JP2015053283A - Negative electrode, and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015053283A
JP2015053283A JP2014228697A JP2014228697A JP2015053283A JP 2015053283 A JP2015053283 A JP 2015053283A JP 2014228697 A JP2014228697 A JP 2014228697A JP 2014228697 A JP2014228697 A JP 2014228697A JP 2015053283 A JP2015053283 A JP 2015053283A
Authority
JP
Japan
Prior art keywords
negative electrode
binder
secondary battery
repeating unit
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014228697A
Other languages
Japanese (ja)
Other versions
JP5817903B2 (en
Inventor
渋谷 真志生
Mashio Shibuya
真志生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2014228697A priority Critical patent/JP5817903B2/en
Publication of JP2015053283A publication Critical patent/JP2015053283A/en
Application granted granted Critical
Publication of JP5817903B2 publication Critical patent/JP5817903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery having high peeling off strength even if the amount of a binder is reduced as much as possible and having high capacity and a long life.SOLUTION: A negative electrode having a negative electrode mix layer containing a negative electrode active substance, a binder, and a conductive agent, containing a polymer containing vinylidene fluoride as a repeating unit and a polymer containing acrylonitrile as a repeating unit, as the binder, and having the negative electrode mix layer containing vapor growth carbon fiber as the conductive agent is provided. A nonaqueous electrolyte secondary battery including the negative electrode is provided.

Description

本発明は、結着剤を含む負極を用いた非水電解質二次電池に関する。   The present invention relates to a nonaqueous electrolyte secondary battery using a negative electrode containing a binder.

近年、カメラ一体型VTR(ビデオテープレコーダ)、デジタルカメラ、携帯電話、携帯情報端末、ノート型コンピュータ等のポータブル電子機器が多く登場し、その小型軽量化が図られている。そして、これらの電子機器のポータブル電源として、電池、特に二次電池について、エネルギー密度を向上させるための研究開発が活発に進められている。   In recent years, many portable electronic devices such as a camera-integrated VTR (video tape recorder), a digital camera, a mobile phone, a portable information terminal, and a notebook computer have appeared, and their size and weight have been reduced. As a portable power source for these electronic devices, research and development for improving the energy density of batteries, particularly secondary batteries, are being actively promoted.

二次電池のうちリチウムイオン二次電池は、正極、負極を隔膜であるポリプロプレン、ポリエチレンなどよりなる樹脂薄膜セパレータを挟んで積層や巻回した構造となっており、内部に電解質塩と非水溶媒とを含む非水電解質を含む。   Among secondary batteries, lithium ion secondary batteries have a structure in which a positive electrode and a negative electrode are stacked and wound with a resin thin film separator made of polypropylene, polyethylene, or the like sandwiched between them. A non-aqueous electrolyte containing a solvent.

例えば、正極集電体としてアルミニウム箔を、正極活物質としてLiCoO2を、導電剤として黒鉛を、結着剤としてポリフッ化ビニリデン、テフロン(登録商標)などを用いた正極を備え、例えば、負極集電体として銅箔を、負極活物質として非結晶性カーボン、コークス、黒鉛などを、結着剤としてポリフッ化ビニリデン、ポリアクリロニトリル、スチレンブタジエンゴムなどを用いた負極を備えたリチウムイオン二次電池が知られている(例えば、特許文献1〜6)。 For example, an aluminum foil is used as a positive electrode current collector, LiCoO 2 is used as a positive electrode active material, graphite is used as a conductive agent, and a positive electrode using polyvinylidene fluoride, Teflon (registered trademark) or the like is used as a binder. There is a lithium ion secondary battery equipped with a negative electrode using copper foil as an electrical conductor, amorphous carbon, coke, graphite, etc. as a negative electrode active material, and polyvinylidene fluoride, polyacrylonitrile, styrene butadiene rubber as a binder. Known (for example, Patent Documents 1 to 6).

また、リチウムイオン二次電池の電解質としては、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド等の高分子を含有させたポリマーリチウムイオン二次電池も提案されている。特に、電解液を高分子に含有させることで固体化したゲル状電解質を用いたゲル状電解質電池は、電解液の漏液がなく信頼性が高いことから、広く実用化されている。ゲル状電解質電池では、電極内部、電極とセパレータ間に存在する電解質が固定化されており、電池部材の位置が固定される。
ポリマーリチウムイオン二次電池は、外装にアルミラミネートフィルムが使えるために軽量であり、金属缶外装では加工が難しい薄型大面積の電池を作ることが出来る(例えば、特許文献7)。
As an electrolyte for a lithium ion secondary battery, a polymer lithium ion secondary battery containing a polymer such as polyvinylidene fluoride, polyacrylonitrile, or polyethylene oxide has also been proposed. In particular, a gel electrolyte battery using a gel electrolyte solidified by containing an electrolyte in a polymer has been widely put into practical use because it does not leak the electrolyte and has high reliability. In the gel electrolyte battery, the electrolyte existing inside the electrode and between the electrode and the separator is fixed, and the position of the battery member is fixed.
The polymer lithium ion secondary battery is lightweight because an aluminum laminate film can be used for the exterior, and a thin large-area battery that is difficult to process with a metal can exterior can be made (for example, Patent Document 7).

特開平8−315817号公報JP-A-8-315817 特公平7−70319号公報Japanese Examined Patent Publication No. 7-70319 特開2003−282061号公報JP 2003-282061 A 特開2003−317722号公報JP 2003-317722 A 特許2548460号公報Japanese Patent No. 2548460 特開2003−132893号公報JP 2003-132893 A 特開2001−167797号公報JP 2001-167797 A

二次電池として最も重要な特性は、持続時間に直結する“容量”と、長く使える繰り返し寿命の“サイクル特性”であると言える。リチウム電池の電極は、活物質が粉体であるのでこれを高分子結着剤(バインダー)で集電体に塗布・固定しているが、この結着剤は電池容量に寄与しないので、体積的に少ないほどよい。また、結着剤は活物質の反応部分を被覆してしまうので、大電流充放電特性が悪くなる。充放電特性が下がれば、二次電池のサイクル寿命も低下する。   The most important characteristics of a secondary battery are the “capacity” that is directly related to the duration and the “cycle characteristics” that have a long usable life. Since the active material of the lithium battery electrode is a powder, it is applied and fixed to the current collector with a polymer binder (binder), but this binder does not contribute to the battery capacity. The smaller the better. Further, since the binder coats the reaction part of the active material, the large current charge / discharge characteristics are deteriorated. If the charge / discharge characteristics decrease, the cycle life of the secondary battery also decreases.

しかし、結着剤が少なすぎる場合には活物質が集電体から剥がれ落ちて製造工程上支障があるとともに、二次電池のサイクル特性も悪くなる。電池活物質は充放電に伴うリチウムの脱挿入で体積変化があるので、結着剤が少なすぎると活物質粒子の電気的接触が悪くなり、サイクル性と共に容量が落ちてしまう。
つまり、結着剤は十分な機械的強度を確保できるだけの最低限の量が必要である一方で、電気特性、化学特性からはなるべく少ない方がよい。現実には、特性上は少ない方が望ましいものの、工程適性が無いために多くせざるを得ないのが実情である。
However, when the amount of the binder is too small, the active material is peeled off from the current collector, which hinders the manufacturing process and deteriorates the cycle characteristics of the secondary battery. Since the battery active material undergoes a volume change due to lithium insertion / extraction associated with charge / discharge, if the amount of the binder is too small, the electrical contact of the active material particles becomes poor, and the capacity decreases with cycle performance.
In other words, the binder should have a minimum amount sufficient to ensure sufficient mechanical strength, but it should be as small as possible in terms of electrical and chemical properties. In reality, it is desirable that the number is small in terms of characteristics, but the fact is that it has to be increased because of lack of process suitability.

さらに、電極には結着性の他、電子伝導性の課題がある。電極についてはは電子伝導性が高いことが求められる。リチウムイオン電池の負極に使われる炭素材料は電子伝導性を有するが、結晶化度の高い黒鉛などでは電子伝導性が高く、非晶質の炭素では低い。すなわち黒鉛系の炭素材料であっても、表面に非晶質の層を持つ場合は必ずしも十分な電子伝導性がない。
その際には電極に炭素繊維を添加することがよく知られている。具体的には、気相成長炭素繊維(VGCF)がよく知られた材料である。VGCFを加えれば電極の電子伝導性が向上し、電池の容量、大電流放電、サイクル寿命などは向上する。VGCFは嵩高い材料なので電解液の吸収性も良くなる。
しかし、嵩高いが故に入れすぎれば電極の充填性が低下し、体積効率が低下し、電池の体積エネルギー密度を下げることになる。また、VGCFは表面積が大きいために結着剤の量も増え、更に体積エネルギー密度が低下するおそれがある。
Furthermore, the electrode has a problem of electron conductivity in addition to binding properties. The electrode is required to have high electron conductivity. A carbon material used for a negative electrode of a lithium ion battery has electron conductivity, but graphite having high crystallinity has high electron conductivity, and amorphous carbon has low conductivity. That is, even if it is a graphite-type carbon material, when it has an amorphous layer on the surface, it does not necessarily have sufficient electronic conductivity.
In that case, it is well known to add carbon fiber to the electrode. Specifically, vapor grown carbon fiber (VGCF) is a well-known material. When VGCF is added, the electron conductivity of the electrode is improved, and the battery capacity, large current discharge, cycle life and the like are improved. Since VGCF is a bulky material, the absorbability of the electrolyte is also improved.
However, if it is too bulky due to its bulkiness, the filling property of the electrode is lowered, the volume efficiency is lowered, and the volume energy density of the battery is lowered. In addition, since VGCF has a large surface area, the amount of the binder increases, and the volume energy density may further decrease.

嵩高いVGCFと、結着剤の量が増えれば、溶剤も増える。溶剤が増えると塗布速度を下げないと十分な乾燥が出来ず、生産性が低下する。
つまり、優れた特性を発揮する電池を作成するには、結着剤と導電剤の量が肝要である。
As the amount of bulky VGCF and binder increases, so does the solvent. If the solvent increases, sufficient drying cannot be achieved unless the coating speed is reduced, and productivity is lowered.
In other words, the amount of the binder and the conductive agent is essential for producing a battery that exhibits excellent characteristics.

結着剤を少なくしすぎると電池活物質が集電体から剥がれ落ちてしまう。多すぎると溶剤が増えて製造工程で塗布速度を遅くしないと剥離強度を高く保つことが出来ない。導電剤が少なすぎると電極の電子伝導性が低く電池特性が悪くなる。多すぎると、大電流放電やサイクル特性などは優れても、体積エネルギー密度は下がってしまう。結着剤も増えるため、更に体積エネルギー密度の低下や電極生産性の低下を招く。   If the amount of the binder is too small, the battery active material is peeled off from the current collector. If the amount is too large, the solvent increases and the peel strength cannot be kept high unless the coating speed is slowed in the production process. If the amount of the conductive agent is too small, the electron conductivity of the electrode is low and the battery characteristics are deteriorated. If the amount is too large, the volume energy density is lowered even if the large current discharge and cycle characteristics are excellent. Since the binder increases, volume energy density and electrode productivity are further reduced.

本発明はかかる問題点に鑑みてなされたもので、結着剤を極力少なくしても高い剥離強度が得られるように工夫したものであり、高容量・長寿命の優れた電池を提供できる。特に、本発明は電極にVGCFを含み、電解液がフッ素系高分子を含む非水電解質電池に対して有効である。   The present invention has been made in view of such problems, and has been devised so that a high peel strength can be obtained even if the binder is reduced as much as possible, and a battery having a high capacity and a long life can be provided. In particular, the present invention is effective for a non-aqueous electrolyte battery including VGCF in the electrode and an electrolyte containing a fluorine-based polymer.

即ち、本発明は以下の負極および非水電解質二次電池に係るものである。
[1]負極集電体上に、負極活物質と、フッ化ビニリデンを繰り返し単位として含む重合体とアクリロニトリルを繰り返し単位として含む重合体とからなる結着剤と、気相成長炭素繊維とを含む負極合剤層を有し、結着剤の合計含有量が8質量%以上であり、負極集電体と負極合剤層との剥離強度が77N/m以上である、負極。
[2]正極、負極および電解質を備えた二次電池であって、負極は、負極集電体上に、負極活物質と、フッ化ビニリデンを繰り返し単位として含む重合体とアクリロニトリルを繰り返し単位として含む重合体とからなる結着剤と、気相成長炭素繊維とを含む負極合剤層を有し、結着剤の合計含有量が8質量%以上であり、負極集電体と負極合剤層との剥離強度が77N/m以上である、二次電池。
That is, the present invention relates to the following negative electrode and nonaqueous electrolyte secondary battery.
[1] On a negative electrode current collector, a negative electrode active material, a binder composed of a polymer containing vinylidene fluoride as a repeating unit and a polymer containing acrylonitrile as a repeating unit, and vapor-grown carbon fiber are included. A negative electrode having a negative electrode mixture layer, wherein the total content of the binder is 8% by mass or more, and the peel strength between the negative electrode current collector and the negative electrode mixture layer is 77 N / m or more.
[2] A secondary battery including a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode includes a negative electrode active material, a polymer containing vinylidene fluoride as a repeating unit, and acrylonitrile as a repeating unit on the negative electrode current collector. A negative electrode mixture layer containing a binder composed of a polymer and vapor-grown carbon fiber, the total content of the binder is 8% by mass or more, and the negative electrode current collector and the negative electrode mixture layer A secondary battery having a peel strength of 77 N / m or more.

本発明においては、負極活物質、結着剤、導電剤を含む負極号剤塗膜を集電体に塗布して負極を作成する。この負極において結着剤に主にポリフッ化ビニリデン(PVdF)を用い、これにポリアクリロニトリル(PAN)が少量添加されている。このPANにより、結着剤の総量が少なくても、高い剥離強度が得られる。
本発明は、特に負極の電子伝導性を高める気相成長炭素繊維(VGCF)を含む電極および二次電池において特に有効である。
In the present invention, a negative electrode coating film containing a negative electrode active material, a binder, and a conductive agent is applied to a current collector to produce a negative electrode. In this negative electrode, polyvinylidene fluoride (PVdF) is mainly used as a binder, and a small amount of polyacrylonitrile (PAN) is added thereto. With this PAN, high peel strength can be obtained even when the total amount of the binder is small.
The present invention is particularly effective in an electrode and a secondary battery including vapor grown carbon fiber (VGCF) that enhances the electronic conductivity of the negative electrode.

さらに、この技術は電解液がポリフッ化ビニリデンなどの高分子化合物を含む電解質電池に対して特に有効である。電解質と電極活物質粒子とは、良好な密着性を維持しないと、溶液(高分子化合物に保持される液も含む)中の化学種が固体である活物質粒子と反応できない。この時にゲル電解質と電極の結着剤が同じ繰り返し単位を含む高分子同士の際に良好な接着性が発揮される。   Furthermore, this technique is particularly effective for an electrolyte battery in which the electrolytic solution contains a polymer compound such as polyvinylidene fluoride. Unless good adhesion is maintained between the electrolyte and the electrode active material particles, the chemical species in the solution (including the liquid retained in the polymer compound) cannot react with the active material particles that are solid. At this time, good adhesiveness is exhibited when the gel electrolyte and the electrode binder are polymers containing the same repeating unit.

本発明の非水電解質二次電池の一実施形態であって、ラミネート型電池の一例を示す分解斜視図である。It is one Embodiment of the nonaqueous electrolyte secondary battery of this invention, Comprising: It is a disassembled perspective view which shows an example of a laminate type battery. 図1に示した電池素子のII−II線に沿った模式的な断面図である。It is typical sectional drawing along the II-II line of the battery element shown in FIG.

以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の非水電解質二次電池の一実施形態であって、ラミネート型二次電池の一例を示す分解斜視図である。同図に示すように、この二次電池は、負極端子11と正極端子12が取り付けられた電池素子20をフィルム状の外装部材30の内部に封入して構成されている。負極端子11及び正極端子12は、外装部材30の内部から外部に向かって、例えば同一方向にそれぞれ導出されている。負極端子11は、例えば銅(Cu)、ニッケル(Ni)などの金属材料により構成される。正極端子12は、例えばアルミニウム(Al)などの金属材料により構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an exploded perspective view showing an example of a laminated secondary battery as an embodiment of the nonaqueous electrolyte secondary battery of the present invention. As shown in the figure, this secondary battery is configured by enclosing a battery element 20 to which a negative electrode terminal 11 and a positive electrode terminal 12 are attached inside a film-shaped exterior member 30. The negative electrode terminal 11 and the positive electrode terminal 12 are led out from the inside of the exterior member 30 to the outside, for example, in the same direction. The negative electrode terminal 11 is made of a metal material such as copper (Cu) or nickel (Ni). The positive terminal 12 is made of a metal material such as aluminum (Al).

外装部材30は、例えばナイロンフィルム、アルミニウム箔及びポリエチレンフィルムをこの順に張り合わせた矩形状のラミネートフィルムにより構成されている。外装部材30は、例えばポリエチレンフィルム側と電池素子20とが対向するように配設されており、各外縁部が融着又は接着剤により互いに接合されている。外装部材30と負極端子11及び正極端子12との間には、外気の侵入を防止するための密着フィルム31が挿入されている。密着フィルム31は、負極端子11及び正極端子12に対して密着性を有する材料により構成され、例えば負極端子11及び正極端子12が上述した金属材料から構成される場合には、ポリエチレン、ポリプロピレン、変性ポリエチレン及び変性ポリプロピレンなどのポリオレフィン樹脂により構成されることが好ましい。   The exterior member 30 is configured by a rectangular laminate film in which, for example, a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order. The exterior member 30 is arrange | positioned so that the polyethylene film side and the battery element 20 may oppose, for example, and each outer edge part is mutually joined by melt | fusion or the adhesive agent. An adhesion film 31 is inserted between the exterior member 30 and the negative electrode terminal 11 and the positive electrode terminal 12 to prevent the outside air from entering. The adhesion film 31 is made of a material having adhesion to the negative electrode terminal 11 and the positive electrode terminal 12. For example, when the negative electrode terminal 11 and the positive electrode terminal 12 are made of the metal materials described above, polyethylene, polypropylene, modified It is preferably composed of a polyolefin resin such as polyethylene and modified polypropylene.

なお、外装部材30は、上述したラミネートフィルムに代えて、他の構造、例えば金属材料を有さないラミネートフィルム、ポリプロピレンなどの高分子フィルム又は金属フィルムなどにより構成してもよい。ここで、外装部材の一般的な構成は、外装層/金属箔/シーラント層の積層構造で表すことができ(但し、外装層及びシーラント層は複数層で構成されることがある。)、上記の例では、ナイロンフィルムが外装層、アルミニウム箔が金属箔、ポリエチレンフィルムがシーラント層に相当する。なお、金属箔としては、耐透湿性のバリア膜として機能すれば十分であり、アルミニウム箔のみならず、ステンレス箔、ニッケル箔及びメッキを施した鉄箔などを使用することができるが、薄く軽量で加工性に優れるアルミニウム箔を好適に用いることができる。   In addition, the exterior member 30 may be configured by another structure, for example, a laminate film having no metal material, a polymer film such as polypropylene, or a metal film, instead of the above-described laminate film. Here, the general structure of an exterior member can be represented by the laminated structure of an exterior layer / metal foil / sealant layer (however, the exterior layer and the sealant layer may be composed of a plurality of layers), and the above. In this example, the nylon film corresponds to the exterior layer, the aluminum foil corresponds to the metal foil, and the polyethylene film corresponds to the sealant layer. In addition, as metal foil, it is sufficient if it functions as a moisture-permeable barrier film, and not only aluminum foil but also stainless steel foil, nickel foil and plated iron foil can be used, but it is thin and lightweight. Thus, an aluminum foil excellent in workability can be suitably used.

外装部材として、使用可能な構成を(外装層/金属箔/シーラント層)の形式で列挙すると、Ny(ナイロン)/Al(アルミニウム)/CPP(無延伸ポリプロピレン)、PET(ポリエチレンテレフタレート)/Al/CPP、PET/Al/PET/CPP、PET/Ny/Al/CPP、PET/Ny/Al/Ny/CPP、PET/Ny/Al/Ny/PE(ポリエチレン)、Ny/PE/Al/LLDPE(直鎖状低密度ポリエチレン)、PET/PE/Al/PET/LDPE(低密度ポリエチレン)、及びPET/Ny/Al/LDPE/CPPなどがある。   As the exterior member, usable configurations are listed in the form of (exterior layer / metal foil / sealant layer): Ny (nylon) / Al (aluminum) / CPP (unstretched polypropylene), PET (polyethylene terephthalate) / Al / CPP, PET / Al / PET / CPP, PET / Ny / Al / CPP, PET / Ny / Al / Ny / CPP, PET / Ny / Al / Ny / PE (polyethylene), Ny / PE / Al / LLDPE (direct) Chain low density polyethylene), PET / PE / Al / PET / LDPE (low density polyethylene), and PET / Ny / Al / LDPE / CPP.

図2は、図1に示した電池素子20のII−II線に沿った模式的な断面図である。同図において、電池素子20は、負極21と正極22とがゲル状の非水電解質から成るゲル状非水電解質層23及びセパレータ24を介して対向して位置し、巻回されているものであり、最外周部は保護テープ25により保護されている。なお、電極は一枚ずつの対向であっても、つづら折りでも、巻回構造をとってもよい。巻回の場合は、集電体の両面に合剤層を形成すると体積効率をよくできる。   FIG. 2 is a schematic cross-sectional view taken along the line II-II of the battery element 20 shown in FIG. In the figure, a battery element 20 is formed by winding a negative electrode 21 and a positive electrode 22 facing each other with a gel-like non-aqueous electrolyte layer 23 made of a gel-like non-aqueous electrolyte and a separator 24 therebetween. Yes, the outermost periphery is protected by a protective tape 25. It should be noted that the electrodes may be opposed one by one, or may be folded, or may have a wound structure. In the case of winding, volume efficiency can be improved by forming a mixture layer on both sides of the current collector.

[負極]
ここで、負極21は、例えば対向する一対の面を有する負極集電体21Aの両面又は片面に負極合剤層21Bが設けられた構造を有している。負極集電体21Aには、長手方向における一方の端部に負極合剤層21Bが設けられず露出している部分があり、この露出部分に負極端子11が取り付けられている。負極集電体21Aは、例えば銅箔、ニッケル箔又はステンレス箔などの金属箔により構成される。
[Negative electrode]
Here, the negative electrode 21 has a structure in which, for example, a negative electrode mixture layer 21B is provided on both surfaces or one surface of a negative electrode current collector 21A having a pair of opposed surfaces. The negative electrode current collector 21A has an exposed portion where the negative electrode mixture layer 21B is not provided at one end in the longitudinal direction, and the negative electrode terminal 11 is attached to the exposed portion. The negative electrode current collector 21A is made of a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.

負極合剤層21Bは、負極活物質として、リチウムイオンを吸蔵及び放出することが可能な負極材料、金属リチウムのいずれか1種又は2種以上を含んでおり、結着剤として、ポリフッ化ビニリデンと、ポリアクリロニトリルとを含んでおり、必要に応じて導電剤を含んでいてもよい。また、負極合剤層21Bの面積密度は、両面で15mg/cm2以上が好ましく、20mg/cm2以上がより好ましい。
本発明では、溶剤量が少なくて済むので、製造効率の点で有利である。そのため、面積密度を高くした場合に生じる製造効率の低下を、抑えることができる。そして、上記のように高い面積密度の負極であっても、製造効率の低下を防ぎつつ製造し、高いエネルギー密度の電池を得ることができる。
また、本発明では、負極合剤層を厚く塗る電池であっても生産性高く製造することができるため,エネルギー密度を増加させることができる.
面積密度が低いと、電池全体としてのエネルギー密度の増加分が少なくなり、本発明の効果を十分に生かせない。従って、本発明によるエネルギー密度の増加効果を十分に得るためには、上記のような高い面積密度が好ましい。
The negative electrode mixture layer 21B includes, as a negative electrode active material, one or more of negative electrode materials capable of occluding and releasing lithium ions and metallic lithium, and polyvinylidene fluoride as a binder. And polyacrylonitrile, and may contain a conductive agent as necessary. The area density of the negative electrode mixture layer 21B is preferably 15 mg / cm 2 or more, more preferably 20 mg / cm 2 or more on both sides.
In the present invention, the amount of solvent is small, which is advantageous in terms of production efficiency. Therefore, it is possible to suppress a decrease in manufacturing efficiency that occurs when the area density is increased. And even if it is a negative electrode of high area density as mentioned above, it manufactures, preventing the fall of manufacturing efficiency, and can obtain the battery of high energy density.
In the present invention, even a battery having a thick negative electrode mixture layer can be manufactured with high productivity, so that the energy density can be increased.
When the area density is low, the increase in the energy density of the entire battery is reduced, and the effects of the present invention cannot be fully utilized. Therefore, in order to sufficiently obtain the effect of increasing the energy density according to the present invention, a high area density as described above is preferable.

リチウムなどを吸蔵および放出することが可能な負極材料としては、炭素材料、金属や金属酸化物、珪素、あるいは高分子材料などが挙げられる。炭素材料としては、難黒鉛化炭素、易黒鉛化炭素、黒鉛類、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維および活性炭などの炭素材料のいずれか1種または2種以上を用いることができる。
特に天然黒鉛、人造黒鉛などの黒鉛類は、化学的安定性に富みリチウムイオンの脱挿入反応も繰り返し安定して起こすことが出来、工業的にも容易に入手出来るため、リチウムイオン電池に広く使われている。
Examples of the negative electrode material capable of inserting and extracting lithium and the like include carbon materials, metals, metal oxides, silicon, and polymer materials. The carbon material is any one of carbon materials such as non-graphitizable carbon, graphitizable carbon, graphites, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers and activated carbon. Species or two or more can be used.
In particular, graphites such as natural graphite and artificial graphite are widely used in lithium ion batteries because they have high chemical stability and can repeatedly and stably undergo lithium ion deinsertion reactions and are easily available industrially. It has been broken.

炭素以外の材料としては、金属元素あるいは半金属元素としては、例えば、リチウムと合金を形成可能なマグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)等が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
ほかには、4B族の珪素などがLiを脱挿入出来る材料として公知である。錫や珪素は酸素や炭素を含む酸化物や炭化物も利用可能である。高分子材料としては、ポリアセチレンあるいはポリピロールなどが挙げられる。
上記の材料を混合して、例えば、黒鉛材料と酸化錫の様な組み合わせでも実現可能である。
As a material other than carbon, as a metal element or a metalloid element, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), which can form an alloy with lithium, Silicon (Si), germanium (Ge), tin (Sn), etc. are mentioned. These may be crystalline or amorphous.
In addition, 4B group silicon is known as a material from which Li can be inserted and removed. For tin and silicon, oxides and carbides containing oxygen and carbon can also be used. Examples of the polymer material include polyacetylene and polypyrrole.
For example, a combination of graphite material and tin oxide can be realized by mixing the above materials.

負極合剤層はさらにフッ化ビニリデン(VdF)を繰り返し単位として含む重合体と、アクリロニトリル(AN)を繰り返し単位として含む重合体とを含む。これらの重合体は結着剤として機能する。また、これらの重合体は混合して用いる事が好ましい。高速で塗布しても高い剥離強度が維持できるからである。また、PVdF系高分子を電極の結着剤に用いることは、ゲル電解質にもPVdF系高分子を用いる際に極めて有効である。このことにより、電極とゲル電解質層が一体となり、良好なイオン伝導性界面を形成する。   The negative electrode mixture layer further includes a polymer containing vinylidene fluoride (VdF) as a repeating unit and a polymer containing acrylonitrile (AN) as a repeating unit. These polymers function as a binder. These polymers are preferably used as a mixture. This is because high peel strength can be maintained even when applied at high speed. In addition, the use of PVdF polymers as electrode binders is extremely effective when PVdF polymers are used for gel electrolytes. As a result, the electrode and the gel electrolyte layer are integrated to form a good ion conductive interface.

負極合剤層におけるフッ化ビニリデンを繰り返し単位として含む重合体とアクリロニトリルを繰り返し単位として含む重合体結着剤の合計含有量は、2.5〜8質量%が好ましく、3〜5質量%がより好ましい。上記範囲内とすることで、十分な接着性と高い電池性能の両立を図ることができる。   The total content of the polymer containing vinylidene fluoride as a repeating unit and the polymer binder containing acrylonitrile as a repeating unit in the negative electrode mixture layer is preferably 2.5 to 8% by mass, more preferably 3 to 5% by mass. preferable. By setting it within the above range, both sufficient adhesiveness and high battery performance can be achieved.

アクリロニトリル(AN)を繰り返し単位として含む重合体の含有量はフッ化ビニリデンを繰り返し単位として含む重合体とアクリロニトリルを繰り返し単位として含む重合体の合計含有量に対して1〜20質量%(負極合剤層において0.025〜1.6質量%に相当)が好ましく、2〜10質量%(負極合剤層において0.05〜0.8質量%に相当)がより好ましい。含有量を上記範囲内とすることで、主結着剤であるPVdF系高分子の効果と、PAN系高分子の効果の両立を図ることができる。
また、結着剤に用いる重合体は、単一の繰り返し単位からなるホモポリマーであっても、共重合体(コポリマー)であっても良い。
The content of the polymer containing acrylonitrile (AN) as a repeating unit is 1 to 20% by mass (negative electrode mixture) based on the total content of the polymer containing vinylidene fluoride as a repeating unit and the polymer containing acrylonitrile as a repeating unit. In the layer is preferably 0.025 to 1.6% by mass), and more preferably 2 to 10% by mass (corresponding to 0.05 to 0.8% by mass in the negative electrode mixture layer). By setting the content within the above range, it is possible to achieve both the effect of the PVdF polymer as the main binder and the effect of the PAN polymer.
The polymer used for the binder may be a homopolymer composed of a single repeating unit or a copolymer.

フッ化ビニリデン(VdF)を繰り返し単位として含む重合体としては、例えば、ポリフッ化ビニリデン(PVdF)、あるいはフッ化ビニリデンを成分とする共重合体が挙げられる。共重合体の具体例としては、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−カルボン酸共重合体、あるいはフッ化ビニリデン−ヘキサフルオロプロピレン−カルボン酸共重合体などが挙げられる。フッ化ビニリデン−ヘキサフルオロプロピレン−カルボン酸共重合体には、フッ化ビニリデン−ヘキサフルオロプロピレン−モノメチルマレイン酸エステル共重合体が挙げられる。
アクリロニトリル(AN)を繰り返し単位として含む重合体としては、ポリアクリロニトリル(PAN)、その他アクリレート基やアクリルアミド基を有する共重合PANを使用することが出来る。
結着剤には上記重合体の1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
Examples of the polymer containing vinylidene fluoride (VdF) as a repeating unit include polyvinylidene fluoride (PVdF) and a copolymer containing vinylidene fluoride as a component. Specific examples of the copolymer include vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-carboxylic acid copolymer, or vinylidene fluoride-hexafluoropropylene- Examples thereof include carboxylic acid copolymers. Examples of the vinylidene fluoride-hexafluoropropylene-carboxylic acid copolymer include a vinylidene fluoride-hexafluoropropylene-monomethylmaleic acid ester copolymer.
As a polymer containing acrylonitrile (AN) as a repeating unit, polyacrylonitrile (PAN) and other copolymerized PAN having an acrylate group or an acrylamide group can be used.
As the binder, one of the above polymers may be used alone, or two or more thereof may be mixed and used.

負極合剤層はさらに、気相成長炭素繊維(VGCF)を含む。これにより、電極の電子伝導性が向上し,電池の大電流充放電特性や,繰り返し充放電寿命(サイクル特性)が改善される。気相成長炭素繊維としては、平均繊維径が150nm、平均繊維長が10〜20μmのものを使用することができる。また、負極合剤層における気相成長炭素繊維の含有量は、1〜5質量%が好ましく、2〜3.5質量%がより好ましい。上記範囲内とすることで、かさ高さによる容量低下を招かずに高性能化を実現できる。   The negative electrode mixture layer further includes vapor grown carbon fiber (VGCF). Thereby, the electronic conductivity of the electrode is improved, and the large current charge / discharge characteristics and the repeated charge / discharge life (cycle characteristics) of the battery are improved. As the vapor growth carbon fiber, one having an average fiber diameter of 150 nm and an average fiber length of 10 to 20 μm can be used. Moreover, 1-5 mass% is preferable and, as for content of the vapor growth carbon fiber in a negative mix layer, 2-3.5 mass% is more preferable. By setting it within the above range, high performance can be realized without causing a decrease in capacity due to bulkiness.

負極は、例えば、次のようにして製造することができる。
まず、例えば、負極活物質および導電材と、PVdFとPANを95:5で混合した結着剤とを、N−メチル−2−ピロリドン(NMP)などの溶剤に分散させて負極合剤スラリーを作製する。次いで、この負極合剤スラリーを負極集電体に塗布し、乾燥させて溶剤を除去したのち、ロールプレス機などにより圧縮成型し、所定の大きさに裁断する。この電極に必要であれば電流を取り出すリード線を溶接する。
また、負極集電体と負極合剤層との剥離強度は、4mN/mm以上、特に5mN/mm以上であれば好ましい。これにより、負極集電体と負極合剤層との密着性が向上し、高温状況下であっても、サイクル特性が向上するようになる。
尚、剥離強度は、負極を80℃のNMPに1時間浸漬した後取り出して乾燥し、粘着テープを張った負極を支持台上に配置し、粘着テープを10cm/分の速度で180゜方向に引っ張って、負極集電体を剥離したときに、剥離するのに必要とされた1mm当たりの力の平均値である。
The negative electrode can be manufactured, for example, as follows.
First, for example, a negative electrode active material and a conductive material, and a binder in which PVdF and PAN are mixed at a ratio of 95: 5 are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) to obtain a negative electrode mixture slurry. Make it. Next, this negative electrode mixture slurry is applied to a negative electrode current collector, dried to remove the solvent, and then compression molded by a roll press or the like, and cut into a predetermined size. If necessary for this electrode, a lead wire for taking out the current is welded.
The peel strength between the negative electrode current collector and the negative electrode mixture layer is preferably 4 mN / mm or more, particularly 5 mN / mm or more. Thereby, the adhesion between the negative electrode current collector and the negative electrode mixture layer is improved, and the cycle characteristics are improved even under high temperature conditions.
The peel strength was determined by immersing the negative electrode in NMP at 80 ° C. for 1 hour, taking it out, drying it, placing the negative electrode with an adhesive tape on the support, and moving the adhesive tape in the 180 ° direction at a speed of 10 cm / min. When the negative electrode current collector is peeled off by pulling, it is the average value of the force per 1 mm required for peeling.

[正極]
一方、正極22は、負極21と同様に、例えば対向する一対の面を有する正極集電体22Aの両面又は片面に正極合剤層22Bが被覆された構造を有している。正極集電体22Aには、長手方向における一方の端部に正極合剤層22Bが被覆されずに露出している部分があり、この露出部分に正極端子12が取り付けられている。正極集電体22Aは、例えばアルミニウム箔などの金属箔により構成される。
[Positive electrode]
On the other hand, like the negative electrode 21, the positive electrode 22 has a structure in which, for example, both surfaces or one surface of a positive electrode current collector 22A having a pair of opposed surfaces are coated with a positive electrode mixture layer 22B. The positive electrode current collector 22A has a portion that is exposed without being covered with the positive electrode mixture layer 22B at one end portion in the longitudinal direction, and the positive electrode terminal 12 is attached to the exposed portion. The positive electrode current collector 22A is made of a metal foil such as an aluminum foil.

正極合剤層22Bは、例えば正極活物質として、リチウムイオンを吸蔵及び放出することが可能な正極材料を含んでおり、必要に応じて導電剤と結着剤を含んでいてもよい。ここで、正極活物質、導電剤及び結着剤は均一に分散していることが好ましく、また、その混合比は問わない。   The positive electrode mixture layer 22B includes, for example, a positive electrode material capable of inserting and extracting lithium ions as a positive electrode active material, and may include a conductive agent and a binder as necessary. Here, it is preferable that the positive electrode active material, the conductive agent, and the binder are uniformly dispersed, and the mixing ratio is not limited.

正極活物質にはリチウムイオンを可逆に脱挿入する物質で、その反応電位が対リチウムで3〜4.5Vにあるものが用いられる。LiCoO2が最も良く用いられるほか、LiMn24、LiNiO2、LiFePO4が良く用いられる。複数種混合して用いることも多い。また、これらの材料の中には、LiCo1-x-yAlxMgy2のように、他の金属種を固溶させた材料もよく使われる。 As the positive electrode active material, a material capable of reversibly removing and inserting lithium ions and having a reaction potential of 3 to 4.5 V with respect to lithium is used. LiCoO 2 is most often used, and LiMn 2 O 4 , LiNiO 2 , and LiFePO 4 are often used. Often used as a mixture of two or more species. Further, among these materials, materials in which other metal species are dissolved, such as LiCo 1-xy Al x Mg y O 2 , are often used.

正極活物質は半導体で電子伝導性が小さいので、導電助剤として炭素粉末を混合することが好ましい。正極は酸化雰囲気なので金属は使わない事が多いが、アルミ粉末は使用可能である。活物質と導電剤を、負極同様に結着剤と混合しNMPなどの溶剤で溶かしてスラリーを作り、集電体の上に塗布し、乾燥・プレス・スリット・リード溶接をして用いる。正極は厳しい酸化雰囲気なので箔やリードの金属は限定される。通常はアルミ箔を用いる。アルミは不働態化して溶解しない上、電気伝導性が良く軽量で安価であり、柔らかく加工性にも富む好適な材料である。   Since the positive electrode active material is a semiconductor and has low electron conductivity, it is preferable to mix carbon powder as a conductive additive. Since the positive electrode is an oxidizing atmosphere, metal is often not used, but aluminum powder can be used. Like the negative electrode, the active material and the conductive agent are mixed with a binder and dissolved in a solvent such as NMP to form a slurry, which is applied onto a current collector, dried, pressed, slitted, and lead welded. Since the positive electrode has a harsh oxidizing atmosphere, the metal of the foil and lead is limited. Usually, aluminum foil is used. Aluminum is a suitable material that is passivated and does not melt, has good electrical conductivity, is light and inexpensive, is soft and has good workability.

[非水電解質層]
非水電解質層23は、例えば、電解液と、この電解液を保持する保持体となるマトリクス高分子化合物とを含み、いわゆるゲル状となっている。かかるマトリクス高分子化合物の膨潤やゲル化ないしは非流動化により、得られる電池で非水電解質の漏液が起こるのを効果的に抑制することができる。
[Nonaqueous electrolyte layer]
The nonaqueous electrolyte layer 23 includes, for example, an electrolytic solution and a matrix polymer compound that serves as a holding body that holds the electrolytic solution, and has a so-called gel shape. By such swelling, gelation or non-fluidization of the matrix polymer compound, it is possible to effectively suppress leakage of the nonaqueous electrolyte in the obtained battery.

非水電解液としてはリチウムイオン二次電池に一般的に使用されるものを用いることができる。このような非水電解液としては、非水溶媒に電解質塩を溶解させたものを用いることができる。   As the non-aqueous electrolyte, those generally used for lithium ion secondary batteries can be used. As such a nonaqueous electrolytic solution, a solution obtained by dissolving an electrolyte salt in a nonaqueous solvent can be used.

非水溶媒には炭酸エステル類を用いることができる。具体的にはエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどである。他に、ガンマブチロラクトン、ガンマバレロラクトンなどのラクトン類や酢酸エチルなどのカルボン酸エステルも用いられる。   Carbonates can be used as the non-aqueous solvent. Specific examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. In addition, lactones such as gamma butyrolactone and gamma valerolactone, and carboxylic acid esters such as ethyl acetate are also used.

電解質塩には、LiPF6、LiBF4、イミド塩などが使用できる。1種類でも複数を混合しても良いが、LiPF6が最も多用される。電解液中における電解質塩の濃度は0.5〜1.5mol/kgであることが好ましい。 As the electrolyte salt, LiPF 6 , LiBF 4 , imide salt, or the like can be used. Although one kind or a plurality may be mixed, LiPF 6 is most frequently used. The concentration of the electrolyte salt in the electrolytic solution is preferably 0.5 to 1.5 mol / kg.

マトリクス高分子化合物としては、例えばポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体などのフッ素系高分子化合物が好ましい。なかでも、酸化還元安定性の観点からヘキサフルオロプロピレンを3〜7.5質量%含むフッ化ビニリデン−ヘキサフルオロプロピレンの共重合体が好ましい。   The matrix polymer compound is preferably a fluorine polymer compound such as polyvinylidene fluoride or a copolymer of vinylidene fluoride and hexafluoropropylene. Among these, from the viewpoint of redox stability, a vinylidene fluoride-hexafluoropropylene copolymer containing 3 to 7.5% by mass of hexafluoropropylene is preferable.

[セパレータ]
また、セパレータ24は、例えばポリプロピレン及びポリエチレンなどのポリオレフィン系の有機樹脂から成る多孔質膜、又はセラミック製の不織布などの無機材料から成る多孔質膜など、イオン透過度が大きく、所定の機械的強度を有する絶縁性の薄膜から構成されており、これら2種以上の多孔質膜を積層した構造としてもよい。特に、ポリオレフィン系の多孔質膜を含むものは、負極21と正極22との分離性に優れ、内部短絡や開回路電圧の低下をいっそう低減できるので好適である。
[Separator]
The separator 24 has a high ion permeability and a predetermined mechanical strength, such as a porous film made of a polyolefin-based organic resin such as polypropylene and polyethylene, or a porous film made of an inorganic material such as a ceramic nonwoven fabric. It is good also as a structure which laminated | stacked these 2 or more types of porous films. In particular, those containing a polyolefin-based porous membrane are preferable because they have excellent separability between the negative electrode 21 and the positive electrode 22 and can further reduce internal short circuit and open circuit voltage drop.

[製造方法]
次に、上述した非水電解質二次電池の製造方法の一例を説明する。
上記ラミネート型二次電池は、以下のようにして製造することができる。まず、負極21を作製する。例えば粒子状の負極活物質を用いる場合には、負極活物質と上述した結着剤と導電剤を混合して負極合剤を調製し、N−メチル−2−ピロリドンなどの分散媒に分散させて負極合剤スラリーを作製する。次いで、この負極合剤スラリーを負極集電体21Aに塗布し乾燥させ、圧縮成型して負極合剤層21Bを形成する。
[Production method]
Next, an example of the manufacturing method of the nonaqueous electrolyte secondary battery mentioned above is demonstrated.
The laminate type secondary battery can be manufactured as follows. First, the negative electrode 21 is produced. For example, when a particulate negative electrode active material is used, a negative electrode mixture is prepared by mixing the negative electrode active material, the binder and the conductive agent described above, and dispersed in a dispersion medium such as N-methyl-2-pyrrolidone. Thus, a negative electrode mixture slurry is prepared. Next, the negative electrode mixture slurry is applied to the negative electrode current collector 21A, dried, and compression molded to form the negative electrode mixture layer 21B.

また、正極22を作製する。例えば粒子状の正極活物質を用いる場合には、正極活物質と必要に応じて導電剤及び結着剤とを混合して正極合剤を調製し、N−メチル−2−ピロリドンなどの分散媒に分散させて正極合剤スラリーを作製する。この後、この正極合剤スラリーを正極集電体22Aに塗布し乾燥させ、圧縮成型して正極合剤層22Bを形成する。   Moreover, the positive electrode 22 is produced. For example, when a particulate positive electrode active material is used, a positive electrode mixture is prepared by mixing the positive electrode active material and, if necessary, a conductive agent and a binder, and a dispersion medium such as N-methyl-2-pyrrolidone. To produce a positive electrode mixture slurry. Thereafter, the positive electrode mixture slurry is applied to the positive electrode current collector 22A, dried, and compression molded to form the positive electrode mixture layer 22B.

次いで、負極21に負極端子11を取り付けるとともに、正極22に正極端子12を取り付ける。このとき、負極端子11や正極端子12の溶接部及びその裏面、又は合剤塗布部分と集電体露出部分の境界部分の集電体上には保護テープ25を貼ってもよい。   Next, the negative electrode terminal 11 is attached to the negative electrode 21, and the positive electrode terminal 12 is attached to the positive electrode 22. At this time, you may stick the protective tape 25 on the collector of the welding part of the negative electrode terminal 11 or the positive electrode terminal 12, and its back surface, or the boundary part of a mixture application part and an electrical power collector exposure part.

次いで、得られた負極21の片面又は両面に非水電解質層23を形成する。例えば六フッ化リン酸リチウムなどの電解質塩と、エチレンカーボネート、プロピレンカーボネートなどの非水溶媒と、ポリフッ化ビニリデンなどのマトリクス高分子とをジメチルカーボネーと(DMC)などの希釈溶剤と混合溶解し、ゾル状の非水電解質を作製する。このゾル状の非水電解質を負極21に塗布し希釈溶剤を揮発させてゲル状の非水電解質から成る非水電解質層23を形成する。   Next, the nonaqueous electrolyte layer 23 is formed on one side or both sides of the obtained negative electrode 21. For example, an electrolyte salt such as lithium hexafluorophosphate, a nonaqueous solvent such as ethylene carbonate and propylene carbonate, and a matrix polymer such as polyvinylidene fluoride are mixed and dissolved in a diluent solvent such as dimethyl carbonate and (DMC). A sol-like nonaqueous electrolyte is prepared. The sol-like non-aqueous electrolyte is applied to the negative electrode 21 and the diluting solvent is volatilized to form a non-aqueous electrolyte layer 23 made of a gel-like non-aqueous electrolyte.

更に、得られた正極22の片面又は両面に非水電解質層23を形成する。例えば上述した六フッ化リン酸リチウムなどの電解質塩と、エチレンカーボネート、プロピレンカーボネートなどの非水溶媒と、ポリフッ化ビニリデンなどのマトリクス高分子とをジメチルカーボネーと(DMC)などの希釈溶剤と混合溶解し、ゾル状の非水電解質を作製する。このゾル状の非水電解質を正極22に塗布し希釈溶剤を揮発させてゲル状の非水電解質から成る非水電解質層23を形成する。   Furthermore, the nonaqueous electrolyte layer 23 is formed on one side or both sides of the obtained positive electrode 22. For example, the electrolyte salt such as lithium hexafluorophosphate described above, a nonaqueous solvent such as ethylene carbonate and propylene carbonate, and a matrix polymer such as polyvinylidene fluoride are mixed with a diluting solvent such as dimethyl carbonate (DMC). Dissolve to produce a sol-like non-aqueous electrolyte. This sol-like non-aqueous electrolyte is applied to the positive electrode 22 and the diluting solvent is volatilized to form a non-aqueous electrolyte layer 23 made of a gel-like non-aqueous electrolyte.

しかる後、セパレータ24、非水電解質層23を形成した正極22、セパレータ24及び非水電解質層23を形成した負極21を順次積層して巻回し、最外周部に保護テープ25を接着して電池素子20を形成する。更に、この電池素子20を外装部材30で包装して、図1及び図2に示したラミネート型二次電池が完成する。   Thereafter, the separator 24, the positive electrode 22 with the non-aqueous electrolyte layer 23 formed thereon, the separator 24 and the negative electrode 21 with the non-aqueous electrolyte layer 23 formed thereon are sequentially stacked and wound, and the protective tape 25 is adhered to the outermost peripheral portion. Element 20 is formed. Further, the battery element 20 is packaged with an exterior member 30 to complete the laminate type secondary battery shown in FIGS.

なお、この非水電解質二次電池は次のようにして製造してもよい。例えば、完成された電池素子を外装部材で包装するのではなく、負極21及び正極22の上、又はセパレータ24にマトリクス高分子のモノマー又はポリマーを塗布して巻回して巻回電極体を作製し、外装部材30の内部に収納した後に上述した非水電解液を注入するようにして非水電解質層23を形成してもよい。但し、外装部材30の内部でモノマーを重合させるようにした方が非水電解質層23とセパレータ24との接合性が向上し、内部抵抗を低くすることができるので好ましい。また、外装部材30の内部に非水電解液を注入してゲル状の非水電解質を形成するようにした方が、少ない工程で簡単に製造することができるので好ましい。   The nonaqueous electrolyte secondary battery may be manufactured as follows. For example, instead of wrapping the completed battery element with an exterior member, a matrix polymer monomer or polymer is applied on the negative electrode 21 and the positive electrode 22 or on the separator 24 and wound to produce a wound electrode body. Alternatively, the non-aqueous electrolyte layer 23 may be formed by injecting the non-aqueous electrolyte described above after being housed in the exterior member 30. However, it is preferable to polymerize the monomer inside the exterior member 30 because the bondability between the nonaqueous electrolyte layer 23 and the separator 24 is improved and the internal resistance can be lowered. In addition, it is preferable to inject a non-aqueous electrolyte into the exterior member 30 to form a gel-like non-aqueous electrolyte because it can be easily manufactured with fewer steps.

以上に説明した二次電池では、充電を行うと、正極合剤層22Bからリチウムイオンが放出され、非水電解質層23を介して負極合剤層21Bに吸蔵される。放電を行うと、負極合剤層21Bからリチウムイオンが放出され、非水電解質層23を介して正極合剤層22Bに吸蔵される。   In the secondary battery described above, when charged, lithium ions are released from the positive electrode mixture layer 22 </ b> B and inserted into the negative electrode mixture layer 21 </ b> B through the nonaqueous electrolyte layer 23. When discharge is performed, lithium ions are released from the negative electrode mixture layer 21 </ b> B and inserted into the positive electrode mixture layer 22 </ b> B through the nonaqueous electrolyte layer 23.

更に、本発明の具体的な実施例について詳細に説明する。
<負極作製>
まず、結着剤と溶剤を混合して、結着剤の高分子溶液を作成した。そこに負極活物質と添加剤を入れて混合し塗料を作成して、銅箔集電体上に塗布して溶剤を乾燥させた。これをロールプレスしたのち、所定の幅に切り、端にニッケル製の端子を付けて負極を作成した。
負極活物質には平均粒径20μmの人造黒鉛、メソフェーズカーボンマイクロビーズを使用した。
導電剤には平均繊維長が150nm、平均繊維長が10〜20μmの、気相成長炭素繊維(VGCF)を用いた。
実施例1〜19、比較例1〜3の結着剤には、数平均分子量80万の、フッ化ビニリデン(VdF):モノメチルマレイン酸エステル(MMM)(重量比99:1)共重合体と、ポリアクリロニトリル(PAN)とを使用した。
実施例20〜22の結着剤には、数平均分子量70万の、フッ化ビニリデン(VdF):モノメチルマレイン酸エステル(MMM)(重量比98:2)共重合体と、ポリアクリロニトリル(PAN)とを、PVdFとPANの比率を変えて使用した。
黒鉛と結着剤の重量比は95:5とした。
集電体には厚さ15μmの銅箔を使用した。
負極層は集電体の片側に厚さ50μmずつ、両面に形成した。塗布は30m/minで行った。
実験は結着剤の配合比を変えて検討した。その比率は別表に示す。
Further, specific embodiments of the present invention will be described in detail.
<Negative electrode production>
First, a binder and a solvent were mixed to prepare a polymer solution of the binder. A negative electrode active material and an additive were mixed there to prepare a paint, which was applied onto a copper foil current collector and the solvent was dried. After this was roll-pressed, it was cut into a predetermined width and a nickel terminal was attached to the end to create a negative electrode.
Artificial graphite and mesophase carbon microbeads having an average particle size of 20 μm were used as the negative electrode active material.
As the conductive agent, vapor grown carbon fiber (VGCF) having an average fiber length of 150 nm and an average fiber length of 10 to 20 μm was used.
The binders of Examples 1 to 19 and Comparative Examples 1 to 3 include a vinylidene fluoride (VdF): monomethylmaleic acid ester (MMM) (weight ratio 99: 1) copolymer having a number average molecular weight of 800,000. Polyacrylonitrile (PAN) was used.
The binders of Examples 20 to 22 include a vinylidene fluoride (VdF): monomethylmaleic acid ester (MMM) (weight ratio 98: 2) copolymer having a number average molecular weight of 700,000, and polyacrylonitrile (PAN). Were used at different ratios of PVdF and PAN.
The weight ratio of graphite to binder was 95: 5.
A copper foil having a thickness of 15 μm was used for the current collector.
The negative electrode layer was formed on both sides with a thickness of 50 μm on one side of the current collector. Application was performed at 30 m / min.
The experiment was conducted by changing the blending ratio of the binder. The ratio is shown in the attached table.

<正極作製>
LiCoO2と、導電剤である黒鉛と、結着剤であるポリフッ化ビニリデンと、溶剤であるN−メチル−2−ピロリドンに分散させて正極合剤スラリーとしたのち、この正極合剤スラリーを厚み20μmのアルミニウム箔よりなる正極集電体に均一に塗布して乾燥させ、ロールプレスで圧縮成型して正極合剤層を形成し、必要な大きさに裁断して正極を作製した。その際、LiCoO2と、黒鉛と、ポリフッ化ビニリデンとは、LiCoO2 :黒鉛:ポリフッ化ビニリデン=91:6:3の質量比で混合した。そののち、正極集電体の一端にアルミニウム製の正極端子を取り付けた。
<Positive electrode fabrication>
LiCoO 2 , graphite as a conductive agent, polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone as a solvent are dispersed into a positive electrode mixture slurry, and then the positive electrode mixture slurry is thickened. A positive electrode current collector made of 20 μm aluminum foil was uniformly applied and dried, and compression molded with a roll press to form a positive electrode mixture layer, which was cut into a required size to produce a positive electrode. At that time, LiCoO 2 , graphite, and polyvinylidene fluoride were mixed at a mass ratio of LiCoO 2 : graphite: polyvinylidene fluoride = 91: 6: 3. After that, an aluminum positive electrode terminal was attached to one end of the positive electrode current collector.

<ゲル電解質>
ゲル電解質は次のように作成した。
マトリクスポリマには、数平均分子量70万の、フッ化ビニリデン(VdF)とヘキサフルオロプロピレン(HFP)の、VdF:HFP=93:7の共重合体を用いた。電解液には、エチレンカーボネート(EC)、プロピレンカーボネート(PC)をEC:PC=4:6(質量比)の混合溶媒に、重量モル濃度1mol/kgとなるようにLiPF6を溶解させた。希釈溶剤にはジメチルカーボネート(DMC)を用いた。これらをポリマー:電解液:希釈溶剤=1:10:10の比で90℃にて混合攪拌してポリマー溶液とし、ゾル状の電解質を得た。このゾルを電極の上に塗布して、希釈剤DMCを揮発させて電極上に厚さ20μmのゲル電解質膜を形成した。
<Gel electrolyte>
The gel electrolyte was prepared as follows.
As the matrix polymer, a copolymer of vinylidene fluoride (VdF) and hexafluoropropylene (HFP) having a number average molecular weight of 700,000 and VdF: HFP = 93: 7 was used. In the electrolytic solution, LiPF6 was dissolved in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) in EC: PC = 4: 6 (mass ratio) so as to have a molar concentration of 1 mol / kg. Dimethyl carbonate (DMC) was used as a dilution solvent. These were mixed and stirred at 90 ° C. in a ratio of polymer: electrolytic solution: diluting solvent = 1: 10: 10 to obtain a polymer solution to obtain a sol electrolyte. This sol was applied on the electrode, and the diluent DMC was volatilized to form a gel electrolyte film having a thickness of 20 μm on the electrode.

<組立>
このゲル電解質を形成された正極と、負極とを、この間に10μmの多孔質ポリエチレンセパレータを介して平らに巻回し、電池素子を作成した。この素子を、アルミラミネートフィルムを用いた外装に挿入し封入した。アルミラミネートフィルムは、外層にナイロン、内装に結晶性ポリプロピレンを用い、それぞれ厚さ30μmのフィルムを貼り合わせて作成されている。電池素子はこの中に挿入して、真空下で矩形の三辺を熱融着で貼り合わせ、真空封止した。アルミラミネートフィルムは大気圧で押されたるみのない外装となっている。電池の端子を取り出す部分には、アイオノマーなどの金属に良く接着する樹脂片を接着し、気密性高く作成した。
<Assembly>
The positive electrode on which the gel electrolyte was formed and the negative electrode were flatly wound through a 10 μm porous polyethylene separator in the meantime to produce a battery element. This element was inserted and sealed in an exterior using an aluminum laminate film. The aluminum laminate film is made by using nylon for the outer layer and crystalline polypropylene for the interior, and bonding 30 μm thick films. The battery element was inserted into this, and the three sides of the rectangle were bonded together by heat sealing under vacuum and sealed in a vacuum. The aluminum laminate film has an exterior that is not sagging at atmospheric pressure. A resin piece that adheres well to a metal such as an ionomer was adhered to the portion from which the battery terminal was taken out, and was made highly airtight.

<特性評価>
・電極の剥離強度試験
塗布完了後の電極の塗膜の剥離強度試験を行った。粘着テープを貼り電極から剥がすと銅箔と塗膜の界面から剥離出来る。テープ長さの半分を剥がし、そこで180°反転させた。銅箔露出部分と粘着テープを引っ張り試験機((株)島津製作所製 島津オートグラフAGS−50B)で引っ張り、剥離強度を測った。40N/m以上を良品とした。
・電池の体積エネルギー密度
電池を1ItA、4.2V、2.5時間の定電流定電圧充電(これを標準充電とする)で充電した後、0.2ItAの定電流放電を3Vまで行って、電池容量を測定した。放電平均電圧をかけて放電電力量を求め、これを電池の体積で除して体積エネルギー密度を計算した。この数値は大きいほど良く、480Wh/L以上を良品とした。
電極の伝導性はVGCFが多いほど高くなるが、多いと体積エネルギー密度は小さくなる。実施例及び比較例の電池では、電極は同一の圧力でプレスして作成するので、電極は嵩高いVGCFが多い方が厚くなる。電池の外装にはフィルムを用いているので多少は変形する。よって電極が厚いと電池の体積が増加し、エネルギー密度が低下する。VGCFが少ないと放電性能が悪く、電池容量が低下してエネルギー密度が低下する。
・サイクル試験
作成した二次電池について充放電試験を行い、サイクル特性を次のようにして調べた。まず、23℃で1ItAの定電流定電圧充電を4.2Vまで2時間半行い、続いて1ItAの定電流放電を終止電圧3.0Vまで行った。この充放電を繰り返して1サイクル目の放電容量に対する400サイクル目の放電容量維持率を求めた。この時の維持率が初回の70%以上を良品とした。なお、1ItAは、理論容量を1時間で放出できる電流値であり、今回の検討では電池の容量が500mAhなので、500mAが1ItAである。0.2ItAとはその1/5の電流値であるから、100mAとなる。
・負荷特性試験
電池を1ItA−4.2V、2時間半の定電圧定電流充電で充電し、0.2ItAで3Vまで定電流放電をして放電容量を測定し、同様に3ItAでの測定結果と比較した。
(3ItA容量)/(0.2ItA容量)の比が80%以上を良品とした。
<Characteristic evaluation>
-Peel strength test of electrode The peel strength test of the coating film of the electrode after application completion was conducted. When the adhesive tape is applied and peeled off from the electrode, it can be peeled off from the interface between the copper foil and the coating film. Half of the tape length was peeled off and inverted 180 ° there. The exposed portion of the copper foil and the adhesive tape were pulled with a tensile tester (Shimadzu Autograph AGS-50B, manufactured by Shimadzu Corporation), and the peel strength was measured. 40 N / m or more was regarded as a good product.
・ Volume energy density of the battery After charging the battery with 1 ItA, 4.2 V, constant current and constant voltage charging for 2.5 hours (this is assumed to be standard charging), 0.2 ItA constant current discharging is performed to 3 V, The battery capacity was measured. The discharge energy was calculated by applying the discharge average voltage, and the volume energy density was calculated by dividing this by the volume of the battery. The larger this value is, the better, and 480 Wh / L or more was regarded as a good product.
The conductivity of the electrode increases as the VGCF increases, but the volume energy density decreases as the VGCF increases. In the batteries of the example and the comparative example, the electrodes are formed by pressing at the same pressure, so that the thicker the VGCF is, the thicker the electrodes are. Since a film is used for the exterior of the battery, it is somewhat deformed. Therefore, when the electrode is thick, the volume of the battery increases and the energy density decreases. When the VGCF is small, the discharge performance is poor, the battery capacity is lowered, and the energy density is lowered.
-Cycle test The created secondary battery was subjected to a charge / discharge test, and the cycle characteristics were examined as follows. First, constant current / constant voltage charge of 1 ItA at 23 ° C. was performed to 4.2 V for 2.5 hours, followed by constant current discharge of 1 ItA to a final voltage of 3.0 V. This charge / discharge was repeated to determine the discharge capacity maintenance ratio at the 400th cycle relative to the discharge capacity at the first cycle. At this time, the maintenance rate of 70% or more of the first time was regarded as a non-defective product. Note that 1 ItA is a current value at which the theoretical capacity can be released in one hour. In this study, the capacity of the battery is 500 mAh, so 500 mA is 1 ItA. Since 0.2 ItA is 1/5 of the current value, it is 100 mA.
-Load characteristic test The battery was charged with 1 ItA-4.2 V, constant voltage and constant current charging for 2 and a half hours, discharged with constant current up to 3 V at 0.2 ItA, and the discharge capacity was measured. Similarly, the measurement result at 3 ItA Compared with.
A ratio of (3 ItA capacity) / (0.2 ItA capacity) of 80% or more was regarded as a non-defective product.

Figure 2015053283
Figure 2015053283

Figure 2015053283
Figure 2015053283

表1、2の結果から分かるように、PANを添加することにより少量のバインダーでも剥離強度を上げることが出来た。PANを含まない場合は、バインダー総量が多くないと剥離強度が低く、電極を生産する工程中で剥離してしまい、電池にすることさえ出来なかった。たとえ電池に出来ても、充放電に伴う体積変化に対応できないためにサイクル特性が悪くなった。総結着剤量が多いと剥離強度は上げられるが、電極活物質を覆うバインダーが多いため、PANを含むバインダーに比べ電池特性が悪くなった。一方、PANの比率を上げすぎてしまうと、ゲル電解質との相互作用が少なくなるため、特性が低下することが分かった。これより、フッ化ビニリデンを繰り返し単位として含む重合体とアクリロニトリルを繰り返し単位として含む重合体の合計含有量に対する、アクリロニトリルを繰り返し単位として含む重合体の好ましい含有量は1〜20質量%であることが分かった。
また、この効果はVGCFを含む負極に対して特に有効であることが分かった。VGCFを含むことでサイクル特性、容量、電流特性が向上した。そして上記結果から、負極合剤層における気相成長炭素繊維の好ましい含有量は1〜5質量%であることが分かった。
このようにPANを含むバインダーにより電池特性を向上させることが出来る。
As can be seen from the results in Tables 1 and 2, the peel strength could be increased with a small amount of binder by adding PAN. In the case where PAN was not included, the peel strength was low unless the total amount of the binder was large, and it was peeled off during the process of producing the electrode, making it impossible to make a battery. Even if the battery could be made, the cycle characteristics deteriorated because it could not cope with the volume change accompanying charging and discharging. When the total amount of the binder is large, the peel strength can be increased. However, since there are many binders covering the electrode active material, the battery characteristics are deteriorated as compared with the binder containing PAN. On the other hand, it was found that if the ratio of PAN is increased too much, the interaction with the gel electrolyte is reduced, so that the characteristics are deteriorated. From this, the preferable content of the polymer containing acrylonitrile as a repeating unit is 1 to 20% by mass relative to the total content of the polymer containing vinylidene fluoride as a repeating unit and the polymer containing acrylonitrile as a repeating unit. I understood.
Moreover, it turned out that this effect is especially effective with respect to the negative electrode containing VGCF. By including VGCF, cycle characteristics, capacity, and current characteristics are improved. And from the said result, it turned out that the preferable content of the vapor growth carbon fiber in a negative mix layer is 1-5 mass%.
Thus, the battery characteristics can be improved by the binder containing PAN.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は実施の形態および実施例に限定されず、種々の変形が可能である。例えば、上記実施の形態および実施例では、巻回構造を有する二次電池を具体的に挙げて説明したが、本発明は、コイン型、シート型、ボタン型あるいは角型などの外装部材を用いた他の形状を有する二次電池、または正極および負極を複数積層した積層構造を有する二次電池についても同様に適用することができる。   Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the embodiments and examples, and various modifications can be made. For example, in the above embodiments and examples, the secondary battery having a winding structure has been specifically described, but the present invention uses an exterior member such as a coin type, a sheet type, a button type, or a square type. The present invention can be similarly applied to secondary batteries having other shapes, or secondary batteries having a stacked structure in which a plurality of positive and negative electrodes are stacked.

11…負極端子、12…正極端子、20…電池素子、21…負極、21A…負極集電体、21B…負極合剤層、22…正極、22A…正極集電体、22B…正極合剤層、23…ゲル状非水電解質層、24…セパレータ、25…保護テープ、30…外装部材、31…密着フィルム DESCRIPTION OF SYMBOLS 11 ... Negative electrode terminal, 12 ... Positive electrode terminal, 20 ... Battery element, 21 ... Negative electrode, 21A ... Negative electrode collector, 21B ... Negative electrode mixture layer, 22 ... Positive electrode, 22A ... Positive electrode collector, 22B ... Positive electrode mixture layer , 23 ... Gel-like non-aqueous electrolyte layer, 24 ... Separator, 25 ... Protective tape, 30 ... Exterior member, 31 ... Adhesive film

Claims (11)

負極集電体上に、負極活物質と、フッ化ビニリデンを繰り返し単位として含む重合体とアクリロニトリルを繰り返し単位として含む重合体とからなる結着剤と、気相成長炭素繊維とを含む負極合
剤層を有し、
上記結着剤の合計含有量が8質量%以上であり、
上記負極集電体と上記負極合剤層との剥離強度が77N/m以上である、負極。
A negative electrode mixture comprising, on a negative electrode current collector, a negative electrode active material, a binder comprising a polymer containing vinylidene fluoride as a repeating unit and a polymer containing acrylonitrile as a repeating unit, and vapor grown carbon fiber Has a layer,
The total content of the binder is 8% by mass or more,
A negative electrode having a peel strength between the negative electrode current collector and the negative electrode mixture layer of 77 N / m or more.
上記結着剤の合計含有量に対する、上記アクリロニトリルを繰り返し単位として含む重合体の含有量が1〜20質量%である、請求項1に記載の負極。   2. The negative electrode according to claim 1, wherein the content of the polymer containing the acrylonitrile as a repeating unit with respect to the total content of the binder is 1 to 20% by mass. 上記気相成長炭素繊維の平均繊維長が10〜20μmである、請求項1または2に記載の負極。   The negative electrode according to claim 1 or 2, wherein the vapor grown carbon fiber has an average fiber length of 10 to 20 µm. 上記負極合剤層における上記気相成長炭素繊維の含有量が1〜5質量%である、請求項1乃至3のいずれか一に記載の負極。   The negative electrode according to any one of claims 1 to 3, wherein a content of the vapor-grown carbon fiber in the negative electrode mixture layer is 1 to 5% by mass. 正極、負極および電解質を備えた二次電池であって、
前記負極は、負極集電体上に、負極活物質と、フッ化ビニリデンを繰り返し単位として含む重合体とアクリロニトリルを繰り返し単位として含む重合体とからなる結着剤と、気相成長炭素繊維とを含む負極合剤層を有し、
上記結着剤の合計含有量が8質量%以上であり、
上記負極集電体と上記負極合剤層との剥離強度が77N/m以上である、二次電池。
A secondary battery comprising a positive electrode, a negative electrode and an electrolyte,
The negative electrode comprises, on a negative electrode current collector, a negative electrode active material, a binder composed of a polymer containing vinylidene fluoride as a repeating unit and a polymer containing acrylonitrile as a repeating unit, and vapor-grown carbon fiber. Having a negative electrode mixture layer containing,
The total content of the binder is 8% by mass or more,
A secondary battery, wherein a peel strength between the negative electrode current collector and the negative electrode mixture layer is 77 N / m or more.
上記結着剤の合計含有量に対する、上記アクリロニトリルを繰り返し単位として含む重合体の含有量が1〜20質量%である、請求項5に記載の二次電池。   The secondary battery according to claim 5, wherein the content of the polymer containing the acrylonitrile as a repeating unit with respect to the total content of the binder is 1 to 20% by mass. 上記気相成長炭素繊維の平均繊維長が10〜20μmである、請求項5または6に記載の二次電池。   The secondary battery according to claim 5 or 6, wherein an average fiber length of the vapor grown carbon fiber is 10 to 20 µm. 上記負極合剤層における上記気相成長炭素繊維の含有量が1〜5質量%である、請求項5乃至7のいずれか一に記載の二次電池。   The secondary battery as described in any one of Claims 5 thru | or 7 whose content of the said vapor growth carbon fiber in the said negative mix layer is 1-5 mass%. 上記電解質はフッ素系高分子化合物を含有する、請求項5乃至9のいずれか一に記載の二次電池。   The secondary battery according to claim 5, wherein the electrolyte contains a fluorine-based polymer compound. 上記フッ素系高分子化合物が、ヘキサフルオロプロピレンを含むフッ化ビニリデン−ヘキサフルオロプロピレンの共重合体である、請求項9に記載の二次電池。   The secondary battery according to claim 9, wherein the fluorine-based polymer compound is a vinylidene fluoride-hexafluoropropylene copolymer containing hexafluoropropylene. 上記ヘキサフルオロプロピレンを3〜7.5質量%含む、請求項10に記載の二次電池。   The secondary battery according to claim 10, comprising 3 to 7.5% by mass of the hexafluoropropylene.
JP2014228697A 2014-11-11 2014-11-11 Negative electrode and non-aqueous electrolyte secondary battery Active JP5817903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014228697A JP5817903B2 (en) 2014-11-11 2014-11-11 Negative electrode and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014228697A JP5817903B2 (en) 2014-11-11 2014-11-11 Negative electrode and non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009094075A Division JP2010244936A (en) 2009-04-08 2009-04-08 Negative electrode, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015053283A true JP2015053283A (en) 2015-03-19
JP5817903B2 JP5817903B2 (en) 2015-11-18

Family

ID=52702131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014228697A Active JP5817903B2 (en) 2014-11-11 2014-11-11 Negative electrode and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5817903B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052701A (en) * 2016-09-22 2019-05-16 쥐알에스티 인터내셔널 리미티드 Drying method of electrode assembly
KR20190052702A (en) * 2016-09-22 2019-05-16 쥐알에스티 인터내셔널 리미티드 Drying method of electrode assembly
CN114551786A (en) * 2022-02-07 2022-05-27 大连中比动力电池有限公司 Large-size cylindrical lithium ion secondary battery pole piece and preparation method thereof
WO2024011563A1 (en) * 2022-07-15 2024-01-18 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack, and electrical device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294415A (en) * 2006-03-31 2007-11-08 Sony Corp Nonaqueous electrolyte secondary battery
JP2008293719A (en) * 2007-05-23 2008-12-04 Sony Corp Gelatinous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294415A (en) * 2006-03-31 2007-11-08 Sony Corp Nonaqueous electrolyte secondary battery
JP2008293719A (en) * 2007-05-23 2008-12-04 Sony Corp Gelatinous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052701A (en) * 2016-09-22 2019-05-16 쥐알에스티 인터내셔널 리미티드 Drying method of electrode assembly
KR20190052702A (en) * 2016-09-22 2019-05-16 쥐알에스티 인터내셔널 리미티드 Drying method of electrode assembly
KR102257096B1 (en) * 2016-09-22 2021-05-27 쥐알에스티 인터내셔널 리미티드 Drying method of electrode assembly
KR102257097B1 (en) * 2016-09-22 2021-05-27 쥐알에스티 인터내셔널 리미티드 Drying method of electrode assembly
CN114551786A (en) * 2022-02-07 2022-05-27 大连中比动力电池有限公司 Large-size cylindrical lithium ion secondary battery pole piece and preparation method thereof
WO2024011563A1 (en) * 2022-07-15 2024-01-18 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack, and electrical device

Also Published As

Publication number Publication date
JP5817903B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
CN105703006B (en) Electrolyte and negative pole structure
JP3661945B2 (en) Positive electrode for secondary battery and secondary battery provided with the same
JP4883025B2 (en) Secondary battery
JP4793378B2 (en) Non-aqueous electrolyte battery
US8603673B2 (en) Negative electrode comprising vapor grown carbon fiber and polymer materials and nonaqueous electrolyte secondary battery
JP4293205B2 (en) battery
JP4968183B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP4561843B2 (en) Nonaqueous electrolyte battery and negative electrode
KR20070079574A (en) Non-aqueous solvent, non-aqueous electrolyte compositions, and non-aqueous electrolyte secondary battery
JP4952658B2 (en) Battery element exterior member and non-aqueous electrolyte secondary battery using the same
JP2016505203A (en) Negative electrode for secondary battery and lithium secondary battery including the same
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JP2008047398A (en) Nonaqueous electrolyte secondary battery
JP5817903B2 (en) Negative electrode and non-aqueous electrolyte secondary battery
JP2011159506A (en) Nonaqueous secondary battery
JP4297166B2 (en) Nonaqueous electrolyte secondary battery
JP4815845B2 (en) Polymer battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2010198757A (en) Nonaqueous electrolyte composition, and nonaqueous electrolyte secondary battery
JP2010287497A (en) Positive electrode for nonaqueous electrolyte secondary battery, manufacturing method of positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2007012559A (en) Battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
KR20090045069A (en) Secondary battery
JP2007194104A (en) Gelatinous electrolyte battery
JP2009289662A (en) Wound electrode body, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R151 Written notification of patent or utility model registration

Ref document number: 5817903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250