WO2015159483A1 - Vehicle air conditioning system - Google Patents

Vehicle air conditioning system Download PDF

Info

Publication number
WO2015159483A1
WO2015159483A1 PCT/JP2015/001449 JP2015001449W WO2015159483A1 WO 2015159483 A1 WO2015159483 A1 WO 2015159483A1 JP 2015001449 W JP2015001449 W JP 2015001449W WO 2015159483 A1 WO2015159483 A1 WO 2015159483A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
temperature
air temperature
outside
air
Prior art date
Application number
PCT/JP2015/001449
Other languages
French (fr)
Japanese (ja)
Inventor
大賀 啓
雄一 中尾
浩司 太田
光雄 大浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015159483A1 publication Critical patent/WO2015159483A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices

Definitions

  • This disclosure relates to a vehicle air conditioner.
  • a vehicle air conditioner that performs automatic air conditioning control based on the heat load of the vehicle.
  • Many of such vehicle air conditioners detect an inside air temperature sensor that detects the temperature inside the vehicle, an outside air temperature sensor that detects the temperature outside the vehicle, and the solar radiation that is applied to the vehicle in calculating the heat load index.
  • a solar radiation sensor is generally used (for example, refer to Patent Document 1).
  • the present disclosure is intended to provide a vehicle air conditioner that performs automatic air conditioning control based on the thermal load of the vehicle and can reduce the number of sensors mounted on the vehicle for automatic air conditioning control.
  • the vehicle air conditioner according to the present disclosure is specified by an acquisition unit that acquires an inside air temperature that is a temperature inside the vehicle interior of the vehicle, an outside air temperature that is a temperature outside the vehicle, and an amount of solar radiation irradiated to the vehicle, and the acquisition unit.
  • An air conditioning control device that calculates a heat load index based on the inside air temperature, the outside air temperature, and the amount of solar radiation, and performs air conditioning control based on the calculated index.
  • the obtaining unit obtains an inside air temperature using an inside air temperature sensor mounted on the vehicle, and obtains at least one of the outside air temperature and the amount of solar radiation from an outside server located outside the vehicle.
  • the effects of the inside air temperature, the outside air temperature, and the solar radiation temperature (converted value of solar radiation amount) on the air conditioning control are mainly the influence of the inside air temperature, and the weight of the outside air temperature and the solar radiation temperature is relatively small.
  • the inside air temperature is obtained using an inside air temperature sensor mounted on the vehicle, and at least one of the outside air temperature and the amount of solar radiation is obtained from the outside server.
  • a vehicle air conditioner 1 As shown in FIG. 1, a vehicle air conditioner 1 according to the present embodiment is installed in a vehicle and air-conditions a vehicle interior using a communication system.
  • the communication system includes an out-of-vehicle server 2 and an external communication terminal 3.
  • the external communication terminal 3 acquires the outside air temperature Tam and the solar radiation amount Ts at the current position of the vehicle from the outside server 2 and transmits them to the vehicle air conditioner 1.
  • the vehicle air conditioner 1 includes an air conditioner unit 10 that constitutes an indoor unit of the vehicle air conditioner 1, a control circuit 31 that controls the air conditioner unit 10, and an operation switch 33 that can be operated by a passenger in the vehicle interior. Yes.
  • the air conditioning unit 10 forms a ventilation path through which air blown into the passenger compartment is passed.
  • an inside / outside air switching box 11 having an outside air introduction port 11a and an inside air introduction port 11b is arranged.
  • An inside / outside air switching door 12 is rotatably installed in the inside / outside air switching box 11.
  • the inside / outside air switching door 12 is arranged at a branch point between the outside air introduction port 11a and the inside air introduction port 11b.
  • the inside / outside air switching door 12 is driven by the actuator 12a to switch the air to be introduced into the ventilation path in the air conditioning unit 10 between the inside air and the outside air, or to adjust the mixing ratio of the inside air and the outside air.
  • the blower 13 sucks air into the inside / outside air switching box 11 and blows it to the downstream side in the air flow direction of the air conditioning unit 10, and has a blower motor 14 and a centrifugal blower fan 15 connected to the rotating shaft thereof. ing. An evaporator 16 and a heater core 17 are provided downstream of the blower fan 15 in the air flow direction.
  • the evaporator 16 is a heat exchanger for cooling.
  • the evaporator 16 is combined with a compressor or the like driven by a vehicle engine (not shown) to constitute a refrigeration cycle.
  • the low-pressure refrigerant in the evaporator 16 absorbs heat from the air and evaporates to cool the air.
  • the heater core 17 is a heating heat exchanger. In the heater core 17, cooling water (hot water) of a vehicle engine (not shown) circulates inside, and heats the air using the engine cooling water as a heat source.
  • An air mix door 18 as an air temperature adjusting unit is rotatably provided upstream of the heater core 17 in the air flow direction, and the opening degree of the air mix door 18 is adjusted by being driven by an actuator 18a. Thereby, the ratio of the air passing through the heater core 17 and the air bypassing the heater core 17 is adjusted, and the temperature of the air blown into the vehicle interior is adjusted.
  • defroster door 20 that opens and closes a defroster (DEF) outlet 19
  • a face door 22 that opens and closes a face (FACE) outlet 21
  • a foot (FOOT) outlet 23 At the most downstream side of the air flow direction of the air conditioning unit 10, there are a defroster door 20 that opens and closes a defroster (DEF) outlet 19, a face door 22 that opens and closes a face (FACE) outlet 21, and a foot (FOOT) outlet 23.
  • a foot door 24 that opens and closes is provided.
  • These doors 20, 22, 24 constitute a blow mode switching unit, and are driven by an actuator 25 to open and close the blow outlets 19, 21, 23.
  • various blowing modes such as the face mode, the bi-level mode, the foot mode, the foot-def mode, and the defroster mode are set.
  • the temperature-adjusted air is blown out into the passenger compartment from the blow-out opening that opens in accordance with each blowing mode.
  • the control circuit 31 controls the blower voltage by adjusting the blower voltage applied to the blower motor 14 to adjust the motor rotation speed.
  • the other actuators 12a, 18a, and 25 are also controlled based on the output signal from the control circuit 31.
  • the control circuit 31 has a central processing unit (CPU), a ROM, a RAM, a standby RAM, an I / O port, an A / D converter, etc. (not shown).
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • standby RAM random access memory
  • I / O port an I / O port
  • a / D converter etc.
  • the standby RAM is a RAM that stores data even when the main power of the vehicle is off, and power is directly supplied from the in-vehicle battery without passing through the IG even when the main power of the vehicle is off.
  • the time when the main power supply of the vehicle is off corresponds to, for example, when the vehicle is driven by the power of the internal combustion engine, when the IG is off, or when the vehicle is driven only by the power of the electric motor, when the main switch is off.
  • the control circuit 31 receives an operation signal from an air conditioning operation unit 33 installed on a dashboard in the vehicle interior.
  • the air conditioning operation unit 33 includes an AUTO switch 34, an inside / outside air changeover switch 35, a blow-out mode changeover switch 36, and an air flow rate changeover switch 37.
  • the AUTO switch 34 switches between automatic air conditioning control and manual air conditioning control.
  • the inside / outside air switching switch 35 is manually operated to switch the inside / outside air suction mode.
  • the blowing mode changeover switch 36 is manually operated to switch the blowing mode.
  • the blower amount changeover switch 37 is manually operated to switch the blower amount of the fan 15.
  • the air conditioning operation unit 33 further includes a temperature setting switch 38 for setting the passenger's preferred passenger compartment temperature, that is, a set temperature.
  • the temperature setting switch 38 includes a set temperature up switch 38a and a set temperature down switch 38b.
  • the set temperature up switch 38a outputs a signal for raising the set temperature by 0.5 ° C. every time the occupant is pressed once.
  • the set temperature down switch 38b outputs a signal for lowering the set temperature by 0.5 ° C. each time the occupant presses the set temperature down switch 38b.
  • control circuit 31 receives a signal from a sensor that detects an environmental condition that affects the air conditioning state in the passenger compartment. Specifically, each signal from the inside air temperature sensor 39 or the like for detecting the air temperature (that is, the inside air temperature) Tr in the passenger compartment is input to the control circuit 31, and these signals are A / D converted and read by the control circuit 31. It is. A signal from the temperature setting switch 38 is also input to the control circuit 31, and is A / D converted and read by the control circuit 31.
  • neither an outside air temperature sensor that detects an air temperature (that is, an outside air temperature) Tam outside the vehicle compartment and in the vicinity of the vehicle nor a solar radiation sensor that detects the amount of solar radiation Ts incident on the vehicle interior is mounted on the vehicle. . Therefore, the number of parts of the vehicle air conditioner 1 is reduced accordingly.
  • the vehicle air conditioner 1 has an in-vehicle communication interface 40.
  • the in-vehicle communication interface 40 enables communication between the control circuit 31 and the external communication terminal 3 by connecting to the external communication terminal 3 by wire or wirelessly.
  • the external communication terminal 3 may be a portable communication device (for example, a tablet PC or a smart phone) carried by a vehicle occupant and brought into the passenger compartment, or an in-vehicle communication device attached to the vehicle. .
  • the external communication terminal 3 communicates with the control circuit 31 via the above-described in-vehicle communication interface 40 and also communicates with the external server 2 installed outside the vehicle.
  • the external communication terminal 3 has an air temperature sensor 3x that detects the air temperature around the device itself.
  • the server 2 outside the vehicle is a device that collects and distributes the current solar radiation amount and the current outside air temperature (external information) at a plurality of points.
  • the server 2 outside the vehicle may be a center server (PC, workstation, etc.) installed in one place.
  • the vehicle exterior server 2 may be an aggregate of a plurality of beacons provided one by one at each of the plurality of points (more specifically, a plurality of points along the road).
  • each of the beacons transmits only the solar radiation amount and the outside air temperature at its own position to a predetermined range (for example, surrounding 100 m) around the own aircraft.
  • the external communication terminal 3 communicates with the outside server 2 in the vehicle interior of the vehicle, and repeats the current solar radiation amount and the current outside air temperature (external information) at the current position of the vehicle from the outside server 2 (for example, periodically 1 minute). Receive at intervals). Whenever the external information is received, the external information is transmitted to the control circuit 31 via the in-vehicle communication interface 40 immediately after the reception.
  • the external communication terminal 3 specifies and specifies the current position of the own device using, for example, a GPS receiver built in the own device.
  • the current position is transmitted to the server 2 outside the vehicle.
  • the out-of-vehicle server 2 selectively transmits the current external information at the point closest to the transmitted current position to the external communication terminal 3.
  • the vehicle outside server 2 is an aggregate of the plurality of beacons, even if the current position is not transmitted from the external communication terminal 3, the current solar radiation amount and the current outside air temperature that are simply transmitted from nearby beacons are simply transmitted. Can be the current amount of solar radiation at the current position of the vehicle and the current outside air temperature (external information).
  • the air conditioning unit 10 is disposed in the center of the dashboard in the left-right direction with respect to the traveling direction of the vehicle, and the inside air temperature sensor 39 is disposed on the driver seat side of the dashboard. ing.
  • FIG. 3 shows a main process of the automatic air conditioning control executed by the control circuit 31.
  • the control circuit 31 starts the main process of FIG.
  • the control circuit 31 is activated when the AUTO switch 34 is released, the blow mode switch 36 is operated, the air flow switch 37 is operated, etc. during the execution of the main process of FIG.
  • the process of 3 is finished and well-known manual air-conditioning control is performed.
  • FIG. 4 shows details of the signal input process.
  • the control circuit 31 first inputs a set temperature Tset and the like in S32. Specifically, the state of the temperature setting switch 38 of the air conditioning operation unit 33 is input.
  • the inside air temperature Tr is input using the inside air temperature sensor 39. Specifically, the inside air temperature Tr is acquired based on the sensor signal from the inside air temperature sensor 39.
  • the external information includes at least one of the current amount of solar radiation and the current outside air temperature at the current position of the vehicle transmitted from the outside server 2.
  • the external communication terminal 3 repeatedly receives external information from the out-of-vehicle server 2 (for example, periodically at an interval of 1 minute), and whenever it is received, immediately after receiving the control circuit via the in-vehicle communication interface 40 31 transmits the information. Accordingly, the control circuit 31 repeatedly (for example, periodically at intervals of 1 minute) receives the latest external information at that time. However, the control circuit 31 may fail to receive external information from the external communication terminal 3.
  • Failed cases include, for example, a case where the external communication terminal 3 is a portable terminal held by a passenger, or a case where the external communication terminal 3 is not brought into the vehicle.
  • the external communication terminal 3 or the in-vehicle communication interface 40 may break down.
  • communication between the out-of-vehicle server 2 and the external communication terminal 3 may be temporarily impossible according to the movement of the vehicle.
  • control circuit 31 determines that the external information has not been received in S34 when the previous reception in the repeated reception of the external information has failed, and receives the previous reception. If successful, it is determined that external information has been received.
  • the current outside air temperature at the current position of the vehicle is acquired from the external information received immediately before in S35a.
  • the control circuit 31 sets the acquired outside air temperature as an outside air temperature Tam (set value) for calculating a target blowing temperature TAO that is a target temperature of the air blown into the vehicle interior.
  • Tam set value
  • the target outlet temperature TAO is an index of the heat load of the vehicle air conditioner 1.
  • the current amount of solar radiation at the current position of the vehicle is acquired from the external information received immediately before, and the acquired amount of solar radiation is set as the amount of solar radiation Ts (set value) for calculating the target blowing temperature TAO.
  • the solar radiation amount Ts corresponds to the solar radiation temperature obtained by converting the solar radiation amount expressed in kilowatts into a temperature.
  • the signal input process ends S30 and proceeds to S40.
  • an estimated value is set as the outside air temperature Tam for calculating the target blowing temperature TAO in S35b.
  • the estimated value for example, the outside air temperature in the external information last acquired from the outside server 2 via the external communication terminal 3 (that is, the previous value of the outside air temperature) may be employed. Since the outside air temperature rarely changes rapidly, the accuracy of the estimated value is maintained to some extent by adopting the previous value.
  • the external information acquired last from the out-of-vehicle server 2 is the external information of the last successful reception among the previous times more than the previous time in the repeated reception.
  • the estimated value may be a predetermined fixed value (for example, 15 ° C.).
  • this fixed value may be determined in advance so as to differ depending on the destination region (North America, South America, Southeast Asia, Europe, etc.) of the vehicle on which the vehicle air conditioner 1 is mounted.
  • the fixed value may be set to be, for example, the average temperature in the destination area.
  • the estimated value is the inside air when the main power of the previous vehicle is turned on. It may be a value that increases as the inside air temperature detected by the temperature sensor 39 increases.
  • the time when the main power of the vehicle is on corresponds to the time when the IG is turned on in the case of a vehicle that is driven by the power of the internal combustion engine, and the time when the main switch is turned on in the case of the vehicle that is driven only by the power of the electric motor To do. Since the internal temperature when the vehicle's main power is turned on is often close to the outside temperature, it is possible to determine the rough season based on the internal temperature when the vehicle's main power is turned on and reflect it in the external temperature as described above. it can.
  • an estimated value is set to the solar radiation amount Ts for calculating the target blowing temperature TAO.
  • the estimated value for example, the amount of solar radiation in the external information last acquired from the outside server 2 via the external communication terminal 3 (that is, the previous value of the amount of solar radiation) may be employed. By adopting the previous value, the accuracy of the estimated value is maintained to some extent. Alternatively, the estimated value may be a predetermined fixed value.
  • the signal input process ends S30 and proceeds to S40.
  • the target blowing temperature (index) TAO is calculated by the following formula using the set temperature Tset, the inside air temperature Tr, the outside air temperature Tam, and the solar radiation amount Ts acquired and set in S30.
  • Kset, Kr, Kam, Ks are respective weighting factors.
  • Kset is set to be larger than Kr, and Kr is set to be larger than Kam and Ks.
  • Kam and Ks may be such that Kam is equal to or greater than Ks (Kam ⁇ Ks), and Ks is equal to or greater than Kam (Ks ⁇ Kam).
  • Kset may be set to 7
  • Tset may be set to 3
  • Kam may be set to 1
  • Ks may be set to 1 or less. That is, in the control of automatic air conditioning, the influence of the set temperature Tset and the inside air temperature Tr is larger than the influence of the outside air temperature Tam and the solar radiation amount Ts.
  • the control circuit 31 obtains the inside air temperature using the inside air temperature sensor mounted on the vehicle, and obtains the outside air temperature and the amount of solar radiation from the outside server 2.
  • the inside air temperature Tr mainly influences the calculation of the target blowing temperature TAO and consequently the air conditioning control. That is, the outside air temperature Tam and the solar radiation amount Ts are parameters for additional correction.
  • the outside air temperature and the amount of solar radiation from the outside server 2 as described above, it is not necessary to mount the outside air temperature sensor or the solar radiation amount sensor on the vehicle for the automatic air conditioning control. That is, simple automatic air conditioning can be performed. Further, as a result of acquiring the outside air temperature Tam and the solar radiation amount Ts from the outside server 2, the outside air temperature and the solar radiation amount are compared with the inside air temperature even if the acquired external information becomes inaccurate as compared with the case where it is acquired from the vehicle-mounted sensor. Therefore, the impact on air conditioning control is small compared to the inside air temperature.
  • the outdoor air temperature Tam and the solar radiation amount Ts are acquired from the vehicle outside server 2
  • the outdoor air temperature Tam and the solar radiation amount are compared with the case where the outside air temperature and the solar radiation amount are estimated without using the outside air temperature sensor and the solar radiation amount sensor only in the vehicle.
  • the estimated value of the quantity Ts becomes more accurate. Accordingly, relatively fine automatic air conditioning control can be performed.
  • the opening degree of the air mix door 18 with respect to the target blowing temperature TAO is determined with reference to a control map stored in the control circuit 31 in advance. Then, the actuator 18a is controlled to drive the air mix door 18 so that the opening degree of the air mix door 18 becomes the determined opening degree, and the air blown out from the air outlets 19, 21, 23 into the vehicle interior Adjust the temperature.
  • a blower voltage which is an applied voltage to the blower motor 14 is determined with reference to a control map stored in advance in the control circuit 31 based on the target blowing temperature TAO.
  • a suction port mode (outside air introduction mode or inside air circulation mode) that determines the switching state of the inside / outside air switching box 11 is determined, and the actuator 12a is controlled so that the determined suction port mode is executed.
  • the inside / outside air switching door 12 is driven to a predetermined position.
  • This suction port mode is also determined with reference to the control map stored in advance in the control circuit 31 based on the target outlet temperature TAO.
  • the air outlet mode is determined, and the actuator 25 is controlled to drive the air outlet mode setting doors 20, 22, 24 to a predetermined position so that the calculated air outlet mode is obtained.
  • This air outlet mode is also determined with reference to a control map stored in advance in the control circuit 31 based on TAO.
  • the outlet mode may be sequentially switched to the foot mode, the bi-level mode, and the face mode as the target outlet temperature TAO increases from the low temperature range to the high temperature range.
  • the face mode is mainly selected in the summer
  • the bi-level mode is mainly selected in the spring and autumn
  • the foot mode is mainly selected in the winter.
  • the rotation speed (rpm) of the compressor is determined, and the compressor is controlled to be driven at the determined rotation speed.
  • the number of rotations of the compressor is also determined with reference to a control map stored in advance in the control circuit 31 based on the target outlet temperature TAO and the like.
  • the automatic air conditioning control executed by the control circuit 31 returns to S30 after S90.
  • S30 is repeatedly and periodically executed, for example, at a cycle of 250 ms.
  • S30 is repeatedly and periodically executed, for example, at a cycle of 250 ms.
  • the inside air temperature sensor 39 is normal. For example, if reading of the sensor output value fails, and reading of the sensor output value is successful, but the read sensor output value is out of a predetermined normal range, the inside air temperature sensor 39 is not normal. judge. When the sensor output value has been successfully read and the read sensor output value is within a predetermined normal range, it is determined that the inside air temperature sensor 39 is normal.
  • an estimated value is set in the inside air temperature Tr for calculating the target blowing temperature TAO in S334b.
  • the estimated value a predetermined fixed value may be used, or the temperature detected by the temperature sensor 3x built in the external communication terminal 3 may be adopted.
  • the control circuit 31 When the temperature detected by the temperature sensor 3x is adopted, the control circuit 31 requests the external communication terminal 3 to transmit the temperature detected by the temperature sensor 3x via the in-vehicle communication interface 40, and the external communication terminal 3 Transmits the temperature to the control circuit 31. Thereby, when the sensor output value of the inside air temperature sensor 39 cannot be used using the sensor mounted on the external communication terminal 3 (for example, a smart phone), the inside air temperature Tr is more accurate than the fixed value. An estimate can be obtained.
  • the configuration of the vehicle air conditioner 1 of the present embodiment is the same as that of the first and second embodiments except for the position of the inside air temperature sensor 39.
  • the inside air temperature sensor 39 of the present embodiment is arranged in the air passage in the air conditioning unit 10, downstream of the inside / outside air switching door 12 and the blower fan 15 in the air flow direction, and in the air of the evaporator 16 and the heater core 17. It is arranged upstream in the flow direction.
  • the inside air temperature sensor 39 can detect the inside air temperature when the suction port mode is the inside air circulation mode, and the suction port mode is set to the outside air introduction mode. If it is, the outside temperature can be detected. That is, the inside air temperature sensor 39 of the present embodiment functions as an inside / outside air sensor.
  • the latest internal air temperature calculated by the additional process of FIG. 9 described later is set as the internal air temperature Tr used in the calculation of the target blowing temperature TAO in S33a. move on.
  • control circuit 31 determines in S34 that external information has not been received, the signal input process proceeds to S35c.
  • S35c the latest outside air temperature calculated by the additional process of FIG. 9 described later is set as the outside air temperature Tam used for calculating the target blowing temperature TAO, and the process proceeds to S36b.
  • the inside air temperature Tr used for the calculation of the target outlet temperature TAO the one calculated by the additional processing is always adopted.
  • the outside temperature Tam used for calculation of the target blowing temperature TAO the latest external information is adopted when external information can be received, and is calculated by additional processing when external information cannot be received. Adopt things.
  • control circuit 31 determines the suction port mode based on the target outlet temperature TAO in the inside / outside air control process of S70, whereas in the present embodiment, FIG. The process as shown in is executed.
  • control circuit 31 first determines the suction port mode based on the target outlet temperature TAO in S71 by the same method as in the first and second embodiments.
  • the actuator 12a is controlled to drive the inside / outside air switching door 12 to a predetermined position so that the determined suction port mode is executed.
  • the inlet mode is switched. Specifically, if the current inlet mode is the outside air introduction mode, the inside / outside air switching door 12 is driven to a predetermined position by controlling the actuator 12a so that the inside air circulation mode is executed. If the current suction port mode is the inside air circulation mode, the inside / outside air switching door 12 is driven to a predetermined position by controlling the actuator 12a so that the outside air introduction mode is executed.
  • S74 it is determined whether or not the duration of the same suction port mode exceeds time T2 (for example, 15 seconds). If the duration does not exceed the time T2, S74 is executed again, and if the duration exceeds the time T2, the process returns to S71.
  • the time T2 is set to be very short compared to the time T1. For example, the time T2 is set to 1/10 of the time T1.
  • the mode is forcibly switched regardless of the target outlet temperature TAO (S73).
  • the mode returns to the inlet mode based on the target outlet temperature TAO (S71).
  • the inside air temperature sensor 39 can periodically detect the outside air temperature even if the suction port mode based on the target outlet temperature TAO continues to be the inside air circulation mode for a long time. Moreover, even if the suction inlet mode based on the target blowing temperature TAO continues to be the outside air introduction mode for a long time, the inside air temperature can be detected periodically.
  • control circuit 31 executes an additional process shown in FIG. 9 in parallel with the main process of FIG.
  • the inside air temperature and the outside air temperature are calculated based on the sensor output of the inside air temperature sensor 39.
  • the inside air temperature calculated by this additional processing is adopted as the inside air temperature Tr for calculating the target blowing temperature TAO in S33a of FIG.
  • the outside air temperature calculated by this additional processing is adopted as the outside air temperature Tam for calculating the target outlet temperature TAO in S35c of FIG.
  • the control circuit 31 starts the additional process of FIG. 9 when the main power source (for example, IG) of the vehicle is turned on from off.
  • the control circuit 31 determines whether or not an elapsed time from when the main power source is turned off until it is turned on is equal to or longer than a predetermined time T0 (for example, 2 hours). For example, when the main power is turned off, the time at that time is recorded in the backup RAM as an off time, and the difference between the time when the main power is turned on and the off time is calculated, and this difference is used as the elapsed time.
  • T0 for example, 2 hours
  • the control circuit 31 calculates the inside air temperature according to the sensor value of the inside air temperature sensor 39 and calculates the outside air temperature according to the sensor value of the inside air temperature sensor 39. That is, the inside air temperature and the outside air temperature are calculated to the same value.
  • the control circuit 31 calculates the inside air temperature and the outside air temperature regardless of the sensor value of the inside air temperature sensor 39. Specifically, the inside air temperature and the outside air temperature that are finally calculated by the additional processing (ie, the previous time) before turning off the main power are respectively employed as the inside air temperature and the outside air temperature. It should be noted that the inside air temperature and the outside air temperature calculated by the additional processing last before the main power supply is turned off are recorded in the backup RAM when the main power supply is turned off, and are retained even after the main power supply is turned off.
  • S140 it is determined whether or not the duration of the same suction port mode is within time T3 (for example, 12 seconds). This time T3 is set to be shorter than the time T2 used in S74 of FIG. If it is determined that the duration is within the time T3, the inside air temperature finally calculated in the additional process is adopted as the inside air temperature in S145. continue. In S50, the outside temperature finally calculated by the additional process is adopted as the outside temperature.
  • the additional process shown in FIG. 9 returns to S140 after S150.
  • the duration time of the air inlet mode is within the time T3
  • the previous values of the inside air temperature and the outside air temperature are adopted regardless of the air inlet mode because the temperature of the ventilation path in the air conditioning unit 10 immediately after switching is used. This is because there is a high possibility that is not the same as the inside air temperature or the outside air temperature.
  • the temperature corresponding to the sensor output of the inside air temperature sensor 39 is set as the inside air temperature.
  • the outside temperature finally calculated by the additional process is adopted as the outside temperature. The addition process returns to S140 after S165.
  • the inside air temperature finally calculated by the additional process (that is, the previous time) is adopted as the inside air temperature.
  • a temperature corresponding to the sensor output of the inside air temperature sensor 39 is set as the outside air temperature. The addition process returns to S140 after S175.
  • control circuit 31 executes the main process of FIG. 3 and the additional process of FIG. 9 simultaneously in parallel, executes the process of FIG. 7 in S30 of the main process, In S70, the process of FIG. 8 is executed.
  • An operation example of the vehicle air conditioner 1 as described above will be described.
  • the control circuit 31 sets the latest inside air temperature adopted by the additional process as the inside air temperature Tr for calculating the target blowing temperature TAO in S33a of FIG. If the external information has not been received, the control circuit 31 sets the latest outside temperature adopted by the additional process as the outside temperature Tam for calculating the target blowing temperature TAO in S35c of FIG. However, when the external information can be received, the outside air temperature Tam for calculating the target blowing temperature TAO is set based on the external information in S35a as in the first and second embodiments.
  • FIG. 10 is a time chart showing the time course of the inlet mode and the inside / outside air temperature in Case 1. Note that the inside air temperature and the outside air temperature in FIG. 10 are the inside air temperature and the outside air temperature adopted by the additional processing.
  • the control circuit 31 executes the inlet mode (outside air introduction mode) based on the target outlet temperature TAO in S71 in the inside / outside air control of FIG. 8, and the duration time T1 in S72. The process of determining that it is within the range and returning to S71 is repeated. Therefore, the actual suction port mode is the outside air introduction mode.
  • control circuit 31 repeats the following process in the additional process of FIG. 9 in the period immediately before the time point t11.
  • the control circuit 31 determines that the duration has exceeded T3 in S140, and determines that it is in the outside air introduction mode in subsequent S155.
  • the control circuit 31 adopts the previous value as the inside air temperature in S170, adopts the sensor value as the outside air temperature in S175, and returns to S140.
  • the sensor value is a temperature corresponding to the sensor output of the inside air temperature sensor 39.
  • the suction port mode (suction port mode based on the target outlet temperature TAO) determined by the control circuit 31 in S71 of FIG. 8 changes from the outside air introduction mode to the inside air circulation mode, and thereafter after time t16. Until the inside air circulation mode is maintained.
  • the control circuit 31 executes the suction port mode (inside air circulation mode) based on the target outlet temperature TAO in S71, and determines in S72 that the duration is within the time T1. The process returning to S71 is repeated. Therefore, the actual suction port mode is the inside air circulation mode from time t11 to time T1.
  • control circuit 31 repeats the following processing in the additional processing.
  • the control circuit 31 determines in S140 that the duration is within T3, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140.
  • the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
  • the previous value is adopted as the inside air temperature even though the actual suction port mode is the inside air circulation mode. This is because it is not likely that the temperature at the position of the inside air temperature sensor 39 in the ventilation path is the same as the inside air temperature since the time has not passed since the suction port mode is switched to the inside air circulation mode.
  • the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. Since the actual suction port mode is also the inside air circulation mode after time t12, the process proceeds from S155 to S160 and the sensor value is adopted as the inside air temperature. Subsequently, in S165, the previous value is adopted as the outside air temperature, and the process returns to S140.
  • the sensor value is employed as the inside air temperature, and the previous value is employed as the outside air temperature.
  • the temperature at the position of the inside air temperature sensor 39 in the ventilation path is likely to be the same as the inside air temperature.
  • a sensor value is adopted as the inside air temperature.
  • the control circuit 31 determines in S72 of FIG. 8 that the duration is equal to or longer than the time T1. Subsequently, in S73, the suction port mode is switched from the inside air circulation mode to the outside air introduction mode. Thereafter, until the time T2 elapses from the time point t13, it is determined in S74 that the duration time is equal to or shorter than T2. Thereby, until time T2 passes from time t13, although the suction inlet mode based on the target blowing temperature TAO is the inside air circulation mode, the actual suction inlet mode temporarily becomes the outside air introduction mode.
  • control circuit 31 repeats the following process in the additional process until the time T3 elapses after the suction port mode is switched to the outside air introduction mode at time t13.
  • the control circuit first determines that the duration is within T3 in S140, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140. Therefore, between the time t13 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
  • the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. Since the actual suction port mode is also the outside air introduction mode after time t14, the process proceeds from S155 to S170 and the previous value is adopted as the inside air temperature. Subsequently, the sensor value is adopted as the outside air temperature in S165, and the process returns to S140.
  • the repetition of S140, S155, S170, and S175 is continued after time t14 until time t15 when the actual inlet mode is switched. Therefore, from time t14 to time t15, in the additional processing, the previous value is adopted as the inside air temperature, and the sensor value is adopted as the outside air temperature. As described above, the outside air temperature can be temporarily detected by the inside air temperature sensor 39 after a sufficient time has elapsed since the actual suction port mode is switched to the outside air introduction mode. Therefore, even when the previous value is adopted as the outside air temperature after time t15, the previous value becomes the detected value of the actual outside temperature at a slightly earlier time.
  • the control circuit 31 determines in S74 of FIG. 8 that the duration has become T2 or more, returns to S71, and is based on the target outlet temperature TAO. Run the inlet mode. As a result, at time t15, the actual suction port mode returns to the same inside air circulation mode as the suction port mode based on the target outlet temperature TAO. Then, between time t15 and time T1, the control circuit 31 executes the suction port mode (inside air circulation mode) based on the target outlet temperature TAO in S71, and determines in S72 that the duration is within the time T1. The process of returning to S71 is repeated. Therefore, the actual suction port mode is the inside air circulation mode from time t15 to time T1.
  • control circuit 31 repeats the following processing in the additional processing.
  • the control circuit 31 first determines in S140 that the duration is within T3, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140. Therefore, between the time t15 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
  • the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. After the time t16, since the actual suction port mode is the inside air circulation mode, the control circuit 31 proceeds from S155 to S160, adopts the sensor value as the inside air temperature, adopts the previous value as the outside air temperature at S165, and goes to S140. Return. The repetition of S140, S155, S160, and S165 is continued after the time t16 until the actual suction port mode is switched. Therefore, after time t16, in the additional processing, the sensor value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
  • Example 2 the case where the outside air introduction mode is the basis will be described.
  • the inlet mode determined based on the target outlet temperature TAO changes from the inside air circulation mode to the outside air introduction mode, and then the outside air introduction mode continues.
  • FIG. 11 is a time chart showing changes over time in the suction port mode and the inside / outside air temperature in Case 2. Note that the inside air temperature and the outside air temperature in FIG. 11 represent the inside air temperature and the outside air temperature adopted by the additional processing.
  • the control circuit 31 executes the suction port mode (inside air circulation mode) based on the target outlet temperature TAO in S71 in the process of FIG. 8, and the duration is less than time T1 in S72. The process of determining that there is and returning to S71 is repeated. Therefore, the actual suction port mode is the inside air circulation mode.
  • control circuit 31 repeats the following process in the additional process of FIG. 9 in the period immediately before the time point t21.
  • the control circuit 31 first determines in S140 that the duration exceeds T3, and determines in S155 that the internal air circulation mode is set. Then, the control circuit 31 adopts the sensor value as the inside air temperature in S160, adopts the previous value as the outside air temperature in S165, and returns to S140.
  • the suction port mode (suction port mode based on the target blowout temperature TAO) determined by the control circuit 31 in S71 of FIG. 8 changes from the inside air circulation mode to the outside air introduction mode, and thereafter the outside air until time t16 and thereafter. Suppose that it is maintained in the introduction mode.
  • the control circuit 31 executes the suction port mode (outside air introduction mode) based on the target outlet temperature TAO in S71, and determines in S72 that the duration is within the time T1. The process of returning to S71 is repeated. Therefore, the actual suction port mode is the outside air introduction mode from time t21 to time T1.
  • control circuit 31 repeats the following processing in the additional processing.
  • the control circuit 31 first determines in S140 that the duration is within T3, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140. Therefore, between the time t21 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
  • the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155.
  • the process proceeds from S155 to S170, the previous value is adopted as the inside air temperature, the sensor value is adopted as the outside air temperature in the subsequent S175, and the process returns to S140.
  • the control circuit 31 determines in S72 of FIG. 8 that the duration is longer than time T1, and in S73, the suction port mode is changed from the outside air introduction mode to the inside air circulation. Switch to mode. Thereafter, until time T2 has elapsed from time t23, it is determined in S74 that the duration is equal to or shorter than T2. Thereby, until time T2 passes from time t23, although the suction inlet mode based on the target blowing temperature TAO is the outside air introduction mode, the actual suction inlet mode temporarily becomes the inside air circulation mode.
  • control circuit 31 repeats the following processing in the additional processing until the time T3 has elapsed after the suction port mode is switched to the inside air circulation mode at time t23.
  • the control circuit 31 first determines in S140 that the duration is within T3, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140. Therefore, between the time t13 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
  • the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. Since the actual suction port mode is also the inside air circulation mode after time t24, the additional processing proceeds from S155 to S160, and the control circuit 31 adopts the sensor value as the inside air temperature in S160, and adopts the previous value as the outside air temperature in S165. Then, the process returns to S140.
  • the repetition of S140, S155, S160, and S165 continues after time t24 until time t25 when the actual inlet mode is switched. Therefore, from time t24 to time t25, in the additional processing, the sensor value is employed as the inside air temperature, and the previous value is employed as the outside air temperature. As described above, the inside air temperature sensor 39 can temporarily detect the inside air temperature after a sufficient time has elapsed after the actual suction port mode is switched to the inside air circulation mode. Therefore, even when the previous value is adopted as the room temperature after time t25, the previous value becomes the detected value of the actual room temperature at a slightly earlier time.
  • the control circuit 31 determines in S74 of FIG. 8 that the duration has become T2 or more, returns to S71, and is based on the target outlet temperature TAO. Run the inlet mode. As a result, at the time t25, the actual suction port mode returns to the same outside air introduction mode as the suction port mode based on the target outlet temperature TAO. And between time t25 and time T1, the control circuit 31 performs the inlet mode (outside air introduction mode) based on the target blowing temperature TAO in S71, and determines that the duration is within the time T1 in S72. The process of returning to S71 is repeated. Therefore, the actual suction port mode is the outside air introduction mode from time t25 to time T1.
  • the control circuit 31 repeats the following processing in the additional processing. First, it is determined in S140 that the duration is within T3, the previous value is adopted as the inside air temperature in S145, the previous value is adopted as the outside air temperature in S150, and the process returns to S140. Therefore, between the time t25 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
  • the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155.
  • the actual suction port mode is the outside air introduction mode, so that the process proceeds from S155 to S170, the previous value is adopted as the inside air temperature, the sensor value is adopted as the outside air temperature in S175, and the process returns to S140.
  • the repetition of S140, S155, S170, and S175 is continued after the time t26 until the actual suction port mode is switched. Therefore, after time t26, in the additional processing, the previous value is adopted as the inside air temperature, and the sensor value is adopted as the outside air temperature.
  • the inside air temperature sensor 39 in the ventilation path downstream of the inside / outside air switching door 12 in the air flow direction and upstream of the heat exchangers 16 and 17 in the air flow direction, It can be used as a dual-purpose sensor that detects both the temperature and the outside air temperature.
  • the inside air temperature sensor 39 is arranged upstream of the heat exchangers 16 and 17 in the air flow direction by the heat exchangers 16 and 17 in which the air introduced into the inside / outside air switching box 11 is arranged in the ventilation path. This is because the value before the temperature change is detected.
  • a relationship of T1> T2> T3 is established between the times T1, T2, and T3.
  • the time T3 from when the suction port mode is switched to when the inside air temperature sensor 39 is used according to the switched suction port mode and the time T2 until the suction port mode is restored may be fixed values. As illustrated in FIG. 12, it may be set so as to decrease as the blower voltage determined in S ⁇ b> 60 increases.
  • the times T3 and T2 are 15 seconds and 12 seconds, respectively.
  • the times T3 and T2 are 10 seconds and 7 seconds, respectively.
  • the times T3 and T2 are 5 seconds and 3 seconds, respectively.
  • the time T3 is adjusted in this way because the higher the blower voltage, the faster the air in the ventilation path is replaced, so that the temperature at the position of the inside air temperature sensor 39 is switched faster and the air corresponding to the inlet mode after switching It is because it becomes the temperature of. Further, by adjusting the time T2 in this way, the suction port mode based on the target outlet temperature TAO and the actual suction port mode are different from each other by utilizing the fact that the blower voltage is increased and the time T3 is shortened. Can be resolved more quickly. (Fourth embodiment) Next, a fourth embodiment will be described. This embodiment is obtained by adding the modifications described below to the first to third embodiments.
  • the external communication terminal 3 is a portable terminal carried by the user, and can be used as an operation and display device for the vehicle air conditioner 1.
  • the external communication terminal 3 executes predetermined programs to operate the operation units 3b, 3c, 3d, and the like for operating the vehicle air conditioner 1 on its own display screen 3a as illustrated in FIG. And the information display parts 3e and 3f which display the operating state of the vehicle air conditioner 1 are displayed.
  • various changeover switches for switching a plurality of functions of the vehicle air conditioner 1 are displayed on the external communication terminal 3 as the operation unit.
  • the changeover switch there are blower amount changeover switches 3b and 3c for manually increasing or decreasing the blower amount of the blower fan 15, and a blowout mode changeover switch 36 for manually setting the blowout mode. It is displayed.
  • the changeover switch to be displayed on the external communication terminal 3 can be arbitrarily changed by the user of the external communication terminal 3 operating the external communication terminal 3.
  • an information display unit indicating a plurality of operating states of the vehicle air conditioner 1 is displayed on the external communication terminal 3.
  • a blower level display unit 3f that displays a blower level that indicates the amount of air blown by the blower fan 15 and a set temperature display unit 3e that displays a set temperature Tset are displayed on the external communication terminal 3.
  • the information display unit displayed on the external communication terminal 3 can be arbitrarily changed by the user of the external communication terminal 3 operating the external communication terminal 3.
  • the external communication terminal 3 transmits the operation signal according to the user's operation to the operation units 3b to 3d to the control circuit 31 via the in-vehicle communication interface 40 by executing the above program. And the control circuit 31 changes the control content (target blowing temperature TAO etc.) of the vehicle air conditioner 1 so that the air-conditioning control according to the operation signal received from the external communication terminal 3 may be performed.
  • TAO target blowing temperature
  • control circuit 31 sends information indicating the operation state of the vehicle air conditioner 1 such as the set temperature Tset, the inside air temperature Tr, the outside air temperature Tam, the blower level, the blowout mode, the suction port mode, and the like via the in-vehicle communication interface 40.
  • the external communication terminal 3 is used. And the external communication terminal 3 selects required information from the information which shows the operation state received from the control circuit 31, and displays it on the display screen 3a.
  • a simple operation and display unit is arranged on the vehicle so that basic air conditioning operation can be performed without the external communication terminal 3.
  • an air conditioning operation unit (in-vehicle panel) 330 shown in FIG. 14 is installed on the dashboard in the vehicle interior instead of the air conditioning operation unit 33 installed in the first to third embodiments.
  • the air-conditioning operation unit 330 has three operation switches, specifically, an AUTO switch 33a, a defroster switch (DEF switch) 33b, and a temperature setting switch 33c as buttons that can be operated by the occupant.
  • the AUTO switch 33a has the same function as the AUTO switch 34 of the first to third embodiments, and sets whether to execute automatic air conditioning control or manual air conditioning control.
  • the DEF switch 33b sets whether the blowing mode is set to the defroster mode or the other mode. When the DEF switch 33b is operated, the control circuit 31 controls the air conditioning unit 10 so that the blowout mode corresponding to the operation is executed by the manual air conditioning control.
  • the temperature setting switch 33c has the same function as the temperature setting switch 38 of the first to third embodiments.
  • the air-conditioning operation unit 330 of the present embodiment does not include any of the inside / outside air switching switch 35, the blowing mode switching switch 36 that can arbitrarily switch the blowing mode, the air volume switching switch 37, and the pollen mode switch. Therefore, the configuration of the vehicle air conditioner 1 in the vehicle becomes simpler.
  • the external communication terminal 3 may display the operation switches 33a, 33b, and 33c having the same function as the air conditioning operation unit 330 in an overlapping manner.
  • control circuit 31 functions as an example of an acquisition unit by executing S30, and functions as an example of an air conditioning control device by executing S40 to S90.
  • S30 functions as an example of an acquisition unit by executing S30
  • S40 to S90 functions as an example of an air conditioning control device by executing S40 to S90.
  • the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.
  • the vehicle air conditioner 1 has neither an outside air temperature sensor nor a solar radiation amount sensor.
  • the vehicle air conditioner 1 may have an outside air temperature sensor or a solar radiation amount sensor installed in the vehicle.
  • control circuit 31 sets the outside temperature Tam for calculating the target blowing temperature TAO to a value corresponding to the sensor output of the outside temperature sensor. Moreover, if the control circuit 31 has the said solar radiation amount sensor, it will set the solar radiation amount Ts for calculating the target blowing temperature TAO to the value according to the sensor output of the said solar radiation amount sensor.
  • the control circuit 31 uses the outside air temperature and the amount of solar radiation in the external information last acquired from the vehicle outside server 2 when the reception of the previous time in the repeated reception of the external information fails, and the target blowing temperature. TAO is calculated.
  • the target blowout temperature TAO is calculated using external information other than the external information of the last successful reception out of the previous times in the repeated reception. Also good.
  • the target blowing temperature TAO may be calculated by using the average value of the last five external information that has been successfully received out of the previous times in the repeated reception.

Abstract

A vehicle air conditioning system is provided with an acquisition section (S30) and an air-conditioning controller (S40 to S90). The acquisition section acquires: an inner air temperature that is the temperature of a vehicle cabin; an outer air temperature that is the temperature outside the vehicle; and the intensity of solar radiation to the vehicle. The air-conditioning controller calculates a heat load index (TAO) on the basis of the inner air temperature, the outer air temperature, and the intensity of solar radiation as acquired by the acquisition section, and performs air-conditioning control of the vehicle cabin on the basis of the calculated index. The acquisition section acquires the inner air temperature by using an in-vehicle inner air temperature sensor (39) and acquires, from an external server (2) outside the vehicle, the outer air temperature and/or the intensity of solar radiation. The above configuration is used to implement automatic air-conditioning control on the basis of the heat load of the vehicle, thereby decreasing the number of sensors installed in the vehicle for the purpose of achieving the automatic air-conditioning control.

Description

車両用空調装置Air conditioner for vehicles 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年4月15日に出願された日本特許出願2014-083838号を基にしている。 This application is based on Japanese Patent Application No. 2014-083838 filed on April 15, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、車両用空調装置に関するものである。 This disclosure relates to a vehicle air conditioner.
 従来、車両の熱負荷に基づいて自動空調制御する車両用空調装置が知られている。このような車両用空調装置の多くは、熱負荷の指標の算出に、車室内の温度を検出する内気温度センサ、車両外の温度を検出する外気温度センサ、車両へ照射される日射を検出する日射センサを使用するのが一般的である(例えば、特許文献1参照)。 Conventionally, a vehicle air conditioner that performs automatic air conditioning control based on the heat load of the vehicle is known. Many of such vehicle air conditioners detect an inside air temperature sensor that detects the temperature inside the vehicle, an outside air temperature sensor that detects the temperature outside the vehicle, and the solar radiation that is applied to the vehicle in calculating the heat load index. A solar radiation sensor is generally used (for example, refer to Patent Document 1).
特開平8-332831号公報JP-A-8-332831
 しかしながら、本開示の発明者らの検討によると、上記のような車両用空調装置においては、車両に内気温度センサ、外気温度センサ、日射センサを取り付けることが必須となっており、その結果、車両に搭載すべきセンサの数が多くなってしまう。 However, according to studies by the inventors of the present disclosure, in the vehicle air conditioner as described above, it is essential to attach an inside air temperature sensor, an outside air temperature sensor, and a solar radiation sensor to the vehicle. The number of sensors that should be mounted on the PC increases.
 本開示は、車両の熱負荷に基づいて自動空調制御するものであって、自動空調制御のために車両に搭載するセンサ数を低減できる車両用空調装置を提供することを目的とする。 The present disclosure is intended to provide a vehicle air conditioner that performs automatic air conditioning control based on the thermal load of the vehicle and can reduce the number of sensors mounted on the vehicle for automatic air conditioning control.
 本開示の車両用空調装置は、車両の車室内の温度である内気温度、車両の外の温度である外気温度、および、車両へ照射される日射量を取得する取得部と、取得部によって特定された内気温度、外気温度、および日射量に基づいて熱負荷の指標を算出し、算出した指標に基づいて空調制御する空調制御装置と、を備える。取得部は、車両に搭載される内気温度センサを用いて内気温度を取得し、外気温度および日射量のうち少なくとも1つは、車両の外部にある車外サーバから取得する。 The vehicle air conditioner according to the present disclosure is specified by an acquisition unit that acquires an inside air temperature that is a temperature inside the vehicle interior of the vehicle, an outside air temperature that is a temperature outside the vehicle, and an amount of solar radiation irradiated to the vehicle, and the acquisition unit. An air conditioning control device that calculates a heat load index based on the inside air temperature, the outside air temperature, and the amount of solar radiation, and performs air conditioning control based on the calculated index. The obtaining unit obtains an inside air temperature using an inside air temperature sensor mounted on the vehicle, and obtains at least one of the outside air temperature and the amount of solar radiation from an outside server located outside the vehicle.
 空調制御に及ぼす内気温度、外気温度、および日射温度(日射量の温度換算値)の影響は、内気温度の影響が主であり、外気温度および日射温度の重みは比較的小さい。 The effects of the inside air temperature, the outside air temperature, and the solar radiation temperature (converted value of solar radiation amount) on the air conditioning control are mainly the influence of the inside air temperature, and the weight of the outside air temperature and the solar radiation temperature is relatively small.
 本開示の車両用空調装置では、内気温度については車両に搭載される内気温度センサを用いて取得し、外気温度および日射量のうち少なくとも1つを車外サーバから取得する。 In the vehicle air conditioner of the present disclosure, the inside air temperature is obtained using an inside air temperature sensor mounted on the vehicle, and at least one of the outside air temperature and the amount of solar radiation is obtained from the outside server.
 これにより、自動空調制御のために車両に外気温度センサまたは日射量センサを搭載する必要がなくなる。また、取得した外部情報が車載センサから取得する場合に比べて不正確になったとしても、外気温度および日射量は内気温度に比べて空調制御における重要度が低いので、空調制御に対する影響は大きくない。 This eliminates the need to install an outside temperature sensor or solar radiation sensor in the vehicle for automatic air conditioning control. In addition, even if the acquired external information is inaccurate compared to the case where it is acquired from an in-vehicle sensor, the outside air temperature and the amount of solar radiation are less important in air conditioning control than the inside air temperature. Absent.
第1実施形態における車両用空調装置の全体システム構成を示す図である。It is a figure which shows the whole system configuration | structure of the vehicle air conditioner in 1st Embodiment. 本開示の内気温度センサおよび空調ユニットの配置を示す図である。It is a figure which shows arrangement | positioning of the inside temperature sensor and air conditioning unit of this indication. 本開示のメイン処理のフローチャートである。It is a flowchart of the main process of this indication. 第1実施形態における信号入力処理のフローチャートである。It is a flowchart of the signal input process in 1st Embodiment. 第2実施形態における内気温度入力処理のフローチャートである。It is a flowchart of the inside air temperature input process in 2nd Embodiment. 第3実施形態における空調ユニットの構成図である。It is a block diagram of the air conditioning unit in 3rd Embodiment. 第3実施形態における信号入力処理のフローチャートである。It is a flowchart of the signal input process in 3rd Embodiment. 第3実施形態における内外気制御処理のフローチャートである。It is a flowchart of the inside / outside air control process in 3rd Embodiment. 第3実施形態における追加力処理のフローチャートである。It is a flowchart of the additional force process in 3rd Embodiment. 第3実施形態における吸込口モード、外気温度、内気温度の変化を示すタイミング図である。It is a timing diagram which shows the suction port mode in 3rd Embodiment, the outside temperature, and the change of inside temperature. 第3実施形態における吸込口モード、外気温度、内気温度の変化を示すタイミング図である。It is a timing diagram which shows the suction port mode in 3rd Embodiment, the outside temperature, and the change of inside temperature. 第3実施形態におけるブロワ電圧と時間の関係を示す図である。It is a figure which shows the relationship between the blower voltage and time in 3rd Embodiment. 第4実施形態における外部通信端末の表示内容を例示する図である。It is a figure which illustrates the display content of the external communication terminal in 4th Embodiment. 第4実施形態において車両に設置された空調操作部を示す図である。It is a figure which shows the air-conditioning operation part installed in the vehicle in 4th Embodiment.
(第1実施形態)
 以下、第1実施形態について説明する。図1に示すように、本実施形態に係る車両用空調装置1は、車両内に設置されて、通信システムを用いて車室内の空調を行う。通信システムは、車外サーバ2と、外部通信端末3とを備えている。外部通信端末3は、車外サーバ2から車両の現在位置における外気温度Tamおよび日射量Tsを取得して車両用空調装置1に送信する。
(First embodiment)
The first embodiment will be described below. As shown in FIG. 1, a vehicle air conditioner 1 according to the present embodiment is installed in a vehicle and air-conditions a vehicle interior using a communication system. The communication system includes an out-of-vehicle server 2 and an external communication terminal 3. The external communication terminal 3 acquires the outside air temperature Tam and the solar radiation amount Ts at the current position of the vehicle from the outside server 2 and transmits them to the vehicle air conditioner 1.
 車両用空調装置1は、車両用空調装置1の室内ユニットを構成する空調ユニット10と、空調ユニット10を制御する制御回路31と、車室内の乗員が操作可能な操作スイッチ33とを有している。また、空調ユニット10は、車室内に吹き出す空気を通す通風路を形成する。 The vehicle air conditioner 1 includes an air conditioner unit 10 that constitutes an indoor unit of the vehicle air conditioner 1, a control circuit 31 that controls the air conditioner unit 10, and an operation switch 33 that can be operated by a passenger in the vehicle interior. Yes. In addition, the air conditioning unit 10 forms a ventilation path through which air blown into the passenger compartment is passed.
 空調ユニット10の空気流れ方向の最上流部には、外気導入口11aと内気導入口11bを有する内外気切替箱11が配置されている。この内外気切替箱11内に内外気切替ドア12が回動自在に設置されている。 In the most upstream part of the air conditioning unit 10 in the air flow direction, an inside / outside air switching box 11 having an outside air introduction port 11a and an inside air introduction port 11b is arranged. An inside / outside air switching door 12 is rotatably installed in the inside / outside air switching box 11.
 この内外気切替ドア12は、外気導入口11aと内気導入口11bとの分岐点に配置されている。内外気切替ドア12は、アクチュエータ12aにより駆動されて、空調ユニット10内の通風路に導入する空気を内気と外気との間で切り替え、あるいは、内気と外気の混合割合を調整する。 The inside / outside air switching door 12 is arranged at a branch point between the outside air introduction port 11a and the inside air introduction port 11b. The inside / outside air switching door 12 is driven by the actuator 12a to switch the air to be introduced into the ventilation path in the air conditioning unit 10 between the inside air and the outside air, or to adjust the mixing ratio of the inside air and the outside air.
 送風機13は内外気切替箱11内に空気を吸い込んで空調ユニット10の空気流れ方向の下流側に送風するものであり、ブロワモータ14と、その回転軸に連結された遠心式送風ファン15を有している。そして、この送風ファン15の空気流れ方向の下流にはエバポレータ16とヒーターコア17が設けられている。 The blower 13 sucks air into the inside / outside air switching box 11 and blows it to the downstream side in the air flow direction of the air conditioning unit 10, and has a blower motor 14 and a centrifugal blower fan 15 connected to the rotating shaft thereof. ing. An evaporator 16 and a heater core 17 are provided downstream of the blower fan 15 in the air flow direction.
 エバポレータ16は冷却用熱交換器である。エバポレータ16は、図示しない車両エンジンにより駆動されるコンプレッサ等と結合されて冷凍サイクルを構成し、その内部の低圧冷媒が空気から吸熱して蒸発することにより空気を冷却する。ヒーターコア17は加熱用熱交換器である。ヒーターコア17は、図示しない車両エンジンの冷却水(温水)が内部を循環し、このエンジン冷却水を熱源として空気を加熱する。 The evaporator 16 is a heat exchanger for cooling. The evaporator 16 is combined with a compressor or the like driven by a vehicle engine (not shown) to constitute a refrigeration cycle. The low-pressure refrigerant in the evaporator 16 absorbs heat from the air and evaporates to cool the air. The heater core 17 is a heating heat exchanger. In the heater core 17, cooling water (hot water) of a vehicle engine (not shown) circulates inside, and heats the air using the engine cooling water as a heat source.
 ヒーターコア17の空気流れ方向の上流側には、空気温度調整部としてのエアミックスドア18が回動自在に設けられ、エアミックスドア18の開度はアクチュエータ18aにより駆動されて調節される。これによって、ヒーターコア17を通過する空気とヒーターコア17をバイパスする空気との割合が調整され、車室内に吹き出す空気の温度が調整される。 An air mix door 18 as an air temperature adjusting unit is rotatably provided upstream of the heater core 17 in the air flow direction, and the opening degree of the air mix door 18 is adjusted by being driven by an actuator 18a. Thereby, the ratio of the air passing through the heater core 17 and the air bypassing the heater core 17 is adjusted, and the temperature of the air blown into the vehicle interior is adjusted.
 空調ユニット10の空気流れ方向の最下流には、デフロスタ(DEF)吹出口19を開閉するデフロスタドア20、フェイス(FACE)吹出口21を開閉するフェイスドア22、およびフット(FOOT)吹出口23を開閉するフットドア24が設けられている。 At the most downstream side of the air flow direction of the air conditioning unit 10, there are a defroster door 20 that opens and closes a defroster (DEF) outlet 19, a face door 22 that opens and closes a face (FACE) outlet 21, and a foot (FOOT) outlet 23. A foot door 24 that opens and closes is provided.
 これら各ドア20、22、24は吹出モード切替部を構成するもので、アクチュエータ25により駆動されて各吹出口19、21、23を開閉する。これにより、フェイスモード、バイレベルモード、フットモード、フット‐デフモード、デフロスタモード等の各種の吹出しモードが設定される。そして、各吹出モードに応じて開口した吹出口から、温度調整された空気が車室内へ吹き出される。 These doors 20, 22, 24 constitute a blow mode switching unit, and are driven by an actuator 25 to open and close the blow outlets 19, 21, 23. Thereby, various blowing modes such as the face mode, the bi-level mode, the foot mode, the foot-def mode, and the defroster mode are set. Then, the temperature-adjusted air is blown out into the passenger compartment from the blow-out opening that opens in accordance with each blowing mode.
 制御回路31は、ブロワモータ14に印加されるブロワ電圧を調整してモータ回転数を調整することにより、送風量を制御する。なお、その他のアクチュエータ12a、18a、25も、制御回路31からの出力信号に基づいて制御される。 The control circuit 31 controls the blower voltage by adjusting the blower voltage applied to the blower motor 14 to adjust the motor rotation speed. The other actuators 12a, 18a, and 25 are also controlled based on the output signal from the control circuit 31.
 制御回路31は図示しない中央演算処理装置(CPU)、ROM、RAM、スタンバイRAM、I/Oポート、A/D変換部等を有している。 The control circuit 31 has a central processing unit (CPU), a ROM, a RAM, a standby RAM, an I / O port, an A / D converter, etc. (not shown).
 スタンバイRAMは、車両の主電源がオフの場合においてもデータを記憶するRAMであり、車両の主電源がオフであっても車載バッテリーからIGを介さずに直接電力が供給される。なお、車両の主電源オフ時とは、例えば、内燃機関の動力によって走行する車両の場合はIGオフ時、あるいは電気モータの動力のみによって走行する車両の場合はメインスイッチのオフ時が該当する。 The standby RAM is a RAM that stores data even when the main power of the vehicle is off, and power is directly supplied from the in-vehicle battery without passing through the IG even when the main power of the vehicle is off. Note that the time when the main power supply of the vehicle is off corresponds to, for example, when the vehicle is driven by the power of the internal combustion engine, when the IG is off, or when the vehicle is driven only by the power of the electric motor, when the main switch is off.
 制御回路31には、車室内のダッシュボードに設置された空調操作部33から操作信号が入力される。この空調操作部33は、AUTOスイッチ34、内外気切替スイッチ35、吹出モード切替スイッチ36、送風量切替スイッチ37を有する。AUTOスイッチ34は、自動空調制御と手動空調制御とを切替える。内外気切替スイッチ35は、手動で操作されて、内外気吸込モードを切替える。吹出モード切替スイッチ36は、手動で操作されて、吹出モードを切替える。送風量切替スイッチ37は、手動で操作されて、ファン15の送風量を切替える。 The control circuit 31 receives an operation signal from an air conditioning operation unit 33 installed on a dashboard in the vehicle interior. The air conditioning operation unit 33 includes an AUTO switch 34, an inside / outside air changeover switch 35, a blow-out mode changeover switch 36, and an air flow rate changeover switch 37. The AUTO switch 34 switches between automatic air conditioning control and manual air conditioning control. The inside / outside air switching switch 35 is manually operated to switch the inside / outside air suction mode. The blowing mode changeover switch 36 is manually operated to switch the blowing mode. The blower amount changeover switch 37 is manually operated to switch the blower amount of the fan 15.
 また、この空調操作部33は、乗員の好みの車室内温度、すなわち設定温度を設定するための温度設定スイッチ38をさらに有する。温度設定スイッチ38は、具体的には、設定温度アップスイッチ38aと設定温度ダウンスイッチ38bからなる。設定温度アップスイッチ38aは乗員に1回押されるごとに設定温度を0.5℃上げる信号を出力する。設定温度ダウンスイッチ38bは乗員に1回押されるごとに設定温度を0.5℃下げる信号を出力する。 The air conditioning operation unit 33 further includes a temperature setting switch 38 for setting the passenger's preferred passenger compartment temperature, that is, a set temperature. Specifically, the temperature setting switch 38 includes a set temperature up switch 38a and a set temperature down switch 38b. The set temperature up switch 38a outputs a signal for raising the set temperature by 0.5 ° C. every time the occupant is pressed once. The set temperature down switch 38b outputs a signal for lowering the set temperature by 0.5 ° C. each time the occupant presses the set temperature down switch 38b.
 また、制御回路31には、車室内の空調状態に影響を及ぼす環境条件を検出するセンサからの信号が入力される。具体的には、車室内の空気温度(すなわち内気温度)Trを検出する内気温度センサ39等からの各信号が、制御回路31に入力され、これらは制御回路31においてA/D変換されて読み込まれる。また、温度設定スイッチ38からの信号も制御回路31に入力され、制御回路31においてA/D変換されて読み込まれる。 Further, the control circuit 31 receives a signal from a sensor that detects an environmental condition that affects the air conditioning state in the passenger compartment. Specifically, each signal from the inside air temperature sensor 39 or the like for detecting the air temperature (that is, the inside air temperature) Tr in the passenger compartment is input to the control circuit 31, and these signals are A / D converted and read by the control circuit 31. It is. A signal from the temperature setting switch 38 is also input to the control circuit 31, and is A / D converted and read by the control circuit 31.
 なお、本実施形態では、車室外かつ車両近傍の空気温度(すなわち外気温度)Tamを検出する外気温度センサも、車室内に入射する日射量Tsを検出する日射センサも、車両に搭載されていない。したがって、その分、車両用空調装置1の部品点数が低減される。 In the present embodiment, neither an outside air temperature sensor that detects an air temperature (that is, an outside air temperature) Tam outside the vehicle compartment and in the vicinity of the vehicle nor a solar radiation sensor that detects the amount of solar radiation Ts incident on the vehicle interior is mounted on the vehicle. . Therefore, the number of parts of the vehicle air conditioner 1 is reduced accordingly.
 また、車両用空調装置1は、車内通信インターフェース40を有している。車内通信インターフェース40は、外部通信端末3と有線または無線で接続することで、制御回路31と外部通信端末3の通信を可能としている。 In addition, the vehicle air conditioner 1 has an in-vehicle communication interface 40. The in-vehicle communication interface 40 enables communication between the control circuit 31 and the external communication terminal 3 by connecting to the external communication terminal 3 by wire or wirelessly.
 外部通信端末3は、車両の乗員が携帯して車室内に持ち込んだ携帯通信機(例えば、タブレットPC、スマートホン)であってもよいし、車両に取り付けられた車載通信器であってもよい。外部通信端末3は、上述の車内通信インターフェース40を介して制御回路31と通信すると共に、車両の外部に設置された車外サーバ2と通信する。なお、外部通信端末3は、自機の周囲の気温を検出する気温センサ3xを有している。 The external communication terminal 3 may be a portable communication device (for example, a tablet PC or a smart phone) carried by a vehicle occupant and brought into the passenger compartment, or an in-vehicle communication device attached to the vehicle. . The external communication terminal 3 communicates with the control circuit 31 via the above-described in-vehicle communication interface 40 and also communicates with the external server 2 installed outside the vehicle. The external communication terminal 3 has an air temperature sensor 3x that detects the air temperature around the device itself.
 車外サーバ2は、複数の地点における現在の日射量および現在の外気温度(外部情報)を収集して配信する装置である。車外サーバ2は、1箇所に設置されたセンターサーバ(PC、ワークステーション等)であってもよい。あるいは、車外サーバ2は、上記複数の地点(より詳しくは道路沿いの複数の地点)の各々に1個ずつ設けられた複数のビーコンの集合体であってもよい。車外サーバ2が複数のビーコンの集合体である場合、それらビーコンの各々は、自位置における日射量および外気温度のみを、自機の周囲の所定範囲(例えば周囲100m)に送信する。 The server 2 outside the vehicle is a device that collects and distributes the current solar radiation amount and the current outside air temperature (external information) at a plurality of points. The server 2 outside the vehicle may be a center server (PC, workstation, etc.) installed in one place. Alternatively, the vehicle exterior server 2 may be an aggregate of a plurality of beacons provided one by one at each of the plurality of points (more specifically, a plurality of points along the road). When the server 2 outside the vehicle is an aggregate of a plurality of beacons, each of the beacons transmits only the solar radiation amount and the outside air temperature at its own position to a predetermined range (for example, surrounding 100 m) around the own aircraft.
 外部通信端末3は、車両の車室内において、車外サーバ2と通信し、車外サーバ2から車両の現在位置における現在の日射量および現在の外気温度(外部情報)を繰り返し(例えば定期的に1分間隔で)受信する。そして、当該外部情報を受信する度に、受信して直ちに、車内通信インターフェース40を介して制御回路31に当該外部情報を送信する。 The external communication terminal 3 communicates with the outside server 2 in the vehicle interior of the vehicle, and repeats the current solar radiation amount and the current outside air temperature (external information) at the current position of the vehicle from the outside server 2 (for example, periodically 1 minute). Receive at intervals). Whenever the external information is received, the external information is transmitted to the control circuit 31 via the in-vehicle communication interface 40 immediately after the reception.
 外部通信端末3による車両の現在位置における外部情報の受信方法としては、種々の方法がある。例えば、車外サーバ2が1箇所に設置されたセンターサーバである場合には、外部通信端末3が自機の現在位置を例えば自機に内蔵されているGPS受信機を用いて特定し、特定した現在位置を車外サーバ2に送信する。これにより、車外サーバ2は、送信された現在位置に最も近い地点の現在の外部情報を選択的に外部通信端末3に送信する。また例えば、車外サーバ2が上記複数のビーコンの集合体である場合、外部通信端末3から特に現在位置を送信しなくとも、単に、近傍のビーコンから送信される現在の日射量および現在の外気温度を、車両の現在位置における現在の日射量および現在の外気温度(外部情報)とすることができる。 There are various methods for receiving external information at the current position of the vehicle by the external communication terminal 3. For example, when the out-of-vehicle server 2 is a center server installed in one place, the external communication terminal 3 specifies and specifies the current position of the own device using, for example, a GPS receiver built in the own device. The current position is transmitted to the server 2 outside the vehicle. As a result, the out-of-vehicle server 2 selectively transmits the current external information at the point closest to the transmitted current position to the external communication terminal 3. Further, for example, when the vehicle outside server 2 is an aggregate of the plurality of beacons, even if the current position is not transmitted from the external communication terminal 3, the current solar radiation amount and the current outside air temperature that are simply transmitted from nearby beacons are simply transmitted. Can be the current amount of solar radiation at the current position of the vehicle and the current outside air temperature (external information).
 図2に示すように、空調ユニット10は、車両の進行方向を基準とした左右方向におけるダッシュボード内の中央部に配置されており、内気温度センサ39は、ダッシュボードの運転席側に配置されている。 As shown in FIG. 2, the air conditioning unit 10 is disposed in the center of the dashboard in the left-right direction with respect to the traveling direction of the vehicle, and the inside air temperature sensor 39 is disposed on the driver seat side of the dashboard. ing.
 図3は、制御回路31により実行される自動空調制御のメイン処理を表している。制御回路31は、車両用空調装置1の作動スイッチが投入された状態で、AUTOスイッチ34が投入されると、図3のメイン処理を開始する。また制御回路31は、図3のメイン処理の実行中に、AUTOスイッチ34が解除された場合、吹出モード切替スイッチ36が操作された場合、送風量切替スイッチ37が操作された場合等に、図3の処理を終了して周知の手動空調制御を行う。 FIG. 3 shows a main process of the automatic air conditioning control executed by the control circuit 31. When the AUTO switch 34 is turned on while the operation switch of the vehicle air conditioner 1 is turned on, the control circuit 31 starts the main process of FIG. In addition, the control circuit 31 is activated when the AUTO switch 34 is released, the blow mode switch 36 is operated, the air flow switch 37 is operated, etc. during the execution of the main process of FIG. The process of 3 is finished and well-known manual air-conditioning control is performed.
 制御回路31は、図3の処理を開始すると、まずS20にて各種変数、フラグ等の初期値を設定する。続いてS30では、信号入力処理を実行する。図4に、信号入力処理の詳細を示す。信号入力処理では、制御回路31は、まずS32において、設定温度Tset等の入力を行う。具体的には、空調操作部33の温度設定スイッチ38の状態を入力する。続いてS33で、内気温度センサ39を用いて内気温度Trの入力を行う。具体的には、内気温度センサ39からのセンサ信号に基づいて、内気温度Trを取得する。 When the control circuit 31 starts the process of FIG. 3, first, in S20, initial values such as various variables and flags are set. Subsequently, in S30, a signal input process is executed. FIG. 4 shows details of the signal input process. In the signal input process, the control circuit 31 first inputs a set temperature Tset and the like in S32. Specifically, the state of the temperature setting switch 38 of the air conditioning operation unit 33 is input. Subsequently, in step S33, the inside air temperature Tr is input using the inside air temperature sensor 39. Specifically, the inside air temperature Tr is acquired based on the sensor signal from the inside air temperature sensor 39.
 続いてS34では、外部情報を受信できているか否かを判定する。外部情報は、車外サーバ2から送信される、車両の現在位置における現在の日射量および現在の外気温度のうち少なくとも1つを含む。 Subsequently, in S34, it is determined whether or not external information can be received. The external information includes at least one of the current amount of solar radiation and the current outside air temperature at the current position of the vehicle transmitted from the outside server 2.
 上述の通り、外部通信端末3は、車外サーバ2から外部情報を繰り返し(例えば定期的に1分間隔で)受信し、受信する度に、受信して直ちに、車内通信インターフェース40を介して制御回路31に当該情報を送信する。したがって、制御回路31は、繰り返し(例えば定期的に1分間隔で)、その時点における最新の外部情報を受信する。しかし、制御回路31が外部通信端末3から外部情報を受信することに失敗する場合がある。 As described above, the external communication terminal 3 repeatedly receives external information from the out-of-vehicle server 2 (for example, periodically at an interval of 1 minute), and whenever it is received, immediately after receiving the control circuit via the in-vehicle communication interface 40 31 transmits the information. Accordingly, the control circuit 31 repeatedly (for example, periodically at intervals of 1 minute) receives the latest external information at that time. However, the control circuit 31 may fail to receive external information from the external communication terminal 3.
 失敗する場合としては、例えば、外部通信端末3が乗員が有する携帯端末であった場合や、外部通信端末3が車内に持ち込まれていない場合がある。あるいは、外部通信端末3または車内通信インターフェース40が故障してしまう場合がある。あるいは、車両の移動に応じて車外サーバ2と外部通信端末3の通信が一時的に不可能になってしまう場合がある。 Failed cases include, for example, a case where the external communication terminal 3 is a portable terminal held by a passenger, or a case where the external communication terminal 3 is not brought into the vehicle. Alternatively, the external communication terminal 3 or the in-vehicle communication interface 40 may break down. Alternatively, communication between the out-of-vehicle server 2 and the external communication terminal 3 may be temporarily impossible according to the movement of the vehicle.
 これらのような場合において、制御回路31は、外部情報の繰り返し受信における直前の回の受信に失敗していた場合に、S34で外部情報を受信できていないと判定し、直前の回の受信に成功していた場合に、外部情報を受信できていると判定する。 In such cases, the control circuit 31 determines that the external information has not been received in S34 when the previous reception in the repeated reception of the external information has failed, and receives the previous reception. If successful, it is determined that external information has been received.
 S34で外部情報を受信できていると判定した場合は、S35aにおいて、直前に受信した外部情報から、車両の現在位置における現在の外気温度を取得する。制御回路31は、取得した外気温度を、車室内に吹き出す空気の目標温度である目標吹出温度TAOを計算するための外気温度Tam(設定値)として設定する。周知の通り、目標吹出温度TAOは、車両用空調装置1の熱負荷の指標となる。 If it is determined that the external information can be received in S34, the current outside air temperature at the current position of the vehicle is acquired from the external information received immediately before in S35a. The control circuit 31 sets the acquired outside air temperature as an outside air temperature Tam (set value) for calculating a target blowing temperature TAO that is a target temperature of the air blown into the vehicle interior. As is well known, the target outlet temperature TAO is an index of the heat load of the vehicle air conditioner 1.
 続いてS36aでは、直前に受信した外部情報から、車両の現在位置における現在の日射量を取得し、取得した日射量を目標吹出温度TAOを計算するための日射量Ts(設定値)として設定する。なお、日射量Tsは、キロワットの単位で表される日射量を温度に換算した日射温度に該当する。信号入力処理は、S36aの後、S30を終了してS40に進む。 Subsequently, in S36a, the current amount of solar radiation at the current position of the vehicle is acquired from the external information received immediately before, and the acquired amount of solar radiation is set as the amount of solar radiation Ts (set value) for calculating the target blowing temperature TAO. . The solar radiation amount Ts corresponds to the solar radiation temperature obtained by converting the solar radiation amount expressed in kilowatts into a temperature. In S36a, the signal input process ends S30 and proceeds to S40.
 S34で外部情報を受信できていないと判定した場合は、S35bにおいて、目標吹出温度TAOを計算するための外気温度Tamとして、推定値を設定する。推定値としては、例えば、外部通信端末3を介して車外サーバ2から最後に取得した外部情報中の外気温度(すなわち、外気温度の前回値)を採用してもよい。外気温度が急激に変化することは希なので、前回値を採用することで、推定値の正確性がある程度維持される。ここで、車外サーバ2から最後に取得した外部情報は、繰り返し受信における直前回よりも更に過去の回のうち、最後に受信に成功した回の外部情報である。 If it is determined in S34 that external information has not been received, an estimated value is set as the outside air temperature Tam for calculating the target blowing temperature TAO in S35b. As the estimated value, for example, the outside air temperature in the external information last acquired from the outside server 2 via the external communication terminal 3 (that is, the previous value of the outside air temperature) may be employed. Since the outside air temperature rarely changes rapidly, the accuracy of the estimated value is maintained to some extent by adopting the previous value. Here, the external information acquired last from the out-of-vehicle server 2 is the external information of the last successful reception among the previous times more than the previous time in the repeated reception.
 あるいは、推定値としては、予め定められた固定値(例えば、15℃)であってもよい。ただし、この固定値は、車両用空調装置1の搭載先の車両の仕向地域(北米、南米、東南アジア、ヨーロッパ等)によって異なるように予め定めてもよい。その場合は、固定値は、例えば、仕向地域の平均気温等となるように設定してもよい。 Alternatively, the estimated value may be a predetermined fixed value (for example, 15 ° C.). However, this fixed value may be determined in advance so as to differ depending on the destination region (North America, South America, Southeast Asia, Europe, etc.) of the vehicle on which the vehicle air conditioner 1 is mounted. In that case, the fixed value may be set to be, for example, the average temperature in the destination area.
 あるいは、車両用空調装置1が起動して以降(または車両の主電源がオンになって以降)一度も外部情報を受信できていない間は、推定値は、直前の車両の主電源オン時に内気温度センサ39が検出した内気温度が大きくなるほど大きくなる値としてもよい。なお、車両の主電源オン時とは、例えば、内燃機関の動力によって走行する車両の場合ではIGオン時が該当し、電気モータの動力のみによって走行する車両の場合ではメインスイッチのオン時が該当する。車両の主電源オン時の内気温は、外気温と近い場合が多いので、車両の主電源オン時の内気温で大まかな季節を判断し、それを上記のように外気温に反映させることができる。 Alternatively, after the vehicle air conditioner 1 is activated (or after the main power of the vehicle is turned on), while the external information has not been received once, the estimated value is the inside air when the main power of the previous vehicle is turned on. It may be a value that increases as the inside air temperature detected by the temperature sensor 39 increases. Note that the time when the main power of the vehicle is on, for example, corresponds to the time when the IG is turned on in the case of a vehicle that is driven by the power of the internal combustion engine, and the time when the main switch is turned on in the case of the vehicle that is driven only by the power of the electric motor To do. Since the internal temperature when the vehicle's main power is turned on is often close to the outside temperature, it is possible to determine the rough season based on the internal temperature when the vehicle's main power is turned on and reflect it in the external temperature as described above. it can.
 続いてS36bにおいて、目標吹出温度TAOを計算するための日射量Tsに、推定値を設定する。推定値としては、例えば、外部通信端末3を介して車外サーバ2から最後に取得した外部情報中の日射量(すなわち、日射量の前回値)を採用してもよい。前回値を採用することで、推定値の正確性がある程度維持される。あるいは、推定値としては、予め定められた固定値であってもよい。信号入力処理は、S36bの後、S30を終了してS40に進む。 Subsequently, in S36b, an estimated value is set to the solar radiation amount Ts for calculating the target blowing temperature TAO. As the estimated value, for example, the amount of solar radiation in the external information last acquired from the outside server 2 via the external communication terminal 3 (that is, the previous value of the amount of solar radiation) may be employed. By adopting the previous value, the accuracy of the estimated value is maintained to some extent. Alternatively, the estimated value may be a predetermined fixed value. In S36b, the signal input process ends S30 and proceeds to S40.
 S40では、S30で取得および設定した設定温度Tset、内気温度Tr、外気温度Tam、日射量Tsを用いて、目標吹出温度(指標)TAOを以下の式によって算出する。 In S40, the target blowing temperature (index) TAO is calculated by the following formula using the set temperature Tset, the inside air temperature Tr, the outside air temperature Tam, and the solar radiation amount Ts acquired and set in S30.
 TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts-C
 ここで、Kset、Kr、Kam、Ksはそれぞれの重み係数である。KsetがKrよりも大きく、また、KrがKamおよびKsよりも大きくなるように設定されている。KamとKsは、KamがKs以上(Kam≧Ks)の場合もあれば、KsがKam以上(Ks≧Kam)の場合もある。例えば、Ksetを7とし、Tsetを3とし、Kamを1とし、Ksを1以下としてもよい。つまり、自動空調の制御には、設定温度Tsetと内気温度Trの影響が、外気温度Tamと日射量Tsの影響よりも大きい。
TAO = Kset × Tset-Kr × Tr-Kam × Tam-Ks × Ts-C
Here, Kset, Kr, Kam, Ks are respective weighting factors. Kset is set to be larger than Kr, and Kr is set to be larger than Kam and Ks. Kam and Ks may be such that Kam is equal to or greater than Ks (Kam ≧ Ks), and Ks is equal to or greater than Kam (Ks ≧ Kam). For example, Kset may be set to 7, Tset may be set to 3, Kam may be set to 1, and Ks may be set to 1 or less. That is, in the control of automatic air conditioning, the influence of the set temperature Tset and the inside air temperature Tr is larger than the influence of the outside air temperature Tam and the solar radiation amount Ts.
 このように、制御回路31は、吹出温度TAOを算出するため、内気温度については車両に搭載される内気温度センサを用いて取得し、外気温度および日射量については車外サーバ2から取得する。 Thus, in order to calculate the blowout temperature TAO, the control circuit 31 obtains the inside air temperature using the inside air temperature sensor mounted on the vehicle, and obtains the outside air temperature and the amount of solar radiation from the outside server 2.
 上述の通り、内気温度Tr、外気温度Tam、および日射量Tsのうち、主に内気温度Trが、目標吹出温度TAOの計算、ひいては空調制御に影響を及ぼす。つまり、外気温度Tam、および日射量Tsは、追加補正のためのパラメータである。 As described above, out of the inside air temperature Tr, the outside air temperature Tam, and the solar radiation amount Ts, the inside air temperature Tr mainly influences the calculation of the target blowing temperature TAO and consequently the air conditioning control. That is, the outside air temperature Tam and the solar radiation amount Ts are parameters for additional correction.
 例えば、1日の気温の差や年間を通して気温の差が少ないような地域においては、外気温度が自動空調制御に与える影響(補正の効果)はそれほど大きくない。そのため、内気温度センサ39のみを使った自動空調制御でも、ユーザの期待する空調を提供できる可能性がある。 For example, in an area where the difference in daily temperature or the difference in temperature throughout the year is small, the influence (correction effect) of the outside air temperature on the automatic air conditioning control is not so great. Therefore, there is a possibility that air conditioning expected by the user can be provided even with automatic air conditioning control using only the inside air temperature sensor 39.
 したがって、上記のように外気温度および日射量については車外サーバ2から取得することで、自動空調制御のために車両に外気温度センサまたは日射量センサを搭載する必要がなくなる。つまり、簡易的な自動空調を行うことができる。また、車外サーバ2から外気温度Tamおよび日射量Tsを取得した結果、取得した外部情報が車載センサから取得する場合に比べて不正確になったとしても、外気温度、日射量は内気温度に比べて重要度が低いので、空調制御に対する影響は内気温度に比べて小さい。 Therefore, by acquiring the outside air temperature and the amount of solar radiation from the outside server 2 as described above, it is not necessary to mount the outside air temperature sensor or the solar radiation amount sensor on the vehicle for the automatic air conditioning control. That is, simple automatic air conditioning can be performed. Further, as a result of acquiring the outside air temperature Tam and the solar radiation amount Ts from the outside server 2, the outside air temperature and the solar radiation amount are compared with the inside air temperature even if the acquired external information becomes inaccurate as compared with the case where it is acquired from the vehicle-mounted sensor. Therefore, the impact on air conditioning control is small compared to the inside air temperature.
 また、車外サーバ2から外気温度Tamおよび日射量Tsを取得するので、車両内のみで外気温センサも日射量センサも用いずに外気温度および日射量を推定する場合に比べ、外気温度Tamおよび日射量Tsの推定値がより正確になる。したがって、比較的きめ細かな自動空調制御を行うことができる。 Moreover, since the outside air temperature Tam and the solar radiation amount Ts are acquired from the vehicle outside server 2, the outdoor air temperature Tam and the solar radiation amount are compared with the case where the outside air temperature and the solar radiation amount are estimated without using the outside air temperature sensor and the solar radiation amount sensor only in the vehicle. The estimated value of the quantity Ts becomes more accurate. Accordingly, relatively fine automatic air conditioning control can be performed.
 S40の処理に続いてはS50において、目標吹出温度TAOに対するエアミックスドア18の開度を、予め制御回路31に記憶された制御マップを参照して決定する。そして、エアミックスドア18の開度がこの決定した開度となるようにアクチュエータ18aを制御してエアミックスドア18を駆動し、各吹出口19、21、23から車室内へ吹き出される空気の温度を調整する。 Subsequent to the processing of S40, in S50, the opening degree of the air mix door 18 with respect to the target blowing temperature TAO is determined with reference to a control map stored in the control circuit 31 in advance. Then, the actuator 18a is controlled to drive the air mix door 18 so that the opening degree of the air mix door 18 becomes the determined opening degree, and the air blown out from the air outlets 19, 21, 23 into the vehicle interior Adjust the temperature.
 続いてS60では、目標吹出温度TAOに基づいて、ブロワモータ14への印可電圧であるブロワ電圧を、予め制御回路31に記憶された制御マップを参照して決定する。ブロワモータ14への印可電圧が大きいほど、送風ファン15の送風量が大きくなり、車室内へ吹き出される送風量が大きくなる。 Subsequently, in S60, a blower voltage, which is an applied voltage to the blower motor 14, is determined with reference to a control map stored in advance in the control circuit 31 based on the target blowing temperature TAO. The larger the voltage applied to the blower motor 14, the greater the amount of air blown by the blower fan 15, and the larger the amount of air blown into the passenger compartment.
 続いてS70では、内外気切替箱11の切替状態を決める吸込口モード(外気導入モードまたは内気循環モード)を決定し、この決定した吸込口モードが実行されるように、アクチュエータ12aを制御して内外気切替ドア12を所定位置に駆動する。この吸込口モードも目標吹出温度TAOに基づいて、予め制御回路31に記憶された制御マップを参照して決定する。 Subsequently, in S70, a suction port mode (outside air introduction mode or inside air circulation mode) that determines the switching state of the inside / outside air switching box 11 is determined, and the actuator 12a is controlled so that the determined suction port mode is executed. The inside / outside air switching door 12 is driven to a predetermined position. This suction port mode is also determined with reference to the control map stored in advance in the control circuit 31 based on the target outlet temperature TAO.
 続いてS80では、吹出口モードを決定し、この演算した吹出口モードとなるように、アクチュエータ25を制御して吹出モード設定用の各ドア20、22、24を所定位置に駆動する。この吹出口モードも、TAOに基づいて、予め制御回路31に記憶された制御マップを参照して決定する。例えば、目標吹出温度TAOが低温域から高温域へと上昇するにつれて吹出口モードをフットモード、バイレベルモード、フェイスモードへと順次切り替えてもよい。この場合、夏季は主にフェイスモード、春秋季は主にバイレベルモード、そして冬季は主にフットモードが選択される。 Subsequently, in S80, the air outlet mode is determined, and the actuator 25 is controlled to drive the air outlet mode setting doors 20, 22, 24 to a predetermined position so that the calculated air outlet mode is obtained. This air outlet mode is also determined with reference to a control map stored in advance in the control circuit 31 based on TAO. For example, the outlet mode may be sequentially switched to the foot mode, the bi-level mode, and the face mode as the target outlet temperature TAO increases from the low temperature range to the high temperature range. In this case, the face mode is mainly selected in the summer, the bi-level mode is mainly selected in the spring and autumn, and the foot mode is mainly selected in the winter.
 続いてS90では、コンプレッサの回転数(rpm)を決定し、決定した回転数で駆動するようにコンプレッサを制御する。このコンプレッサの回転数も、目標吹出温度TAO等に基づいて、予め制御回路31に記憶されている制御マップを参照して決定する。 Subsequently, in S90, the rotation speed (rpm) of the compressor is determined, and the compressor is controlled to be driven at the determined rotation speed. The number of rotations of the compressor is also determined with reference to a control map stored in advance in the control circuit 31 based on the target outlet temperature TAO and the like.
 制御回路31により実行される自動空調制御は、S90の後は、S30に戻る。なお、S30~S90のループにおいて、S30は、例えば250msの周期で繰り返し定期的に実行される。
(第2実施形態)
 次に、第2実施形態について説明する。本実施形態は、第1実施形態に対して、図4のS33の内気温度入力処理の内容を、図5のように変更したものである。
The automatic air conditioning control executed by the control circuit 31 returns to S30 after S90. In the loop of S30 to S90, S30 is repeatedly and periodically executed, for example, at a cycle of 250 ms.
(Second Embodiment)
Next, a second embodiment will be described. In the present embodiment, the contents of the inside air temperature input process in S33 of FIG. 4 are changed as shown in FIG. 5 with respect to the first embodiment.
 以下、第1実施形態に対する変更部分のみを説明する。S33の内気温度入力処理においては、まずS332で、内気温度センサ39のセンサ出力値の読み込みを試みる。 Hereinafter, only the changes to the first embodiment will be described. In the inside air temperature input process of S33, first, in S332, an attempt is made to read the sensor output value of the inside air temperature sensor 39.
 続いてS333では、332の読み込みの結果に基づいて、内気温度センサ39が正常であるか否かを判定する。例えば、センサ出力値の読み込みに失敗した場合、および、センサ出力値の読み込みに成功したものの、読み込んだセンサ出力値が所定の正常範囲を外れている場合には、内気温度センサ39が正常でないと判定する。そして、センサ出力値の読み込みに成功し、かつ読み込んだセンサ出力値が所定の正常範囲内にある場合に、内気温度センサ39が正常であると判定する。 Subsequently, in S333, based on the result of reading 332, it is determined whether or not the inside air temperature sensor 39 is normal. For example, if reading of the sensor output value fails, and reading of the sensor output value is successful, but the read sensor output value is out of a predetermined normal range, the inside air temperature sensor 39 is not normal. judge. When the sensor output value has been successfully read and the read sensor output value is within a predetermined normal range, it is determined that the inside air temperature sensor 39 is normal.
 内気温度センサ39が正常であると判定した場合は、S334aにおいて、直前に読み込んだセンサ出力値に応じた内気温度を、目標吹出温度TAOを計算するための内気温度Trとして設定し、S33を終了する。 When it is determined that the inside air temperature sensor 39 is normal, in S334a, the inside air temperature corresponding to the sensor output value read immediately before is set as the inside air temperature Tr for calculating the target blowing temperature TAO, and S33 is ended. To do.
 内気温度センサ39が正常でない(異常である)と判定した場合は、S334bにおいて、目標吹出温度TAOを計算するための内気温度Trに、推定値を設定する。推定値としては、所定の固定値でもよく、あるいは、外部通信端末3に内蔵されている気温センサ3xが検出した気温を採用してもよい。 When it is determined that the inside air temperature sensor 39 is not normal (abnormal), an estimated value is set in the inside air temperature Tr for calculating the target blowing temperature TAO in S334b. As the estimated value, a predetermined fixed value may be used, or the temperature detected by the temperature sensor 3x built in the external communication terminal 3 may be adopted.
 気温センサ3xが検出した気温を採用する場合、制御回路31は、車内通信インターフェース40を介して、外部通信端末3に対して気温センサ3xが検出した気温を送信するよう要求し、外部通信端末3が当該気温を制御回路31に送信する。これにより、外部通信端末3(例えばスマートホン)に搭載されているセンサを利用して、内気温度センサ39のセンサ出力値が使用できない場合において、固定値に比べて正確性の高い内気温度Trの推定値を取得することができる。 When the temperature detected by the temperature sensor 3x is adopted, the control circuit 31 requests the external communication terminal 3 to transmit the temperature detected by the temperature sensor 3x via the in-vehicle communication interface 40, and the external communication terminal 3 Transmits the temperature to the control circuit 31. Thereby, when the sensor output value of the inside air temperature sensor 39 cannot be used using the sensor mounted on the external communication terminal 3 (for example, a smart phone), the inside air temperature Tr is more accurate than the fixed value. An estimate can be obtained.
 また、推定値としては、例えば、内気温度センサ39から最後に取得した正常範囲内のセンサ出力値を採用してもよい。
(第3実施形態)
 次に、第3実施形態について説明する。本実施形態は、第1、第2実施形態に対して、以下のような変更を加えたものである。
Further, as the estimated value, for example, a sensor output value within the normal range last obtained from the inside air temperature sensor 39 may be employed.
(Third embodiment)
Next, a third embodiment will be described. This embodiment adds the following changes with respect to 1st, 2nd embodiment.
 本実施形態の車両用空調装置1の構成は、内気温度センサ39の位置を除いて第1、第2実施形態と同じである。本実施形態の内気温度センサ39は、図6に示すように、空調ユニット10内の通風路において、内外気切替ドア12および送風ファン15の空気流れ方向の下流かつエバポレータ16およびヒーターコア17の空気流れ方向の上流に配置されている。このような位置に内気温度センサ39が配置されていることで、内気温度センサ39は、吸込口モードが内気循環モードとなっている場合は内気温度を検出でき、吸込口モードが外気導入モードとなっている場合は外気温度を検出できる。つまり、本実施形態の内気温度センサ39は、内外気両用センサとして機能する。 The configuration of the vehicle air conditioner 1 of the present embodiment is the same as that of the first and second embodiments except for the position of the inside air temperature sensor 39. As shown in FIG. 6, the inside air temperature sensor 39 of the present embodiment is arranged in the air passage in the air conditioning unit 10, downstream of the inside / outside air switching door 12 and the blower fan 15 in the air flow direction, and in the air of the evaporator 16 and the heater core 17. It is arranged upstream in the flow direction. By arranging the inside air temperature sensor 39 at such a position, the inside air temperature sensor 39 can detect the inside air temperature when the suction port mode is the inside air circulation mode, and the suction port mode is set to the outside air introduction mode. If it is, the outside temperature can be detected. That is, the inside air temperature sensor 39 of the present embodiment functions as an inside / outside air sensor.
 また、図3のS30における信号入力処理の内容は、図4のものから図7のものに置き換えられる。図4の処理と図7の処理で、同じ参照符号が付された処理内容は同じである。図7の処理は、図4の処理に対して、S33をS33aに置き換え、S35bをS35cに置き換えたものである。 Further, the contents of the signal input processing in S30 of FIG. 3 are replaced with those of FIG. In the processing of FIG. 4 and the processing of FIG. The process of FIG. 7 is obtained by replacing S33 with S33a and replacing S35b with S35c with respect to the process of FIG.
 信号入力処理は、S32に続いては、S33aで、後述する図9の追加処理によって算出された最新の内気温度を、目標吹出温度TAOの計算に用いられる内気温度Trとして設定して、S34に進む。 In S33a following the signal input process, the latest internal air temperature calculated by the additional process of FIG. 9 described later is set as the internal air temperature Tr used in the calculation of the target blowing temperature TAO in S33a. move on.
 制御回路31がS34で外部情報を受信できていないと判定した場合は、信号入力処理はS35cに進む。S35cでは、後述する図9の追加処理によって算出された最新の外気温度を、目標吹出温度TAOの計算に用いられる外気温度Tamとして設定して、S36bに進む。 If the control circuit 31 determines in S34 that external information has not been received, the signal input process proceeds to S35c. In S35c, the latest outside air temperature calculated by the additional process of FIG. 9 described later is set as the outside air temperature Tam used for calculating the target blowing temperature TAO, and the process proceeds to S36b.
 このように、目標吹出温度TAOの計算に用いられる内気温度Trとしては、追加処理で算出されたものを常に採用する。また、目標吹出温度TAOの計算に用いられる外気温度Tamとしては、外部情報を受信できている場合は最新の外部情報を採用し、外部情報を受信できていない場合は、追加処理で算出されたものを採用する。 Thus, as the inside air temperature Tr used for the calculation of the target outlet temperature TAO, the one calculated by the additional processing is always adopted. Moreover, as the outside temperature Tam used for calculation of the target blowing temperature TAO, the latest external information is adopted when external information can be received, and is calculated by additional processing when external information cannot be received. Adopt things.
 また、制御回路31は、第1、第2実施形態では、S70の内外気制御処理において、目標吹出温度TAOに基づいて吸込口モードを決定しているのに対し、本実施形態では、図8に示すような処理を実行する。 Further, in the first and second embodiments, the control circuit 31 determines the suction port mode based on the target outlet temperature TAO in the inside / outside air control process of S70, whereas in the present embodiment, FIG. The process as shown in is executed.
 図8の処理では、制御回路31は、まずS71で、第1、第2実施形態と同じ方法で、目標吹出温度TAOに基づいて吸込口モードを決定する。この決定した吸込口モードが実行されるように、アクチュエータ12aを制御して内外気切替ドア12を所定位置に駆動する。 In the process of FIG. 8, the control circuit 31 first determines the suction port mode based on the target outlet temperature TAO in S71 by the same method as in the first and second embodiments. The actuator 12a is controlled to drive the inside / outside air switching door 12 to a predetermined position so that the determined suction port mode is executed.
 続いてS72では、同じ吸込口モードの継続時間が時間T1(例えば5分)を超えるか否かを判定する。継続時間が時間T1を超えていなければS71に戻り、継続時間が時間T1を超えていればS73に進む。 Subsequently, in S72, it is determined whether or not the duration time of the same suction port mode exceeds the time T1 (for example, 5 minutes). If the duration does not exceed the time T1, the process returns to S71, and if the duration exceeds the time T1, the process proceeds to S73.
 S73では、吸込口モードを切り替える。具体的には、現在の吸込口モードが外気導入モードなら、内気循環モードが実行されるようにアクチュエータ12aを制御して内外気切替ドア12を所定位置に駆動する。また、現在の吸込口モードが内気循環モードなら、外気導入モードが実行されるようにアクチュエータ12aを制御して内外気切替ドア12を所定位置に駆動する。 In S73, the inlet mode is switched. Specifically, if the current inlet mode is the outside air introduction mode, the inside / outside air switching door 12 is driven to a predetermined position by controlling the actuator 12a so that the inside air circulation mode is executed. If the current suction port mode is the inside air circulation mode, the inside / outside air switching door 12 is driven to a predetermined position by controlling the actuator 12a so that the outside air introduction mode is executed.
 続いてS74では、同じ吸込口モードの継続時間が時間T2(例えば15秒)を超えるか否かを判定する。継続時間が時間T2を超えていなければS74を再度実行し、継続時間が時間T2を超えていればS71に戻る。なお、時間T2は、時間T1に比べて非常に短く設定される。例えば、時間T2は時間T1の1/10の長さに設定される。 Subsequently, in S74, it is determined whether or not the duration of the same suction port mode exceeds time T2 (for example, 15 seconds). If the duration does not exceed the time T2, S74 is executed again, and if the duration exceeds the time T2, the process returns to S71. The time T2 is set to be very short compared to the time T1. For example, the time T2 is set to 1/10 of the time T1.
 これにより、目標吹出温度TAOに基づく吸込口モードの継続時間が時間T1を超えると(S72)、目標吹出温度TAOに関わらずモードが強制的に切り替わる(S73)。モードが切り替わってから時間T2が経過すると(S74)、目標吹出温度TAOに基づく吸込口モードに戻る(S71)。 Thus, when the duration time of the suction port mode based on the target outlet temperature TAO exceeds the time T1 (S72), the mode is forcibly switched regardless of the target outlet temperature TAO (S73). When the time T2 elapses after the mode is switched (S74), the mode returns to the inlet mode based on the target outlet temperature TAO (S71).
 これにより、内気温度センサ39は、目標吹出温度TAOに基づく吸込口モードが長時間内気循環モードであり続けても、定期的に外気温度を検出することができる。また、目標吹出温度TAOに基づく吸込口モードが長時間外気導入モードであり続けても、定期的に内気温度を検出することができる。 Thereby, the inside air temperature sensor 39 can periodically detect the outside air temperature even if the suction port mode based on the target outlet temperature TAO continues to be the inside air circulation mode for a long time. Moreover, even if the suction inlet mode based on the target blowing temperature TAO continues to be the outside air introduction mode for a long time, the inside air temperature can be detected periodically.
 また、制御回路31は、図3のメイン処理と同時並行的に、図9に示す追加処理を実行する。この追加処理において、内気温度センサ39のセンサ出力に基づいて内気温度および外気温度を算出する。既に説明した通り、この追加処理で算出された内気温度は、図7のS33aで目標吹出温度TAOを算出するための内気温度Trとして採用される。また、この追加処理で算出された外気温度は、図7のS35cで目標吹出温度TAOを算出するための外気温度Tamとして採用される。 Further, the control circuit 31 executes an additional process shown in FIG. 9 in parallel with the main process of FIG. In this additional processing, the inside air temperature and the outside air temperature are calculated based on the sensor output of the inside air temperature sensor 39. As already explained, the inside air temperature calculated by this additional processing is adopted as the inside air temperature Tr for calculating the target blowing temperature TAO in S33a of FIG. Further, the outside air temperature calculated by this additional processing is adopted as the outside air temperature Tam for calculating the target outlet temperature TAO in S35c of FIG.
 制御回路31は、車両の主電源(例えばIG)がオフからオンになったときに、図9の追加処理を開始する。制御回路31は、まずS110で、主電源がオフになってからオンとなるまでの経過時間が所定時間T0(例えば2時間)以上であるか否かを判定する。例えば、主電源オフ時にその時点の時刻をオフ時刻としてバックアップRAMに記録し、その後の主電源オン時の時刻と上記オフ時刻との差を算出し、この差を経過時間とする。 The control circuit 31 starts the additional process of FIG. 9 when the main power source (for example, IG) of the vehicle is turned on from off. First, in S110, the control circuit 31 determines whether or not an elapsed time from when the main power source is turned off until it is turned on is equal to or longer than a predetermined time T0 (for example, 2 hours). For example, when the main power is turned off, the time at that time is recorded in the backup RAM as an off time, and the difference between the time when the main power is turned on and the off time is calculated, and this difference is used as the elapsed time.
 経過時間が所定時間T0以上であると判定した場合は、車室内の温度が車外の温度と同じである可能性が高い。したがって、制御回路31はS120において、内気温度センサ39のセンサ値に応じた内気温度を算出すると共に、内気温度センサ39のセンサ値に応じた外気温度を算出する。つまり、内気温度も外気温度も同じ値に算出される。 If it is determined that the elapsed time is equal to or longer than the predetermined time T0, the temperature inside the vehicle is likely to be the same as the temperature outside the vehicle. Therefore, in S120, the control circuit 31 calculates the inside air temperature according to the sensor value of the inside air temperature sensor 39 and calculates the outside air temperature according to the sensor value of the inside air temperature sensor 39. That is, the inside air temperature and the outside air temperature are calculated to the same value.
 経過時間が所定時間T0以上でないと判定した場合は、車室内の温度が車外の温度と同じになっておらず、内気温度、外気温度とも、車両の主電源オフ時の値から大きく変化していない可能性が高い。したがって、制御回路31はS130において、内気温度センサ39のセンサ値とは無関係に内気温度、外気温度を算出する。具体的には、内気温度および外気温度として、主電源オフ前に最後に追加処理で算出された(すなわち前回の)内気温度および外気温度をそれぞれ採用する。なお、主電源オフ前に最後に追加処理で算出された内気温度および外気温度は、主電源オフ時にバックアップRAMに記録することで、主電源オフ後も保持される。 If it is determined that the elapsed time is not equal to or greater than the predetermined time T0, the temperature inside the vehicle interior is not the same as the temperature outside the vehicle, and both the inside air temperature and the outside air temperature are greatly changed from the values when the vehicle main power is turned off. Most likely not. Therefore, in S130, the control circuit 31 calculates the inside air temperature and the outside air temperature regardless of the sensor value of the inside air temperature sensor 39. Specifically, the inside air temperature and the outside air temperature that are finally calculated by the additional processing (ie, the previous time) before turning off the main power are respectively employed as the inside air temperature and the outside air temperature. It should be noted that the inside air temperature and the outside air temperature calculated by the additional processing last before the main power supply is turned off are recorded in the backup RAM when the main power supply is turned off, and are retained even after the main power supply is turned off.
 S120、S130の処理に続いては、S140で、同じ吸込口モードの継続時間が時間T3(例えば12秒)以内であるか否かを判定する。この時間T3は、図8のS74で用いた時間T2よりも短くなるように設定される。継続時間が時間T3以内であると判定した場合は、S145で、内気温度として、最後に追加処理で算出された内気温度を採用する。続いて。S50で、外気温度として、最後に追加処理で算出された外気温度を採用する。図9に示す追加処理は、S150の後は、S140に戻る。 Subsequent to the processing of S120 and S130, in S140, it is determined whether or not the duration of the same suction port mode is within time T3 (for example, 12 seconds). This time T3 is set to be shorter than the time T2 used in S74 of FIG. If it is determined that the duration is within the time T3, the inside air temperature finally calculated in the additional process is adopted as the inside air temperature in S145. continue. In S50, the outside temperature finally calculated by the additional process is adopted as the outside temperature. The additional process shown in FIG. 9 returns to S140 after S150.
 このように、吸込口モードの継続時間が時間T3以内の場合に吸込口モードによらずに内気温度も外気温度も前回値を採用するのは、切り替わり直後は空調ユニット10内の通風路の温度が内気温度または外気温度と同じになっていない可能性が高いからである。 As described above, when the duration time of the air inlet mode is within the time T3, the previous values of the inside air temperature and the outside air temperature are adopted regardless of the air inlet mode because the temperature of the ventilation path in the air conditioning unit 10 immediately after switching is used. This is because there is a high possibility that is not the same as the inside air temperature or the outside air temperature.
 S140で継続時間が時間T3を超えていると判定した場合、S155において、現在の吸込口モードが内気循環モードか否かを判定する。追加処理は、現在の吸込口モードが内気循環モードであればS160に進み、外気導入モードであればS170に進む。 If it is determined in S140 that the duration exceeds the time T3, it is determined in S155 whether or not the current suction port mode is the inside air circulation mode. The additional process proceeds to S160 if the current inlet mode is the inside air circulation mode, and proceeds to S170 if the outside air introduction mode.
 S160では、内気温度として、内気温度センサ39のセンサ出力に応じた温度を設定する。続くS165では、外気温度として、最後に追加処理で算出された外気温度を採用する。追加処理は、S165の後は、S140に戻る。 In S160, the temperature corresponding to the sensor output of the inside air temperature sensor 39 is set as the inside air temperature. In subsequent S165, the outside temperature finally calculated by the additional process is adopted as the outside temperature. The addition process returns to S140 after S165.
 S170では、内気温度として、最後に追加処理で算出された(すなわち前回の)内気温度を採用する。続くS175では、外気温度として、内気温度センサ39のセンサ出力に応じた温度を設定する。追加処理は、S175の後は、S140に戻る。 In S170, the inside air temperature finally calculated by the additional process (that is, the previous time) is adopted as the inside air temperature. In subsequent S175, a temperature corresponding to the sensor output of the inside air temperature sensor 39 is set as the outside air temperature. The addition process returns to S140 after S175.
 以上のように、本実施形態では、制御回路31は、図3のメイン処理と図9の追加処理を同時並行的に実行し、メイン処理のS30において図7の処理を実行し、メイン処理のS70において図8の処理を実行する。上記のような車両用空調装置1の作動事例について説明する。 As described above, in the present embodiment, the control circuit 31 executes the main process of FIG. 3 and the additional process of FIG. 9 simultaneously in parallel, executes the process of FIG. 7 in S30 of the main process, In S70, the process of FIG. 8 is executed. An operation example of the vehicle air conditioner 1 as described above will be described.
 なお、以下の各事例においては、制御回路31は、図7のS33aで、追加処理によって採用された最新の内気温度を、目標吹出温度TAOを算出するための内気温度Trとして設定する。また制御回路31は、外部情報を受信できていない場合は、図7のS35cで、追加処理によって採用された最新の外気温度を目標吹出温度TAOを算出するための外気温度Tamとして設定する。しかし、外部情報を受信できている場合は、第1、第2実施形態と同様、S35aで外部情報に基づいて、目標吹出温度TAOを算出するための外気温度Tamを設定する。 In each of the following cases, the control circuit 31 sets the latest inside air temperature adopted by the additional process as the inside air temperature Tr for calculating the target blowing temperature TAO in S33a of FIG. If the external information has not been received, the control circuit 31 sets the latest outside temperature adopted by the additional process as the outside temperature Tam for calculating the target blowing temperature TAO in S35c of FIG. However, when the external information can be received, the outside air temperature Tam for calculating the target blowing temperature TAO is set based on the external information in S35a as in the first and second embodiments.
 事例1として、内気循環モードが基本となっている場合について説明する。具体的には、事例1では、目標吹出温度TAOに基づいて決められた吸込口モードが、外気導入モードから内気循環モードに変化し、その後内気循環モードが続く。図10が、この事例1における吸込口モードおよび内外気温度の経時変化を示すタイムチャートである。なお、図10における内気温度および外気温度は、追加処理によって採用された内気温度および外気温度である。 As example 1, the case where the inside air circulation mode is the basis will be described. Specifically, in Case 1, the inlet mode determined based on the target outlet temperature TAO changes from the outside air introduction mode to the inside air circulation mode, and then the inside air circulation mode continues. FIG. 10 is a time chart showing the time course of the inlet mode and the inside / outside air temperature in Case 1. Note that the inside air temperature and the outside air temperature in FIG. 10 are the inside air temperature and the outside air temperature adopted by the additional processing.
 まず、制御回路31は、時点t11の直前の期間において、図8の内外気制御において、S71で目標吹出温度TAOに基づく吸込口モード(外気導入モード)を実行し、S72で継続時間が時間T1以内であると判定してS71に戻る処理を、繰り返す。したがって、実際の吸込口モードは、外気導入モードとなる。 First, in the period immediately before time t11, the control circuit 31 executes the inlet mode (outside air introduction mode) based on the target outlet temperature TAO in S71 in the inside / outside air control of FIG. 8, and the duration time T1 in S72. The process of determining that it is within the range and returning to S71 is repeated. Therefore, the actual suction port mode is the outside air introduction mode.
 また制御回路31は、時点t11の直前の期間において、図9の追加処理で、以下の処理を繰り返す。まず、制御回路31は、S140で継続時間がT3を超えていると判定し、続くS155で外気導入モードであると判定する。続いて、制御回路31は、S170で内気温度として前回値を採用し、S175で外気温度としてセンサ値を採用し、S140に戻る。センサ値は、内気温度センサ39のセンサ出力に応じた温度である。 Further, the control circuit 31 repeats the following process in the additional process of FIG. 9 in the period immediately before the time point t11. First, the control circuit 31 determines that the duration has exceeded T3 in S140, and determines that it is in the outside air introduction mode in subsequent S155. Subsequently, the control circuit 31 adopts the previous value as the inside air temperature in S170, adopts the sensor value as the outside air temperature in S175, and returns to S140. The sensor value is a temperature corresponding to the sensor output of the inside air temperature sensor 39.
 そして、時点t11になると、制御回路31が図8のS71で決定する吸込口モード(目標吹出温度TAOに基づく吸込口モード)が、外気導入モードから内気循環モードに変化し、その後も時点t16以降まで内気循環モードに維持されるとする。 Then, at time t11, the suction port mode (suction port mode based on the target outlet temperature TAO) determined by the control circuit 31 in S71 of FIG. 8 changes from the outside air introduction mode to the inside air circulation mode, and thereafter after time t16. Until the inside air circulation mode is maintained.
 その場合、時点t11から時間T1の間は、制御回路31は、S71で目標吹出温度TAOに基づく吸込口モード(内気循環モード)を実行し、S72で継続時間が時間T1以内であると判定してS71に戻る処理を繰り返す。したがって、時点t11から時間T1の間は、実際の吸込口モードが内気循環モードとなる。 In that case, between time t11 and time T1, the control circuit 31 executes the suction port mode (inside air circulation mode) based on the target outlet temperature TAO in S71, and determines in S72 that the duration is within the time T1. The process returning to S71 is repeated. Therefore, the actual suction port mode is the inside air circulation mode from time t11 to time T1.
 また、時点t11から時間T3の間は、制御回路31は、追加処理において以下の処理を繰り返す。まず、制御回路31は、S140で継続時間がT3以内であると判定し、S145で内気温度として前回値を採用し、S150で外気温度として前回値を採用し、S140に戻る。 In addition, during the period from time t11 to time T3, the control circuit 31 repeats the following processing in the additional processing. First, the control circuit 31 determines in S140 that the duration is within T3, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140.
 したがって、時点t11から時間T3の間は、追加処理において、内気温度として前回値が採用され、外気温度として前回値が採用される。このように、実際の吸込口モードが内気循環モードであるにもかかわらず内気温度として前回値が採用される。これは、吸込口モードが内気循環モードに切り替わってから時間があまり経っていないので、通風路の内気温度センサ39の位置の温度が内気温度と同じになっていない可能性が高いからである。 Therefore, from the time t11 to the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature. Thus, the previous value is adopted as the inside air temperature even though the actual suction port mode is the inside air circulation mode. This is because it is not likely that the temperature at the position of the inside air temperature sensor 39 in the ventilation path is the same as the inside air temperature since the time has not passed since the suction port mode is switched to the inside air circulation mode.
 時点t11から時間T3が経過して時点t12になると、制御回路31は追加処理のS140で、継続時間がT3を超えていると判定してS155に進む。時点t12以降も実際の吸込口モードが内気循環モードなので、S155からS160に進んで内気温度としてセンサ値を採用する。続いて、S165で外気温度として前回値を採用し、S140に戻る。 When time T3 elapses from time t11 and time t12 is reached, the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. Since the actual suction port mode is also the inside air circulation mode after time t12, the process proceeds from S155 to S160 and the sensor value is adopted as the inside air temperature. Subsequently, in S165, the previous value is adopted as the outside air temperature, and the process returns to S140.
 S140、S155、S160、S165の繰り返しは、時点t12後も、時点t13まで継続される。したがって、時点t12から時点t13までは、追加処理において、内気温度としてセンサ値が採用され、外気温度として前回値が採用される。このように、実際の吸込口モードが内気循環モードに切り替わってから十分な時間が経過した場合は、通風路の内気温度センサ39の位置の温度が内気温度と同じである可能性が高いので、内気温度としてセンサ値が採用される。 The repetition of S140, S155, S160, and S165 continues until time t13 even after time t12. Therefore, from time t12 to time t13, in the additional processing, the sensor value is employed as the inside air temperature, and the previous value is employed as the outside air temperature. Thus, when sufficient time has passed since the actual suction port mode has been switched to the inside air circulation mode, the temperature at the position of the inside air temperature sensor 39 in the ventilation path is likely to be the same as the inside air temperature. A sensor value is adopted as the inside air temperature.
 その後、時点t11から時間T1が経過して時点t13になると、制御回路31は図8のS72で、継続時間が時間T1以上であると判定する。続いて、S73で吸込口モードを内気循環モードから外気導入モードに切り替える。その後は、時点t13から時間T2が経過するまでは、S74で継続時間がT2以下であると判定し続ける。これにより、時点t13から時間T2が経過するまでは、目標吹出温度TAOに基づく吸込口モードは内気循環モードであるにもかかわらず、実際の吸込口モードは一時的に外気導入モードとなる。 Thereafter, when the time T1 elapses from the time t11 and reaches the time t13, the control circuit 31 determines in S72 of FIG. 8 that the duration is equal to or longer than the time T1. Subsequently, in S73, the suction port mode is switched from the inside air circulation mode to the outside air introduction mode. Thereafter, until the time T2 elapses from the time point t13, it is determined in S74 that the duration time is equal to or shorter than T2. Thereby, until time T2 passes from time t13, although the suction inlet mode based on the target blowing temperature TAO is the inside air circulation mode, the actual suction inlet mode temporarily becomes the outside air introduction mode.
 また制御回路31は、時点t13で吸込口モードが外気導入モードに切り替わった後、時間T3が経過するまで、追加処理において以下の処理を繰り返す。制御回路は、まずS140で継続時間がT3以内であると判定し、S145で内気温度として前回値を採用し、S150で外気温度として前回値を採用し、S140に戻る。したがって、時点t13から時間T3の間は、追加処理において、内気温度として前回値が採用され、外気温度として前回値が採用される。 Further, the control circuit 31 repeats the following process in the additional process until the time T3 elapses after the suction port mode is switched to the outside air introduction mode at time t13. The control circuit first determines that the duration is within T3 in S140, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140. Therefore, between the time t13 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
 時点t13から時間T3(時間T2よりも短い)が経過して時点t14になると、制御回路31は追加処理のS140で継続時間がT3を超えていると判定して、S155に進む。時点t14以降も、実際の吸込口モードが外気導入モードなので、S155からはS170に進んで内気温度として前回値を採用する。続いて、S165で外気温度としてセンサ値を採用し、S140に戻る。 When time T3 (shorter than time T2) elapses from time t13 and time t14 is reached, the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. Since the actual suction port mode is also the outside air introduction mode after time t14, the process proceeds from S155 to S170 and the previous value is adopted as the inside air temperature. Subsequently, the sensor value is adopted as the outside air temperature in S165, and the process returns to S140.
 S140、S155、S170、S175の繰り返しは、時点t14後も、実際の吸込口モードが切り替わる時点t15まで継続される。したがって、時点t14から時点t15までは、追加処理において、内気温度として前回値が採用され、外気温度としてセンサ値が採用される。このように、実際の吸込口モードが外気導入モードに切り替わってから十分な時間が経過した後に、内気温度センサ39で一時的に外気温度を検出することができる。したがって、時点t15以降で外気温度として前回値を採用する場合でも、その前回値は少し前の時点の実際の外気温度の検出値となる。 The repetition of S140, S155, S170, and S175 is continued after time t14 until time t15 when the actual inlet mode is switched. Therefore, from time t14 to time t15, in the additional processing, the previous value is adopted as the inside air temperature, and the sensor value is adopted as the outside air temperature. As described above, the outside air temperature can be temporarily detected by the inside air temperature sensor 39 after a sufficient time has elapsed since the actual suction port mode is switched to the outside air introduction mode. Therefore, even when the previous value is adopted as the outside air temperature after time t15, the previous value becomes the detected value of the actual outside temperature at a slightly earlier time.
 時点t14の後、時点t13から時間T2が経過して時点t15になると、制御回路31は、図8のS74で継続時間がT2以上になったと判定してS71に戻り、目標吹出温度TAOに基づいた吸込口モードを実行する。この結果、時点t15で、実際の吸込口モードが目標吹出温度TAOに基づく吸込口モードと同じ内気循環モードに戻る。そして、時点t15から時間T1の間は、制御回路31は、S71で目標吹出温度TAOに基づく吸込口モード(内気循環モード)を実行し、S72で継続時間が時間T1以内であると判定してS71に戻る処理を、繰り返す。したがって、時点t15から時間T1の間は、実際の吸込口モードが内気循環モードとなる。 After the time t14, when the time T2 has elapsed from the time t13 and reaches the time t15, the control circuit 31 determines in S74 of FIG. 8 that the duration has become T2 or more, returns to S71, and is based on the target outlet temperature TAO. Run the inlet mode. As a result, at time t15, the actual suction port mode returns to the same inside air circulation mode as the suction port mode based on the target outlet temperature TAO. Then, between time t15 and time T1, the control circuit 31 executes the suction port mode (inside air circulation mode) based on the target outlet temperature TAO in S71, and determines in S72 that the duration is within the time T1. The process of returning to S71 is repeated. Therefore, the actual suction port mode is the inside air circulation mode from time t15 to time T1.
 また、時点t15から時間T3の間は、制御回路31は、追加処理において以下の処理を繰り返す。制御回路31は、まずS140で継続時間がT3以内であると判定し、S145で内気温度として前回値を採用し、S150で外気温度として前回値を採用し、S140に戻る。したがって、時点t15から時間T3の間は、追加処理において、内気温度として前回値が採用され、外気温度として前回値が採用される。 In addition, during the period from time t15 to time T3, the control circuit 31 repeats the following processing in the additional processing. The control circuit 31 first determines in S140 that the duration is within T3, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140. Therefore, between the time t15 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
 時点t15から時間T3が経過して時点t16になると、制御回路31は追加処理のS140で、継続時間がT3を超えていると判定してS155に進む。時点t16以降も、実際の吸込口モードが内気循環モードなので、制御回路31は、S155からはS160に進んで内気温度としてセンサ値を採用し、S165で外気温度として前回値を採用し、S140に戻る。S140、S155、S160、S165の繰り返しは、時点t16の後も、実際の吸込口モードが切り替わるまで継続される。したがって、時点t16以降は、追加処理において、内気温度としてセンサ値が採用され、外気温度として前回値が採用される。 When time T3 elapses from time t15 and time t16 is reached, the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. After the time t16, since the actual suction port mode is the inside air circulation mode, the control circuit 31 proceeds from S155 to S160, adopts the sensor value as the inside air temperature, adopts the previous value as the outside air temperature at S165, and goes to S140. Return. The repetition of S140, S155, S160, and S165 is continued after the time t16 until the actual suction port mode is switched. Therefore, after time t16, in the additional processing, the sensor value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
 次に、事例2として、外気導入モードが基本となっている場合について説明する。事例2では、目標吹出温度TAOに基づいて決められた吸込口モードが、内気循環モードから外気導入モードに変化し、その後外気導入モードが続く。図11が、この事例2における吸込口モードおよび内外気温度の経時変化を示すタイムチャートである。なお、図11における内気温度および外気温度は、追加処理によって採用された内気温度および外気温度を表している。 Next, as Example 2, the case where the outside air introduction mode is the basis will be described. In Case 2, the inlet mode determined based on the target outlet temperature TAO changes from the inside air circulation mode to the outside air introduction mode, and then the outside air introduction mode continues. FIG. 11 is a time chart showing changes over time in the suction port mode and the inside / outside air temperature in Case 2. Note that the inside air temperature and the outside air temperature in FIG. 11 represent the inside air temperature and the outside air temperature adopted by the additional processing.
 まず、制御回路31は、時点t21の直前の期間において、図8の処理で、S71で目標吹出温度TAOに基づく吸込口モード(内気循環モード)を実行し、S72で継続時間が時間T1以内であると判定してS71に戻る処理を繰り返す。したがって、実際の吸込口モードは、内気循環モードとなる。 First, in the period immediately before time t21, the control circuit 31 executes the suction port mode (inside air circulation mode) based on the target outlet temperature TAO in S71 in the process of FIG. 8, and the duration is less than time T1 in S72. The process of determining that there is and returning to S71 is repeated. Therefore, the actual suction port mode is the inside air circulation mode.
 また制御回路31は、時点t21の直前の期間において、図9の追加処理で、以下の処理を繰り返す。制御回路31は、まずS140で継続時間がT3を超えていると判定し、S155で内気循環モードであると判定する。そして、制御回路31は、S160で内気温度としてセンサ値を採用し、S165で外気温度として前回値を採用し、S140に戻る。 Further, the control circuit 31 repeats the following process in the additional process of FIG. 9 in the period immediately before the time point t21. The control circuit 31 first determines in S140 that the duration exceeds T3, and determines in S155 that the internal air circulation mode is set. Then, the control circuit 31 adopts the sensor value as the inside air temperature in S160, adopts the previous value as the outside air temperature in S165, and returns to S140.
 時点t21になると、制御回路31が図8のS71で決定する吸込口モード(目標吹出温度TAOに基づく吸込口モード)が、内気循環モードから外気導入モードに変化し、その後も時点t16以降まで外気導入モードに維持されるとする。 At time t21, the suction port mode (suction port mode based on the target blowout temperature TAO) determined by the control circuit 31 in S71 of FIG. 8 changes from the inside air circulation mode to the outside air introduction mode, and thereafter the outside air until time t16 and thereafter. Suppose that it is maintained in the introduction mode.
 その場合、時点t21から時間T1の間は、制御回路31は、S71で目標吹出温度TAOに基づく吸込口モード(外気導入モード)を実行し、S72で継続時間が時間T1以内であると判定してS71に戻る処理を、繰り返す。したがって、時点t21から時間T1の間は、実際の吸込口モードが外気導入モードとなる。 In that case, from time t21 to time T1, the control circuit 31 executes the suction port mode (outside air introduction mode) based on the target outlet temperature TAO in S71, and determines in S72 that the duration is within the time T1. The process of returning to S71 is repeated. Therefore, the actual suction port mode is the outside air introduction mode from time t21 to time T1.
 また、時点t21から時間T3の間は、制御回路31は、追加処理において以下の処理を繰り返す。制御回路31は、まずS140で継続時間がT3以内であると判定し、S145で内気温度として前回値を採用し、S150で外気温度として前回値を採用し、S140に戻る。したがって、時点t21から時間T3の間は、追加処理において、内気温度として前回値が採用され、外気温度として前回値が採用される。 In addition, during the time T3 from time t21, the control circuit 31 repeats the following processing in the additional processing. The control circuit 31 first determines in S140 that the duration is within T3, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140. Therefore, between the time t21 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
 時点t21から時間T3が経過して時点t22になると、制御回路31は追加処理のS140で、継続時間がT3を超えていると判定してS155に進む。時点t22以降も、実際の吸込口モードが外気導入モードなので、S155からはS170に進んで内気温度として前回値を採用し、続くS175で外気温度としてセンサ値を採用し、S140に戻る。 When time T3 elapses from time t21 and time t22 is reached, the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. After the time t22, since the actual suction port mode is the outside air introduction mode, the process proceeds from S155 to S170, the previous value is adopted as the inside air temperature, the sensor value is adopted as the outside air temperature in the subsequent S175, and the process returns to S140.
 S140、S155、S170、S175の繰り返しは、時点t22後も、時点t23まで継続される。したがって、時点t22から時点t23までは、追加処理において、内気温度として前回値が採用され、外気温度としてセンサ値が採用される。 The repetition of S140, S155, S170, and S175 is continued until time t23 even after time t22. Therefore, from time t22 to time t23, in the additional processing, the previous value is adopted as the inside air temperature, and the sensor value is adopted as the outside air temperature.
 その後、時点t21から時間T1が経過して時点t23になると、制御回路31は図8のS72で、継続時間が時間T1以上であると判定し、S73で吸込口モードを外気導入モードから内気循環モードに切り替える。その後は、時点t23から時間T2が経過するまで、S74で継続時間がT2以下であると判定し続ける。これにより、時点t23から時間T2が経過するまでは、目標吹出温度TAOに基づく吸込口モードは外気導入モードであるにもかかわらず、実際の吸込口モードは一時的に内気循環モードとなる。 Thereafter, when time T1 elapses from time t21 and time t23 is reached, the control circuit 31 determines in S72 of FIG. 8 that the duration is longer than time T1, and in S73, the suction port mode is changed from the outside air introduction mode to the inside air circulation. Switch to mode. Thereafter, until time T2 has elapsed from time t23, it is determined in S74 that the duration is equal to or shorter than T2. Thereby, until time T2 passes from time t23, although the suction inlet mode based on the target blowing temperature TAO is the outside air introduction mode, the actual suction inlet mode temporarily becomes the inside air circulation mode.
 また制御回路31は、時点t23で吸込口モードが内気循環モードに切り替わった後、時間T3が経過するまで、追加処理において以下の処理を繰り返す。制御回路31は、まずS140で継続時間がT3以内であると判定し、S145で内気温度として前回値を採用し、S150で外気温度として前回値を採用し、S140に戻る。したがって、時点t13から時間T3の間は、追加処理において、内気温度として前回値が採用され、外気温度として前回値が採用される。 Further, the control circuit 31 repeats the following processing in the additional processing until the time T3 has elapsed after the suction port mode is switched to the inside air circulation mode at time t23. The control circuit 31 first determines in S140 that the duration is within T3, adopts the previous value as the inside air temperature in S145, adopts the previous value as the outside air temperature in S150, and returns to S140. Therefore, between the time t13 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
 時点t23から時間T3(時間T2よりも短い)が経過して時点t24になると、制御回路31は追加処理のS140で継続時間がT3を超えていると判定して、S155に進む。時点t24以降も、実際の吸込口モードが内気循環モードなので、追加処理はS155からS160に進んで、制御回路31はS160において内気温度としてセンサ値を採用し、S165で外気温度として前回値を採用し、S140に戻る。 When time T3 (shorter than time T2) elapses from time t23 and time t24 is reached, the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. Since the actual suction port mode is also the inside air circulation mode after time t24, the additional processing proceeds from S155 to S160, and the control circuit 31 adopts the sensor value as the inside air temperature in S160, and adopts the previous value as the outside air temperature in S165. Then, the process returns to S140.
 S140、S155、S160、S165の繰り返しは、時点t24後も、実際の吸込口モードが切り替わる時点t25まで継続される。したがって、時点t24から時点t25までは、追加処理において、内気温度としてセンサ値が採用され、外気温度として前回値が採用される。このように、実際の吸込口モードが内気循環モードに切り替わってから十分な時間が経過した後に、内気温度センサ39で一時的に内気温度を検出することができる。したがって、時点t25以降で内気温度として前回値を採用する場合でも、その前回値は少し前の時点の実際の内気温度の検出値となる。 The repetition of S140, S155, S160, and S165 continues after time t24 until time t25 when the actual inlet mode is switched. Therefore, from time t24 to time t25, in the additional processing, the sensor value is employed as the inside air temperature, and the previous value is employed as the outside air temperature. As described above, the inside air temperature sensor 39 can temporarily detect the inside air temperature after a sufficient time has elapsed after the actual suction port mode is switched to the inside air circulation mode. Therefore, even when the previous value is adopted as the room temperature after time t25, the previous value becomes the detected value of the actual room temperature at a slightly earlier time.
 時点t24の後、時点t23から時間T2が経過して時点t25になると、制御回路31は、図8のS74で継続時間がT2以上になったと判定してS71に戻り、目標吹出温度TAOに基づいた吸込口モードを実行する。この結果、時点t25で、実際の吸込口モードが目標吹出温度TAOに基づく吸込口モードと同じ外気導入モードに戻る。そして、時点t25から時間T1の間は、制御回路31は、S71で目標吹出温度TAOに基づく吸込口モード(外気導入モード)を実行し、S72で継続時間が時間T1以内であると判定してS71に戻る処理を、繰り返す。したがって、時点t25から時間T1の間は、実際の吸込口モードが外気導入モードとなる。 After the time t24, when the time T2 has elapsed from the time t23 and reaches the time t25, the control circuit 31 determines in S74 of FIG. 8 that the duration has become T2 or more, returns to S71, and is based on the target outlet temperature TAO. Run the inlet mode. As a result, at the time t25, the actual suction port mode returns to the same outside air introduction mode as the suction port mode based on the target outlet temperature TAO. And between time t25 and time T1, the control circuit 31 performs the inlet mode (outside air introduction mode) based on the target blowing temperature TAO in S71, and determines that the duration is within the time T1 in S72. The process of returning to S71 is repeated. Therefore, the actual suction port mode is the outside air introduction mode from time t25 to time T1.
 また、時点t25から時間T3の間は、制御回路31は、追加処理において以下の処理を繰り返す。まず、S140で継続時間がT3以内であると判定し、S145で内気温度として前回値を採用し、S150で外気温度として前回値を採用し、S140に戻る。したがって、時点t25から時間T3の間は、追加処理において、内気温度として前回値が採用され、外気温度として前回値が採用される。 In addition, during the time T3 from the time point t25, the control circuit 31 repeats the following processing in the additional processing. First, it is determined in S140 that the duration is within T3, the previous value is adopted as the inside air temperature in S145, the previous value is adopted as the outside air temperature in S150, and the process returns to S140. Therefore, between the time t25 and the time T3, in the additional processing, the previous value is adopted as the inside air temperature, and the previous value is adopted as the outside air temperature.
 時点t25から時間T3が経過して時点t26になると、制御回路31は追加処理のS140で継続時間がT3を超えていると判定して、S155に進む。時点t26以降も、実際の吸込口モードが外気導入モードなので、S155からはS170に進んで内気温度として前回値を採用し、S175で外気温度としてセンサ値を採用し、S140に戻る。S140、S155、S170、S175の繰り返しは、時点t26の後も、実際の吸込口モードが切り替わるまで継続される。したがって、時点t26以降は、追加処理において、内気温度として前回値が採用され、外気温度としてセンサ値が採用される。 When time T3 has elapsed from time t25 and time t26 has elapsed, the control circuit 31 determines that the duration has exceeded T3 in S140 of the additional processing, and proceeds to S155. After the time t26, the actual suction port mode is the outside air introduction mode, so that the process proceeds from S155 to S170, the previous value is adopted as the inside air temperature, the sensor value is adopted as the outside air temperature in S175, and the process returns to S140. The repetition of S140, S155, S170, and S175 is continued after the time t26 until the actual suction port mode is switched. Therefore, after time t26, in the additional processing, the previous value is adopted as the inside air temperature, and the sensor value is adopted as the outside air temperature.
 以上のように、内気温度センサ39を通風路において、内外気切替ドア12の空気流れ方向の下流かつ熱交換器16、17の空気流れ方向の上流に配置することで、内気温度センサ39を内気温度と外気温度の両方を検出する両用センサとして使用することができる。なお、熱交換器16、17の空気流れ方向の上流に内気温度センサ39を配置するのは、内外気切替箱11に導入された空気が通風路内に配置された熱交換器16、17によって温度変化する前の値を検出させるためである。 As described above, by arranging the inside air temperature sensor 39 in the ventilation path downstream of the inside / outside air switching door 12 in the air flow direction and upstream of the heat exchangers 16 and 17 in the air flow direction, It can be used as a dual-purpose sensor that detects both the temperature and the outside air temperature. The inside air temperature sensor 39 is arranged upstream of the heat exchangers 16 and 17 in the air flow direction by the heat exchangers 16 and 17 in which the air introduced into the inside / outside air switching box 11 is arranged in the ventilation path. This is because the value before the temperature change is detected.
 なお、本実施形態においては、時間T1、T2、T3の間には、T1>T2>T3という関係が成り立っている。吸込口モードが切り替わってから切り替わった吸込口モードに応じて内気温度センサ39を使用するまでの時間T3と、吸込口モードを元に戻すまでの時間T2は、固定値でもよいが、例えば、図12に例示するように、S60で決定されるブロワ電圧が大きくなるほど短くなるように設定されてもよい。 In the present embodiment, a relationship of T1> T2> T3 is established between the times T1, T2, and T3. The time T3 from when the suction port mode is switched to when the inside air temperature sensor 39 is used according to the switched suction port mode and the time T2 until the suction port mode is restored may be fixed values. As illustrated in FIG. 12, it may be set so as to decrease as the blower voltage determined in S <b> 60 increases.
 図12の例では、ブロワ電圧が第1閾値未満の低電圧である場合は、時間T3、T2はそれぞれ15秒、12秒となる。また、ブロワ電圧が第1閾値以上かつ第2閾値未満の中電圧である場合は、時間T3、T2はそれぞれ10秒、7秒となる。また、ブロワ電圧が第2閾値以上の高電圧である場合は、時間T3、T2はそれぞれ5秒、3秒となる。 In the example of FIG. 12, when the blower voltage is a low voltage lower than the first threshold, the times T3 and T2 are 15 seconds and 12 seconds, respectively. When the blower voltage is a medium voltage that is equal to or higher than the first threshold value and lower than the second threshold value, the times T3 and T2 are 10 seconds and 7 seconds, respectively. When the blower voltage is a high voltage equal to or higher than the second threshold, the times T3 and T2 are 5 seconds and 3 seconds, respectively.
 時間T3をこのように調整するのは、ブロワ電圧が高いほど、通風路内の空気の入れ替わりが速くなるから、内気温度センサ39の位置の温度がより速く切り替わり後の吸込口モードに対応した空気の温度になるからである。また、時間T2をこのように調整することで、ブロワ電圧が高くなって時間T3が短くなることを利用して、目標吹出温度TAOに基づく吸込口モードと実際の吸込口モードが食い違っている状態をより早く解消できる。
(第4実施形態)
 次に、第4実施形態について説明する。本実施形態は、第1~第3実施形態に対して、以下に説明する変更を加えたものである。
The time T3 is adjusted in this way because the higher the blower voltage, the faster the air in the ventilation path is replaced, so that the temperature at the position of the inside air temperature sensor 39 is switched faster and the air corresponding to the inlet mode after switching It is because it becomes the temperature of. Further, by adjusting the time T2 in this way, the suction port mode based on the target outlet temperature TAO and the actual suction port mode are different from each other by utilizing the fact that the blower voltage is increased and the time T3 is shortened. Can be resolved more quickly.
(Fourth embodiment)
Next, a fourth embodiment will be described. This embodiment is obtained by adding the modifications described below to the first to third embodiments.
 本実施形態では、外部通信端末3は、ユーザが携帯する携帯端末であり、車両用空調装置1の操作および表示機器として使用可能である。この外部通信端末3は、所定のプログラムを実行することで、図13に例示するように、自機の表示画面3aに、車両用空調装置1を操作するための操作部3b、3c、3d、および車両用空調装置1の作動状態を表示する情報表示部3e、3fを表示する。 In this embodiment, the external communication terminal 3 is a portable terminal carried by the user, and can be used as an operation and display device for the vehicle air conditioner 1. The external communication terminal 3 executes predetermined programs to operate the operation units 3b, 3c, 3d, and the like for operating the vehicle air conditioner 1 on its own display screen 3a as illustrated in FIG. And the information display parts 3e and 3f which display the operating state of the vehicle air conditioner 1 are displayed.
 図13の例では、操作部として、車両用空調装置1の複数の機能を切り替える各種切替スイッチが外部通信端末3に表示されている。具体的には、切替スイッチとして、送風ファン15の送風量を手動で増加または減少させるための送風量切替スイッチ3b、3cと、吹出モードを手動で切替設定するための吹出モード切替スイッチ36とが表示されている。外部通信端末3に表示させる切替スイッチは、外部通信端末3のユーザが外部通信端末3を操作することで任意に変更できる。 In the example of FIG. 13, various changeover switches for switching a plurality of functions of the vehicle air conditioner 1 are displayed on the external communication terminal 3 as the operation unit. Specifically, as the changeover switch, there are blower amount changeover switches 3b and 3c for manually increasing or decreasing the blower amount of the blower fan 15, and a blowout mode changeover switch 36 for manually setting the blowout mode. It is displayed. The changeover switch to be displayed on the external communication terminal 3 can be arbitrarily changed by the user of the external communication terminal 3 operating the external communication terminal 3.
 また、図13の例では、車両用空調装置1の複数の作動状態を示す情報表示部が外部通信端末3に表示されている。具体的には、情報表示部として、送風ファン15の送風量を表すブロワレベルを表示するブロワレベル表示部3fと、設定温度Tsetを表示する設定温度表示部3eとが外部通信端末3に表示されている。外部通信端末3に表示させる情報表示部は、外部通信端末3のユーザが外部通信端末3を操作することで任意に変更できる。 In the example of FIG. 13, an information display unit indicating a plurality of operating states of the vehicle air conditioner 1 is displayed on the external communication terminal 3. Specifically, as the information display unit, a blower level display unit 3f that displays a blower level that indicates the amount of air blown by the blower fan 15 and a set temperature display unit 3e that displays a set temperature Tset are displayed on the external communication terminal 3. ing. The information display unit displayed on the external communication terminal 3 can be arbitrarily changed by the user of the external communication terminal 3 operating the external communication terminal 3.
 外部通信端末3は、上記プログラムを実行することで、操作部3b~3dに対するユーザの操作に応じた操作信号を、車内通信インターフェース40を介して制御回路31に送信する。そして、制御回路31は、外部通信端末3から受信した操作信号に応じた空調制御を実行するように、車両用空調装置1の制御内容(目標吹出温度TAO等)を変更する。 The external communication terminal 3 transmits the operation signal according to the user's operation to the operation units 3b to 3d to the control circuit 31 via the in-vehicle communication interface 40 by executing the above program. And the control circuit 31 changes the control content (target blowing temperature TAO etc.) of the vehicle air conditioner 1 so that the air-conditioning control according to the operation signal received from the external communication terminal 3 may be performed.
 また、制御回路31は、設定温度Tset、内気温度Tr、外気温度Tam、ブロワレベル、吹出モード、吸込口モード等、車両用空調装置1の作動状態を示す情報を、車内通信インターフェース40を介して外部通信端末3にする。そして外部通信端末3は、制御回路31から受信した作動状態を示す情報のうち、必要な情報を選択して表示画面3aに表示させる。 Further, the control circuit 31 sends information indicating the operation state of the vehicle air conditioner 1 such as the set temperature Tset, the inside air temperature Tr, the outside air temperature Tam, the blower level, the blowout mode, the suction port mode, and the like via the in-vehicle communication interface 40. The external communication terminal 3 is used. And the external communication terminal 3 selects required information from the information which shows the operation state received from the control circuit 31, and displays it on the display screen 3a.
 また、外部通信端末3がなくても基本的な空調操作ができるように、車両に簡易的な操作、表示部を配置する。具体的には、車室内のダッシュボードに、第1~第3実施形態において設置された空調操作部33の代わりに、図14に示す空調操作部(車載パネル)330を設置する。 Also, a simple operation and display unit is arranged on the vehicle so that basic air conditioning operation can be performed without the external communication terminal 3. Specifically, an air conditioning operation unit (in-vehicle panel) 330 shown in FIG. 14 is installed on the dashboard in the vehicle interior instead of the air conditioning operation unit 33 installed in the first to third embodiments.
 この空調操作部330は、乗員が操作できるボタンとして、3つの操作スイッチ、具体的にはAUTOスイッチ33a、デフロスタスイッチ(DEFスイッチ)33b、および温度設定スイッチ33cを有している。AUTOスイッチ33aは、第1~第3実施形態のAUTOスイッチ34と同じ機能を有し、自動空調制御を実行するか手動空調制御を実行するかを設定する。DEFスイッチ33bは、吹出モードをデフロスタモードにするかそれ以外にするかを設定する。制御回路31は、このDEFスイッチ33bが操作された場合は、手動空調制御によってその操作に応じた吹出モードが実行されるように空調ユニット10を制御する。温度設定スイッチ33cは、第1~第3実施形態の温度設定スイッチ38と同じ機能を有する。 The air-conditioning operation unit 330 has three operation switches, specifically, an AUTO switch 33a, a defroster switch (DEF switch) 33b, and a temperature setting switch 33c as buttons that can be operated by the occupant. The AUTO switch 33a has the same function as the AUTO switch 34 of the first to third embodiments, and sets whether to execute automatic air conditioning control or manual air conditioning control. The DEF switch 33b sets whether the blowing mode is set to the defroster mode or the other mode. When the DEF switch 33b is operated, the control circuit 31 controls the air conditioning unit 10 so that the blowout mode corresponding to the operation is executed by the manual air conditioning control. The temperature setting switch 33c has the same function as the temperature setting switch 38 of the first to third embodiments.
 このように、本実施形態の空調操作部330は、内外気切替スイッチ35、吹出モードを任意に切り替えられる吹出モード切替スイッチ36、送風量切替スイッチ37、花粉モードスイッチのいずれも有していない。したがって、車両における車両用空調装置1の構成がより簡単になる。 Thus, the air-conditioning operation unit 330 of the present embodiment does not include any of the inside / outside air switching switch 35, the blowing mode switching switch 36 that can arbitrarily switch the blowing mode, the air volume switching switch 37, and the pollen mode switch. Therefore, the configuration of the vehicle air conditioner 1 in the vehicle becomes simpler.
 なお、車両に設ける簡易的な表示部としては、例えば、設定温度のみを表示する表示部を設けてもよい。また、外部通信端末3は、空調操作部330と同じ機能の操作スイッチ33a、33b、33cを重複表示してもよい。 In addition, as a simple display part provided in a vehicle, you may provide the display part which displays only preset temperature, for example. The external communication terminal 3 may display the operation switches 33a, 33b, and 33c having the same function as the air conditioning operation unit 330 in an overlapping manner.
 なお、上記各実施形態においては、制御回路31が、S30を実行することで取得部の一例として機能し、S40~S90を実行することで空調制御装置の一例として機能する。
(他の実施形態)
 なお、本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
In each of the above embodiments, the control circuit 31 functions as an example of an acquisition unit by executing S30, and functions as an example of an air conditioning control device by executing S40 to S90.
(Other embodiments)
Note that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.
 また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。例えば、以下のような変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち任意の組み合わせを、上記実施形態に適用することができる。 Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like. For example, the following modifications are allowed. In addition, the following modifications can select application and non-application to the said embodiment each independently. In other words, any combination of the following modifications can be applied to the above-described embodiment.
 例えば、上記各実施形態においては、車両用空調装置1は外気温度センサおよび日射量センサのどちらも有していない。しかしながら、車両用空調装置1は、車両に設置される外気温度センサあるいは日射量センサを有していてもよい。 For example, in each of the above embodiments, the vehicle air conditioner 1 has neither an outside air temperature sensor nor a solar radiation amount sensor. However, the vehicle air conditioner 1 may have an outside air temperature sensor or a solar radiation amount sensor installed in the vehicle.
 制御回路31は、当該外気温度センサを有していれば、目標吹出温度TAOを算出するための外気温度Tamを、当該外気温度センサのセンサ出力に応じた値に設定する。また、制御回路31は、当該日射量センサを有していれば、目標吹出温度TAOを算出するための日射量Tsを、当該日射量センサのセンサ出力に応じた値に設定する。 If the control circuit 31 has the outside temperature sensor, the control circuit 31 sets the outside temperature Tam for calculating the target blowing temperature TAO to a value corresponding to the sensor output of the outside temperature sensor. Moreover, if the control circuit 31 has the said solar radiation amount sensor, it will set the solar radiation amount Ts for calculating the target blowing temperature TAO to the value according to the sensor output of the said solar radiation amount sensor.
 上記実施形態において、制御回路31は、外部情報の繰り返し受信における直前の回の受信に失敗した場合、車外サーバ2から最後に取得した外部情報中の外気温度および日射量を使用して目標吹出温度TAOを算出する。しかしながら、最後に取得した外部情報として、繰り返し受信における直前回よりも更に過去の回のうち、最後に受信に成功した回の外部情報以外の外部情報を使用して目標吹出温度TAOを算出してもよい。例えば、繰り返し受信における直前回よりも更に過去の回のうち、受信に成功した最後の5回分の外部情報の平均値を使用して、目標吹出温度TAOを算出してもよい。 In the above embodiment, the control circuit 31 uses the outside air temperature and the amount of solar radiation in the external information last acquired from the vehicle outside server 2 when the reception of the previous time in the repeated reception of the external information fails, and the target blowing temperature. TAO is calculated. However, as the last acquired external information, the target blowout temperature TAO is calculated using external information other than the external information of the last successful reception out of the previous times in the repeated reception. Also good. For example, the target blowing temperature TAO may be calculated by using the average value of the last five external information that has been successfully received out of the previous times in the repeated reception.

Claims (5)

  1.  車両の車室内の温度である内気温度、前記車両の外の温度である外気温度、および、前記車両へ照射される日射量を取得する取得部(S30)と、
     前記取得部によって取得された前記内気温度、前記外気温度、および前記日射量に基づいて熱負荷の指標(TAO)を算出し、算出した前記指標に基づいて前記車両の車室内の空調制御を行う空調制御装置(S40~S90)と、を備え、
     前記取得部は、
      前記車両に搭載される内気温度センサ(39)を用いて前記内気温度を取得し、
      前記外気温度および前記日射量のうち少なくとも1つは、前記車両の外部にある車外サーバ(2)から取得する車両用空調装置。
    An acquisition unit (S30) for acquiring an inside air temperature that is a temperature inside a vehicle interior of the vehicle, an outside air temperature that is an outside temperature of the vehicle, and an amount of solar radiation irradiated to the vehicle;
    A thermal load index (TAO) is calculated based on the inside air temperature, the outside air temperature, and the amount of solar radiation acquired by the acquisition unit, and air conditioning control of the vehicle interior of the vehicle is performed based on the calculated index. An air conditioning control device (S40 to S90),
    The acquisition unit
    The inside air temperature is obtained using an inside air temperature sensor (39) mounted on the vehicle,
    The vehicle air conditioner that obtains at least one of the outside air temperature and the amount of solar radiation from a vehicle outside server (2) outside the vehicle.
  2.  前記取得部は、
      前記外気温度および前記日射量のうち少なくとも1つを含む外部情報を前記車外サーバから繰り返し取得し、
      取得した前記外部情報に含まれる前記外気温度および前記日射量のうち少なくとも1つを前記指標を算出するための設定値として設定し、
      前記外部情報を前記車外サーバから取得できなかった場合は、前記車外サーバから過去に取得した前記外部情報に含まれる前記外気温度および前記日射量のうち少なくとも1つを、前記指標を算出するための設定値として設定する請求項1に記載の車両用空調装置。
    The acquisition unit
    External information including at least one of the outside air temperature and the amount of solar radiation is repeatedly obtained from the outside server,
    Setting at least one of the outside air temperature and the amount of solar radiation included in the acquired external information as a setting value for calculating the index,
    When the external information cannot be acquired from the outside server, at least one of the outside temperature and the solar radiation amount included in the external information acquired in the past from the outside server is used to calculate the index. The vehicle air conditioner according to claim 1, which is set as a set value.
  3.  前記車外サーバと通信可能な外部通信端末(3)と通信する通信インターフェース(40)をさらに備え、
     前記取得部は、前記外部通信端末および前記通信インターフェースを介して前記車外サーバから前記外気温度および前記日射量のうち少なくとも1つを取得し、
     前記取得部は、前記内気温度センサに異常が発生した場合、前記外部通信端末に搭載される温度センサ(3x)の検出値を前記内気温度として取得する請求項1または2に記載の車両用空調装置。
    A communication interface (40) for communicating with an external communication terminal (3) capable of communicating with the outside server;
    The acquisition unit acquires at least one of the outside temperature and the amount of solar radiation from the outside server via the external communication terminal and the communication interface,
    The vehicle air conditioning according to claim 1 or 2, wherein the acquisition unit acquires a detected value of a temperature sensor (3x) mounted on the external communication terminal as the internal air temperature when an abnormality occurs in the internal air temperature sensor. apparatus.
  4.  前記車室内に吹き出す空気が流れる通風路を形成する空調ユニット(10)をさらに備え、
     前記内気温度センサは、前記通風路において、内気と外気を切り替える内外気切替ドア(12)の空気流れ方向の下流かつ熱交換器(16、17)の前記空気流れ方向の上流に配置されており、
     前記取得部は、前記車両用空調装置の内外気モードが外気モードの場合、前記内気温度センサの検出値を前記外気温度として取得する請求項1ないし3のいずれか1つに記載の車両用空調装置。
    An air conditioning unit (10) that forms a ventilation path through which air blown into the vehicle compartment flows;
    The inside air temperature sensor is arranged downstream of the air flow direction of the inside / outside air switching door (12) for switching between the inside air and the outside air and upstream of the heat exchanger (16, 17) in the air flow direction in the ventilation path. ,
    The vehicle air conditioning according to any one of claims 1 to 3, wherein when the inside / outside air mode of the vehicle air conditioner is an outside air mode, the obtaining unit obtains a detection value of the inside air temperature sensor as the outside air temperature. apparatus.
  5.  前記車両の乗員に携帯されると共に前記車外サーバと通信可能な携帯通信機(3)と通信する通信インターフェース(40)を備え、
     前記取得部は、前記通信インターフェースおよび前記携帯通信機を介して前記車外サーバから前記外気温度および前記日射量のうち少なくとも1つを取得し、
     前記空調制御装置は、前記乗員の操作に基づいて前記携帯通信機が発信した操作信号に応じて制御内容を変更する請求項1ないし4のいずれか1つに記載の車両用空調装置。
    A communication interface (40) that is carried by a passenger of the vehicle and communicates with a portable communication device (3) capable of communicating with the server outside the vehicle;
    The acquisition unit acquires at least one of the outside air temperature and the amount of solar radiation from the vehicle outside server via the communication interface and the portable communication device,
    The said air-conditioning control apparatus is a vehicle air-conditioning apparatus as described in any one of Claim 1 thru | or 4 which changes control content according to the operation signal which the said portable communication apparatus transmitted based on the said passenger | crew's operation.
PCT/JP2015/001449 2014-04-15 2015-03-16 Vehicle air conditioning system WO2015159483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014083838A JP6364907B2 (en) 2014-04-15 2014-04-15 Air conditioner for vehicles
JP2014-083838 2014-04-15

Publications (1)

Publication Number Publication Date
WO2015159483A1 true WO2015159483A1 (en) 2015-10-22

Family

ID=54323711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001449 WO2015159483A1 (en) 2014-04-15 2015-03-16 Vehicle air conditioning system

Country Status (2)

Country Link
JP (1) JP6364907B2 (en)
WO (1) WO2015159483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114789742A (en) * 2021-01-25 2022-07-26 湖南中车智行科技有限公司 Air conditioner air volume control method and device for vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105599566A (en) * 2016-01-27 2016-05-25 杭州云乐车辆技术有限公司 Air conditioning system based on cloud control and control method thereof
JP6798454B2 (en) * 2017-08-25 2020-12-09 株式会社デンソー Vehicle measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952511A (en) * 1995-08-11 1997-02-25 Mazda Motor Corp Air conditioning controller for vehicle
JP2005335527A (en) * 2004-05-26 2005-12-08 Denso Corp Air conditioner for vehicle
JP2006290245A (en) * 2005-04-13 2006-10-26 Toyota Motor Corp Air conditioner for vehicle
JP2007230270A (en) * 2006-02-28 2007-09-13 Calsonic Kansei Corp Air conditioner for vehicle
JP2012196984A (en) * 2011-03-18 2012-10-18 Denso Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952511A (en) * 1995-08-11 1997-02-25 Mazda Motor Corp Air conditioning controller for vehicle
JP2005335527A (en) * 2004-05-26 2005-12-08 Denso Corp Air conditioner for vehicle
JP2006290245A (en) * 2005-04-13 2006-10-26 Toyota Motor Corp Air conditioner for vehicle
JP2007230270A (en) * 2006-02-28 2007-09-13 Calsonic Kansei Corp Air conditioner for vehicle
JP2012196984A (en) * 2011-03-18 2012-10-18 Denso Corp Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114789742A (en) * 2021-01-25 2022-07-26 湖南中车智行科技有限公司 Air conditioner air volume control method and device for vehicle

Also Published As

Publication number Publication date
JP6364907B2 (en) 2018-08-01
JP2015202816A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
US9371024B2 (en) Air-conditioner for vehicle
US20080264087A1 (en) Air conditioning controller
KR101859519B1 (en) Remote control method of air conditioner for vehicle
WO2015159483A1 (en) Vehicle air conditioning system
JP2007182139A (en) Automatic adjusting system for on-vehicle equipment
JP5169736B2 (en) Air conditioner for vehicles
JP2014058239A (en) Air conditioner for vehicle
JP4457922B2 (en) Air conditioner for vehicles
JP2004338673A (en) Air conditioner for vehicle
JP4970916B2 (en) Air conditioning control device for vehicles
JP2006224705A (en) Air-conditioner for vehicle
JP2006021659A (en) Air conditioner for vehicle
JP2016141296A (en) Vehicle air conditioning system
JP4692043B2 (en) Electronic control unit for electric motor
JP6390364B2 (en) Air conditioner for vehicles
KR101511503B1 (en) The control method of air conditioner for vehicle
JP2015054642A (en) Vehicular information output apparatus
JP3823800B2 (en) Air conditioner for vehicles
JP4877168B2 (en) Air conditioner for vehicles
JPH0769045A (en) Air conditioner for vehicle
KR200409413Y1 (en) auto temperature control apparatus for air conditioner
CN110816216B (en) Automobile air conditioner control system, control method and vehicle
KR101060356B1 (en) Vehicle fan speed control method
JP2003080927A (en) Vehicular air conditioner and its program
JP6408961B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779997

Country of ref document: EP

Kind code of ref document: A1