図Passage characteristic diagram when the length of the connecting pipe of the millimeter wave band filter of the present invention is changed 本発明のミリ波帯フィルタの連結管の口径幅を変化させたときの通過特性図Passage characteristics diagram when the aperture width of the connecting pipe of the millimeter wave band filter of the present invention is changed 導波管の通過特性とフィルタの特性との関係を示す図The figure which shows the relation between the passage characteristic of the waveguide and the characteristic of the filter

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明の実施形態のミリ波帯フィルタ20の斜視図、図2の(a)はその平面図(磁界面からみた図)、図2の(b)〜(d)は、図2の(a)のA−A線断面図、B−B線断面図、C−C線断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of a millimeter wave band filter 20 according to an embodiment of the present invention, FIG. 2A is a plan view thereof (viewed from a magnetic field surface), and FIGS. 2A is a cross-sectional view taken along line AA, a cross-sectional view taken along line BB, and a cross-sectional view taken along line CC.

これらの図に示されているように、このミリ波帯フィルタ20は、第1導波管21、第2導波管22および連結管23によって構成されている。   As shown in these drawings, the millimeter-wave band filter 20 includes a first waveguide 21, a second waveguide 22, and a connecting tube 23.

第1導波管21と第2導波管22は同一口径であり、ミリ波帯の所定周波数以上(例えば90GHz以上)の電磁波を伝搬させる断面長方形の導波路の一端21a、22aがそれぞれ閉鎖され、その一端側の導波路を囲む短辺側の側面(内側面)21b、22bを互いに対向させた状態で平行にすれ違うように配置されている。   The first waveguide 21 and the second waveguide 22 have the same diameter, and one end 21a and 22a of a rectangular waveguide that propagates an electromagnetic wave having a predetermined frequency or higher (for example, 90 GHz or higher) in the millimeter wave band is closed. The side surfaces (inner side surfaces) 21b and 22b on the short side surrounding the waveguide on one end side are arranged so as to pass in parallel with each other facing each other.

そして、第1導波管21と第2導波管22の側面21b、22b側の先端部分は所定長にわたって開口され、その開口部同士を連結管23が連結している。この連結管23は、第1導波管21と第2導波管22の導波路の短辺側の側面の間を所定口径の導波路で連結させ、第1導波管21に入射された電磁波の周波数が高くなる程、第2導波管22への伝搬割合が小さくなるように規制している。   And the front-end | tip part by the side of the side surfaces 21b and 22b of the 1st waveguide 21 and the 2nd waveguide 22 is opened over predetermined length, and the connection pipe 23 has connected the opening parts. The connecting tube 23 is connected to the short waveguide side surface of the first waveguide 21 and the second waveguide 22 with a waveguide having a predetermined aperture, and is incident on the first waveguide 21. The higher the frequency of the electromagnetic wave, the lower the propagation ratio to the second waveguide 22 is restricted.

ここで、第1導波管21と第2導波管22はミリ波帯で汎用的に用いられる断面長方形の導波路が連続した標準的な導波管(例えばWR−08)であり、第1導波管21の内寸をa1×b1、第2導波管22の導波路の内寸をa2×b2とし、ここでは、a1=a2、b1=b2とする。   Here, the first waveguide 21 and the second waveguide 22 are standard waveguides (for example, WR-08) in which waveguides having a rectangular cross section, which are generally used in the millimeter wave band, are continuous. The inner dimension of the first waveguide 21 is a1 × b1, and the inner dimension of the waveguide of the second waveguide 22 is a2 × b2. Here, a1 = a2 and b1 = b2.

また、連結管23は、第1導波管21および第2導波管22と直交しており、フィルタ全体としては先端側が平行にすれ違うように配置した2本の導波管をこれと直交する導波管(連結管23)で連結したクランク型の導波管線路となる。   Further, the connecting tube 23 is orthogonal to the first waveguide 21 and the second waveguide 22, and the entire filter is orthogonal to two waveguides arranged so that the tip side passes in parallel. A crank-type waveguide line connected by a waveguide (connecting tube 23) is obtained.

このようなクランク型の導波管線路の場合、第1導波管21に入射された電磁波のうち、高域側の電磁波は低域側の電磁波に比べて直進性が強くなるので、連結管23を通過できる割合が小さくなり、これにより高域減衰特性を得ることができる。   In the case of such a crank-type waveguide line, among the electromagnetic waves incident on the first waveguide 21, the high-frequency electromagnetic waves are more straight ahead than the low-frequency electromagnetic waves. The ratio that can pass through 23 becomes small, and thereby, a high-frequency attenuation characteristic can be obtained.

以下、この原理について説明する。
図2に示したように、第1導波管21の導波路の横幅a1、第2導波管22の導波路の横幅a2、連結管23の導波路の長さa3とすると、連結管23を挟んだ部分の全体の横幅と光速cにより、連結管23を通過できる電磁波の周波数の遮断周波数fcが、
fc=c/{2(a1+a2+a3)}
で決まる。
Hereinafter, this principle will be described.
As shown in FIG. 2, assuming that the waveguide width a 1 of the first waveguide 21, the waveguide width a 2 of the second waveguide 22, and the waveguide length a 3 of the connection tube 23, the connection tube 23. The cut-off frequency fc of the electromagnetic wave that can pass through the connecting tube 23 is determined by the overall width of the portion sandwiching the light and the speed of light c 0 .
fc = c 0 / {2 (a1 + a2 + a3)}
Determined by.

また、図3のように、第1導波管21の一端側に伝搬された電磁波の波面の進行方向(導波管の長手方向)に直交する面に対する傾きθが大きい程、また、連結管23の導波路の幅(以下口径幅という)dが大きいほど連結管23へ電磁波が進入する割合が大きくなる。   Further, as shown in FIG. 3, the larger the inclination θ with respect to the plane orthogonal to the traveling direction (longitudinal direction of the waveguide) of the wave front of the electromagnetic wave propagated to one end of the first waveguide 21, The greater the width d of the waveguide 23 (hereinafter referred to as the aperture width) d, the greater the proportion of electromagnetic waves entering the connecting tube 23.

これらを考慮して、周波数fに依存する傾きθの波面の連結管23への進入率Pは、
P=(1/2)×(d/cos θ)×2sin θ÷a1=(dtan θ)/a1
sin θ=fc/f
となる。
Taking these into consideration, the penetration rate P of the wavefront of the inclination θ depending on the frequency f into the connecting pipe 23 is
P = (1/2) × (d / cos θ) × 2 sin θ ÷ a1 = (dtan θ) / a1
sin θ = fc / f
It becomes.

連結管23の口径幅dによる共振(ファブリペロー共振)の影響も考慮して、第1導波管21から第2導波管22までの透過率S21を求めると、
S21=P/{1+(Fsin ψ)
ただし、F=π√R/(1−R)、ψ=2πd/λg、
λg=λ/√{1−[λ/2(a1+a2+a3)]}、
Rは連結管23の入り口における反射係数、λは自由空間波長、λgは管内波長
Considering the influence of resonance (Fabry-Perot resonance) due to the aperture width d of the connecting tube 23, the transmittance S21 from the first waveguide 21 to the second waveguide 22 is obtained.
S21 = P 2 / {1+ ( Fsin ψ) 2}
However, F = π√R / (1-R), ψ = 2πd / λg,
λg = λ / √ {1- [λ / 2 (a1 + a2 + a3)] 2 },
R is the reflection coefficient at the entrance of the connecting tube 23, λ is the free space wavelength, and λg is the in-tube wavelength.

以上の結果から、sin θ=fc/fが小さくなる、即ち、周波数fが高くなる程、透過率S21が減少する高域減衰特性をもつことがわかる。   From the above results, it can be seen that there is a high-frequency attenuation characteristic in which the transmittance S21 decreases as sin θ = fc / f decreases, that is, the frequency f increases.

次に、上記基本構造のミリ波帯フィルタ20のシミュレーション結果について説明する。このシミュレーションでは、前記した標準の導波管WR−08を想定し、第1導波管21の内径a1×b1=2.032mm×1.016mm、第2導波管22の内径a2×b2=2.032mm×1.016mm、連結管23の口径幅d=1.6mm、長さa3=0.2mm、口径高さ(E面方向の高さ)b3=1.016mmとした。   Next, a simulation result of the millimeter waveband filter 20 having the above basic structure will be described. In this simulation, the above-mentioned standard waveguide WR-08 is assumed, the inner diameter a1 × b1 = 2.032 mm × 1.016 mm of the first waveguide 21, and the inner diameter a2 × b2 = of the second waveguide 22. 2.032 mm × 1.016 mm, the aperture width d = 1.6 mm of the connecting tube 23, the length a3 = 0.2 mm, and the aperture height (height in the E plane direction) b3 = 1.016 mm.

上記条件で、シミュレーションして得られた結果(S21)を図4に示す。なおシミュレーションでは簡単のため材質を完全導体とし、導体損が存在しないモデルとしている。   FIG. 4 shows the result (S21) obtained by simulation under the above conditions. In the simulation, for simplicity, the material is a perfect conductor and there is no model of conductor loss.

この図4から明らかなように、リップルはあるものの、その包絡線で見れば透過率S21は、ほぼ140GHzから1000GHzまでの広い領域で高域程減衰量が大きくなる顕著な高域減衰特性を示しており、例えば100〜140GHzを使用帯域とするシステムで極めて有効な高域減衰フィルタとして用いることができる。   As is apparent from FIG. 4, although there is a ripple, the transmittance S21 shows a remarkable high-frequency attenuation characteristic in which the attenuation becomes larger in a wide region from approximately 140 GHz to 1000 GHz as seen from the envelope. For example, it can be used as a high-frequency attenuation filter that is extremely effective in a system using 100 to 140 GHz.

上記基本構造のミリ波帯フィルタ20では、第1導波管21と第2導波管22の導波路の先端の側面間を連結管23で連結していたが、図5の(a)〜(d)に示すように、第1導波管21と第2導波管22の導波路の中間部の側面間を連結管23で連結してもよい。   In the millimeter waveband filter 20 having the basic structure described above, the side surfaces at the distal ends of the waveguides of the first waveguide 21 and the second waveguide 22 are connected by the connection tube 23. As shown in (d), the side surfaces of the intermediate portions of the waveguides of the first waveguide 21 and the second waveguide 22 may be connected by a connecting tube 23.

ただし、この場合、連結管23の口径中心から第1導波管21の閉鎖された一端21aまでの距離H1、および連結管23の口径中心から第2導波管22の閉鎖された一端22aまでの距離H2は、通過させたい周波数の管内波長λgの1/4の奇数倍に設定する必要がある。このように設定することで、連結管23まで伝搬した電磁波と、導波管端面で反射した戻り成分とが逆位相となり相殺することができ、反射による悪影響を防止できる。なお、ここでは、H1=H2としているがH1≠H2であってもよい。また、第1導波管21と第2導波管22の一方の導波管については閉鎖された一端側末端部の側面に連結管23の一端側を接続し、他方の導波管については、その閉鎖された一端から通過させたい周波数の管内波長λgの1/4の奇数倍の距離の側面に連結管23の他端側を接続してもよい。   However, in this case, the distance H1 from the center of the diameter of the connecting tube 23 to the closed end 21a of the first waveguide 21 and the center of the diameter of the connecting tube 23 to the closed end 22a of the second waveguide 22 The distance H2 must be set to an odd multiple of 1/4 of the guide wavelength λg of the frequency to be passed. By setting in this way, the electromagnetic wave propagated to the connecting tube 23 and the return component reflected by the end face of the waveguide are in opposite phases and can be canceled, and adverse effects due to reflection can be prevented. In this example, H1 = H2, but H1 ≠ H2. Further, one of the first waveguide 21 and the second waveguide 22 is connected to one end of the connecting tube 23 on the side surface of the closed one end and the other waveguide is connected. The other end side of the connecting tube 23 may be connected to the side surface at a distance that is an odd multiple of 1/4 of the in-tube wavelength λg of the frequency that is desired to pass from the closed end.

また、この図5の実施形態では、連結管23の口径高さb3を、第1導波管21、第2導波管の短辺b1、b2より短くしているが、後述するように、このような口径の連結管23であっても、前記した高域減衰特性が得られることを確かめている。   In the embodiment of FIG. 5, the aperture height b3 of the connecting tube 23 is shorter than the short sides b1 and b2 of the first waveguide 21 and the second waveguide. It has been confirmed that even the connecting pipe 23 having such a diameter can obtain the above-described high-frequency attenuation characteristics.

この図5の実施形態で、通過帯域の中心を104GHzとし、第1導波管21の内径a1×b1=2.032mm×1.016mm、第2導波管22の内径a2×b2=2.032mm×1.016mm、連結管23の口径幅d=1.44mm、長さa3=0.3mm、口径高さb3=0.2mm、各導波管の先端から連結管23までの距離H1、H2=3.0mmとして、透過率S21を求めた結果を図6に示す。図6の(a)は、周波数90〜1000GHzまでの特性であり、図6の(b)は、図6の(a)のうちの周波数90〜140GHzの範囲を拡大して示したものである。   In the embodiment of FIG. 5, the center of the pass band is 104 GHz, the inner diameter a1 × b1 of the first waveguide 21 is 2.032 mm × 1.016 mm, the inner diameter of the second waveguide 22 is a2 × b2 = 2. 032 mm × 1.016 mm, the aperture width d = 1.44 mm of the connecting tube 23, the length a3 = 0.3 mm, the aperture height b3 = 0.2 mm, the distance H1 from the tip of each waveguide to the connecting tube 23, The result of obtaining the transmittance S21 with H2 = 3.0 mm is shown in FIG. 6A shows characteristics up to a frequency of 90 to 1000 GHz, and FIG. 6B shows an enlarged view of the frequency range of 90 to 140 GHz in FIG. 6A. .

図6の(a)から明らかなように、リップルはあるものの、115GHz〜1000GHzの広い帯域において、高域程減衰量が大きくなる高域減衰特性を示しており、104GHzを通過帯域とするシステムで極めて有効な高域減衰用のフィルタとして用いることができる。   As is clear from (a) of FIG. 6, although there is a ripple, in a wide band of 115 GHz to 1000 GHz, the high band attenuation characteristic is shown such that the attenuation amount increases in the high band, and the system has a pass band of 104 GHz. It can be used as a very effective high-frequency attenuation filter.

上記実施例は、高域減衰特性のみを有するミリ波帯フィルタの例であったが、このミリ波帯フィルタを構成する導波管に、他のフィルタを組み込むことも可能である。   The above embodiment is an example of a millimeter-wave band filter having only a high-frequency attenuation characteristic. However, other filters can be incorporated in the waveguide constituting the millimeter-wave band filter.

図7、図8は、その一例を示すものであり、上記構造のミリ波帯フィルタ20の第1導波管21にBPF(バンドパスフィルタ)50の機能をもたせ、第2導波管22にBRF(バンドリジェクションフィルタ)60の機能をもたせ、その間を連結する連結管23により、高域減衰特性を与えている。なお、ここでは、第1導波管21にBPF50を形成し、第2導波管22にBRF60を形成していたが、BPF50、BRF60を入れ替えてもよく、また、第1導波管21と第2導波管22のいずれか一方に、BPF50、BRF60の両方を形成してもよい。   FIG. 7 and FIG. 8 show an example thereof. The function of a BPF (band pass filter) 50 is provided in the first waveguide 21 of the millimeter waveband filter 20 having the above structure, and the second waveguide 22 is provided in the second waveguide 22. A function of a BRF (Band Rejection Filter) 60 is provided, and a high-pass attenuation characteristic is given by the connecting pipe 23 that connects between them. Although the BPF 50 is formed in the first waveguide 21 and the BRF 60 is formed in the second waveguide 22 here, the BPF 50 and the BRF 60 may be interchanged. Both the BPF 50 and the BRF 60 may be formed on either one of the second waveguides 22.

第1導波管21に設けたBPF50は、図7および図8の(a)のG−G線断面図に示しているように、導波路内にその長さ方向に所定間隔uで立てられた2本一組のピン51A、51Bを間隔vで複数組(図では3組)連続して設けて構成されている。   The BPF 50 provided in the first waveguide 21 is erected in the waveguide at a predetermined interval u in the length direction thereof, as shown in the sectional view taken along the line GG in FIGS. In addition, a set of two pins 51A and 51B are continuously provided at intervals v (three sets in the figure).

また、第2導波管22に設けたBRF60は、図7および図8の(b)のH−H線断面図に示しているように、導波路の長辺側の上下の内壁にそれぞれの深さq1、q2、幅wで設けた溝61A、61Bを、間隔rで複数組(図では2組)連続して設けて構成されている。   Further, the BRF 60 provided in the second waveguide 22 is provided on the upper and lower inner walls on the long side of the waveguide, as shown in the HH line cross-sectional views of FIGS. 7 and 8B. Grooves 61A and 61B provided with depths q1 and q2 and width w are continuously provided in a plurality of sets (two sets in the figure) at an interval r.

この場合、溝61A、61Bの深さq1、q2が阻止周波数の管内波長の1/4となるように設定して、導波路を溝61A、61Bまで伝搬してきた電磁波のうち、溝61A、61Bを深さ方向に往復して逆位相で戻って来た電磁波成分を相殺して、その通過を阻止する。   In this case, the depths q1 and q2 of the grooves 61A and 61B are set to be ¼ of the guide wavelength of the blocking frequency, and the grooves 61A and 61B among the electromagnetic waves propagated through the waveguide to the grooves 61A and 61B. The electromagnetic wave component that has reciprocated in the depth direction and returned in the opposite phase is canceled and its passage is prevented.

この構造のフィルタで、第1導波管21と第2導波管22の導波路の寸法および連結管23の大きさは前記図5の実施例と同じとし、BPF50の中心周波数を104GHzとするためにピンの太さ0.15mm、ピン間隔u=2.03mm、段間v=1.0mmとし、3段目のピン51Bから連結管23までの距離J1を2.0mm、連結管23から初段の溝61Aまでの距離J2を3.0mm、BRF60の阻止周波数を150GHzとするために、溝間隔r=0.3mm、溝幅w0.2mm、溝の深さq1=0.286mm、q2=0.232mmとして、透過率S21を求めた結果を図9、図10に示す。   In the filter of this structure, the dimensions of the waveguides of the first waveguide 21 and the second waveguide 22 and the size of the connecting tube 23 are the same as those in the embodiment of FIG. 5, and the center frequency of the BPF 50 is 104 GHz. Therefore, the thickness of the pin is 0.15 mm, the pin interval u = 2.03 mm, the step interval v = 1.0 mm, the distance J1 from the third-stage pin 51B to the connecting tube 23 is 2.0 mm, and the connecting tube 23 is In order to set the distance J2 to the first-stage groove 61A to 3.0 mm and the blocking frequency of the BRF 60 to 150 GHz, the groove interval r = 0.3 mm, the groove width w0.2 mm, the groove depth q1 = 0.286 mm, q2 = The results of obtaining the transmittance S21 at 0.232 mm are shown in FIGS.

図9は、周波数70〜1000GHzまでの全体特性であり、図10は、図9の周波数100〜108GHzの範囲を拡大して示したものである。   FIG. 9 shows the entire characteristics up to a frequency of 70 to 1000 GHz, and FIG. 10 shows an enlarged view of the frequency range of 100 to 108 GHz in FIG.

図9から明らかなように、リップルはあるものの、150GHz〜1000GHzの広い帯域にわたって高域程減衰量が大きくなる高域減衰特性が得られている。この特性は前記した連結管23の効果である。   As is clear from FIG. 9, although there is a ripple, a high-frequency attenuation characteristic is obtained in which the attenuation amount increases as the frequency increases over a wide band of 150 GHz to 1000 GHz. This characteristic is an effect of the connecting pipe 23 described above.

また、図10から、BPF50の設計通過中心周波数104GHzの両側±1GHzから±4GHzの範囲で減衰量30dB以上の狭帯域特性が得られ、BRF60によって150GHzの帯域が減衰された狭帯域信号抽出用のフィルタとして、極めて優秀な特性が得られていることがわかる。   Further, from FIG. 10, a narrow band characteristic with an attenuation of 30 dB or more is obtained in the range of ± 1 GHz to ± 4 GHz on both sides of the design pass center frequency 104 GHz of the BPF 50, and the band of 150 GHz is attenuated by the BRF 60. It can be seen that extremely excellent characteristics are obtained as a filter.

次に、図1、図2に示した基本構造のミリ波帯フィルタ20で、連結管23の口径や長さを可変したときの透過率S21を求めたシミュレーション結果について説明する。   Next, simulation results for determining the transmittance S21 when the diameter and length of the connecting pipe 23 are varied in the millimeter waveband filter 20 having the basic structure shown in FIGS. 1 and 2 will be described.

図11は、連結管23の長さa3=0.2mm、口径幅d=1.6mで口径高さb3を1.016mm、0.5mm、0.2mmに変化させたときの透過率S21の結果であり、口径高さb3が小さくなる程リップが大きくなる傾向を示すが、全体的な高域減衰特性(包絡線)をみると顕著な差はないことがわかる。   FIG. 11 shows the transmittance S21 when the length a3 of the connecting pipe 23 is 0.2 mm, the aperture width d is 1.6 m, and the aperture height b3 is changed to 1.016 mm, 0.5 mm, and 0.2 mm. The result shows that the smaller the aperture height b3, the larger the lip tends to be. However, it can be seen that there is no significant difference in the overall high-frequency attenuation characteristics (envelope).

また、図12は、連結管23の口径幅1.6mm、口径高さ1.016mmで、長さa3を、0.2mm、0.5mm、1.0mmに変化させたときの透過率S21の結果であり、連結管23の長さa3が長くなる程リップルが大きくなる傾向を示すが、やはり全体的な高域減衰特性をみると顕著な差はないことがわかる。   FIG. 12 shows the transmittance S21 when the connecting tube 23 has a diameter of 1.6 mm, a diameter of 1.016 mm, and the length a3 is changed to 0.2 mm, 0.5 mm, and 1.0 mm. As a result, the ripple tends to increase as the length a3 of the connecting pipe 23 becomes longer, but it can be seen that there is no significant difference in the overall high-frequency attenuation characteristics.

一方、図13は、連結管23の長さa3=0.2mm、口径高さ1.016mmで、口径幅dを1.6mm、1.0mm、0.5mmに変化させたときの透過率S21の結果であり、口径幅dが小さくなる程、リップルが大きくなり、しかも全体的にみた高域減衰量も大きくなる傾向を示している。   On the other hand, FIG. 13 shows the transmittance S21 when the length a3 of the connecting pipe 23 is 0.2 mm, the aperture height is 1.016 mm, and the aperture width d is changed to 1.6 mm, 1.0 mm, and 0.5 mm. The result shows that the smaller the aperture width d, the greater the ripple, and the higher the high-frequency attenuation as a whole.

前記図4の特性は、リップルの少ない特性を優先した図13の口径幅1.6mmの例であったが、要求される高域減衰量がより大きい場合には、口径幅dを1.6mmより小さくすればよく、つまり、要求されるリップルや高域減衰量に応じて口径幅を選択すればよいことがわかる。   The characteristic shown in FIG. 4 is an example of the aperture width of 1.6 mm in FIG. 13 in which priority is given to a characteristic with less ripple. However, when the required high frequency attenuation is larger, the aperture width d is set to 1.6 mm. It can be seen that it is only necessary to make it smaller, that is, the aperture width should be selected according to the required ripple and high-frequency attenuation.

なお、図7、図8に示したように第1導波管21と第2導波管22の導波路の中間部を連結管23で連結したミリ波帯フィルタにBPF50やBRF60を設ける構造は、図1に示した基本構造のミリ波帯フィルタにも採用できる。   As shown in FIGS. 7 and 8, the structure in which the BPF 50 and the BRF 60 are provided in the millimeter wave band filter in which the intermediate portion of the waveguides of the first waveguide 21 and the second waveguide 22 is connected by the connecting tube 23. The basic structure shown in FIG.

また、上記各実施形態では、その構造が理解しやすいように、第1導波管21、第2導波管22および連結管23の外形を一般的に導波管の形状として知られた角筒状で示しているが、機能的には電磁波を伝搬するための内部の導波路が主要部であり、その導波路を形成する金属壁の厚さは任意で、ミリ波帯フィルタとしての全体の外形は上記実施形態に限定されない。例えば、上記した導波路の連結構造を有するミリ波帯フィルタを、上下に重ね合わされて固定される2つの板状の金属ブロックで構成し、下側の金属ブロックの上面側に、第1導波管21、第2導波管22および連結管23の各導波路をその上面側が開口された状態で切削形成し、これに上側の金属ブロックを重ねて固定することで、各導波路の開口された上面側を閉じて外周が閉鎖された導波路とする構造であってもよい。この場合、二つの金属ブロックの外形は、各導波路の形成に必要な広さ以上であれば任意であり、クランク状以外に、矩形、円形、多角形などであってもよい。   In each of the above embodiments, the outer shape of the first waveguide 21, the second waveguide 22, and the connection tube 23 is generally known as the waveguide shape so that the structure can be easily understood. Although it is shown in a cylindrical shape, the internal waveguide for propagating electromagnetic waves is the main part functionally, and the thickness of the metal wall forming the waveguide is arbitrary, and the whole as a millimeter wave band filter The outer shape is not limited to the above embodiment. For example, a millimeter-wave band filter having the above-described waveguide connection structure is configured by two plate-like metal blocks that are stacked and fixed one above the other, and the first waveguide is formed on the upper surface side of the lower metal block. Each waveguide of the tube 21, the second waveguide 22 and the connecting tube 23 is cut and formed with the upper surface side opened, and the upper metal block is overlapped and fixed to the waveguide, thereby opening each waveguide. Alternatively, the waveguide may have a waveguide whose upper surface is closed and whose outer periphery is closed. In this case, the outer shape of the two metal blocks is arbitrary as long as it is larger than the width necessary for forming each waveguide, and may be a rectangle, a circle, a polygon, or the like other than the crank shape.

20……ミリ波帯フィルタ、21、22……導波管、23……連結管、50……BPF、51A、51B……ピン、60……BRF、61A、61B……溝   20... Millimeter wave filter, 21 and 22... Waveguide, 23... Connection tube, 50... BPF, 51 A, 51 B... Pin, 60 ... BRF, 61 A, 61 B.

Claims (5)

ミリ波帯の所定周波数以上の電磁波を伝搬させる断面長方形の導波路の一端側がそれぞれ閉鎖され、それぞれの前記一端側の導波路を囲む短辺側の側面を互いに対向させた状態ですれ違うように配置した第1導波管(21)および第2導波管(22)と、
前記第1導波管と第2導波管の前記短辺側の側面の間に、前記第1導波管の導波路と前記第2導波管の導波路との間を所定口径の導波路で連結させて、前記第1導波管に入射された電磁波の周波数が高くなる程、前記第2導波管への伝搬割合が小さくなるように規制する連結管(23)とを備えたミリ波帯フィルタ。
One end side of a rectangular waveguide that propagates electromagnetic waves of a predetermined frequency or higher in the millimeter wave band is closed, and the short sides surrounding each one end side waveguide are arranged so that they face each other. The first waveguide (21) and the second waveguide (22),
A guide having a predetermined diameter is provided between the waveguide of the first waveguide and the waveguide of the second waveguide between the side surfaces of the first waveguide and the second waveguide on the short side. A coupling tube (23) that is coupled by a waveguide and regulates so that a propagation rate to the second waveguide decreases as the frequency of the electromagnetic wave incident on the first waveguide increases. Millimeter wave filter.
前記連結管は、その口径中心から前記第1導波管と前記第2導波管の少なくとも一方の導波管の閉鎖された一端までの距離が、通過させたい周波数の管内波長の1/4の奇数倍となる位置で、前記第1導波管と第2導波管の側面間を連結していることを特徴とする請求項1記載のミリ波帯フィルタ。   The connecting tube has a distance from the center of its aperture to the closed end of at least one of the first waveguide and the second waveguide of ¼ of the in-tube wavelength of the frequency to be passed. The millimeter-wave band filter according to claim 1, wherein the side surfaces of the first waveguide and the second waveguide are connected to each other at an odd number multiple. 前記第1導波管または第2導波管の内部に所定間隔でピンを立設し、該ピンの間隔によって決まる周波数帯を選択的に通過させるバンドパスフィルタを形成したことを特徴とする請求項1または請求項2記載のミリ波帯フィルタ。   A band-pass filter is provided in which pins are erected at a predetermined interval inside the first waveguide or the second waveguide, and a frequency band determined by the interval between the pins is selectively passed. The millimeter wave band filter according to claim 1 or 2. 前記第1導波管または第2導波管の内壁に所定深さの溝を設け、該溝の深さによって決まる周波数帯の通過を阻止するバンドリジェクションフィルタを形成したことを特徴とする請求項1〜3のいずれかに記載のミリ波帯フィルタ。   A groove of a predetermined depth is provided on the inner wall of the first waveguide or the second waveguide, and a band rejection filter that blocks passage of a frequency band determined by the depth of the groove is formed. Item 4. The millimeter waveband filter according to any one of Items 1 to 3. ミリ波帯の所定周波数以上の電磁波を伝搬させる断面長方形の導波路の一端側がそれぞれ閉鎖された第1導波管(21)および第2導波管(22)を、それぞれの前記一端側の導波路を囲む短辺側の側面を互いに対向させた状態ですれ違うように配置し、
前記第1導波管と第2導波管の前記短辺側の側面の間に設けた連結管(23)により、前記第1導波管の導波路と前記第2導波管の導波路との間を所定口径の導波路で連結させて、前記第1導波管に入射された電磁波の周波数が高くなる程、前記第2導波管への伝搬割合が小さくなるように規制するミリ波帯の高域減衰方法。
A first waveguide (21) and a second waveguide (22), each of which is closed at one end of a waveguide having a rectangular cross section for propagating an electromagnetic wave having a predetermined frequency or higher in the millimeter wave band, are respectively connected to the one end. Arranged so that the sides on the short side surrounding the waveguide face each other,
The waveguide of the first waveguide and the waveguide of the second waveguide are provided by a connecting tube (23) provided between the short-side surfaces of the first waveguide and the second waveguide. Are connected to each other by a waveguide having a predetermined diameter, and the higher the frequency of the electromagnetic wave incident on the first waveguide, the lower the propagation ratio to the second waveguide. Wave band high-frequency attenuation method.
JP2013188139A 2013-09-11 2013-09-11 Millimeter wave filter and millimeter band high-frequency attenuation method Active JP5997117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188139A JP5997117B2 (en) 2013-09-11 2013-09-11 Millimeter wave filter and millimeter band high-frequency attenuation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188139A JP5997117B2 (en) 2013-09-11 2013-09-11 Millimeter wave filter and millimeter band high-frequency attenuation method

Publications (2)

Publication Number Publication Date
JP2015056721A true JP2015056721A (en) 2015-03-23
JP5997117B2 JP5997117B2 (en) 2016-09-28

Family

ID=52820815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188139A Active JP5997117B2 (en) 2013-09-11 2013-09-11 Millimeter wave filter and millimeter band high-frequency attenuation method

Country Status (1)

Country Link
JP (1) JP5997117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118865A1 (en) 2020-12-02 2022-06-09 大学共同利用機関法人自然科学研究機構 Notch filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054472B2 (en) 2018-03-02 2022-04-14 いすゞ自動車株式会社 Vehicle cross member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823356A (en) * 1952-12-11 1958-02-11 Bell Telephone Labor Inc Frequency selective high frequency power dividing networks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823356A (en) * 1952-12-11 1958-02-11 Bell Telephone Labor Inc Frequency selective high frequency power dividing networks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118865A1 (en) 2020-12-02 2022-06-09 大学共同利用機関法人自然科学研究機構 Notch filter

Also Published As

Publication number Publication date
JP5997117B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
US9397378B2 (en) Waveguide-type image rejection filter and single-sideband receiver, frequency divider, and sideband-separating receiver using the same filter
JP6381600B2 (en) Directional coupler and diplexer
US8912867B2 (en) Waveguide filter having coupling screws
JP6046296B1 (en) Directional coupler and diplexer
JP5442804B2 (en) Millimeter wave band filter
US7746190B2 (en) Polarization-preserving waveguide filter and transformer
JP5997117B2 (en) Millimeter wave filter and millimeter band high-frequency attenuation method
JP5806098B2 (en) Fin-line polarization separator
JP2017005631A (en) Terahertz waveguide circuit
JP5442702B2 (en) Radio wave half mirror for millimeter wave band and its transmittance flattening method
US8680953B2 (en) Low-pass filter for electromagnetic signals
KR101023254B1 (en) Plasmon transmission filter
JP5662970B2 (en) Millimeter-wave filter and method for increasing stopband attenuation
JP6220705B2 (en) Millimeter wave band filter
US4099145A (en) Microwave mode transducer
JP5978180B2 (en) Millimeter wave filter and method for preventing leakage of electromagnetic wave
RU146668U1 (en) WAVEGUIDE BANDWAVE FILTER MICROWAVE FILTER
JP6315451B2 (en) Millimeter wave band filter
CN103050750B (en) Dual-hole compact wave guide directional filter
JP6315458B2 (en) Millimeter wave band filter
JP6025639B2 (en) Radio wave half mirror for millimeter wave band and its transmittance flattening method
JP6549205B2 (en) Band pass filter
RU2718403C1 (en) Angular bend of waveguide channel
JP2010010814A (en) Band-pass filter
JP6518748B1 (en) Band pass filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R150 Certificate of patent or registration of utility model

Ref document number: 5997117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250