JP2015054688A - Vehicle interior humidity inspection device - Google Patents

Vehicle interior humidity inspection device Download PDF

Info

Publication number
JP2015054688A
JP2015054688A JP2013191110A JP2013191110A JP2015054688A JP 2015054688 A JP2015054688 A JP 2015054688A JP 2013191110 A JP2013191110 A JP 2013191110A JP 2013191110 A JP2013191110 A JP 2013191110A JP 2015054688 A JP2015054688 A JP 2015054688A
Authority
JP
Japan
Prior art keywords
absolute humidity
humidity
vehicle interior
amount
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013191110A
Other languages
Japanese (ja)
Inventor
千尋 三輪
Chihiro Miwa
千尋 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013191110A priority Critical patent/JP2015054688A/en
Priority to PCT/IB2014/001775 priority patent/WO2015036833A1/en
Publication of JP2015054688A publication Critical patent/JP2015054688A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3207Control means therefor for minimizing the humidity of the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle interior humidity inspection device capable of accurately inspecting a humidity in a vehicle interior.SOLUTION: A vehicle interior humidity calculation device includes a processor that calculates an increment of an absolute humidity in a vehicle interior on the basis of a first predetermined parameter, and also calculates a decrement of the absolute humidity in the vehicle interior on the basis of a second predetermined parameter. The processor calculates an absolute humidity in the vehicle interior on the basis of the amount of change of the absolute humidity obtainable from the increment and decrement of the calculated absolute humidity and an initial value of the absolute humidity.

Description

本開示は、車室内湿度予測装置に関する。   The present disclosure relates to a vehicle interior humidity prediction apparatus.

従来から、乗員数及び降雨の有無の判定結果に基づいて車室内の湿度を予測し、車室内の気温および車室内の湿度に基づいてオートエアコンの制御モードをデフロスタモードに変更する必要があるか否かを判定する車両用オートエアコン制御装置が知られている(例えば、特許文献1参照)。   Conventionally, it is necessary to predict the humidity in the passenger compartment based on the number of passengers and whether or not there is rainfall, and to change the control mode of the auto air conditioner to the defroster mode based on the temperature in the passenger compartment and the humidity in the passenger compartment. An automatic air conditioner control device for a vehicle that determines whether or not is known is known (for example, see Patent Document 1).

特開2002-137630号公報JP 2002-137630 A

しかしながら、上記の特許文献1に記載の構成では、車室内の湿度の増加要員となるパラメータ(乗員、降雨)しか考慮されていないので、実際の湿度よりも高く予測される虞がある。   However, in the configuration described in Patent Document 1, only parameters (occupants and rainfall) that increase the humidity in the passenger compartment are taken into consideration, and therefore there is a possibility that the humidity is predicted to be higher than the actual humidity.

そこで、本開示は、車室内の湿度を精度良く予測することができる車室内湿度予測装置の提供を目的とする。   Therefore, an object of the present disclosure is to provide a vehicle interior humidity prediction apparatus that can accurately predict the humidity in the vehicle interior.

本開示の一局面によれば、第1の所定パラメータに基づいて車室内の絶対湿度の増加量を算出すると共に、第2の所定パラメータに基づいて前記車室内の絶対湿度の減少量を算出し、算出した絶対湿度の増加量及び減少量から得られる絶対湿度の変化量と、絶対湿度の初期値とに基づいて、車室内の絶対湿度を算出する処理装置を備える、車室内湿度算出装置が提供される。   According to one aspect of the present disclosure, the absolute humidity increase amount in the vehicle interior is calculated based on the first predetermined parameter, and the absolute humidity decrease amount in the vehicle interior is calculated based on the second predetermined parameter. A vehicle interior humidity calculation device comprising a processing device that calculates the absolute humidity in the vehicle interior based on the amount of change in absolute humidity obtained from the calculated increase and decrease in absolute humidity and the initial value of the absolute humidity. Provided.

本開示によれば、車室内の湿度を精度良く予測することができる車室内湿度予測装置が得られる。   According to the present disclosure, it is possible to obtain a vehicle interior humidity prediction device that can accurately predict the humidity in the vehicle interior.

一実施例による車室内湿度算出装置1の構成を示す図である。It is a figure which shows the structure of the vehicle interior humidity calculation apparatus 1 by one Example. 空調装置20の一例を示す図である。It is a figure which shows an example of the air conditioner. 処理装置10により実行される処理の一例を示すフローチャートである。4 is a flowchart illustrating an example of processing executed by the processing device 10. 絶対湿度と温度との関係を示す図である。It is a figure which shows the relationship between absolute humidity and temperature. 車室内湿度変化の要因となる水分移動要因を概念的に示す図である。It is a figure which shows notionally the moisture movement factor used as the factor of a vehicle interior humidity change. 温度と絶対湿度の関係を示す図である。It is a figure which shows the relationship between temperature and absolute humidity.

以下、添付図面を参照しながら各実施例について詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the accompanying drawings.

図1は、一実施例による車室内湿度算出装置1の構成を示す図である。車室内湿度算出装置1は、処理装置10を含む。   FIG. 1 is a diagram illustrating a configuration of a vehicle interior humidity calculating apparatus 1 according to an embodiment. The vehicle interior humidity calculation device 1 includes a processing device 10.

処理装置10は、CPUを含む演算処理装置により構成されてもよい。処理装置10は、以下で説明する各種機能を備える。処理装置10の各種機能(以下で説明する機能を含む)は、任意のハードウェア、ソフトウェア、ファームウェア又はそれらの組み合わせにより実現されてもよい。例えば、処理装置10の機能の任意の一部又は全部は、特定用途向けASIC(application-specific integrated circuit)、FPGA(Field Programmable Gate Array)、DSP(digital signal processor)により実現されてもよい。また、処理装置10は、複数の処理装置により実現されてもよい。尚、以下では、一例として、処理装置10は、例えば空調装置を制御するエアコンECUとして具現化されているものとして、説明を続ける。   The processing device 10 may be configured by an arithmetic processing device including a CPU. The processing device 10 has various functions described below. Various functions (including functions described below) of the processing device 10 may be realized by arbitrary hardware, software, firmware, or a combination thereof. For example, any or all of the functions of the processing apparatus 10 may be realized by an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or a digital signal processor (DSP). Further, the processing device 10 may be realized by a plurality of processing devices. In the following description, as an example, the processing device 10 is described as being embodied as an air conditioner ECU that controls the air conditioner, for example.

処理装置10には、外気温センサ12、内気温センサ14及び車速センサ(車輪速センサ)16が接続される。この接続は、直接的な接続であってよいし、他のECUやCAN(controller area network)などのバスを介した接続であってもよい。   An outside air temperature sensor 12, an inside air temperature sensor 14, and a vehicle speed sensor (wheel speed sensor) 16 are connected to the processing device 10. This connection may be a direct connection or a connection via a bus such as another ECU or a CAN (controller area network).

処理装置10には、空調装置(エアコンディショナ)20が接続される。処理装置10は、空調装置20の各種制御を行ってよい。例えば、処理装置10は、後述の如く算出した車室内の絶対湿度等に基づいて、フロントウインドシールド等に曇り等が生じないようにデフロスタモードへの切り替え(自動)等を実行してもよい。   An air conditioner (air conditioner) 20 is connected to the processing device 10. The processing apparatus 10 may perform various controls of the air conditioner 20. For example, the processing device 10 may execute switching to the defroster mode (automatic) or the like so as not to cause fogging or the like in the front windshield or the like based on the absolute humidity in the vehicle interior calculated as described later.

処理装置10は、空調装置20の制御情報(以下、エアコン制御情報)を取得する。エアコン制御情報は、ブロア風量及び内外気ダンパの開度(以下、「内外気ダンパ開度」という)に関する情報を含んでよい。尚、本例では、処理装置10がエアコンECUとして具現化されるので、エアコン制御情報は、自身が生成する制御情報(各種制御値)である。或いは、エアコン制御情報は、ユーザにより操作される操作スイッチ(例えば、インストルメントパネル等に配置されるスイッチやディスプレイ上のタッチスイッチ)により設定される設定状態(即ち各種設定値)に基づいて生成されてもよい。   The processing device 10 acquires control information of the air conditioner 20 (hereinafter, air conditioner control information). The air conditioner control information may include information related to the blower air volume and the opening degree of the inside / outside air damper (hereinafter referred to as “inside / outside air damper opening degree”). In this example, since the processing apparatus 10 is embodied as an air conditioner ECU, the air conditioner control information is control information (various control values) generated by itself. Alternatively, the air conditioner control information is generated based on setting states (that is, various setting values) set by operation switches operated by the user (for example, switches arranged on an instrument panel or touch switches on a display). May be.

図2は、空調装置20の一例を示す図である。空調装置20の構成は任意であるが、例えば図2に示すような構成であってもよい。   FIG. 2 is a diagram illustrating an example of the air conditioner 20. Although the structure of the air conditioner 20 is arbitrary, a structure as shown, for example in FIG. 2 may be sufficient.

図2に示す例では、空調装置20は、エンジン等を動力源として冷媒を圧縮するコンプレッサ(図示せず)を備え、コンプレッサにより圧縮された冷媒は、冷媒通路を循環し、コンデンサにより冷却され、エバポレータ26に供給される。エバポレータ26は、車室内に設けられる。エバポレータ26の前側には、図2に示すように、その回転速度が調整可能なブロアモータ(ブロアファン)22が配設されている。ブロアモータ22は、内外気ダンパ(外内気ドア)29を介して車外又は車室内と連通している。ブロアモータ22は、車外又は車室内の空気(即ち、外気又は内気)をエバポレータ26を介して車室内に送り込む機能を有する。   In the example shown in FIG. 2, the air conditioner 20 includes a compressor (not shown) that compresses a refrigerant using an engine or the like as a power source, and the refrigerant compressed by the compressor circulates in the refrigerant passage and is cooled by a condenser. It is supplied to the evaporator 26. The evaporator 26 is provided in the vehicle interior. As shown in FIG. 2, a blower motor (blower fan) 22 whose rotational speed can be adjusted is disposed on the front side of the evaporator 26. The blower motor 22 communicates with the outside of the vehicle or the vehicle interior via an inside / outside air damper (outside / inside air door) 29. The blower motor 22 has a function of sending air outside the vehicle or inside the vehicle (that is, outside air or inside air) into the vehicle interior via the evaporator 26.

図2に示す例では、ブロアモータ22が回転すると、内外気ダンパ29を介して流入した空気(即ち、外気又は内気)がエバポレータ26を通過する。この際、流入する空気における外気及び内気の流量の比は、内外気ダンパ29の開度に依存する。エバポレータ26は、冷房時、コンプレッサにより圧縮された冷媒を気化することで、エバポレータ26を通過する空気を冷却する。エバポレータ26の後流側には、ヒーターコア21が配設されている。ヒーターコア21には、その開度が調整可能なエアミックスドア24が設定されている。ヒーターコア21は、エンジンからの廃熱を利用して、エバポレータ26により冷却された空気(冷気)に暖気を混合する機能(リヒート機能)を果たす。車室内に送り込まれる空気の温度は、エアミックスドア24の開度(即ち、冷気と暖気の混合比)を制御することにより調整される。ヒーターコア21の後流側には、車室内の所定の箇所に設けられた各吹き出し口まで混合空気を導く各ダクトが配設されている。また、ヒーターコア21の後流側には、選択的に所定の吹き出し口に混合空気を導くためのモードドア28が設定されている。   In the example shown in FIG. 2, when the blower motor 22 rotates, the air that flows in via the inside / outside air damper 29 (that is, outside air or inside air) passes through the evaporator 26. At this time, the ratio of the flow rate of the outside air and the inside air in the inflowing air depends on the opening degree of the inside / outside air damper 29. The evaporator 26 cools the air passing through the evaporator 26 by evaporating the refrigerant compressed by the compressor during cooling. A heater core 21 is disposed on the downstream side of the evaporator 26. An air mix door 24 whose opening degree is adjustable is set in the heater core 21. The heater core 21 performs a function (reheat function) of mixing warm air with air (cold air) cooled by the evaporator 26 using waste heat from the engine. The temperature of the air sent into the passenger compartment is adjusted by controlling the opening degree of the air mix door 24 (that is, the mixture ratio of cold air and warm air). On the downstream side of the heater core 21, ducts for guiding the mixed air to the outlets provided at predetermined locations in the passenger compartment are arranged. A mode door 28 for selectively introducing the mixed air to a predetermined outlet is set on the downstream side of the heater core 21.

図3は、処理装置10により実行される処理の一例を示すフローチャートである。図4は、絶対湿度と温度との関係を示す図である。図3に示す処理は、例えばイグニッションスイッチがオンされたときに起動され、その後、イグニッションスイッチがオフされるまで、所定周期ΔT(例えば、1秒)毎に繰り返し実行されてよい。   FIG. 3 is a flowchart illustrating an example of processing executed by the processing device 10. FIG. 4 is a diagram showing the relationship between absolute humidity and temperature. The process shown in FIG. 3 may be executed, for example, every time a predetermined period ΔT (for example, 1 second) is started when the ignition switch is turned on and then the ignition switch is turned off.

ステップ300では、内気温センサ14から室内温度情報を取得する。   In step 300, room temperature information is acquired from the inside air temperature sensor 14.

ステップ302では、車内絶対湿度の初期値を算出する。車内絶対湿度の初期値は、任意の値であってよい。本例では、車内絶対湿度の初期値は、上記ステップ300で得た室内温度に基づいて算出される。即ち、図4に示す関係に基づいて、現在の室内温度と現在の相対湿度に応じた絶対湿度が算出される。この際、車内絶対湿度の初期値は、現在の相対湿度を100%と仮定して算出されてもよい。或いは、現在の相対湿度は、100%に代えて他の値が使用されてもよい。この場合、他の値は、仕向け先に応じて設定された固定値であってもよいし、現在の季節や日時、車両位置周辺の降雨状況(天気情報)等に基づいて可変される可変値であってもよい。   In step 302, an initial value of the in-vehicle absolute humidity is calculated. The initial value of the absolute humidity inside the vehicle may be an arbitrary value. In this example, the initial value of the vehicle interior absolute humidity is calculated based on the room temperature obtained in step 300 above. That is, based on the relationship shown in FIG. 4, the absolute humidity according to the current room temperature and the current relative humidity is calculated. At this time, the initial value of the in-vehicle absolute humidity may be calculated on the assumption that the current relative humidity is 100%. Alternatively, other values may be used as the current relative humidity instead of 100%. In this case, the other value may be a fixed value set according to the destination, or a variable value that is variable based on the current season, date and time, rainfall conditions (weather information) around the vehicle position, etc. It may be.

ステップ304では、乗員人数、内外気ダンパ開度、ブロア風量(ブロアモータ22の回転数)、外気温を算出・取得する。乗員人数は、任意の方法で算出されてもよい。例えば、乗員人数は、各シートに設けられる圧力センサ等に基づいて算出されてもよい。外気温は、外気温センサ12から取得される。内外気ダンパ開度及びブロア風量は、エアコン制御情報に基づくものであってよい。   In step 304, the number of passengers, the inside / outside air damper opening, the blower air volume (the rotation speed of the blower motor 22), and the outside air temperature are calculated and acquired. The number of passengers may be calculated by any method. For example, the number of passengers may be calculated based on a pressure sensor or the like provided on each seat. The outside air temperature is acquired from the outside air temperature sensor 12. The inside / outside air damper opening and the blower air volume may be based on the air conditioner control information.

システム306では、上記ステップ304で得られたパラメータに基づいて、絶対湿度増加量を算出する。絶対湿度増加量は、例えば処理周期ΔTに対応する時間当たりの絶対湿度の増加量であってよい。絶対湿度増加量の算出方法は、任意であってよい。例えば、絶対湿度増加量は、乗員から放出される水分に起因した増加量、及び、内外気の換気に起因した増加量の少なくとも一方を含んでよい。乗員に起因した増加量は、乗員人数に基づいて、乗員人数が多くなるほど大きくなる態様で算出されてよい。また、換気に起因した増加量は、内外気ダンパ開度等に基づいて、車室内に入る換気風量を算出し、算出した換気風量と外気湿度とから算出されてもよい。外気湿度は、外気温に応じて、例えばマップを用いて算出されてもよいし、外部から通信により取得されてよい天気情報に基づいて算出されてもよい。   In the system 306, the absolute humidity increase amount is calculated based on the parameter obtained in step 304 above. The absolute humidity increase amount may be, for example, an increase amount of absolute humidity per time corresponding to the processing cycle ΔT. The calculation method of the absolute humidity increase amount may be arbitrary. For example, the absolute humidity increase amount may include at least one of an increase amount due to moisture released from the occupant and an increase amount due to ventilation of the inside and outside air. The increase amount resulting from the occupant may be calculated based on the number of occupants in a manner that increases as the number of occupants increases. Further, the increased amount due to ventilation may be calculated from the ventilation air volume entering the vehicle interior based on the inside / outside air damper opening degree and the like, and the calculated ventilation air volume and the outside air humidity. The outside air humidity may be calculated using a map, for example, according to the outside air temperature, or may be calculated based on weather information that may be acquired from outside by communication.

ステップ308では、車速センサ16からの車速を取得する。尚、車速は、車速センサ16からの車速に代えて又は加えて、GPS(Global Positioning System)受信機で測位される自車位置に基づいて算出されてもよいし、トランスミッションのアウトプットシャフトの回転数の検出値に基づいて算出されてもよい。   In step 308, the vehicle speed from the vehicle speed sensor 16 is acquired. The vehicle speed may be calculated based on the position of the vehicle measured by a GPS (Global Positioning System) receiver instead of or in addition to the vehicle speed from the vehicle speed sensor 16, or the rotation speed of the output shaft of the transmission. May be calculated based on the detected value.

ステップ310では、上記ステップ304で得た内外気ダンパ開度及びブロア風量と、上記ステップ308で得た車速とに基づいて、絶対湿度減少量を算出する。絶対湿度減少量は、例えば処理周期ΔTに対応する時間当たりの絶対湿度の減少量であってよい。絶対湿度減少量の算出方法は、任意であってよい。例えば、絶対湿度減少量は、内外気の換気に起因した減少量、車室内の低温部位(例えば、フロントウインドシールド、サイドガラス、リアガラス等のようなガラス部材、エバポレータ26等)での凝縮に起因した減少量、及び、車室内の内装部材(特に繊維質の内装部材)や空隙部への吸湿に起因した減少量のうちの任意の1つ以上を含んでよい。   In step 310, the absolute humidity reduction amount is calculated based on the inside / outside air damper opening and the blower air volume obtained in step 304 and the vehicle speed obtained in step 308. The absolute humidity reduction amount may be, for example, an absolute humidity reduction amount per time corresponding to the processing cycle ΔT. The calculation method of the absolute humidity reduction amount may be arbitrary. For example, the amount of decrease in absolute humidity is due to the amount of decrease due to the ventilation of the inside and outside air, the condensation at a low temperature part in the vehicle interior (for example, glass member such as front windshield, side glass, rear glass, evaporator 26, etc.) Any one or more of the reduction amount and the reduction amount due to moisture absorption to the interior member (particularly, the fibrous interior member) in the vehicle interior or the gap may be included.

内外気の換気に起因した減少量の算出方法は、任意であってよい。例えば、内外気ダンパ開度及び車速に基づいて、車外に出た換気風量を算出し、算出した換気風量と車内絶対湿度とから算出されてもよい。尚、車速は、換気風量に動圧風量を含めるために使用することができるが、動圧風量は考慮されなくてもよい。車内絶対湿度は、前回周期で算出された車内絶対湿度(後述のステップ314参照)が利用されてよい。尚、初回の処理ルーチンでは、車内絶対湿度は、車内絶対湿度の初期値(ステップ302参照)が使用されてよい。   The calculation method of the reduction amount resulting from the ventilation of the inside and outside air may be arbitrary. For example, it may be calculated from the calculated ventilation air flow and the absolute humidity inside the vehicle based on the inside / outside air damper opening and the vehicle speed. The vehicle speed can be used to include the dynamic pressure air volume in the ventilation air volume, but the dynamic pressure air volume may not be considered. As the in-vehicle absolute humidity, the in-vehicle absolute humidity calculated in the previous cycle (see step 314 described later) may be used. In the initial processing routine, the initial value of the in-vehicle absolute humidity (see step 302) may be used as the in-vehicle absolute humidity.

また、車室内の低温部位に起因した減少量の算出方法は、任意であってよい。例えば、低温部位の温度と、露点温度と、車内絶対湿度との関係に基づいて算出されてもよい。例えば、低温部位がフロントウインドシールドである場合、フロントウインドシールド付近の絶対湿度は、フロントウインドシールドの温度(ガラス温度)を用いて算出されてもよい。ガラス温度は、内気温度、外気温度及び車速に基づいて算出されてよい。例えば、車室内の低温部位に起因した減少量は、低温部位の温度が露点温度よりも高い場合(即ち、低温部位付近の絶対湿度が車内絶対湿度よりも高い)は、0とされ、低温部位の温度が露点温度よりも低い場合は、低温部位の面積(設計値)と低温部位の温度と車内絶対湿度と応じた値とされてもよい。同様に、車内絶対湿度は、前回周期で算出された車内絶対湿度(後述のステップ314参照)が利用されてよい。尚、初回の処理ルーチンでは、車内絶対湿度は、車内絶対湿度の初期値(ステップ302参照)が使用されてもよい。   Moreover, the calculation method of the reduction amount resulting from the low-temperature site | part in a vehicle interior may be arbitrary. For example, it may be calculated based on the relationship between the temperature of the low temperature part, the dew point temperature, and the vehicle interior absolute humidity. For example, when the low temperature part is the front windshield, the absolute humidity near the front windshield may be calculated using the temperature (glass temperature) of the front windshield. The glass temperature may be calculated based on the inside air temperature, the outside air temperature, and the vehicle speed. For example, the amount of decrease due to the low temperature region in the passenger compartment is set to 0 when the temperature of the low temperature region is higher than the dew point temperature (that is, the absolute humidity near the low temperature region is higher than the absolute humidity inside the vehicle). If the temperature is lower than the dew point temperature, it may be a value corresponding to the area (design value) of the low temperature part, the temperature of the low temperature part, and the absolute humidity inside the vehicle. Similarly, as the vehicle interior absolute humidity, the vehicle interior absolute humidity (see step 314 described later) calculated in the previous cycle may be used. In the first processing routine, the initial value of the vehicle absolute humidity (see step 302) may be used as the vehicle absolute humidity.

また、車室内の内装部材等への吸湿に起因した減少量の算出方法は、任意であってよい。例えば、車室内の内装部材等への吸湿に起因した減少量は、吸湿速度が平衡吸湿量と現在の吸着量との差に比例する点を利用して算出されてもよい。この際、平衡吸湿量は、相対湿度(内装部材に対する相対湿度)が増加するにつれて増加する特性(例えばBET吸着式)が使用されてよい。内装部材に対する相対湿度は、内装部材の温度に対応した内装部材内の絶対湿度に対する車内絶対湿度の比に基づいて算出されてもよい。内装部材の温度は、内気温度及び外気温度に基づいて算出されてよい。同様に、車内絶対湿度は、前回周期で算出された車内絶対湿度(後述のステップ314参照)が利用されてよい。尚、初回の処理ルーチンでは、車内絶対湿度は、車内絶対湿度の初期値(ステップ302参照)が使用されてもよい。   Moreover, the calculation method of the reduction | decrease amount resulting from the moisture absorption to the interior member etc. in a vehicle interior may be arbitrary. For example, the amount of decrease due to moisture absorption by the interior member or the like in the passenger compartment may be calculated using the point that the moisture absorption speed is proportional to the difference between the equilibrium moisture absorption amount and the current adsorption amount. At this time, a characteristic (for example, a BET adsorption type) that increases as the relative humidity (relative humidity with respect to the interior member) increases may be used as the equilibrium moisture absorption amount. The relative humidity with respect to the interior member may be calculated based on a ratio of the in-vehicle absolute humidity to the absolute humidity within the interior member corresponding to the temperature of the interior member. The temperature of the interior member may be calculated based on the inside air temperature and the outside air temperature. Similarly, as the vehicle interior absolute humidity, the vehicle interior absolute humidity (see step 314 described later) calculated in the previous cycle may be used. In the first processing routine, the initial value of the vehicle absolute humidity (see step 302) may be used as the vehicle absolute humidity.

ステップ312では、上記ステップ306で得た絶対湿度増加量と、上記ステップ310で得た絶対湿度減少量とに基づいて、絶対湿度の変化量を算出する。絶対湿度の変化量は、単に絶対湿度増加量から絶対湿度減少量を減算することで算出されてよい。   In step 312, the absolute humidity change amount is calculated based on the absolute humidity increase amount obtained in step 306 and the absolute humidity decrease amount obtained in step 310. The amount of change in absolute humidity may be calculated by simply subtracting the amount of decrease in absolute humidity from the amount of increase in absolute humidity.

ステップ314では、車内絶対湿度の前回値(前回の処理周期のステップ314で得た車内絶対湿度)と、上記ステップ312で得た絶対湿度の変化量とに基づいて、車内絶対湿度を算出する。車内絶対湿度(今回値)は、車内絶対湿度の前回値と、上記ステップ312で得た絶対湿度の変化量との和として演算されてもよい。車内絶対湿度の前回値は、初回の処理周期では、上記ステップ302で得た車内絶対湿度の初期値が用いられてよい。ステップ314の処理が終了すると、次の処理周期にてステップ304から開始する。この場合、次の処理周期では、今回周期で得た絶対湿度が、車内絶対湿度の前回値として本ステップ314で使用されることになる。   In step 314, the in-vehicle absolute humidity is calculated based on the previous value of the in-vehicle absolute humidity (the in-vehicle absolute humidity obtained in step 314 of the previous processing cycle) and the amount of change in the absolute humidity obtained in step 312 above. The vehicle interior absolute humidity (current value) may be calculated as the sum of the previous value of the vehicle interior absolute humidity and the amount of change in absolute humidity obtained in step 312. As the previous value of the in-vehicle absolute humidity, the initial value of the in-vehicle absolute humidity obtained in step 302 may be used in the first processing cycle. When the processing in step 314 is completed, the processing starts from step 304 in the next processing cycle. In this case, in the next processing cycle, the absolute humidity obtained in the current cycle is used in this step 314 as the previous value of the in-vehicle absolute humidity.

図3に示す例によれば、車内の絶対湿度増加量が算出されると共に、車内の絶対湿度減少量が算出され、算出された絶対湿度増加量及び絶対湿度減少量に基づいて、車内絶対湿度が算出される。このように、車内の絶対湿度増加量のみならず車内の絶対湿度減少量をも考慮されるので、車室内の湿度の減少要因が考慮された精度の良い車内絶対湿度を算出することができる。   According to the example shown in FIG. 3, the absolute humidity increase amount in the vehicle is calculated, the absolute humidity decrease amount in the vehicle is calculated, and the absolute humidity increase in the vehicle is calculated based on the calculated absolute humidity increase amount and the absolute humidity decrease amount. Is calculated. Thus, since not only the absolute humidity increase amount in the vehicle but also the absolute humidity decrease amount in the vehicle is taken into consideration, the accurate absolute humidity in the vehicle can be calculated in consideration of the decrease factor of the humidity in the vehicle interior.

また、図3に示す例によれば、車内絶対湿度の初期値は、上述の如く、仮定等に基づく値であり、実際の車内絶対湿度に対して乖離(誤差)が大きい場合がありうるが、かかる誤差は、所定周期毎の演算で徐々に低減されるので、最終的には精度の良い車内絶対湿度を算出することができる。具体的には、例えば、車内絶対湿度の初期値が、実際の車内絶対湿度に対して有意に大きい場合(有意に小さい場合も同様)を想定すると、上記ステップ310で算出される絶対湿度減少量についても、実際の絶対湿度減少量よりも絶対値が大きくなる。これは、絶対湿度減少量は、上述の如く、車内絶対湿度(初期値又は前回値)に応じて算出されるためである。   Further, according to the example shown in FIG. 3, the initial value of the absolute humidity in the vehicle is a value based on assumptions as described above, and there may be a large deviation (error) from the actual absolute humidity in the vehicle. Such an error is gradually reduced by calculation every predetermined period, so that it is possible to finally calculate an accurate in-vehicle absolute humidity. Specifically, for example, assuming that the initial value of the absolute humidity in the vehicle is significantly larger than the actual absolute humidity in the vehicle (the same applies to the case where it is significantly smaller), the absolute humidity reduction amount calculated in step 310 above is assumed. Also, the absolute value is larger than the actual absolute humidity reduction amount. This is because the absolute humidity reduction amount is calculated according to the in-vehicle absolute humidity (initial value or previous value) as described above.

尚、図3に示す処理は、一定の所定周期ΔT毎に実行されているが、所定周期ΔTは、可変されてもよい。即ち、図3に示す処理は、不定期的な周期で実行されてもよい。この場合は、前回の周期からの変化量(絶対湿度増加量及び絶対湿度減少量)がステップ306及びステップ310で演算されてよい。   Note that the processing shown in FIG. 3 is executed every certain predetermined period ΔT, but the predetermined period ΔT may be varied. That is, the process shown in FIG. 3 may be executed at irregular intervals. In this case, a change amount (absolute humidity increase amount and absolute humidity decrease amount) from the previous cycle may be calculated in step 306 and step 310.

図5は、車室内湿度変化の要因となる水分移動要因を概念的に示す図である。   FIG. 5 is a diagram conceptually showing a moisture transfer factor that causes a change in the humidity in the passenger compartment.

車内の絶対湿度の増加要因は、図5に示すように、換気により車室内に入る外気に含まれる水分P1、及び、乗員から放出される水分P2がある。また、車内の絶対湿度の減少要因は、図5に示すように、換気により車室外に出る内気に含まれる水分P3、車室内の低温部位(例えば、フロントウインドシールド等)で凝縮する水分P4、及び、車室内の内装部材等へ吸湿される水分P5がある。   As shown in FIG. 5, factors that increase the absolute humidity in the vehicle include moisture P <b> 1 contained in the outside air entering the vehicle interior due to ventilation and moisture P <b> 2 released from the passenger. Further, as shown in FIG. 5, the factors that decrease the absolute humidity inside the vehicle are moisture P3 contained in the inside air that goes out of the passenger compartment due to ventilation, moisture P4 that condenses in a low temperature part (for example, a front windshield) in the passenger compartment, In addition, there is moisture P5 that is absorbed by interior members and the like in the passenger compartment.

従って、単に車内の絶対湿度の増加要因のみを考慮して、車内の絶対湿度を算出すると、車内の絶対湿度が高めに算出されてしまうことになる。これに対して、上述した図3に示す例によれば、車内の絶対湿度の減少要因(絶対湿度減少量)を考慮するので、精度の良い車内絶対湿度を算出することができる。   Accordingly, if the absolute humidity in the vehicle is calculated taking into account only the factor that increases the absolute humidity in the vehicle, the absolute humidity in the vehicle will be calculated higher. On the other hand, according to the example shown in FIG. 3 described above, the factor for decreasing the absolute humidity in the vehicle (the amount of decrease in absolute humidity) is taken into account, so that the absolute humidity in the vehicle can be calculated with high accuracy.

尚、精度の良い車内絶対湿度を算出するため、好ましくは、車内の絶対湿度の2つの増加要因P1,P2の双方が考慮され、且つ、車内の絶対湿度の3つの減少要因P3,P4,P5の全てが考慮される。例えば、図3に示した処理の場合、ステップ306では、好ましくは、車内の絶対湿度の2つの増加要因P1,P2の双方を考慮して、絶対湿度増加量が算出される。また、ステップ310では、好ましくは、車内の絶対湿度の3つの減少要因P3,P4,P5の全てを考慮して、絶対湿度減少量が算出される。但し、これらうちの任意のいずれかが省略されてもよい。   In order to calculate the accurate absolute humidity in the vehicle, it is preferable to consider both of the two factors P1 and P2 that increase the absolute humidity in the vehicle, and to decrease the absolute humidity P3, P4, and P5 in the vehicle. All of these are considered. For example, in the case of the process shown in FIG. 3, in step 306, the absolute humidity increase amount is preferably calculated in consideration of both of the two factors P1 and P2 of increasing the absolute humidity in the vehicle. In step 310, preferably, the absolute humidity reduction amount is calculated in consideration of all three reduction factors P3, P4, and P5 of the absolute humidity in the vehicle. However, any one of these may be omitted.

図6は、温度と絶対湿度の関係を示す図である。   FIG. 6 is a diagram showing the relationship between temperature and absolute humidity.

上述した図3の処理により得られた車内絶対湿度(算出絶対温度)は、空調装置20の各種制御に任意の態様で利用されてもよい。例えば、図6に示すように、算出絶対温度と相対湿度100%の曲線との交点を"露点温度"として算出してもよい。この場合、例えばフロントウインドシールドのガラス温度が露点温度付近に近づいた場合に、曇り防止のための制御(例えば、デフロスタモードへの自動切換え、または、デフロスタモードへの切換えを乗員に促すアドバイスの出力)が実行されてもよい。また、図6に模式的に示すように、室内温度(内気温センサ14から取得)と算出絶対温度とに基づいて、当該室内温度に対応した相対湿度を算出してもよい。   The in-vehicle absolute humidity (calculated absolute temperature) obtained by the process of FIG. 3 described above may be used in various modes for various controls of the air conditioner 20. For example, as shown in FIG. 6, the intersection of the calculated absolute temperature and a curve of 100% relative humidity may be calculated as the “dew point temperature”. In this case, for example, when the glass temperature of the front windshield approaches the dew point temperature, control to prevent fogging (for example, automatic switching to the defroster mode or advice to prompt the passenger to switch to the defroster mode) ) May be executed. Further, as schematically shown in FIG. 6, the relative humidity corresponding to the room temperature may be calculated based on the room temperature (obtained from the inside air temperature sensor 14) and the calculated absolute temperature.

以上説明した本実施例の車室内湿度算出装置1によれば、とりわけ、以下のような優れた効果が奏される。   According to the vehicle interior humidity calculating device 1 of the present embodiment described above, the following excellent effects are achieved, among others.

上述の如く、車内の絶対湿度増加量のみならず車内の絶対湿度減少量をも考慮して、車内絶対湿度が算出されるので、精度の良い車内絶対湿度を算出することができる。このため、算出した車内絶対湿度を利用して、空調装置20の各種制御が可能となり、湿度センサを別途設ける必要性を無くし、コスト低減(部品点数低減)を図ることができる。また、精度の良い車内絶対湿度を利用した信頼性の高い空調装置20の制御も可能となる。これにより、例えばフロントウインドシールド等に結露が生じない態様で効率的な制御が可能となり、安全性と空調効率の向上を両立することが可能となる。   As described above, since the vehicle interior absolute humidity is calculated in consideration of not only the vehicle interior absolute humidity increase amount but also the vehicle interior absolute humidity decrease amount, the vehicle interior absolute humidity can be calculated with high accuracy. For this reason, various control of the air conditioner 20 becomes possible using the calculated absolute humidity in the vehicle, the necessity of separately providing a humidity sensor is eliminated, and cost reduction (number of parts) can be achieved. In addition, it is possible to control the air conditioner 20 with high reliability using the in-vehicle absolute humidity. Thereby, for example, efficient control can be performed in a manner in which condensation does not occur on the front windshield or the like, and both safety and air conditioning efficiency can be improved.

以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。   Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes can be made within the scope described in the claims. It is also possible to combine all or a plurality of the components of the above-described embodiments.

1 車室内湿度算出装置
10 処理装置
12 外気温センサ
14 内気温センサ
16 車速センサ
20 空調装置
DESCRIPTION OF SYMBOLS 1 Car interior humidity calculation apparatus 10 Processing apparatus 12 Outside temperature sensor 14 Inside temperature sensor 16 Vehicle speed sensor 20 Air conditioner

Claims (7)

第1の所定パラメータに基づいて車室内の絶対湿度の増加量を算出すると共に、第2の所定パラメータに基づいて前記車室内の絶対湿度の減少量を算出し、算出した絶対湿度の増加量及び減少量から得られる絶対湿度の変化量と、絶対湿度の初期値とに基づいて、車室内の絶対湿度を算出する処理装置を備える、車室内湿度算出装置。   The amount of increase in absolute humidity in the vehicle interior is calculated based on the first predetermined parameter, the amount of decrease in absolute humidity in the vehicle interior is calculated based on the second predetermined parameter, and the amount of increase in absolute humidity calculated and A vehicle interior humidity calculation device comprising a processing device that calculates the absolute humidity in the vehicle interior based on the amount of change in absolute humidity obtained from the amount of decrease and the initial value of the absolute humidity. 前記処理装置は、換気による除湿量、凝縮による除湿量、及び、吸湿による除湿量のうちの少なくともいずれか1つを算出して、前記絶対湿度の減少量を算出する、請求項1に記載の車室内湿度算出装置。   The said processing apparatus calculates at least any one of the dehumidification amount by ventilation, the dehumidification amount by condensation, and the dehumidification amount by moisture absorption, and calculates the reduction | decrease amount of the said absolute humidity. Car interior humidity calculation device. 前記第2の所定パラメータは、室内温度の検出値、室外温度の検出値、車速の検出値、及び、空調装置の制御値又は設定値のうちの少なくともいずれか1つを含む、請求項1又は2に記載の車室内湿度算出装置。   The second predetermined parameter includes at least one of a detected value of an indoor temperature, a detected value of an outdoor temperature, a detected value of a vehicle speed, and a control value or a set value of an air conditioner. 2. The vehicle interior humidity calculation device according to 2. 前記空調装置の制御値又は設定値は、ブロア風量及び内外気ダンパの開度に関する、請求項3に記載の車室内湿度算出装置。   The vehicle interior humidity calculation device according to claim 3, wherein the control value or the set value of the air conditioner relates to a blower air volume and an opening degree of the inside / outside air damper. 前記処理装置は、前記絶対湿度の増加量及び減少量を所定時間毎に算出し、前記所定時間毎に得られる絶対湿度の変化量を、前記絶対湿度の初期値に前記所定時間毎に積算することで、前記絶対湿度を前記所定時間毎に算出する、請求項1に記載の車室内湿度算出装置。   The processing device calculates an increase amount and a decrease amount of the absolute humidity every predetermined time, and integrates a change amount of the absolute humidity obtained every predetermined time into an initial value of the absolute humidity every predetermined time. Thus, the vehicle interior humidity calculation device according to claim 1, wherein the absolute humidity is calculated every predetermined time. 前記処理装置は、室内温度の検出値と所定の相対湿度とに応じた絶対湿度を、前記絶対湿度の初期値として設定する、請求項5に記載の車室内湿度算出装置。   The vehicle interior humidity calculation device according to claim 5, wherein the processing device sets an absolute humidity according to a detected value of the indoor temperature and a predetermined relative humidity as an initial value of the absolute humidity. 前記第2の所定パラメータは、前記絶対湿度の前回の算出値と、室内温度の検出値、室外温度の検出値、車速の検出値、及び、空調装置の制御値又は設定値のうちの少なくともいずれか1つとを含む、請求項5又は6に記載の車室内湿度算出装置。   The second predetermined parameter is at least one of a previous calculated value of the absolute humidity, a detected value of the indoor temperature, a detected value of the outdoor temperature, a detected value of the vehicle speed, and a control value or a set value of the air conditioner The vehicle interior humidity calculation device according to claim 5 or 6, including any one of them.
JP2013191110A 2013-09-13 2013-09-13 Vehicle interior humidity inspection device Pending JP2015054688A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013191110A JP2015054688A (en) 2013-09-13 2013-09-13 Vehicle interior humidity inspection device
PCT/IB2014/001775 WO2015036833A1 (en) 2013-09-13 2014-09-10 Vehicle interior humidity calculator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013191110A JP2015054688A (en) 2013-09-13 2013-09-13 Vehicle interior humidity inspection device

Publications (1)

Publication Number Publication Date
JP2015054688A true JP2015054688A (en) 2015-03-23

Family

ID=51794913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013191110A Pending JP2015054688A (en) 2013-09-13 2013-09-13 Vehicle interior humidity inspection device

Country Status (2)

Country Link
JP (1) JP2015054688A (en)
WO (1) WO2015036833A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016192A (en) * 2016-07-27 2018-02-01 トヨタ自動車株式会社 Air-conditioning control system
JP2018200010A (en) * 2017-05-25 2018-12-20 株式会社デンソー Electronic control device
US10703167B2 (en) 2016-06-24 2020-07-07 Toyota Jidosha Kabushiki Kaisha Air-conditioning control system and information processing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215395A1 (en) * 2016-08-17 2018-02-22 Ford Global Technologies, Llc Method for controlling a heating, ventilation and air conditioning system of a vehicle
JP7251216B2 (en) * 2019-03-01 2023-04-04 トヨタ自動車株式会社 Air-conditioning control system, air-conditioning management system, and in-vehicle air-conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072353A (en) * 2001-09-04 2003-03-12 Denso Corp Air conditioner for vehicle
JP2003137037A (en) * 2001-11-02 2003-05-14 Toray Ind Inc High-function vehicle interior trim material
JP2004155396A (en) * 2002-09-12 2004-06-03 Toyobo Co Ltd Humidity adjustable interior material for automobile
JP2006500274A (en) * 2002-09-27 2006-01-05 ヴァレオ システム テルミク Air conditioner with device for detecting and estimating humidity
JP2011226988A (en) * 2010-04-22 2011-11-10 Nippon Steel Engineering Co Ltd Method for estimating relative humidity inside semi-sealed structure, method for corrosion protection inside semi-sealed structure, and device for estimating relative humidity inside semi-sealed structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155061A (en) * 1999-12-23 2000-12-05 Ford Motor Company Method of determining windshield fogging based on inference from presence of rain
JP2002137630A (en) 2000-11-01 2002-05-14 Fuji Heavy Ind Ltd Auto air conditioner control device for vehicle
US6434958B1 (en) * 2001-01-24 2002-08-20 Delphi Technologies, Inc. Ambient humidity compensation method for a vehicle climate control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072353A (en) * 2001-09-04 2003-03-12 Denso Corp Air conditioner for vehicle
JP2003137037A (en) * 2001-11-02 2003-05-14 Toray Ind Inc High-function vehicle interior trim material
JP2004155396A (en) * 2002-09-12 2004-06-03 Toyobo Co Ltd Humidity adjustable interior material for automobile
JP2006500274A (en) * 2002-09-27 2006-01-05 ヴァレオ システム テルミク Air conditioner with device for detecting and estimating humidity
JP2011226988A (en) * 2010-04-22 2011-11-10 Nippon Steel Engineering Co Ltd Method for estimating relative humidity inside semi-sealed structure, method for corrosion protection inside semi-sealed structure, and device for estimating relative humidity inside semi-sealed structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703167B2 (en) 2016-06-24 2020-07-07 Toyota Jidosha Kabushiki Kaisha Air-conditioning control system and information processing device
JP2018016192A (en) * 2016-07-27 2018-02-01 トヨタ自動車株式会社 Air-conditioning control system
CN107662473A (en) * 2016-07-27 2018-02-06 丰田自动车株式会社 Air-conditioner control system
EP3284623A1 (en) 2016-07-27 2018-02-21 Toyota Jidosha Kabushiki Kaisha Air conditioning control system
JP2018200010A (en) * 2017-05-25 2018-12-20 株式会社デンソー Electronic control device

Also Published As

Publication number Publication date
WO2015036833A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
JP6375932B2 (en) Air conditioner for vehicles
CN108430814B (en) Air conditioner for vehicle
JP2015054688A (en) Vehicle interior humidity inspection device
WO2018070139A1 (en) Vehicle control apparatus for controlling defogging unit of driving vehicle, and program used for vehicle control apparatus
JP4617930B2 (en) Air conditioner for vehicles
JPH07223428A (en) Air conditioner for electric vehicle
JP2016137818A (en) Vehicle cabin air improvement system
JP6583195B2 (en) Air conditioner for vehicles
JP6565837B2 (en) Air conditioner for vehicles
JP6631487B2 (en) Vehicle air conditioner
CN110290954B (en) Air conditioner for vehicle
JP2005335527A (en) Air conditioner for vehicle
WO2015159483A1 (en) Vehicle air conditioning system
JP2014172479A (en) Air-conditioning system for vehicle
JP3826549B2 (en) Air conditioner
JP2013216188A (en) Vehicle air conditioning device
JP2016141296A (en) Vehicle air conditioning system
JP6711246B2 (en) Vehicle air conditioner
JP2006021659A (en) Air conditioner for vehicle
JP2010095226A (en) Air conditioner for vehicle
JP2005324638A (en) Vehicular air-conditioner
JP4613942B2 (en) Air conditioner for vehicles
KR20100023183A (en) The control method of air conditioner for vehicle
JP2009279946A (en) Air conditioner for vehicle
JP6361510B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209