JP2017005631A - Terahertz waveguide circuit - Google Patents

Terahertz waveguide circuit Download PDF

Info

Publication number
JP2017005631A
JP2017005631A JP2015120611A JP2015120611A JP2017005631A JP 2017005631 A JP2017005631 A JP 2017005631A JP 2015120611 A JP2015120611 A JP 2015120611A JP 2015120611 A JP2015120611 A JP 2015120611A JP 2017005631 A JP2017005631 A JP 2017005631A
Authority
JP
Japan
Prior art keywords
waveguide
substrate
waveguide circuit
groove
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015120611A
Other languages
Japanese (ja)
Inventor
学 小熊
Manabu Oguma
学 小熊
幹隆 井藤
Mikitaka Itou
幹隆 井藤
隆司 郷
Takashi Go
隆司 郷
修一郎 浅川
Shuichiro Asakawa
修一郎 浅川
浩 高橋
Hiroshi Takahashi
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sophia School Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Sophia School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sophia School Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015120611A priority Critical patent/JP2017005631A/en
Publication of JP2017005631A publication Critical patent/JP2017005631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a waveguide manufacturing technology for terahertz wave suitable for mass production does not exist yet, in particular, since a short side of a waveguide substantially becomes as long as several hundred μm in a terahertz wave domain in a frequency lower than 1 THz, a problem relating to a processing depth in forming the waveguide may be severe and become a considerable obstruction in realizing an integrated circuit for terahertz wave.SOLUTION: In a terahertz waveguide circuit, a waveguide of a hollow structure is formed by bonding two substrates, such that the depth of a groove required to be formed may become half of the prior arts. A processing displacement amount during groove formation can be suppressed by half. Thus, in a filter that is manufactured by utilizing the waveguide of the hollow structure, central wavelength displacement is suppressed by half and a waveguide circuit in which a reflection attenuation amount is suppressed can be realized. Further, a problem that the waveguide circuit s cracked by thermal shock during processing of the groove or vibration shock during use can also be avoided. An Si substrate or the like that is thinner and more inexpensive can be selected and a waveguide circuit for terahertz wave domain at a lower frequency side may also be realized.SELECTED DRAWING: Figure 1

Description

本発明は、テラヘルツ帯の電磁波を導波する導波路およびそれを用いた集積回路に関する。   The present invention relates to a waveguide for guiding terahertz band electromagnetic waves and an integrated circuit using the waveguide.

テラヘルツ波は、電波(マイクロ波)と光の中間領域にある電磁波であって、明確な定義はないが、周波数がおおよそ0.1THz〜10THzの範囲の電磁波として知られている。電波や光と比べれば充分な利用には至っていない未開拓な電磁波とも言われている。テラヘルツ波を用いると、樹脂材料、医薬品、生体などの有機物の定量分析や透過画像撮影が可能であり、さまざまな分野でテラヘルツ波の応用が盛んになってきている。しかしながら、現在のテラヘルツ波の応用システムでは、透過率や透過率スペクトル、すなわちテラヘルツ波の強度計測をベースにしたものに止まっている。テラヘルツ波のコヒーレンシー(可干渉性)を生かした誘電率の高精度な計測や、干渉を用いた高感度な透過イメージ取得には未だ至っていない。   A terahertz wave is an electromagnetic wave in an intermediate region between radio waves (microwaves) and light, and is not clearly defined, but is known as an electromagnetic wave having a frequency in a range of approximately 0.1 THz to 10 THz. It is said to be an undeveloped electromagnetic wave that has not been fully utilized compared to radio waves and light. When terahertz waves are used, quantitative analysis and transmission image photographing of organic materials such as resin materials, pharmaceuticals, and living bodies are possible, and terahertz waves are increasingly applied in various fields. However, current terahertz wave application systems are limited to those based on transmittance and transmittance spectrum, that is, intensity measurement of terahertz waves. It has not yet been achieved for highly accurate measurement of permittivity utilizing terahertz wave coherency (coherence) and high-sensitivity transmission image acquisition using interference.

テラヘルツ波の利用に関するこのような状況は、テラヘルツ波の生成・検出そのものが難しく、近年になってようやくテラヘルツ波の生成・検出が実現されたばかりである事情がある。このように、テラヘルツ波の利用は未成熟な段階ではあるが、特定の分野においては、例えば透過画像撮影装置が実用化されていることを考えれば、テラヘルツ波の社会的なニーズはかなり高いものであると見ることができる。テラヘルツ波の応用研究は今後さらに大きく発展していくと考えられる。   In such a situation regarding the use of terahertz waves, it is difficult to generate and detect terahertz waves, and in recent years, generation and detection of terahertz waves has only been realized. Thus, although the use of terahertz waves is in an immature stage, the social needs of terahertz waves are quite high in a specific field, considering that, for example, transmission image capturing devices have been put into practical use. Can be seen. Application research on terahertz waves is expected to develop further in the future.

現時点のテラヘルツ波を利用する大半の計測器には、テラヘルツ光源と検出器との間に被検査物体を置くような簡単な構成のものが多い。さらにより複雑な構成を持つ様々な発展型システムも期待されている。例えば、スイッチを用いてテラヘルツ波のビーム光路を切り替えて複数点を短時間で連続して計測したり、広帯域テラヘルツ波の中から特定の周波数のみを選択してサンプルに照射したりする構成が注目されている。   Most measuring instruments that use terahertz waves at the present time have a simple configuration in which an object to be inspected is placed between a terahertz light source and a detector. In addition, various advanced systems with more complex configurations are also expected. For example, a configuration that uses a switch to switch the beam optical path of terahertz waves and continuously measure multiple points in a short time, or selects only a specific frequency from a broadband terahertz wave and irradiates the sample Has been.

このようなテラヘルツ波の発展型システムへの応用をさらに促すためには、フィルタリングや方路切り替えなど、テラヘルツ波そのものを操作する基盤技術をさらに充実させる必要がある。同じ電磁波でも、光やマイクロ波の領域では、導波路/導波管技術により波長(周波数)フィルタ、スイッチなどの機能が小型高性能で既に実現され、しかも1つの基板上に複数個分の機能が集積化されているケースもある。1つの基板上への集積化技術は、単に小型、低コストで量産性に優れているなどのメリットだけでなく、例えば被計測光および参照光の光路長を安定に保って振動の影響を全く受けない干渉型の計測系を実現できるなど、特性の飛躍的な向上にも役立つ。   In order to further promote the application of such terahertz waves to advanced systems, it is necessary to further enhance basic technologies for manipulating the terahertz waves themselves, such as filtering and route switching. Even for the same electromagnetic wave, in the light and microwave regions, the functions of wavelength (frequency) filter, switch, etc. have already been realized with small size and high performance by the waveguide / waveguide technology, and more than one function on one substrate. In some cases, these are integrated. The integration technology on one substrate is not only a merit such as small size, low cost and excellent mass productivity, but also, for example, keeps the optical path lengths of the light to be measured and the reference light stable and completely eliminates the influence of vibration. It is also useful for dramatically improving the characteristics, such as realizing an interference-type measurement system that is not subject to interference.

G. Chattopadhyay, et al., “Submillimeter-Wave 90° polarization Twists for Integrated Waveguide Circuits”., The IEEE Microwave and Wireless Components Letters., vol. 20 no. 1, pp. 592-594 (2010)G. Chattopadhyay, et al., “Submillimeter-Wave 90 ° polarization Twists for Integrated Waveguide Circuits”., The IEEE Microwave and Wireless Components Letters., Vol. 20 no. 1, pp. 592-594 (2010) C. A. Leal-Sevillano, et al., “Silicon Micromachined Canonical E-Plane and H-Plane Bandpass Filters at the Terahertz Band”., The IEEE Microwave and Wireless Components Letters., vol. 23 no. 6, pp. 288-290 (2013)CA Leal-Sevillano, et al., “Silicon Micromachined Canonical E-Plane and H-Plane Bandpass Filters at the Terahertz Band”., The IEEE Microwave and Wireless Components Letters., Vol. 23 no. 6, pp. 288-290 (2013) Y. Miura, et al., “A 60GHz Double-layer Waveguide Slot Array with more than 32dBi and 80% Efficiency over 5GHz Bandwidth Fabricated by Diffusion Bonding of Laminated Thin Metal Plates”., IEEE Antennas and Propagation Society International Symposium, pp. 1-4 (2010)Y. Miura, et al., “A 60GHz Double-layer Waveguide Slot Array with more than 32dBi and 80% Efficiency over 5GHz Bandwidth Fabricated by Diffusion Bonding of Laminated Thin Metal Plates”., IEEE Antennas and Propagation Society International Symposium, pp. 1-4 (2010)

しかしながら、テラヘルツ波を利用する導波回路を面基板上に形成した集積化回路の実現に向けた取り組みは進んでいない。その主な理由には、テラヘルツ波の波長の値自体に起因する制限がある。先にも述べたように、テラヘルツ波はおおよそ0.1THz〜10THzの範囲の電磁波と言われているので、典型的な周波数を1THzとした場合、その空間波長は300μmとなる。このテラヘルツ波の波長に合わせて、マイクロ波と同様のシングルモードの中空導波管を作製する場合、管内の寸法は270μm×135μmとなる。このような数100μmサイズの中空導波管を機械加工切削によって切削して作ることも不可能ではないが、特殊なエンドミルを用いて高精度に作製する必要がある。当然に複数の導波回路を集積化するのは難しく、量産性も無い(非特許文献1)。   However, no effort has been made to realize an integrated circuit in which a waveguide circuit using a terahertz wave is formed on a surface substrate. The main reason is a limitation due to the wavelength value of the terahertz wave itself. As described above, the terahertz wave is said to be an electromagnetic wave in a range of approximately 0.1 THz to 10 THz. Therefore, when a typical frequency is 1 THz, the spatial wavelength is 300 μm. When a single-mode hollow waveguide similar to a microwave is manufactured in accordance with the wavelength of the terahertz wave, the dimensions in the tube are 270 μm × 135 μm. Although it is not impossible to cut such a hollow waveguide having a size of several hundreds of micrometers by machining, it is necessary to manufacture with high accuracy using a special end mill. Naturally, it is difficult to integrate a plurality of waveguide circuits, and there is no mass productivity (Non-patent Document 1).

また、半導体産業で用いられているフォトリソグラフィおよびドライエッチングなどの加工法によっても、上記のサイズの中空導波管を作製するのはやはり難しい。フォトリソグラフィおよびエッチング技術は、ミクロンからサブミクロン程度のサイズのパターンの作製において、精度と量産性に非常に優れている。しかしながら、深さ方向に数100μmもの加工が必要な深溝の加工には向いておらず、長時間の加工が必要になる(問題1)。また、加工深さに対して十分な厚さを持つ基板を用いない場合、エッチング加工中の熱衝撃やダイシング中の振動衝撃で基板が割れてしまう(問題2)。深溝の加工に関しては、エッチング・モードおよびパッシベーション・モードを交互に繰り返すBOSH法が提案されている。この方法によっても、100μm前後の幅および深さを持つ溝の加工には、溝幅における数μmの誤差や数度の側壁傾斜誤差が発生する(問題3)。結果として、フォトリソグラフィおよびエッチング技術を利用して作製した導波路型フィルタにおいて、反射減衰量が10dB劣化したり、中心周波数が2〜3割も設計値からずれてしまったりなどの、集積化を難しくする特性上の問題が報告されている(非特許文献2)。   In addition, it is still difficult to produce a hollow waveguide of the above size by a processing method such as photolithography and dry etching used in the semiconductor industry. Photolithography and etching techniques are extremely excellent in accuracy and mass productivity in the production of patterns having a size of about micron to submicron. However, it is not suitable for processing deep grooves that require processing of several hundred μm in the depth direction, and processing for a long time is required (Problem 1). Further, when a substrate having a sufficient thickness with respect to the processing depth is not used, the substrate is cracked by a thermal shock during etching processing or a vibration shock during dicing (Problem 2). For deep groove processing, a BOSH method has been proposed in which an etching mode and a passivation mode are alternately repeated. Even with this method, when a groove having a width and depth of about 100 μm is processed, an error of several μm in the groove width and a sidewall inclination error of several degrees occur (Problem 3). As a result, in a waveguide type filter manufactured using photolithography and etching technology, integration such that the return loss is deteriorated by 10 dB and the center frequency is shifted from the design value by 20 to 30%. Problems with characteristics that make it difficult have been reported (Non-Patent Document 2).

テラヘルツ波よりもやや周波数の低いミリ波領域の先行例として、厚さ0.3mm程度の金属板を加工し、これを数層重ねて貼り合わせることによって中空導波を作製した報告もある(非特許文献3)。しかし、この貼合わせによる作製方法をテラヘルツ波領域の導波路に適用するには、基板材料に特殊な性能を持ったものが必要になり、高価であって量産性に欠けることになる。基板の入手性や量産技術の蓄積を考えれば、テラヘルツ波においても、一般の集積回路に利用されているシリコンウェファ基板などを利用できるのが好ましい。上述の貼合わせによる作製方法では、集積化する導波回路を内包できる程度の面積を持ち(条件1)、通常のシリコン基板(例えば500μm)よりも1桁から1桁以上薄く(条件2)、さらには、機械加工および貼合わせ作業に耐え得る強度・剛性(条件3)を持った特殊な金属板が必要となる。高い剛性をもつ金属は種類が限られることから、貼合わせ法によるテラヘルツ波用の中空導波路が実現できたとしても、結局高価なものになってしまう。   As a precedent example of the millimeter wave region having a frequency slightly lower than that of the terahertz wave, there is also a report that a hollow waveguide was produced by processing a metal plate having a thickness of about 0.3 mm and laminating and stacking several layers thereof (Non-Non-Patent Document) Patent Document 3). However, in order to apply this method of bonding to a waveguide in the terahertz wave region, a substrate material having a special performance is required, which is expensive and lacks mass productivity. Considering the availability of the substrate and the accumulation of mass production technology, it is preferable that a silicon wafer substrate or the like used for a general integrated circuit can also be used for terahertz waves. In the manufacturing method by the above-mentioned bonding, the area has a size enough to enclose a waveguide circuit to be integrated (condition 1), and is one to one digit thinner than a normal silicon substrate (for example, 500 μm) (condition 2). Furthermore, a special metal plate having strength and rigidity (Condition 3) that can withstand machining and bonding operations is required. Since the metal having high rigidity is limited in kind, even if a terahertz wave hollow waveguide by the bonding method can be realized, it will eventually become expensive.

上述のように、量産に適したテラヘルツ波用の導波路作製技術はまだ存在していないのが現状である。特に、上で検討した1THzよりも低い周波数のテラヘルツ波領域では、導波路の短辺が数100μm程度にまでさらに長くなるため、導波路を形成するときの加工深さの問題はより深刻であって、テラヘルツ波用の集積回路を実現するときの大きな障害となっている。   As described above, there is currently no terahertz waveguide manufacturing technique suitable for mass production. In particular, in the terahertz wave region having a frequency lower than 1 THz studied above, the short side of the waveguide becomes even longer to about several hundred μm, so the problem of the processing depth when forming the waveguide is more serious. Therefore, this is a major obstacle when realizing an integrated circuit for terahertz waves.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、テラヘルツ波導波路を含む集積回路を、低コストで量産性良く実現できる導波回路を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a waveguide circuit capable of realizing an integrated circuit including a terahertz wave waveguide at low cost with high productivity. is there.

本発明は、このような目的を達成するために、請求項1に記載の発明は、導波回路パターンの溝が形成された第1の基板と、前記導波回路パターンと対称な形状を有する、対応する導波回路パターンの溝が形成された第2の基板であって、前記第1の基板上の前記導波回路パターンの溝と、前記対応する導波回路パターンの溝とが対向するように、前記第1の基板と重ね合わせられ、前記対向する2つの溝によって中空構造の導波路が形成される、第2の基板とを備え、少なくとも、前記第1の基板および前記第2の基板上に形成された前記中空構造の導波路の表面に金属膜が形成されていることを特徴とする導波回路である。   In order to achieve such an object, the present invention according to claim 1 has a first substrate on which a groove of a waveguide circuit pattern is formed, and a shape symmetrical to the waveguide circuit pattern. A second substrate on which a groove of the corresponding waveguide circuit pattern is formed, wherein the groove of the waveguide circuit pattern on the first substrate and the groove of the corresponding waveguide circuit pattern are opposed to each other. A second substrate that is superposed on the first substrate and has a hollow waveguide formed by the two grooves facing each other, and includes at least the first substrate and the second substrate In the waveguide circuit, a metal film is formed on a surface of the hollow waveguide formed on the substrate.

上述の第1の基板上の導波路パターンと、第2の基板上の対応する導波路パターンは、鏡面対称な形状を持つ。尚、ここで言う鏡面対称とは、2つのパターンの間の対称線上に鏡を置いたときに、一方のパターンが、鏡の中に写される他方のパターンの鏡像と一致する関係にあることを意味する。   The waveguide pattern on the first substrate and the corresponding waveguide pattern on the second substrate have a mirror-symmetric shape. Note that the mirror symmetry here refers to the relationship that when one mirror is placed on the symmetry line between two patterns, one pattern matches the mirror image of the other pattern in the mirror. Means.

請求項2に記載の発明は、請求項1の導波回路であって、前記第1の基板上の前記導波回路パターンの溝の深さと、前記第2の基板上の前記対応する導波回路パターンの溝の深さが概ね等しく、前記溝の深さ方向は、前記中空導波路の短辺方向であることを特徴とする。
請求項3に記載の発明は、請求項1または2の導波回路であって、前記中空構造の導波路は、テラヘルツ波領域の信号を伝搬可能なサイズを持ち、前記第1の基板および前記第2の基板はシリコン基板であって、前記溝はフォトリソグラフィおよびドライエッチング法によって形成されることを特徴とする。
The invention according to claim 2 is the waveguide circuit according to claim 1, wherein the depth of the groove of the waveguide circuit pattern on the first substrate and the corresponding waveguide on the second substrate. The groove depth of the circuit pattern is substantially equal, and the depth direction of the groove is the short side direction of the hollow waveguide.
The invention according to claim 3 is the waveguide circuit according to claim 1 or 2, wherein the hollow waveguide has a size capable of propagating a signal in a terahertz wave region, and the first substrate and the waveguide The second substrate is a silicon substrate, and the groove is formed by photolithography and dry etching.

請求項4に記載の発明は、請求項1乃至3いずれかの導波回路であって、重ね合わされた前記第1の基板および前記第2の基板の端面近傍の前記中空構造の導波路において、前記導波回路の内部の導波路幅よりも徐々に広がる開口部構造を備えたことを特徴とする。   Invention of Claim 4 is the waveguide circuit in any one of Claims 1 thru | or 3, Comprising: In the waveguide of the said hollow structure of the end surface vicinity of the said 1st board | substrate and the said 2nd board | substrate which were overlapped, An opening structure that gradually widens the width of the waveguide inside the waveguide circuit is provided.

請求項5に記載の発明は、請求項1乃至3いずれかの導波回路であって、重ね合わされた前記第1の基板および前記第2の基板の端面近傍の、前記中空導構造の導波路の端部において、前記端部の開口部に隣接して、外部からの入力信号または外部への出力信号の反射光を前記基板の外部に反射・散乱する傾斜壁構造を持つことを特徴とする。   A fifth aspect of the present invention is the waveguide circuit according to any one of the first to third aspects, wherein the waveguide of the hollow conducting structure is in the vicinity of the end surfaces of the first substrate and the second substrate that are overlaid. And an inclined wall structure that reflects and scatters the reflected light of the input signal from the outside or the output signal to the outside to the outside of the substrate, adjacent to the opening of the end. .

請求項6に記載の発明は、請求項1乃至3いずれかの導波回路であって、重ね合わされた前記第1の基板および前記第2の基板の端面近傍の、前記中空構造の導波路の端部において、前記端部の開口部に隣接して、前記中空構造の導波路の断面構造に対応する前記導波回路の動作波長の4分の1となる奥行き長さ持ち前記中空構造の導波路の方向に沿って伸びた1つ以上の空洞をさらに備えたことを特徴とする。   The invention according to claim 6 is the waveguide circuit according to any one of claims 1 to 3, wherein the waveguide having the hollow structure in the vicinity of the end surfaces of the first substrate and the second substrate that are overlaid. At the end, adjacent to the opening of the end, the hollow structure has a depth length that is a quarter of the operating wavelength of the waveguide circuit corresponding to the cross-sectional structure of the waveguide of the hollow structure. It further comprises one or more cavities extending along the direction of the waveguide.

本発明のテラヘルツ波導波回路によれば、従来技術と比べて、導波路などの構造の加工誤差を半分に抑制し、その結果、フィルタの中心波長ズレや、反射減衰量の増加を抑制することができる導波回路を実現する。さらに加工中の熱衝撃や導波回路使用中の振動衝撃による導波回路の破損を避けることができるので、より薄く価格の安い基板を選択可能となる。導波路サイズがさらに大きい、より低い周波数側のテラヘルツ波領域用の導波回路も実現可能となる。   According to the terahertz wave waveguide circuit of the present invention, the processing error of the structure of the waveguide or the like is suppressed by half compared to the prior art, and as a result, the center wavelength shift of the filter and the increase of the return loss are suppressed. A waveguide circuit capable of Furthermore, the waveguide circuit can be prevented from being damaged by thermal shock during processing or vibration shock during use of the waveguide circuit, so that a thinner and cheaper substrate can be selected. A waveguide circuit for a terahertz wave region on a lower frequency side with a larger waveguide size can also be realized.

図1は、本発明の実施例1のテラヘルツ波導波回路の構成を示す図である。1 is a diagram illustrating a configuration of a terahertz wave waveguide circuit according to a first embodiment of the present invention. 図2は、本発明の導波回路を構成する2つの基板のより詳細な構造を示した図である。FIG. 2 is a view showing a more detailed structure of two substrates constituting the waveguide circuit of the present invention. 図3は、本発明の実施例2のテラヘルツ波導波回路の構成を示す図である。FIG. 3 is a diagram illustrating the configuration of the terahertz wave waveguide circuit according to the second embodiment of the present invention.

本発明のテラヘルツ波導波回路によれば、2枚の基板を貼り合わせて中空構造の導波路を形成することにより、形成が必要な溝の深さが半分で済む。そのため溝を形成時の加工ズレ量を半分に抑制できる。その結果、中空構造の導波路を利用して作製されたフィルタの中心波長ズレを半分に抑制し、反射減衰量を抑制した導波回路を実現できる。さらには溝を加工中の熱衝撃や導波回路を使用中の振動衝撃によって導波回路が割れてしまう問題が避けることができる。より薄く、価格の安い基板を選択可能となり、より低周波数側のテラヘルツ波領域用の導波回路を実現可能となる。以下の説明では、光と電波の中間的領域にあるテラヘルツ波を伝搬させるため、中空構造の導波路を含む回路を「導波回路」と呼んでいるが、「導波路回路」と同じ意味で使用している。   According to the terahertz wave waveguide circuit of the present invention, by forming the hollow waveguide by bonding the two substrates, the depth of the groove that needs to be formed can be halved. Therefore, the amount of processing shift when forming the groove can be reduced to half. As a result, it is possible to realize a waveguide circuit in which the center wavelength shift of a filter manufactured using a waveguide having a hollow structure is suppressed to half and the return loss is suppressed. Furthermore, it is possible to avoid the problem that the waveguide circuit is broken due to thermal shock during processing of the groove or vibration shock during use of the waveguide circuit. A thinner and cheaper substrate can be selected, and a waveguide circuit for the terahertz wave region on the lower frequency side can be realized. In the following description, a circuit including a waveguide having a hollow structure is called a “waveguide circuit” in order to propagate a terahertz wave in an intermediate region between light and radio waves, but it has the same meaning as “waveguide circuit”. I use it.

以下、図面を参照しながら本発明のテラヘルツ波導波回路の実施例を詳細に説明する。   Hereinafter, embodiments of the terahertz wave waveguide circuit of the present invention will be described in detail with reference to the drawings.

[実施例1]
図1は、本発明の実施例1のテラヘルツ波導波回路の構成を示す図である。図1の(a)は、導波回路10の全体を見た斜視図であり、図1の(b)は、A−A´線を通る導波路断面を見た図である。図1の(a)に示す様に導波路1は中空導波路であり、その大きさ(内寸)は横280μm、高さ140μmである。導波回路10で使用するテラヘルツ波の周波数を1THzと想定してこの値とした。使用する周波数に応じて導波路の断面サイズを変化させる必要があるのは、マイクロ波の導波管と同様である。図1の(b)の断面図からわかるように、中空構造の導波路1は、下部基板2上に形成された第1の溝と、上部基板3上に形成された対応する第2の溝を対向させて重ね合わせることによって実現している。下部基板2および上部基板3が対向して重ね合わされる面上には、金属膜4が形成されている。金属膜4の詳細な構成については、後述する。
[Example 1]
1 is a diagram illustrating a configuration of a terahertz wave waveguide circuit according to a first embodiment of the present invention. FIG. 1A is a perspective view of the entire waveguide circuit 10, and FIG. 1B is a view of a cross section of the waveguide passing through the line AA ′. As shown in FIG. 1A, the waveguide 1 is a hollow waveguide, and its size (inner dimension) is 280 μm wide and 140 μm high. This value is assumed assuming that the frequency of the terahertz wave used in the waveguide circuit 10 is 1 THz. It is necessary to change the cross-sectional size of the waveguide according to the frequency to be used, as in the microwave waveguide. As can be seen from the cross-sectional view of FIG. 1B, the hollow waveguide 1 includes a first groove formed on the lower substrate 2 and a corresponding second groove formed on the upper substrate 3. This is realized by superimposing them facing each other. A metal film 4 is formed on the surface where the lower substrate 2 and the upper substrate 3 face each other. The detailed configuration of the metal film 4 will be described later.

したがって、本発明のテラヘルツ波導波回路は、導波回路パターンの溝(5a)が形成された第1の基板(2)と、前記導波回路パターンと対称な形状を有する、対応する導波回路パターンの溝(5b)が形成された第2の基板(3)であって、前記第1の基板上の前記導波回路パターンの溝と、前記対応する導波回路パターンの溝とが対向するように、前記第1の基板と重ね合わせられ、前記対向する2つの溝によって中空構造の導波路が形成される、第2の基板とを備え、少なくとも、前記第1の基板および前記第2の基板上に形成された前記中空構造の導波路の表面に金属膜(4)が形成されているものとして実施できる。   Therefore, the terahertz wave waveguide circuit of the present invention includes a first substrate (2) on which a groove (5a) of the waveguide circuit pattern is formed, and a corresponding waveguide circuit having a shape symmetrical to the waveguide circuit pattern. A second substrate (3) having a pattern groove (5b) formed thereon, wherein the groove of the waveguide circuit pattern on the first substrate faces the groove of the corresponding waveguide circuit pattern. A second substrate that is superposed on the first substrate and has a hollow waveguide formed by the two grooves facing each other, and includes at least the first substrate and the second substrate It can be implemented on the assumption that a metal film (4) is formed on the surface of the hollow waveguide formed on the substrate.

上述の第1の基板2上の導波路パターンと、第2の基板3上の対応する導波路パターンは、鏡面対称な形状を持つ。尚、ここで言う鏡面対称とは、2つのパターンの間の対称線上に鏡を置いたときに、一方のパターンが、鏡の中に写される他方のパターンの鏡像と一致する関係にあることを意味している。例えば、図2(c)の基板2と図2(d)の基板3との間の中間に鏡を置いて、基板2を写したとき、基板3のパターンが、基板2のパターンの鏡像になっている関係にある。   The waveguide pattern on the first substrate 2 and the corresponding waveguide pattern on the second substrate 3 have a mirror-symmetric shape. Note that the mirror symmetry here refers to the relationship that when one mirror is placed on the symmetry line between two patterns, one pattern matches the mirror image of the other pattern in the mirror. Means. For example, when a mirror is placed between the substrate 2 in FIG. 2C and the substrate 3 in FIG. 2D and the substrate 2 is copied, the pattern of the substrate 3 becomes a mirror image of the pattern of the substrate 2. Is in a relationship.

図2は、本発明の導波回路を構成する2つの基板のより詳細な構造を示した図である。図2の(c)、(d)は、それぞれ下部基板2、上部基板3の溝が形成される面を見た図であり、図2の(a)、(b)は、下部基板2のA−A´線、上部基板3のB−B´線を含む断面図である。図2の(c)、(d)を見ればわかるように、2つの基板2、3の中間に折り返し線を仮想して、左右を合わせて対向させれば、2つの基板面上の溝5a、5bの各パターンは完全に重なり、鏡面対称の導波回路パターンとなる。溝5a、5bの深さはいずれも70μmであり、2枚の基板2、3を貼り合わせることによって、中空部の基板厚さ方向(短辺方向)の高さを140μmとした。   FIG. 2 is a view showing a more detailed structure of two substrates constituting the waveguide circuit of the present invention. FIGS. 2C and 2D are views of the surfaces of the lower substrate 2 and the upper substrate 3 on which grooves are formed, respectively. FIGS. 2A and 2B are views of the lower substrate 2. It is sectional drawing containing an AA 'line and the BB' line of the upper board | substrate 3. FIG. As can be seen from FIGS. 2 (c) and 2 (d), if a folding line is virtually placed between the two substrates 2 and 3, and the left and right sides are opposed to each other, the grooves 5a on the two substrate surfaces are arranged. 5b are completely overlapped to form a mirror-symmetric wave guide circuit pattern. The depths of the grooves 5a and 5b are both 70 μm, and the two substrates 2 and 3 are bonded to each other so that the height of the hollow portion in the substrate thickness direction (short side direction) is 140 μm.

したがって、本発明のテラヘルツ波導波回路では、第1の基板上の導波回路パターンの溝の深さと、第2の基板上の前記対応する導波回路パターンの溝の深さが概ね等しく、前記溝の深さ方向は、前記中空導波路の短辺方向となる。図2の構成では、2つの基板における溝5a、5bの深さを同じものとして説明したが、極端に差異が無い限りは、他の必要性から、溝の深さが異なっていても良い。   Therefore, in the terahertz wave waveguide circuit of the present invention, the depth of the groove of the waveguide circuit pattern on the first substrate is substantially equal to the depth of the groove of the corresponding waveguide circuit pattern on the second substrate, The depth direction of the groove is the short side direction of the hollow waveguide. In the configuration of FIG. 2, the grooves 5a and 5b in the two substrates have been described as having the same depth. However, as long as there is no significant difference, the groove depths may be different depending on other needs.

2つの基板2、3の材料は半導体産業で一般に用いられているシリコンを採用し、基板厚さは価格が低廉な525μmのものを選択した。深さ70μmの溝5a、5bの形成には、フォトリソグラフィおよびドライエッチングを用いた。使用したエッチング条件では、深さ70μmの溝を加工するのには約3.5時間のエッチング時間が必要であった。本発明の導波回路の構成によれば、従来技術で1枚の基板上の深溝を一気に形成する場合と比べて、形成する溝の深さが半分で済む。このため、チャンバーの清掃などの前処理時間を含めても1日内に加工を終了する工程を実現することが可能となり、実際の製造プロセス上の工程管理が簡単となった。フォトリソグラフィを利用するためには、2つの基板に対して、鏡面対称の関係にある2枚のフォトマスクが必要となる。CAD等を利用して、第1の基板のための1枚(下部基板2)のフォトマスクのパターン設計を行えば、第2の基板のためのもう1枚(上部基板3)のフォトマスクについては、CADの電子データ上でパターンを反転すれば良く、実際の設計工程上での手間やコストの増加はない。   The two substrates 2 and 3 are made of silicon, which is generally used in the semiconductor industry, and the substrate thickness is 525 μm, which is inexpensive. Photolithography and dry etching were used to form the grooves 5a and 5b having a depth of 70 μm. Under the etching conditions used, an etching time of about 3.5 hours was required to process a groove having a depth of 70 μm. According to the configuration of the waveguide circuit of the present invention, the depth of the groove to be formed can be halved as compared with the case where the deep grooves on one substrate are formed all at once in the prior art. For this reason, it is possible to realize a process of finishing the processing within one day even if a pretreatment time such as chamber cleaning is included, and the process management in the actual manufacturing process is simplified. In order to use photolithography, two photomasks that are mirror-symmetrical with respect to the two substrates are required. If the pattern design of one (lower substrate 2) photomask for the first substrate is made using CAD or the like, the other (upper substrate 3) photomask for the second substrate is designed. In this case, it is only necessary to reverse the pattern on the electronic data of CAD, and there is no increase in labor and cost in the actual design process.

また、2つの基板2、3の溝5a、5bの部分を含む基板面上には、金属膜4として金を蒸着した。中空導波路/導波管の内壁を金属とすることによって電磁波を中空内に閉じ込める機能に加え、金属膜4は、下部基板2と上部基板3とを熱圧着する際の接着層としても機能する。図1、図2に示した実施例1では、基板面上の全面に金属膜を蒸着した構成としたが、金属の材料コストを削減したい場合には溝5a、5bの内部および溝5a、5bの近傍のみに金を蒸着して、残りの基板面上の部分では、接着剤を用いて2枚の基板の貼り合わせても良い。   Further, gold was vapor-deposited as the metal film 4 on the substrate surface including the portions of the grooves 5 a and 5 b of the two substrates 2 and 3. In addition to the function of confining electromagnetic waves in the hollow by making the inner wall of the hollow waveguide / waveguide a metal, the metal film 4 also functions as an adhesive layer when the lower substrate 2 and the upper substrate 3 are thermocompression bonded. . In the first embodiment shown in FIGS. 1 and 2, the metal film is deposited on the entire surface of the substrate. However, when it is desired to reduce the metal material cost, the inside of the grooves 5a and 5b and the grooves 5a and 5b are used. Alternatively, gold may be vapor-deposited only in the vicinity of and the two substrates may be bonded to each other on the remaining substrate surface using an adhesive.

本実施例においては、簡単のため基板面上にU字型の導波路が1本だけある導波回路パターンとなっているが、これだけに限られない。本発明の2つの基板面上に鏡面対称に形成された対応する導波回路パターンの溝を重ね合わせて構成された中空導波路を持つ本発明の導波回路を用い、多数の導波路からなる導波回路パターンを持つ、例えばマッハツェンダー干渉計型やアレイ導波路回折格子型の周波数フィルタなどの様々なテラヘルツ波導波回路を実現できるのは言うまでもない。   In this embodiment, for simplicity, the waveguide circuit pattern has only one U-shaped waveguide on the substrate surface. However, the present invention is not limited to this. Using the waveguide circuit of the present invention having a hollow waveguide formed by superimposing grooves of corresponding waveguide circuit patterns formed in mirror symmetry on the two substrate surfaces of the present invention, the waveguide circuit of the present invention comprises a number of waveguides. It goes without saying that various terahertz wave guide circuits having a waveguide circuit pattern, such as a Mach-Zehnder interferometer type or an arrayed waveguide diffraction grating type frequency filter, can be realized.

また図1の(a)の斜視図には描いていないが、例えば、図2の(c)、(d)に示した基板端面6a、6bには、金属膜が施されることが望ましい。テラヘルツ波は、導波路の一方の入り口、例えば、図2の(c)、(d)における上辺の端面6a、6bの開口部から入力される。基板材料が高抵抗シリコンの場合、テラヘルツ波の吸収が低く、導波路入口以外の部分からテラヘルツ波が侵入したときに基板内をテラヘルツ波が伝搬してしまうのを防止するためである。   Although not drawn in the perspective view of FIG. 1A, for example, it is desirable that a metal film be applied to the substrate end faces 6a and 6b shown in FIGS. 2C and 2D. The terahertz wave is input from one of the entrances of the waveguide, for example, the openings of the end faces 6a and 6b on the upper side in FIGS. This is because when the substrate material is high-resistance silicon, the absorption of the terahertz wave is low, and the terahertz wave is prevented from propagating through the substrate when the terahertz wave enters from a portion other than the waveguide entrance.

上述のように、2つの基板面上に鏡面対称に形成された対応する導波回路パターンの溝を重ね合わせて構成される本発明の導波回路によれば、従来技術のように一度に深い溝を形成する場合と比べて、加工が必要な溝の深さが半分で済む。したがって、深い溝を形成するために必要なエッチング時間が半分で済む。さらに、溝の深さが半分で済むため、エッチング加工中の熱衝撃やダイシング中の振動衝撃で割れてしまう可能性を抑えるとともに、より薄い基板を使用することも可能となる。さらには、BOSH法などを用いてエッチングをした場合に依然として生じていた、溝幅における数μmの誤差や数度の側壁傾斜誤差を半減させることができる。   As described above, according to the waveguide circuit of the present invention configured by superimposing the grooves of the corresponding waveguide circuit pattern formed symmetrically on the two substrates, it is deep at once as in the prior art. Compared with the case of forming the groove, the depth of the groove that needs to be processed is halved. Therefore, half the etching time required for forming the deep groove is sufficient. Furthermore, since the groove depth is only half, the possibility of cracking due to thermal shock during etching or vibration shock during dicing can be suppressed, and a thinner substrate can be used. Furthermore, it is possible to halve an error of several μm in the groove width and a sidewall inclination error of several degrees, which still occur when etching is performed using the BOSH method or the like.

溝加工と溝の側面補強を交互に行うBOSH法などの深堀りエッチング技術では、溝のエッチング加工が進んでいくときのマスクギャップの誤差や、側壁傾斜角度に起因して生じる溝幅の誤差などは、概ね加工する溝の深さに比例する。したがって、溝の深さを半分にできれば、片方の基板の溝で生じる最大誤差を半分にできる。2つの基板を重ね合わせて得られる導波路の幅の最大誤差も概ね半分に抑えることができる。   In the deep etching technique such as the BOSH method in which the groove processing and the side surface reinforcement of the groove are alternately performed, an error of the mask gap when the etching processing of the groove progresses, an error of the groove width caused by the sidewall inclination angle, etc. Is generally proportional to the depth of the groove to be machined. Therefore, if the depth of the groove can be halved, the maximum error generated in the groove of one substrate can be halved. The maximum error in the width of the waveguide obtained by superimposing the two substrates can also be suppressed to approximately half.

本実施例では、基本的な導波回路の構造および作製方法に焦点を当てて説明してきたが、次の実施例では、導波回路内に導入するテラヘルツ波信号の反射の影響を減らす構造を提示する。   In this embodiment, the description has focused on the basic structure and manufacturing method of a waveguide circuit. However, in the next embodiment, a structure that reduces the influence of reflection of a terahertz wave signal introduced into the waveguide circuit is described. Present.

[実施例2]
図3は、本発明の実施例2のテラヘルツ波導波回路の構成を示す図である。図3の(a)〜(c)はいずれも、導波回路の導波路入口の近傍に信号発生器への信号反射防止構造を設けた導波回路を示す。いずれの図も、2枚の基板の内の1枚について、導波路の溝を形成した面上で、基板周辺部の導波路入り口の近傍における導波回路パターンを示している。一般に信号発生器から発生するテラヘルツ波は球面上に広がるので、導波回路内へ入力する前にレンズ(例えば、高密度ポリエチレンレンズ)を用いて波面が平らなコリメート波(以下ビームと呼ぶ)とする。図3の(a)を参照すると、ビーム25の直径(強度が中心ピークのe2分の1に減少する幅を言う)が導波路21の幅と一致していない場合、テラヘルツ波の電力の一部が基板の開口部から内部の導波路21に入らず基板端面20で反射してしまう。ビームの入力する位置がずれた場合も同様に反射が生じる。このような反射ビームは、図示してない信号発生器へ戻ることになる。この戻りビームは信号発生器の動作上の不安定要因となり望ましくないため、導波路入口付近に信号発生器への反射を防止する構造を設ける必要がある。上述の導波路入力側の場合と同様に、テラヘルツ波導波回路の出力側においても、後段のデバイスからの戻り信号(ビーム)は、導波回路の動作に影響を与える可能性がある。
[Example 2]
FIG. 3 is a diagram illustrating the configuration of the terahertz wave waveguide circuit according to the second embodiment of the present invention. 3A to 3C each show a waveguide circuit in which a signal reflection preventing structure for a signal generator is provided in the vicinity of the waveguide entrance of the waveguide circuit. Each figure shows a waveguide circuit pattern in the vicinity of the waveguide entrance at the periphery of the substrate on the surface where the groove of the waveguide is formed for one of the two substrates. In general, a terahertz wave generated from a signal generator spreads on a spherical surface. Therefore, a collimated wave (hereinafter referred to as a beam) having a flat wavefront using a lens (for example, a high-density polyethylene lens) before being input into a waveguide circuit. To do. Referring to (a) of FIG. 3, when the diameter of the beam 25 (referring to a width whose intensity decreases to e 1/2 of the central peak) does not match the width of the waveguide 21, the power of the terahertz wave is A part of the light does not enter the internal waveguide 21 from the opening of the substrate and is reflected by the substrate end face 20. Reflection occurs in the same manner when the beam input position is shifted. Such a reflected beam returns to a signal generator (not shown). Since the return beam is an undesirable factor in the operation of the signal generator and is not desirable, it is necessary to provide a structure for preventing reflection to the signal generator in the vicinity of the waveguide entrance. As in the case of the waveguide input side described above, on the output side of the terahertz wave waveguide circuit, the return signal (beam) from the subsequent device may affect the operation of the waveguide circuit.

図3の(a)は、信号反射防止の構造の第1の構成例であって、導波路入口付近の導波路開口部22の幅を導波回路内部の導波路21の幅Wと比べてテーパ状に広げ、ビーム25の直径よりも確実に導波路の開口部22の幅を大きくした構造を持つ。具体的には、実施例1の1THzのテラヘルツ波の場合、2つの基板の開口部22の深さを導波路と同じ70μmとして、開口部22の最大幅を1500μm、テーパ状に幅が変化している部分の導波路方向長さを1300μmとすることができる。テーパ部分22の形状を最適に設定して、反射減衰量が最小となるように各寸法を決定できる。開口部22の深さを70μm以上にしても良い。   FIG. 3A shows a first configuration example of the structure for preventing signal reflection, in which the width of the waveguide opening 22 in the vicinity of the waveguide entrance is compared with the width W of the waveguide 21 inside the waveguide circuit. It has a structure in which the width of the opening 22 of the waveguide is surely made larger than the diameter of the beam 25 by expanding in a tapered shape. Specifically, in the case of the 1 THz terahertz wave of Example 1, the depth of the openings 22 of the two substrates is set to 70 μm, which is the same as the waveguide, the maximum width of the openings 22 is 1500 μm, and the width changes in a tapered shape. The length of the portion in the waveguide direction can be 1300 μm. Each dimension can be determined by optimizing the shape of the tapered portion 22 and minimizing the return loss. The depth of the opening 22 may be 70 μm or more.

開口部22の形状は、基板周辺部に向かって広がるテーパ状だけに限られず、信号発生器からのテラヘルツ波を導波路21内へ導くことができるものであれば良い。したがって、本発明の導波回路において、重ね合わされた第1の基板2および第2の基板3の端面近傍の、中空構造の導波路において、前記導波回路の内部の導波路幅よりも徐々に広がる開口部構造(22)を有することが好ましい。   The shape of the opening 22 is not limited to a tapered shape spreading toward the periphery of the substrate, and any shape that can guide the terahertz wave from the signal generator into the waveguide 21 may be used. Accordingly, in the waveguide circuit of the present invention, in the waveguide having a hollow structure in the vicinity of the end surfaces of the first substrate 2 and the second substrate 3 that are superimposed, the waveguide width is gradually larger than the waveguide width inside the waveguide circuit. It is preferable to have a wide opening structure (22).

図3の(b)は、信号反射防止の構造の第2の構成例であって、導波路入口付近に導波路開口部の範囲からはみ出して入力されたテラヘルツ波を信号発生器から外れた方向に散乱・反射させて信号発生器へは戻さない反射壁構造23a、23bを設けた構造を持つ。導波路入口付近に設置した斜めの壁23aおよび23bによって、入射テラヘルツ波信号のビーム25のはみ出した部分を、左右斜め方向への散乱信号29a、29bとして跳ね除けることができる。散乱信号の方向はビーム25の到来方向から外れているため、信号発生器へ戻ることはなく信号発生器の動作を不安定にすることはない。   FIG. 3B is a second configuration example of the structure for preventing signal reflection, and the direction in which the terahertz wave that protrudes from the range of the waveguide opening in the vicinity of the waveguide entrance deviates from the signal generator. The reflection wall structures 23a and 23b are provided so as not to be scattered and reflected to return to the signal generator. By the oblique walls 23a and 23b installed in the vicinity of the waveguide entrance, the protruding portion of the beam 25 of the incident terahertz wave signal can be repelled as scattered signals 29a and 29b in the left and right oblique directions. Since the direction of the scattered signal deviates from the direction of arrival of the beam 25, it does not return to the signal generator and does not destabilize the operation of the signal generator.

より具体的には、反射壁構造23a、23bの傾斜角度は、導波路の方向から40°程度斜めの構造とすることができる。形成する導波路の開口角を考慮して、戻りビームのレベルを下げる傾斜角度を決定すれば良い。したがって、本発明の導波回路において、重ね合わされた前記第1の基板および前記第2の基板の端面近傍の、前記中空導構造の導波路の端部において、前記端部の開口部に隣接して、外部からの入力信号または外部への出力信号の反射光を前記基板の外部に反射・散乱する傾斜壁構造(23a、23b)を持つこともできる。   More specifically, the angle of inclination of the reflecting wall structures 23a and 23b can be a structure inclined by about 40 ° from the direction of the waveguide. In consideration of the opening angle of the waveguide to be formed, the inclination angle for reducing the level of the return beam may be determined. Therefore, in the waveguide circuit of the present invention, the end portion of the waveguide having the hollow guide structure adjacent to the end surfaces of the first substrate and the second substrate that are overlaid is adjacent to the opening of the end portion. In addition, it is possible to have an inclined wall structure (23a, 23b) that reflects and scatters the reflected light of the input signal from the outside or the output signal to the outside to the outside of the substrate.

図3の(c)は、信号反射防止の構造の第3の構成例であって、導波路入口付近の開口部の両側に、基板端面に沿って1つ以上の空洞24a〜24fを設けた構造を持つ。これらの空洞24a〜24fの各々は、導波路21の形成された方向と同じ方向に、動作波長の4分の1となる長さDを持っている。信号発生器からのビーム25の一部は、開口部脇の基板の端面で反射波27として戻るが、空洞内に導かれたビームは、空洞の奥で反射して、反射ビーム28は空洞内を往復するうちに反射波27よりも1/2波長だけ長い伝搬距離を進むことになる。2つの反射波27、28間の位相は180度ずれており、相互に逆相の関係となって干渉して消失するため、反射波は信号発生器には戻らない。したがって、使用するテラヘルツ波の周波数(波長)に合わせて、空洞の長さDを決定すれば良い。また、1/2波長と云う極めて短い距離ではあるが、上記の空洞24a〜24fに導かれたビームは空洞内を伝搬する必要があるので、空洞の幅は、導波路と同程度(七割)以上の幅があることが望ましい。空洞の数は、反射ビームの発生状況に応じて、両脇に1個ずつでも良いし、2個以上を配置しても良い。   FIG. 3C shows a third configuration example of the signal reflection preventing structure, in which one or more cavities 24a to 24f are provided along the substrate end face on both sides of the opening near the waveguide entrance. With structure. Each of these cavities 24 a to 24 f has a length D that is a quarter of the operating wavelength in the same direction as the direction in which the waveguide 21 is formed. A part of the beam 25 from the signal generator returns as a reflected wave 27 at the end face of the substrate beside the opening, but the beam guided into the cavity is reflected at the back of the cavity, and the reflected beam 28 is within the cavity. , The traveling distance is longer by ½ wavelength than the reflected wave 27. The phase between the two reflected waves 27 and 28 is 180 degrees out of phase, and the reflected waves do not return to the signal generator because they interfere with each other and disappear due to interference. Therefore, the cavity length D may be determined in accordance with the frequency (wavelength) of the terahertz wave to be used. In addition, although the distance is an extremely short distance of ½ wavelength, the beam guided to the cavities 24a to 24f needs to propagate in the cavity, so the width of the cavity is approximately the same as that of the waveguide (70% ) It is desirable that there is a width above. The number of cavities may be one on each side or two or more depending on the generation state of the reflected beam.

具体的には、導波路と空洞との識別も考慮に入れて空洞24a〜24fの幅を250μm、隣り合う空洞同士の距離を20μm、繰り返し距離を270μmとした。したがって、本発明の導波回路において、重ね合わされた第1の基板および第2の基板の端面近傍の、中空構造の導波路の端部において、前記端部の開口部に隣接して、前記中空構造の導波路の断面構造に対応する前記導波回路の動作波長の4分の1となる奥行き長さ持ち前記中空構造の導波路の方向に沿って伸びた1つ以上の空洞(24a〜24f)をさらに備えることもできる。   Specifically, considering the distinction between the waveguide and the cavity, the width of the cavities 24a to 24f is 250 μm, the distance between adjacent cavities is 20 μm, and the repetition distance is 270 μm. Therefore, in the waveguide circuit of the present invention, the hollow portion is adjacent to the opening of the end portion at the end portion of the waveguide having the hollow structure in the vicinity of the end surfaces of the superimposed first substrate and second substrate. One or more cavities (24a-24f) extending along the direction of the waveguide of the hollow structure having a depth length that is one-fourth of the operating wavelength of the waveguide circuit corresponding to the cross-sectional structure of the waveguide of the structure ) Can also be provided.

実施例2の信号発生器への反射防止構造を実施例1のテラヘルツ波導波回路と併用することで、導波回路の入口または出口におけるテラヘルツ波の反射を防止できる。このため、反射減衰量特性を含めた特性の良い導波回路の実現が可能となる。上述の導波回路の信号の入り口側の反射防止構造として説明をしたが、既に述べたように同様の構造を導波路出口側にも設けるのが望ましい。テラヘルツ波の導波回路は、テラヘルツ波をさらに操作する後段のデバイスなどに接続されることが多い。このため、導波回路の出力側にも反射防止構造がないと、テラヘルツ検出器などの後段にあるデバイスと導波路出口端面の間をテラヘルツ波が往復し、定在波が発生する可能性があるからである。   By using the antireflection structure for the signal generator according to the second embodiment together with the terahertz wave waveguide circuit according to the first embodiment, reflection of the terahertz wave at the entrance or the exit of the waveguide circuit can be prevented. For this reason, it is possible to realize a waveguide circuit having good characteristics including the return loss characteristic. Although described as an antireflection structure on the signal entrance side of the above-described waveguide circuit, it is desirable to provide a similar structure on the waveguide exit side as described above. A terahertz wave waveguide circuit is often connected to a subsequent device that further manipulates the terahertz wave. For this reason, if there is no antireflection structure on the output side of the waveguide circuit, the terahertz wave may reciprocate between the device at the rear stage such as a terahertz detector and the end face of the waveguide, and a standing wave may be generated. Because there is.

図3の各図に示した実施例2の各反射防止構造は、実施例1で説明した2つの基板内部の中空導波路と同様に、2つの基板の面上にそれぞれ対応する鏡面対称のパターンを形成して、2つの基板を対向させて重ね合わせることで、中空導波路と同時に形成することができる。したがって、実施例1と同様に、加工が必要な反射防止構造の各部分の深さが半分で済む。深い溝などを形成するために必要なエッチング時間が半分で済み、エッチング加工中の熱衝撃やダイシング中の振動衝撃で基板が割れてしまう可能性も低くなる。より薄い基板を使用することも可能となり、BOSH法などを用いてエッチングをした場合に生じていた、溝幅の数μmに及ぶ誤差や数度の側壁傾斜誤差も半減させることができる。   Each antireflection structure of the second embodiment shown in each drawing of FIG. 3 has a mirror-symmetric pattern corresponding to each of the surfaces of the two substrates, like the hollow waveguides in the two substrates described in the first embodiment. Can be formed simultaneously with the hollow waveguide by overlapping the two substrates facing each other. Therefore, as in the first embodiment, the depth of each part of the antireflection structure that needs to be processed is halved. The etching time required for forming a deep groove or the like can be halved, and the possibility that the substrate is cracked by thermal shock during etching or vibration shock during dicing is reduced. It is also possible to use a thinner substrate, and it is possible to halve errors of several μm in groove width and several degrees of side wall tilt errors, which are generated when etching is performed using the BOSH method or the like.

以上述べたように本発明のテラヘルツ波導波回路によって、従来技術と比べて、導波路などの構造の加工誤差を半分に抑えることができる。その結果、フィルタの中心波長ズレや、反射減衰量の増加を抑制した導波回路を実現する。導波路の加工中または使用中の基板破損を避け、より薄く価格の安い基板を選択可能となる。集積化と量産性に優れたテラヘルツ波導波回路の構成を提供して、さらに高度なテラヘルツ波の応用に役立つことができる。   As described above, the terahertz wave waveguide circuit of the present invention can reduce the processing error of a structure such as a waveguide to half as compared with the prior art. As a result, a waveguide circuit is realized in which the center wavelength shift of the filter and the increase in return loss are suppressed. A substrate that is thinner and less expensive can be selected while avoiding damage to the substrate during processing or use of the waveguide. By providing a configuration of a terahertz wave waveguide circuit excellent in integration and mass productivity, it can be used for more advanced terahertz wave applications.

本発明は、一般的に電磁波の干渉を利用した計測、分析システムなどに利用できる。特に、通信システムや定量分析システム、透過画像撮影システムなどに利用できる。   The present invention is generally applicable to measurement and analysis systems using electromagnetic interference. In particular, it can be used for communication systems, quantitative analysis systems, transmission image capturing systems, and the like.

1、21 導波路
2、3 基板
4、4a、4b 金属膜
5a、5b 溝
10 導波回路
20 基板端面
22 開口部
23a、23b 反射壁
24a〜24f 空洞
25 入力ビーム
27、28、29a、29b 反射ビーム
1, 21 Waveguide 2, 3 Substrate 4, 4a, 4b Metal film 5a, 5b Groove 10 Waveguide circuit 20 Substrate end face 22 Opening 23a, 23b Reflection wall 24a-24f Cavity 25 Input beam 27, 28, 29a, 29b Reflection beam

Claims (6)

導波回路パターンの溝(5a)が形成された第1の基板(2)と、
前記導波回路パターンと対称な形状を有する、対応する導波回路パターンの溝(5b)が形成された第2の基板(3)であって、前記第1の基板上の前記導波回路パターンの溝と、前記対応する導波回路パターンの溝とが対向するように、前記第1の基板と重ね合わせられ、前記対向する2つの溝によって中空構造の導波路が形成される、第2の基板と
を備え、
少なくとも、前記第1の基板および前記第2の基板上に形成された前記中空構造の導波路の表面に金属膜(4)が形成されていることを特徴とする導波回路。
A first substrate (2) on which a groove (5a) of a waveguide circuit pattern is formed;
A second substrate (3) having a corresponding waveguide circuit pattern groove (5b) having a shape symmetrical to the waveguide circuit pattern, the waveguide circuit pattern on the first substrate. And a groove of the corresponding waveguide circuit pattern are overlapped with the first substrate so that a hollow waveguide is formed by the two facing grooves. A board and
A waveguide circuit, wherein a metal film (4) is formed on at least the surface of the hollow waveguide formed on the first substrate and the second substrate.
前記第1の基板上の前記導波回路パターンの溝の深さと、前記第2の基板上の前記対応する導波回路パターンの溝の深さが概ね等しく、前記溝の深さ方向は、前記中空導波路の短辺方向であることを特徴とする請求項1に記載の導波回路。   The groove depth of the waveguide circuit pattern on the first substrate is substantially equal to the groove depth of the corresponding waveguide circuit pattern on the second substrate, and the depth direction of the groove is the The waveguide circuit according to claim 1, wherein the waveguide circuit is in a short side direction of the hollow waveguide. 前記中空構造の導波路は、テラヘルツ波領域の信号を伝搬可能なサイズを持ち、前記第1の基板および前記第2の基板はシリコン基板であって、前記溝はフォトリソグラフィおよびドライエッチング法によって形成されることを特徴とする請求項1または2に記載の導波回路。   The hollow waveguide has a size capable of propagating a terahertz wave signal, the first substrate and the second substrate are silicon substrates, and the groove is formed by photolithography and dry etching. The waveguide circuit according to claim 1, wherein the waveguide circuit is provided. 重ね合わされた前記第1の基板および前記第2の基板の端面近傍の、前記中空構造の導波路において、前記導波回路の内部の導波路幅よりも徐々に広がる開口部構造(22)をさらに備えたことを特徴とする請求項1乃至3いずれかに記載の導波回路。   In the waveguide having the hollow structure in the vicinity of the end surfaces of the superimposed first substrate and the second substrate, an opening structure (22) that gradually widens beyond the waveguide width inside the waveguide circuit is further provided. The waveguide circuit according to claim 1, further comprising a waveguide circuit. 重ね合わされた前記第1の基板および前記第2の基板の端面近傍の、前記中空導構造の導波路の端部において、前記端部の開口部に隣接して、外部からの入力信号または外部への出力信号の反射光を前記基板の外部に反射・散乱する傾斜壁構造(23a、23b)を持つことを特徴とする請求項1乃至3いずれかに記載の導波回路。   At the end of the waveguide of the hollow waveguide structure in the vicinity of the end faces of the first and second substrates that are overlaid, adjacent to the opening of the end, an input signal from the outside or to the outside 4. The waveguide circuit according to claim 1, wherein the waveguide circuit has an inclined wall structure (23 a, 23 b) that reflects and scatters the reflected light of the output signal to the outside of the substrate. 5. 重ね合わされた前記第1の基板および前記第2の基板の端面近傍の、前記中空構造の導波路の端部において、前記端部の開口部に隣接して、前記中空構造の導波路の断面構造に対応する前記導波回路の動作波長の4分の1となる奥行き長さ持ち前記中空構造の導波路の方向に沿って伸びた1つ以上の空洞(24a〜24f)をさらに備えたことを特徴とする請求項1乃至3いずれかに記載の導波回路。   The cross-sectional structure of the hollow waveguide in the end portion of the waveguide having the hollow structure in the vicinity of the end surfaces of the first substrate and the second substrate that are superimposed, adjacent to the opening of the end portion. And one or more cavities (24a to 24f) extending along the direction of the waveguide of the hollow structure having a depth length that is a quarter of the operating wavelength of the waveguide circuit corresponding to 4. The waveguide circuit according to claim 1, wherein the waveguide circuit is characterized in that:
JP2015120611A 2015-06-15 2015-06-15 Terahertz waveguide circuit Pending JP2017005631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015120611A JP2017005631A (en) 2015-06-15 2015-06-15 Terahertz waveguide circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015120611A JP2017005631A (en) 2015-06-15 2015-06-15 Terahertz waveguide circuit

Publications (1)

Publication Number Publication Date
JP2017005631A true JP2017005631A (en) 2017-01-05

Family

ID=57752962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015120611A Pending JP2017005631A (en) 2015-06-15 2015-06-15 Terahertz waveguide circuit

Country Status (1)

Country Link
JP (1) JP2017005631A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031523A (en) * 2018-08-22 2018-12-18 清华大学 The production method and its structure of Terahertz suspension hollow ridge Medium Wave Guide
CN109378562A (en) * 2018-09-05 2019-02-22 深圳市奥谱太赫兹技术研究院 The super damping Terahertz notch filter of Novel ultra wide band
CN109831169A (en) * 2019-03-11 2019-05-31 电子科技大学 Terahertz amplifier chip structure based on low-pass filter off-chip compensation
KR20200099362A (en) * 2019-02-14 2020-08-24 한국해양대학교 산학협력단 Tunable terahertz notch filter
CN114850548A (en) * 2022-04-25 2022-08-05 成都四威高科技产业园有限公司 Terahertz waveguide port burr removing process
CN115548616A (en) * 2022-12-01 2022-12-30 四川太赫兹通信有限公司 Structural element, structural system and circuit system of terahertz circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031523A (en) * 2018-08-22 2018-12-18 清华大学 The production method and its structure of Terahertz suspension hollow ridge Medium Wave Guide
CN109378562A (en) * 2018-09-05 2019-02-22 深圳市奥谱太赫兹技术研究院 The super damping Terahertz notch filter of Novel ultra wide band
KR20200099362A (en) * 2019-02-14 2020-08-24 한국해양대학교 산학협력단 Tunable terahertz notch filter
KR102158425B1 (en) * 2019-02-14 2020-09-21 한국해양대학교 산학협력단 Tunable terahertz notch filter
CN109831169A (en) * 2019-03-11 2019-05-31 电子科技大学 Terahertz amplifier chip structure based on low-pass filter off-chip compensation
CN114850548A (en) * 2022-04-25 2022-08-05 成都四威高科技产业园有限公司 Terahertz waveguide port burr removing process
CN115548616A (en) * 2022-12-01 2022-12-30 四川太赫兹通信有限公司 Structural element, structural system and circuit system of terahertz circuit

Similar Documents

Publication Publication Date Title
JP2017005631A (en) Terahertz waveguide circuit
KR100578683B1 (en) Optical devices and methods of fabrication thereof
JP5253468B2 (en) Antenna device and radar device
JP5172481B2 (en) Short slot directional coupler with post-wall waveguide, butler matrix and on-vehicle radar antenna using the same
JP3188696B2 (en) Optical device
JP6112708B2 (en) Metamaterial
Zhao et al. 2-D terahertz metallic photonic crystals in parallel-plate waveguides
WO1994016345A1 (en) Low-loss optical and optoelectronic integrated circuits
KR20040077903A (en) Multi-mode interference optical waveguide device
Kaur et al. Affordable terahertz components using 3D printing
Gonzalo et al. A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies
JP2015135414A (en) Terahertz band wavelength plate and terahertz wave measurement device
JP3303757B2 (en) Non-radiative dielectric line component and integrated circuit thereof
CN216485897U (en) Waveguide array and integrated optical phased array chip
JP2007139445A (en) Periodic structure, element using it and manufacturing method of periodic structure
US10644409B2 (en) Passive element
JPH11195910A (en) Structure of conversion section for nonradioactive hybrid dielectric line and its device
WO2019013320A1 (en) Optical element and optical circuit
JPS5879204A (en) Wavelength filter
JP2013115741A (en) Millimeter wave band radio wave half mirror and method of flattening transmittance thereof
Rahiminejad et al. Micromachined gap waveguides for 100 GHz applications
RU2502102C2 (en) Optical filter
US11239538B2 (en) Photonic integrated circuit comprising a dielectric waveguide on a substrate including a local functionalization to enable metallization-free THz wave propagation
JP5997117B2 (en) Millimeter wave filter and millimeter band high-frequency attenuation method
JP6220705B2 (en) Millimeter wave band filter