JP2015056304A - Electrode for lithium secondary battery - Google Patents

Electrode for lithium secondary battery Download PDF

Info

Publication number
JP2015056304A
JP2015056304A JP2013189442A JP2013189442A JP2015056304A JP 2015056304 A JP2015056304 A JP 2015056304A JP 2013189442 A JP2013189442 A JP 2013189442A JP 2013189442 A JP2013189442 A JP 2013189442A JP 2015056304 A JP2015056304 A JP 2015056304A
Authority
JP
Japan
Prior art keywords
electrode
separator
lithium secondary
secondary battery
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013189442A
Other languages
Japanese (ja)
Other versions
JP6854071B2 (en
Inventor
山田 宗紀
Munenori Yamada
宗紀 山田
朗 繁田
Akira Shigeta
朗 繁田
寿史朗 江口
Jushiro Eguchi
寿史朗 江口
雅弘 細田
Masahiro Hosoda
雅弘 細田
良彰 越後
Yoshiaki Echigo
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2013189442A priority Critical patent/JP6854071B2/en
Publication of JP2015056304A publication Critical patent/JP2015056304A/en
Application granted granted Critical
Publication of JP6854071B2 publication Critical patent/JP6854071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for lithium secondary battery having excellent adhesiveness to a separator, and when it is laminated integrally with the separator, ion permeability of the separator is not impaired.SOLUTION: 1) An electrode for lithium secondary battery having an ion permeable adhesive layer, composed of a polyolefin-based resin, on the outer surface of an active material layer. 2)An electrode for lithium secondary battery to be use while being laminated integrally with a separator. Preferably, the polyolefin resin is a polyolefin-based resin exhibiting adhesiveness in thermocompression of 70-120°C.

Description

本発明は、リチウム二次電池用電極に関する。
この電極は、セパレータと積層一体化することにより、好適に使用される。
The present invention relates to an electrode for a lithium secondary battery.
This electrode is preferably used by being laminated and integrated with the separator.

電子機器の小型化・軽量化に伴い、非水系二次電池の外装をアルミラミネートフィルムとしたリチウム二次電池が実用化されている。アルミラミネートフィルムを外装として用いた場合、外装が柔らかいため、充放電に伴って電極とセパレータとの間に隙間が形成されることがあり、サイクル特性が低下するという問題があった。 Along with the reduction in size and weight of electronic devices, lithium secondary batteries in which the exterior of the non-aqueous secondary battery is an aluminum laminate film have been put into practical use. When an aluminum laminate film is used as an exterior, since the exterior is soft, a gap may be formed between the electrode and the separator along with charge / discharge, resulting in a problem that cycle characteristics are deteriorated.

そこで、この問題を解決する方法として、電極(正極及び負極)とポリオレフィン系樹脂からなるセパレータとを積層一体化する方法が提案されている。例えば、特許第3225864号公報には、PVDFからなる接着層を前記セパレータ表面に形成し、電極と積層一体化する方法が提案されている。 また、特許第3447610号公報には前記セパレータ表面に配置されたポリマー架橋物を接着層として用い、電極と積層一体化する方法が提案されている。さらには、特開2013−137943号公報には、接着層を用いることなく、40℃〜70℃という低温条件で高圧処理することにより、電極と前記セパレータとを積層一体化する方法が提案されている。 Therefore, as a method for solving this problem, a method of laminating and integrating electrodes (positive electrode and negative electrode) and a separator made of polyolefin resin has been proposed. For example, Japanese Patent No. 3225864 proposes a method in which an adhesive layer made of PVDF is formed on the surface of the separator and laminated with an electrode. Japanese Patent No. 3447610 proposes a method of laminating and integrating with an electrode using a polymer cross-linked product disposed on the separator surface as an adhesive layer. Furthermore, Japanese Patent Application Laid-Open No. 2013-137743 proposes a method of stacking and integrating the electrode and the separator by performing high pressure treatment at a low temperature of 40 ° C. to 70 ° C. without using an adhesive layer. Yes.

一方、リチウム二次電池において、電極表面の傷や凹凸が原因となって、電極に接しているセパレータの絶縁性を破壊することがあり、内部短絡(ショート)が発生することがある。この内部短絡を防止するため、特開平9−147916号公報や特許第5071056号公報には、電極表面に絶縁性の多孔質膜からなる保護層を設けることが提案されている。 On the other hand, in a lithium secondary battery, the insulation of the separator in contact with the electrode may be destroyed due to scratches or irregularities on the electrode surface, and an internal short circuit may occur. In order to prevent this internal short circuit, Japanese Patent Application Laid-Open No. 9-147916 and Japanese Patent No. 5071056 propose to provide a protective layer made of an insulating porous film on the electrode surface.

特許第3225864号公報Japanese Patent No. 3225864 特許第3447610号公報Japanese Patent No. 3447610 特開2013−137943号公報JP 2013-137934 A 特開平9−147916号公報JP-A-9-147916 特許第5071056号公報Japanese Patent No. 5071056

従来提案されたセパレータに接着層を設ける方法や電極に保護層を設けるような方法では、セパレータのイオン透過性を充分に確保しつつ、電極とセパレータとの接着性を確保することが難しかった。 In the conventionally proposed methods of providing an adhesive layer on a separator or a method of providing a protective layer on an electrode, it has been difficult to ensure the adhesion between the electrode and the separator while sufficiently ensuring the ion permeability of the separator.

そこで、本発明は上記課題を解決するものであって、セパレータと良好な接着性を有し、しかも、セパレータと積層一体化した時に、セパレータのイオン透過性が損なわれないリチウム二次電池用電極の提供を目的とする。 Accordingly, the present invention solves the above-mentioned problems, and has an excellent adhesive property with the separator, and the lithium ion battery electrode does not impair the ion permeability of the separator when laminated and integrated with the separator. The purpose is to provide.

本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の接着層を電極活物質層の外表面に設けることにより、上記課題が解決されることを見出し、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by providing a specific adhesive layer on the outer surface of the electrode active material layer, and have reached the present invention.

すなわち、本発明は、下記を要旨とするものである。
<1> 活物質層の外表面にポリオレフィン系樹脂からなるイオン透過性の接着層が形成されたリチウム二次電池用電極。
<2> セパレータと積層一体化されて使用されることを特徴とする<1>記載のリチウム二次電池用電極。
That is, the present invention has the following gist.
<1> An electrode for a lithium secondary battery in which an ion-permeable adhesive layer made of a polyolefin resin is formed on the outer surface of the active material layer.
<2> The electrode for a lithium secondary battery according to <1>, wherein the electrode is laminated and integrated with a separator.

本発明によれば、セパレータと良好な接着性を有し、しかも、セパレータと積層一体化した時に、セパレータのイオン透過性が損なわれないリチウム二次電池電極を提供することが出来る。 According to the present invention, it is possible to provide a lithium secondary battery electrode that has good adhesion to the separator and that does not impair the ion permeability of the separator when laminated and integrated with the separator.

以下、本発明について詳細に説明する。
本発明のリチウム二次電池用電極は、活物質層の外表面にポリオレフィン系樹脂からなる接着層(以下、単に「接着層」と略記することがある)が形成されたものである。
ここで、リチウム二次電池用電極とは、リチウム二次電池を構成する電極であり、正極活物質層を正極集電体に接合してなる正極、もしくは、負極活物質層を負極集電体に接合してなる負極を言う。
Hereinafter, the present invention will be described in detail.
The electrode for a lithium secondary battery of the present invention is one in which an adhesive layer made of a polyolefin-based resin (hereinafter sometimes simply referred to as “adhesive layer”) is formed on the outer surface of the active material layer.
Here, the electrode for the lithium secondary battery is an electrode constituting the lithium secondary battery, and the positive electrode formed by joining the positive electrode active material layer to the positive electrode current collector or the negative electrode active material layer as the negative electrode current collector. The negative electrode formed by bonding to

正極活物質層は、正極活物質粒子を樹脂バインダで結着して得られる層である。正極活物質粒子として用いられる材料としては、リチウムイオンを吸蔵保存できるものが好ましく、一般にリチウム二次電池の正極活物質として用いられるものが挙げられ、例えばマンガン酸リチウム、LiCoO、LiNiO、およびLi(0<x<2)等のリチウム複合酸化物、ポリアニリンおよびポリチオフェン等の高分子化合物を挙げることができる。この中でもLiMn等のマンガン酸リチウム、LiCoO、LiNiOが好ましい。 The positive electrode active material layer is a layer obtained by binding positive electrode active material particles with a resin binder. The material used as the positive electrode active material particles, preferably those of lithium ion capable of occluding stored, generally include those used as the positive electrode active material for lithium secondary batteries, such as lithium manganate, LiCoO 2, LiNiO 2, and Examples thereof include lithium composite oxides such as Li x V 2 O 5 (0 <x <2), and polymer compounds such as polyaniline and polythiophene. Among these, lithium manganate such as LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 are preferable.

また、負極活物質層は、負極活物質粒子を樹脂バインダで結着して得られる層である。負極活物質粒子として用いられる材料としては、一般にリチウム二次電池の負極活物質として用いられるリチウムイオンを吸蔵保存できるものが好ましく、例えばグラファイト粒子、アモルファスカーボン粒子、シリコン系粒子、錫系粒子等を挙げることができる。この中でもグラファイト粒子、シリコン系粒子が好ましい。 前記シリコン系粒子としては、例えば、シリコン単体、シリコン合金、シリコン・2酸化珪素複合体等の粒子が挙げられ、これらシリコン系粒子の中でも、シリコン単体の粒子(以下、「シリコン粒子」と略記することがある)が、好ましい。ここで、シリコン単体とは、純度が95質量%以上の結晶質もしくは非晶質のシリコンを言う。 The negative electrode active material layer is a layer obtained by binding negative electrode active material particles with a resin binder. As the material used as the negative electrode active material particles, those capable of occluding and storing lithium ions generally used as the negative electrode active material of the lithium secondary battery are preferable. For example, graphite particles, amorphous carbon particles, silicon-based particles, tin-based particles and the like are used. Can be mentioned. Among these, graphite particles and silicon-based particles are preferable. Examples of the silicon-based particles include particles of silicon alone, a silicon alloy, a silicon-silicon dioxide composite, and the like. Among these silicon-based particles, particles of silicon alone (hereinafter abbreviated as “silicon particles”). Are preferred). Here, the silicon simple substance means crystalline or amorphous silicon having a purity of 95% by mass or more.

前記活物質粒子の粒子径としては、正極、負極いずれの場合も50μm以下が好ましく、さらに10μm以下が好ましい。また、粒径が小さすぎても樹脂バインダによる結着が難しくなるので、通常0.1μm以上、好ましくは0.5μm以上である。 The particle diameter of the active material particles is preferably 50 μm or less, and more preferably 10 μm or less, for both the positive electrode and the negative electrode. Moreover, since it becomes difficult to bind with a resin binder even if the particle size is too small, it is usually 0.1 μm or more, preferably 0.5 μm or more.

前記活物質層の気孔率は、正極、負極いずれの場合も5〜50体積%であることが好ましく、10〜40体積%がより好ましい。また、その層厚としては、通常20〜200μm程度である。 The porosity of the active material layer is preferably 5 to 50% by volume and more preferably 10 to 40% by volume in both the positive electrode and the negative electrode. Moreover, as the layer thickness, it is about 20-200 micrometers normally.

前記樹脂バインダとしては、例えばポリフッ化ビニリデン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド等を挙げることができる。この中でも特にポリフッ化ビニリデン、スチレン・ブタジエン共重合ゴム、ポリイミドが好ましい。 Examples of the resin binder include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene / butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, and polyimide. Etc. Among these, polyvinylidene fluoride, styrene / butadiene copolymer rubber and polyimide are particularly preferable.

前記集電体としては金属箔や金属メッシュが挙げられる。正極の場合はアルミニウム箔、負極の場合は銅箔が好ましく、厚さは、通常5〜50μm程度である。 Examples of the current collector include metal foil and metal mesh. In the case of the positive electrode, an aluminum foil is preferable, and in the case of the negative electrode, a copper foil is preferable, and the thickness is usually about 5 to 50 μm.

本発明の電極は、前記活物資層の外表面にイオン透過性のポリオレフィン系樹脂からなる接着層が形成されてなるものである。この接着層の厚みとしては、0.1〜5μmであることが好ましく、0.5〜2.5μmであることが更に好ましい。 The electrode of the present invention is obtained by forming an adhesive layer made of an ion-permeable polyolefin resin on the outer surface of the active material layer. The thickness of the adhesive layer is preferably 0.1 to 5 μm, and more preferably 0.5 to 2.5 μm.

前記接着性ポリオレフィン樹脂は、接着性を示すポリオレフィン系樹脂であれば制限はないが、70〜120℃の熱圧着で接着性を示すポリオレフィン系樹脂を用いることが好ましい。これら接着性を示すポリオレフィン系樹脂としては、ポリマー骨格がポリオレフィンであるポリマーの1種又は2種以上からなる混合物に対して例えば無水マレイン酸やアクリル酸などの不飽和カルポン酸が共重合した構造を有する変性ポリオレフィン樹脂が好ましく用いられる。この変性ポリオレフィン樹脂の融点もしくは軟化点としては70〜120℃のものを用いることが好ましい。 前記骨格がポリオレフィンであるポリマーの具体例としては、LDPE、L−LDPE、HDPE、EVA、ホモポリプロピレン、ランダムポリプロピレン、エチレン−ブテン−1共重合体、エチレン−プロピレン共重合体、ポリブタジエン、等を挙げることができる。 The adhesive polyolefin resin is not limited as long as it is a polyolefin-based resin exhibiting adhesiveness, but it is preferable to use a polyolefin-based resin that exhibits adhesiveness by thermocompression bonding at 70 to 120 ° C. The polyolefin-based resin exhibiting adhesiveness has a structure in which an unsaturated carboxylic acid such as maleic anhydride or acrylic acid is copolymerized with a mixture of one or more polymers having a polymer skeleton of polyolefin. A modified polyolefin resin is preferably used. The modified polyolefin resin preferably has a melting point or softening point of 70 to 120 ° C. Specific examples of the polymer whose skeleton is polyolefin include LDPE, L-LDPE, HDPE, EVA, homopolypropylene, random polypropylene, ethylene-butene-1 copolymer, ethylene-propylene copolymer, polybutadiene, and the like. be able to.

前記接着層はイオン透過性を有するものである。接着層にイオン透過性を付与する方法に制限はないが、前記オレフィン系樹脂にフィラーを配合して、接着層を多孔質構造とし、イオン透過性を確保する方法が好ましい。 The adhesive layer has ion permeability. Although there is no restriction | limiting in the method of providing ion permeability to an adhesion layer, The method of mix | blending a filler with the said olefin resin and making an adhesion layer porous structure and ensuring ion permeability is preferable.

フィラーとしては、無機または有機のフィラーを用いることができる。有機フィラーとして具体的には、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチル等の単独あるいは2種類以上の共重合体;ポリテトラフルオロエチレン、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、ポリビニリデンフルオライド等のフッ素系樹脂;メラミン樹脂;尿素樹脂;ポリエチレン;ポリプロピレン;ポリメタクリレート等の有機物からなるフィラーが挙げられ、無機フィラーとして具体的には炭酸カルシウム、タルク、クレー、カオリン、シリカ、ハイドロタルサイト、珪藻土、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、酸化チタン、アルミナ、マイカ、ゼオライト、ガラス等の無機物からなるフィラーが挙げられる。なお、これらのフィラーは、単独あるいは2種以上を混合して用いることができる。フィラーとしては、これらの中でも耐熱性および化学的安定性の観点から、無機フィラーが好ましく、無機酸化物フィラーがより好ましく、アルミナフィラーが特に好ましい。アルミナには、α−アルミナ、β−アルミナ、γ−アルミナ、θ−アルミナ等の多くの結晶形が存在するが、α−アルミナが熱的・化学的安定性が特に高いため、最も好ましい。 As the filler, an inorganic or organic filler can be used. Specific examples of the organic filler include styrene, vinyl ketone, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, and methyl acrylate, or a copolymer of two or more kinds; polytetrafluoroethylene, 4 fluorine Fluorine resins such as fluorinated ethylene-6-propylene-propylene copolymer, tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride; melamine resin; urea resin; polyethylene; polypropylene; filler made of organic matter such as polymethacrylate Specific examples of inorganic fillers include calcium carbonate, talc, clay, kaolin, silica, hydrotalcite, diatomaceous earth, magnesium carbonate, barium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, Aluminum oxide, magnesium hydroxide, calcium oxide, magnesium oxide, titanium oxide, alumina, mica, zeolite, and a filler made of an inorganic substance such as glass. In addition, these fillers can be used individually or in mixture of 2 or more types. Among these, from the viewpoint of heat resistance and chemical stability, the filler is preferably an inorganic filler, more preferably an inorganic oxide filler, and particularly preferably an alumina filler. Alumina has many crystal forms such as α-alumina, β-alumina, γ-alumina, θ-alumina, etc., and α-alumina is most preferable because of its particularly high thermal and chemical stability.

前記フィラーの平均粒径は、3μm以下が好ましく、1μm以下がより好ましい。ここで、平均粒径は、例えばレーザー回折式粒度分布測定装置で測定した体積基準の平均粒径を言う。この平均粒径は接着層表面のSEM像から確認することもできる。また、フィラーの含有量は、接着層全体の70質量%以上であることが好ましく、80質量%以上であることがより好ましい。このようにすることにより、フィラー同士の接触により形成される空隙が多くなり、イオン透過性を良好に保つことができる。なお前記フィラーの粒子形状に制限はなく、不定形状、球状、繊維状等、いかなる形状でもよい。 The average particle size of the filler is preferably 3 μm or less, and more preferably 1 μm or less. Here, the average particle diameter refers to, for example, a volume-based average particle diameter measured with a laser diffraction particle size distribution measuring apparatus. This average particle diameter can also be confirmed from the SEM image on the surface of the adhesive layer. Moreover, it is preferable that content of a filler is 70 mass% or more of the whole contact bonding layer, and it is more preferable that it is 80 mass% or more. By doing in this way, the space | gap formed by contact of fillers increases and ion permeability can be kept favorable. In addition, there is no restriction | limiting in the particle shape of the said filler, Any shapes, such as an indefinite shape, spherical shape, and fibrous shape, may be sufficient.

前記活物質層の外表面に接着層を形成させる方法としては、前記ポリオレフィン系樹脂を溶液もしくはエマルジョンとし接着層形成用塗液(以下、単に「塗液」と略記することがある)とすることが出来る。この塗液を前記ポリオレフィン系活物質層の外表面に塗布した後、乾燥して溶媒もしくは分散媒を除去することにより、本発明の電極を得ることができる。前記ポリオレフィン系樹脂は環境適応性の観点から水を主分散媒としたエマルジョンとすることが好ましく、市販品を利用することができる。市販品としては、ユニチカ株式会社製「アローベース」(商品名)の品番SA−1200、SB−1200、SE−1200、SB−1010等を例示することができる。これらは、70〜120℃の熱圧着で接着性を示す変性ポリオレフィン樹脂の水性エマルジョンである。なお、ポリオレフィン系樹脂にフィラーを配合する場合は、前記溶液もしくはエマルジョンにフィラーを加え、均一に混合すれば良い。 As a method of forming an adhesive layer on the outer surface of the active material layer, the polyolefin resin is used as a solution or an emulsion to form an adhesive layer forming coating liquid (hereinafter sometimes simply referred to as “coating liquid”). I can do it. After applying this coating liquid to the outer surface of the polyolefin-based active material layer, the electrode of the present invention can be obtained by drying to remove the solvent or the dispersion medium. The polyolefin resin is preferably an emulsion containing water as a main dispersion medium from the viewpoint of environmental adaptability, and a commercially available product can be used. As a commercial item, the product numbers SA-1200, SB-1200, SE-1200, SB-1010 etc. of "Arrow base" (brand name) by Unitika Ltd. can be illustrated. These are aqueous emulsions of modified polyolefin resins that exhibit adhesion by thermocompression bonding at 70 to 120 ° C. In addition, what is necessary is just to add a filler to the said solution or emulsion, and to mix uniformly, when mix | blending a filler with polyolefin resin.

前記の如くして得られた、活物質層の外表面に接着層を形成した本発明の電極(以下「接着性電極」と略記することがある)は、イオン透過性を有するものであり、その有無は、以下の測定を行うことにより判定することができる。すなわち、導電性多孔質層の表面に20℃のエチレンカーボネート、エチルメチルカーボネート、およびジメチルカーボネートの混合溶媒(体積比1:1:1)5μLを滴下し、これが完全に浸透する時間を目視で測定する。この溶媒吸収時間が600秒以下であればイオン透過性を有すると判定される。本発明の電極においては、この溶媒吸収時間を300秒以下とすることが好ましく、150秒以下がより好ましい。 The electrode of the present invention in which an adhesive layer is formed on the outer surface of the active material layer obtained as described above (hereinafter sometimes abbreviated as “adhesive electrode”) has ion permeability, The presence or absence can be determined by performing the following measurement. That is, 5 μL of a mixed solvent (volume ratio 1: 1: 1) of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate at 20 ° C. was dropped on the surface of the conductive porous layer, and the time for which this completely penetrated was visually measured. To do. If this solvent absorption time is 600 seconds or less, it is determined to have ion permeability. In the electrode of the present invention, the solvent absorption time is preferably 300 seconds or shorter, more preferably 150 seconds or shorter.

前記の如くして得られた接着性電極はセパレータと積層一体化して使用することが出来る。ここで、セパレータとしては、リチウム二次電池用セパレータとして通常用いられるポリオレフィンからなる多孔質フィルムを用いることが好ましい。この多孔質フィルムは、その内部に連結した細孔を有する構造を持ち、一方の面から他方の面に気体や液体が透過可能なフィルムである。ここで、ポリオレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどのオレフィンを重合した単独重合体又は共重合体が挙げられる。これらの中でもエチレンを単独重合したポリエチレンが好ましく、重量平均分子量100万以上の高分子量ポリエチレンがより好ましい。また、プロピレンを単独重合したポリプロピレンもポリオレフィンとして好ましい。 The adhesive electrode obtained as described above can be used by being laminated and integrated with a separator. Here, as a separator, it is preferable to use the porous film which consists of polyolefin normally used as a separator for lithium secondary batteries. This porous film has a structure having pores connected to the inside thereof, and is a film through which gas or liquid can pass from one surface to the other surface. Here, examples of the polyolefin include homopolymers or copolymers obtained by polymerizing olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene. Among these, polyethylene obtained by homopolymerizing ethylene is preferable, and high molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is more preferable. Polypropylene obtained by homopolymerizing propylene is also preferable as the polyolefin.

セパレータの透気度は、ガーレ値(JIS規格P8117)で600秒/100cc以下であることが好ましく、400秒/100cc以下であることがより好ましい。前記範囲の透気度を有すると、セパレータとして用いた際に、十分なイオン透過性を得ることができる。また、その気孔率は、電解液の保持量を高めると共に、シャットダウン機能を確保する観点から、20〜80体積%が好ましく、30〜75体積%がより好ましく、孔径は、3μm以下が好ましく、1μm以下がより好ましい。ここで、シャットダウン機能とは、リチウム二次電池の破損等により内部短絡または外部短絡が生じた場合に、大電流が流れて異常発熱することがあるため、リチウム二次電池には一定以上の発熱を防止することが必要であるが、この異常発熱の際に、電極間のイオンの通過を遮断して、発熱を防止する機能を言う。 The air permeability of the separator is preferably 600 seconds / 100 cc or less, and more preferably 400 seconds / 100 cc or less in terms of Gurley value (JIS standard P8117). When the air permeability is in the above range, sufficient ion permeability can be obtained when used as a separator. The porosity is preferably 20 to 80% by volume, more preferably 30 to 75% by volume from the viewpoint of increasing the amount of electrolyte retained and ensuring a shutdown function, and the pore diameter is preferably 3 μm or less, preferably 1 μm. The following is more preferable. Here, the shutdown function means that if an internal short circuit or external short circuit occurs due to damage to the lithium secondary battery, etc., a large current may flow and cause abnormal heat generation. In this abnormal heat generation, it refers to a function of preventing heat generation by blocking the passage of ions between the electrodes.

セパレータの膜厚は、前記シャットダウンによる絶縁性確保の観点から、8〜50μmが好ましく、10〜30μmがより好ましい。また、その構造は、1層のみからなる単層構造であってもよいし、2層以上の層から構成される多層構造であってもよい。多層構造としては、例えば、あるポリオレフィンからなるポリオレフィン層の少なくとも一方の面に、他のポリオレフィンからなるポリオレフィン層が積層された構造などが挙げられ、中でも、ポリエチレンを主成分とするポリエチレン層の両面に、ポリプロピレンを主成分とするポリプロピレン層が積層された構造(ポリプロピレン層/ポリエチレン層/ポリプロピレン層)が好ましい。 The film thickness of the separator is preferably 8 to 50 μm, more preferably 10 to 30 μm, from the viewpoint of ensuring insulation by the shutdown. Further, the structure may be a single-layer structure composed of only one layer or a multilayer structure composed of two or more layers. Examples of the multilayer structure include a structure in which a polyolefin layer made of another polyolefin is laminated on at least one surface of a polyolefin layer made of a certain polyolefin. A structure in which a polypropylene layer mainly composed of polypropylene is laminated (polypropylene layer / polyethylene layer / polypropylene layer) is preferable.

前記セパレータは、市販品を利用することができる。市販品としては、SK社やFoshan社のポリエチレン製多孔質フィルムやCelgard社のポリプロピレン製多孔質フィルムを例示することが出来る。これらの市販品は、厚みが9〜40μmでシャットダウン機能を有するものである。 A commercial item can be used for the separator. Examples of commercially available products include polyethylene porous films from SK and Foshan, and polypropylene porous films from Celgard. These commercially available products have a thickness of 9 to 40 μm and have a shutdown function.

前記接着性電極とセパレータとを積層一体化するには、前記接着性電極とセパレータを積層して加熱プレスすれば良い。すなわち、接着性電極とセパレータを積層し、50〜130℃、好ましくは70〜120℃の温度、1〜30kg/cm、好ましくは5〜15kg/cmの圧力で加熱プレスする。このようにすることにより、層間の良好な接着性が確保された積層一体化品(以下、「積層体」と略記することがある)を得ることができる。積層構造としては、接着性正極/セパレータ、接着性負極/セパレータなどの2層構造や、接着性正極/セパレータ/接着性負極の3層構造とすることができる。 In order to stack and integrate the adhesive electrode and the separator, the adhesive electrode and the separator may be stacked and heated and pressed. That is, the adhesion electrode and the separator are stacked, 50 to 130 ° C., preferably at temperatures of 70 to 120 ° C., 1 to 30 kg / cm 2, preferably hot-pressed at a pressure of 5~15kg / cm 2. By doing in this way, the laminated integrated product (henceforth abbreviate | omitted to a "laminate") by which the favorable adhesiveness between layers was ensured can be obtained. The laminated structure may be a two-layer structure such as an adhesive positive electrode / separator or an adhesive negative electrode / separator, or a three-layer structure of adhesive positive electrode / separator / adhesive negative electrode.

以上述べたように、本発明の電極は、その外表面にポリオレフィン系樹脂からなるイオン透過性の接着層を有しており、その接着層がセパレータと良好な接着性を有しているので、容易にセパレータと積層一体化することが出来る。 As described above, the electrode of the present invention has an ion-permeable adhesive layer made of a polyolefin-based resin on its outer surface, and since the adhesive layer has good adhesiveness with the separator, It can be easily laminated and integrated with the separator.

以下に実施例を挙げて、本発明をさらに具体的に説明する。なお本発明は実施例により限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The present invention is not limited to the examples.

実施例及び比較例で使用した電極(正極および負極)を以下のようにして作製した。
(正極)
正極活物質であるコバルト酸リチウム粉を86質量部、導電助剤の黒鉛粉を8質量部、バインダ樹脂であるポリフッ化ビニリデン6質量部をN−メチルピロリドン中に均一に分散して正極用ペーストを作製した。この正極用ペーストを正極集電体である厚さ20μmのアルミ箔に塗布し、得られた塗膜を乾燥し、熱プレスして厚みが60μmの正極活物質層を有する正極を作製した。
(負極)
負極活物質である黒鉛粉を95質量部、バインダ樹脂であるポリフッ化ビニリデン5質量部をN−メチルピロリドン中に均一に分散して負極用ペーストを作製した。この負極用ペーストを負極集電体である厚さ10μmの銅箔に塗布し、得られた塗膜を乾燥し、熱プレスして厚みが50μmの負極活物質層を有する負極を作製した。
The electrodes (positive electrode and negative electrode) used in Examples and Comparative Examples were produced as follows.
(Positive electrode)
86 parts by mass of lithium cobaltate powder as a positive electrode active material, 8 parts by mass of graphite powder as a conductive additive, and 6 parts by mass of polyvinylidene fluoride as a binder resin are uniformly dispersed in N-methylpyrrolidone and paste for positive electrode Was made. This positive electrode paste was applied to a 20 μm-thick aluminum foil as a positive electrode current collector, and the obtained coating film was dried and hot pressed to produce a positive electrode having a positive electrode active material layer having a thickness of 60 μm.
(Negative electrode)
A negative electrode paste was prepared by uniformly dispersing 95 parts by mass of graphite powder as a negative electrode active material and 5 parts by mass of polyvinylidene fluoride as a binder resin in N-methylpyrrolidone. This negative electrode paste was applied to a 10 μm-thick copper foil as a negative electrode current collector, and the obtained coating film was dried and hot pressed to prepare a negative electrode having a negative electrode active material layer having a thickness of 50 μm.

実施例及び比較例において得られた電極の特性等は以下の方法で評価した。
(1)イオン透過性
電極表面に20℃のエチレンカーボネート、エチルメチルカーボネート、およびジメチルカーボネートの混合溶媒(体積比1:1:1)5μLを滴下し、これが完全に浸透する時間を目視で測定した。
(2)接着性
セパレータと接着性電極シートとの積層一体化品から、セパレータを180度反対方向に剥がして行く時の張力から判断した。
○:電極シートとセパレータの接着性良好
×:電極シートとセパレータの接着性不良
The characteristics of the electrodes obtained in the examples and comparative examples were evaluated by the following methods.
(1) Ion permeability
5 μL of a mixed solvent of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate (volume ratio 1: 1: 1) at 20 ° C. was dropped onto the electrode surface, and the time during which this completely penetrated was visually measured.
(2) Judgment was made from the tension when the separator was peeled 180 degrees in the opposite direction from the laminated integrated product of the adhesive separator and the adhesive electrode sheet.
○: Good adhesion between electrode sheet and separator ×: Poor adhesion between electrode sheet and separator

<実施例1>
[塗液]
変性ポリオレフィン樹脂の水性エマルジョンであるユニチカ株式会社製「アローベース」(商品名)の品番SB−1200を用意した。この水性エマルジョンに、平均粒径が0.9μmのα−アルミナ粉末を加えて撹拌し均一な分散体とすることにより塗液を調製した。 ここで、変性ポリオレフィン樹脂とα−アルミナ粉末の質量比は1.5/8.5(変性ポリオレフィン樹脂/α−アルミナ粉末)とした。
[接着性電極]
適度に希釈した前記塗液を前記正極に、塗布後、80℃で乾燥して、接着性電極を得た。この電極の接着層の厚みは1.2μmであり、溶媒吸収時間は35秒であり、イオン透過性は良好であった。
[積層体]
ポリオレフィンからなる多孔質フィルムとして、セルガード社製ポリプロピレン多孔膜フィルム(品番2500 厚み25μm)を用意した。 これと前記接着性電極とを積層し、温度90℃、圧力8kg/cmで熱圧着し一体化した。 この積層一体化品の接着性は○で良好であった。 また、溶媒吸収時間は25秒であり、イオン透過性は良好であった。
<Example 1>
[Coating solution]
A product number SB-1200 of “Arrow Base” (trade name) manufactured by Unitika Ltd., which is an aqueous emulsion of a modified polyolefin resin, was prepared. A coating liquid was prepared by adding α-alumina powder having an average particle size of 0.9 μm to this aqueous emulsion and stirring to obtain a uniform dispersion. Here, the mass ratio of the modified polyolefin resin and the α-alumina powder was 1.5 / 8.5 (modified polyolefin resin / α-alumina powder).
[Adhesive electrode]
The coating liquid diluted moderately was applied to the positive electrode and then dried at 80 ° C. to obtain an adhesive electrode. The thickness of the adhesive layer of this electrode was 1.2 μm, the solvent absorption time was 35 seconds, and the ion permeability was good.
[Laminate]
As a porous film made of polyolefin, a polypropylene porous film made by Celgard (product number 2500, thickness 25 μm) was prepared. This and the adhesive electrode were laminated and integrated by thermocompression bonding at a temperature of 90 ° C. and a pressure of 8 kg / cm 2 . The adhesiveness of this laminated integrated product was good with good. The solvent absorption time was 25 seconds, and the ion permeability was good.

<実施例2>
塗液として、α−アルミナ粉末を加えない塗液を用いたこと、および接着層の厚みを0.5μmとしたこと以外は、実施例1と同様にして、接着性電極および積層一体化品を得た。 接着性電極の溶媒吸収時間は51秒であった。 また、積層一体化品の接着性は○で良好であり、溶媒吸収時間は28秒であり、イオン透過性は良好であった。
<Example 2>
The adhesive electrode and the laminated integrated product were obtained in the same manner as in Example 1 except that the coating liquid without adding α-alumina powder was used as the coating liquid, and the thickness of the adhesive layer was 0.5 μm. Obtained. The solvent absorption time of the adhesive electrode was 51 seconds. Moreover, the adhesiveness of the laminated integrated product was good with ○, the solvent absorption time was 28 seconds, and the ion permeability was good.

<実施例3>
電極として、前記負極を用いたこと以外は、実施例1と同様にして、接着性電極および積層一体化品を得た。接着性電極の接着層の厚みは1.4μmであり、溶媒吸収時間は42秒であった。また、積層一体化品の接着性は○で良好であり、溶媒吸収時間は18秒であり、イオン透過性は良好であった。
<Example 3>
An adhesive electrode and a laminated integrated product were obtained in the same manner as in Example 1 except that the negative electrode was used as an electrode. The thickness of the adhesive layer of the adhesive electrode was 1.4 μm, and the solvent absorption time was 42 seconds. Moreover, the adhesiveness of the laminated integrated product was good with ○, the solvent absorption time was 18 seconds, and the ion permeability was good.

<比較例1>
接着層の厚みを5.5μmとしたこと以外は、実施例1と同様にして、接着性電極を得た。 接着性電極の溶媒吸収時間は600秒を超え、イオン透過性は不良であった。
<Comparative Example 1>
An adhesive electrode was obtained in the same manner as in Example 1 except that the thickness of the adhesive layer was 5.5 μm. The solvent absorption time of the adhesive electrode exceeded 600 seconds, and the ion permeability was poor.

<比較例2>
接着層を形成しなかったこと以外は、実施例1と同様にして積層体を得、接着性を評価したが、容易に手で剥がれてしまい、接着性としては×であった。
<Comparative Example 2>
Except that the adhesive layer was not formed, a laminate was obtained in the same manner as in Example 1, and the adhesiveness was evaluated. However, it was easily peeled off by hand, and the adhesiveness was x.

以上、実施例、比較例で示した様に、本発明のリチウム二次電池用電極は、イオン透過性と接着性に優れるので、セパレータと積層一体化することにより、好適に用いることが出来る。

As described above, as shown in Examples and Comparative Examples, the electrode for a lithium secondary battery of the present invention is excellent in ion permeability and adhesiveness, and can be suitably used by stacking and integrating with a separator.

Claims (2)

活物質層の外表面にポリオレフィン系樹脂からなるイオン透過性の接着層が形成されたリチウム二次電池用電極。 An electrode for a lithium secondary battery in which an ion-permeable adhesive layer made of a polyolefin resin is formed on the outer surface of an active material layer. セパレータと積層一体化されて使用されることを特徴とする請求項1記載のリチウム二次電池用電極。
2. The electrode for a lithium secondary battery according to claim 1, wherein the electrode is laminated and integrated with a separator.
JP2013189442A 2013-09-12 2013-09-12 Electrode for lithium secondary battery Active JP6854071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013189442A JP6854071B2 (en) 2013-09-12 2013-09-12 Electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013189442A JP6854071B2 (en) 2013-09-12 2013-09-12 Electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2015056304A true JP2015056304A (en) 2015-03-23
JP6854071B2 JP6854071B2 (en) 2021-04-07

Family

ID=52820573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013189442A Active JP6854071B2 (en) 2013-09-12 2013-09-12 Electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6854071B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087343A (en) * 2017-11-02 2019-06-06 トヨタ自動車株式会社 Method of manufacturing negative electrode
JP2020170667A (en) * 2019-04-04 2020-10-15 積水化学工業株式会社 Manufacturing method of stacked battery and stacked batteries

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266814A (en) * 2000-03-17 2001-09-28 Tdk Corp Sheet-shaped battery
JP2008166143A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010225545A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010267466A (en) * 2009-05-14 2010-11-25 Hitachi Maxell Ltd Flat nonaqueous battery
JP2011023186A (en) * 2009-07-15 2011-02-03 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element and method of manufacturing the same
JP2011054502A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Lithium secondary cell and manufacturing method thereof
JP2011054503A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Separator for electrochemical element, electrochemical element and manufacturing method thereof
JP2013033702A (en) * 2011-07-05 2013-02-14 Jsr Corp Positive electrode for power storage device
WO2013047853A1 (en) * 2011-09-26 2013-04-04 住友化学株式会社 Adhesive resin composition for secondary battery
JP2013069681A (en) * 2011-09-07 2013-04-18 Iwate Univ Lithium secondary battery negative electrode and method for manufacturing the same
WO2013062056A1 (en) * 2011-10-28 2013-05-02 旭化成株式会社 Non-aqueous secondary battery
JP2013187075A (en) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd Laminate structure battery
WO2014014118A1 (en) * 2012-07-18 2014-01-23 住友化学株式会社 Adhesive layer, layer and composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266814A (en) * 2000-03-17 2001-09-28 Tdk Corp Sheet-shaped battery
JP2008166143A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010225545A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010267466A (en) * 2009-05-14 2010-11-25 Hitachi Maxell Ltd Flat nonaqueous battery
JP2011023186A (en) * 2009-07-15 2011-02-03 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element and method of manufacturing the same
JP2011054503A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Separator for electrochemical element, electrochemical element and manufacturing method thereof
JP2011054502A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Lithium secondary cell and manufacturing method thereof
JP2013033702A (en) * 2011-07-05 2013-02-14 Jsr Corp Positive electrode for power storage device
JP2013069681A (en) * 2011-09-07 2013-04-18 Iwate Univ Lithium secondary battery negative electrode and method for manufacturing the same
WO2013047853A1 (en) * 2011-09-26 2013-04-04 住友化学株式会社 Adhesive resin composition for secondary battery
WO2013062056A1 (en) * 2011-10-28 2013-05-02 旭化成株式会社 Non-aqueous secondary battery
JP2013187075A (en) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd Laminate structure battery
WO2014014118A1 (en) * 2012-07-18 2014-01-23 住友化学株式会社 Adhesive layer, layer and composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087343A (en) * 2017-11-02 2019-06-06 トヨタ自動車株式会社 Method of manufacturing negative electrode
JP7006144B2 (en) 2017-11-02 2022-02-10 トヨタ自動車株式会社 Negative electrode manufacturing method
JP2020170667A (en) * 2019-04-04 2020-10-15 積水化学工業株式会社 Manufacturing method of stacked battery and stacked batteries

Also Published As

Publication number Publication date
JP6854071B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP6938657B2 (en) Multi-function multilayer separator for lithium-ion batteries
JP6498228B2 (en) Porous layer
CN108352485B (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP6171117B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP6123006B1 (en) Porous layer
US9887406B2 (en) Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
US9269938B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
CN108352484B (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP5650738B2 (en) Battery separator and battery
KR20140071951A (en) Heat resistant porous membrane, separator for nonaqueous cell, and nonaqueous cell
JP2009283273A (en) Separator for electrochemical cell, and battery
JP6325180B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
KR20190015105A (en) Separator for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2012137377A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JPWO2012137374A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2019107521A1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012005152A1 (en) Separator for non-aqueous battery, and non-aqueous battery
JP6854071B2 (en) Electrode for lithium secondary battery
JP2015056305A (en) Separator for lithium secondary battery
JP2023551001A (en) Separation membrane for electrochemical devices, electrode assemblies including the same, and electrochemical devices
JPWO2013051079A1 (en) Heat-resistant porous membrane, non-aqueous battery separator and non-aqueous battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190523

C272 Notice of ex officio correction

Free format text: JAPANESE INTERMEDIATE CODE: C272

Effective date: 20190604

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190604

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190611

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190712

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190723

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200310

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200728

C141 Inquiry by the administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C141

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

C54 Written response to inquiry

Free format text: JAPANESE INTERMEDIATE CODE: C54

Effective date: 20200924

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210119

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210302

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6854071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150