JP2015051417A - Sludge treatment system and method - Google Patents

Sludge treatment system and method Download PDF

Info

Publication number
JP2015051417A
JP2015051417A JP2013186655A JP2013186655A JP2015051417A JP 2015051417 A JP2015051417 A JP 2015051417A JP 2013186655 A JP2013186655 A JP 2013186655A JP 2013186655 A JP2013186655 A JP 2013186655A JP 2015051417 A JP2015051417 A JP 2015051417A
Authority
JP
Japan
Prior art keywords
sludge
heat
digestion
gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013186655A
Other languages
Japanese (ja)
Other versions
JP6211356B2 (en
JP2015051417A5 (en
Inventor
穣 大島
Minoru Oshima
穣 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2013186655A priority Critical patent/JP6211356B2/en
Publication of JP2015051417A publication Critical patent/JP2015051417A/en
Publication of JP2015051417A5 publication Critical patent/JP2015051417A5/ja
Application granted granted Critical
Publication of JP6211356B2 publication Critical patent/JP6211356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

PROBLEM TO BE SOLVED: To provide a sludge treatment system and method which can reduce the amount of auxiliary fuel used in the whole system, enable miniaturization of equipment, and can reduce the exhaust amount of CO.SOLUTION: A sludge treatment system includes: a digestion tank 1 into which sludge having a total solids (TS) concentration of 4-12 wt.% is introduced and which anaerobically digests the sludge to generate digested sludge and digestion gas containing methane gas; a dehydrator 3 which dehydrates the digested sludge to obtain a dehydrated cake; a dryer 4 which dries the dehydrated cake to obtain dried sludge; a heating device 2 which heats the digestion tank 1 using the digestion gas; a heat supply device 5 which supplies heat to the dryer 4 using the digestion gas; and digestion gas supply lines GL1-GL3 which can supply the digestion gas generated in the digestion tank 1 to the heating device 2 and the heat supply device 5. The amount per day of heat which can be produced by the digestion gas generated from the digestion tank 1 is larger than the sum of the necessary amount per day of heat required for heating the digestion tank 1 and the necessary amount per day of heat required for drying the dehydrated cake by the dryer 4.

Description

本発明は、汚泥処理システム及び汚泥処理方法に関する。   The present invention relates to a sludge treatment system and a sludge treatment method.

廃水処理施設などで発生する汚泥を発酵させてメタンガスを含む消化ガスを発生させ、この消化ガスを発電機の燃料などに有効利用する技術が知られている。例えば、特開2002−310419号公報(特許文献1)では、有機物発酵によるメタンガスを含む消化ガスを発電施設の燃焼器に投入することによって電力を得て、熱分解炉の追い炊きバーナーに添加して燃焼させることにより、熱分解炉の熱源を補う技術が開示されている。   A technology is known in which sludge generated in a wastewater treatment facility is fermented to generate digestion gas containing methane gas, and the digestion gas is effectively used as a fuel for a generator. For example, in Japanese Patent Laid-Open No. 2002-310419 (Patent Document 1), electric power is obtained by introducing digestion gas containing methane gas from organic fermentation into a combustor of a power generation facility, and is added to a reheating furnace for a pyrolysis furnace. The technology which supplements the heat source of a pyrolysis furnace by burning is disclosed.

特開2004−66094号公報(特許文献2)には、メタン発酵により得られた消化ガスを発電に利用するとともにガス発電で発生した排熱を乾燥機の熱源として利用する技術が開示されている。特開2007−260538号公報(特許文献3)には、液状有機物をメタン発酵処理してメタン発酵ガスを生成し、生成したメタン発酵ガスを発電用燃料等として供給するための技術が開示されている。   Japanese Patent Application Laid-Open No. 2004-66094 (Patent Document 2) discloses a technique of using digestion gas obtained by methane fermentation for power generation and using exhaust heat generated by gas power generation as a heat source of a dryer. . Japanese Patent Application Laid-Open No. 2007-260538 (Patent Document 3) discloses a technique for producing a methane fermentation gas by subjecting a liquid organic material to a methane fermentation treatment and supplying the produced methane fermentation gas as a fuel for power generation or the like. Yes.

特開2004−284917号公報(特許文献4)及び特開2005−319373号公報(特許文献5)には、メタン発酵によって発生する消化ガスを炭化処理における燃料として使用する技術が開示されている。   Japanese Patent Application Laid-Open No. 2004-284817 (Patent Document 4) and Japanese Patent Application Laid-Open No. 2005-319373 (Patent Document 5) disclose a technique of using digestion gas generated by methane fermentation as a fuel in carbonization.

嫌気性消化設備を小型化可能な技術として、国際公開第2012/077778号(特許文献6)及び国際公開第2012/147467号(特許文献7)が提案されている。特許文献6及び7の技術によれば、汚泥濃度4〜12wt%もの高濃度の汚泥濃縮物を短時間で嫌気性消化できるため、消化槽容量を縮小でき、設備の小型化が可能となる。   As a technology capable of reducing the size of the anaerobic digestion facility, International Publication No. 2012/077778 (Patent Document 6) and International Publication No. 2012/147467 (Patent Document 7) have been proposed. According to the techniques of Patent Documents 6 and 7, since a sludge concentrate having a high sludge concentration of 4 to 12 wt% can be anaerobically digested in a short time, the digester capacity can be reduced and the equipment can be downsized.

特開2002−310419号公報JP 2002-310419 A 特開2004−66094号公報JP 2004-66094 A 特開2007−260538号公報JP 2007-260538 A 特開2004−284917号公報Japanese Patent Laid-Open No. 2004-284817 特開2005−319373号公報JP 2005-319373 A 国際公開第2012/077778号International Publication No. 2012/077778 国際公開第2012/147467号International Publication No. 2012/147467

しかしながら、汚泥から発生する消化ガスを有効利用するための技術はまだ改善の余地がある。例えば、特許文献1〜6に記載されるような従来のメタン発酵処理技術では、汚泥を処理するために大容量の嫌気性消化設備を利用していたため、大容量の消化設備を加温するために多くの補助燃料を要していた。   However, there is still room for improvement in technology for effectively using digestion gas generated from sludge. For example, in the conventional methane fermentation treatment technology as described in Patent Documents 1 to 6, since a large-capacity anaerobic digestion facility is used to treat sludge, a large-capacity digestion facility is heated. Needed a lot of auxiliary fuel.

また、特許文献6及び7に記載された発明も、システム全体の補助燃料を少なくするための具体的な考察が不足している。例えば、特許文献7では、汚泥を簡易に高濃度に濃縮する技術については詳述されているが、汚泥から得られるバイオガスの用途については具体的言及が無い。特許文献6では、嫌気性消化装置から発生するバイオガスをガスタービン、バイオガスボイラ、ガス燈、乾燥機熱源などに利用可能であることが一応示唆されてはいるが、システム内の補助燃料を低減するための具体的対策は講じられていない。   In addition, the inventions described in Patent Documents 6 and 7 also lack specific considerations for reducing auxiliary fuel in the entire system. For example, Patent Document 7 describes in detail the technology for easily concentrating sludge to a high concentration, but there is no specific mention about the use of biogas obtained from sludge. Patent Document 6 suggests that biogas generated from an anaerobic digester can be used for gas turbines, biogas boilers, gas tanks, dryer heat sources, etc., but reduces auxiliary fuel in the system. No specific measures have been taken to do this.

上記課題を鑑み、本発明は、システム内全体で用いられる補助燃料の量を低減でき、設備の小型化が可能でCO2排出量の低減が可能な汚泥処理システム及び汚泥処理方法を提供する。 In view of the above problems, the present invention provides a sludge treatment system and a sludge treatment method capable of reducing the amount of auxiliary fuel used in the entire system, reducing the size of the equipment, and reducing CO 2 emission.

本発明者は鋭意検討を重ねた結果、従来メタン発酵に一般的に利用される汚泥よりも高濃度に濃縮した汚泥を短期間で処理可能な小型の消化槽を配置し、消化槽から得られたガスを消化槽の加温装置及び乾燥機の熱供給装置に供給する消化ガス供給ラインを設けることにより、消化槽から得られた消化ガスによって消化槽自身の加温と乾燥機の加熱に必要な熱量を賄うことができ、補助燃料の使用を低減できることを見出した。   As a result of intensive studies, the inventor has arranged a small digester capable of treating sludge concentrated at a higher concentration than sludge generally used in conventional methane fermentation in a short period of time, and is obtained from the digester. Necessary for heating the digester itself and heating the dryer by using the digestion gas obtained from the digester by providing a digestion gas supply line that supplies the heated gas to the digester heating device and dryer heat supply device It was found that a sufficient amount of heat can be covered and the use of auxiliary fuel can be reduced.

以上の知見を基礎として完成した本発明は、一側面において、TS濃度4〜12wt%の汚泥を導入し、汚泥を嫌気性消化することにより、メタンガスを含む消化ガスと消化汚泥とを発生させる消化槽と、消化汚泥を脱水して脱水ケーキを得る脱水機と、脱水ケーキを乾燥させて乾燥汚泥を得る乾燥機と、消化ガスを用いて消化槽を加温する加温装置と、消化ガスを用いて乾燥機に熱を供給する熱供給装置と、消化槽で発生した消化ガスを加温装置及び熱供給装置へ供給可能な消化ガス供給ラインとを備える汚泥処理システムであって、消化槽から発生する消化ガスにより生成可能な1日当たりの熱量が、消化槽の加温に必要な1日当たりの必要加温熱量と乾燥機による脱水ケーキの乾燥に必要な1日当たりの必要乾燥熱量との和よりも大きい汚泥処理システムである。   The present invention completed on the basis of the above knowledge, in one aspect, introduces a sludge having a TS concentration of 4 to 12 wt% and anaerobically digests the sludge to generate digestion gas containing methane gas and digested sludge. A tank, a dehydrator for dewatering digested sludge to obtain a dehydrated cake, a dryer for drying dehydrated cake to obtain dry sludge, a heating device for heating the digestion tank using digestion gas, and a digestion gas A sludge treatment system comprising a heat supply device for supplying heat to a dryer and a digestion gas supply line capable of supplying digestion gas generated in the digestion tank to a heating device and a heat supply device, from the digestion tank The amount of heat per day that can be generated from the generated digestion gas is the sum of the amount of heat required per day required for heating the digester and the amount of heat required per day required for drying the dehydrated cake by the dryer. Also large It is a sludge treatment system.

本発明に係る汚泥処理システムは一実施態様において、消化槽の水理学的滞留時間が20日以下である。   In one embodiment, the sludge treatment system according to the present invention has a hydraulic retention time of 20 days or less in the digester.

本発明に係る汚泥処理システムは別の一実施態様において、消化槽における汚泥の分解率が50〜60%である。   In another embodiment, the sludge treatment system according to the present invention has a sludge decomposition rate of 50 to 60% in the digestion tank.

本発明に係る汚泥処理システムは更に別の一実施態様において、脱水機が、含水率70〜83%の脱水ケーキを生成させる。   In yet another embodiment of the sludge treatment system according to the present invention, the dehydrator generates a dehydrated cake having a moisture content of 70 to 83%.

本発明に係る汚泥処理システムは更に別の一実施態様において、乾燥機の乾燥効率が50%以上である。   In still another embodiment of the sludge treatment system according to the present invention, the drying efficiency of the dryer is 50% or more.

本発明に係る汚泥処理システムは更に別の一実施態様において、消化ガス供給ラインが、加温装置と熱供給装置とに供給する消化ガス以外の余剰の消化ガスを発電設備に供給するための供給ラインを備える。   In still another embodiment, the sludge treatment system according to the present invention is a supply for supplying surplus digestion gas other than digestion gas supplied to the heating device and the heat supply device to the power generation facility by the digestion gas supply line. With line.

本発明に係る汚泥処理システムは更に別の一実施態様において、乾燥汚泥を熱供給装置へ投入するための乾燥汚泥投入ラインを更に備える。   In yet another embodiment, the sludge treatment system according to the present invention further includes a dry sludge charging line for charging the dried sludge into the heat supply device.

本発明に係る汚泥処理システムは更に別の一実施態様において、乾燥機から排出される排気ガスを処理可能な曝気槽を更に備える。   In yet another embodiment, the sludge treatment system according to the present invention further includes an aeration tank capable of treating the exhaust gas discharged from the dryer.

本発明に係る汚泥処理システムは更に別の一実施態様において、消化槽で発生した消化ガスを貯蔵するガスホルダと、必要加温熱量を外気温に基づいて算出し、必要乾燥熱量を乾燥汚泥の含水率と乾燥機の乾燥効率に基づいて算出し、算出された必要加温熱量及び必要乾燥熱量に対応する換算消化ガス量をそれぞれ換算し、換算消化ガス量に基づいて、ガスホルダから消化ガス供給ラインを介して加温装置及び熱供給装置へそれぞれ供給する消化ガス量を制御する制御手段とを更に備える。   In yet another embodiment, the sludge treatment system according to the present invention is a gas holder for storing digestion gas generated in a digestion tank, calculates a required heating heat amount based on the outside air temperature, and calculates the required drying heat amount with water content of the dried sludge. The calculated digestion gas amount corresponding to the calculated required heating calorie and the required drying calorie is converted based on the rate and the drying efficiency of the dryer, respectively, and the digestion gas supply line from the gas holder is calculated based on the converted digestion gas amount And a control means for controlling the amount of digestion gas supplied to the heating device and the heat supply device respectively.

本発明は別の一側面において、TS濃度4〜12wt%の汚泥を導入し、汚泥を嫌気性消化することにより、メタンガスを含む消化ガスと消化汚泥とを得る消化槽と、消化汚泥を脱水して脱水ケーキを得る脱水機と、脱水ケーキを炭化させて炭化汚泥を得る炭化設備と、消化ガスを用いて消化槽を加温する加温装置と、消化ガスを用いて炭化設備に熱を供給する熱供給装置と、消化槽で発生した消化ガスを加温装置及び熱供給装置へ供給可能な消化ガス供給ラインとを備える汚泥処理システムであって、消化槽から発生する消化ガスにより生成可能な1日当たりの熱量が、消化槽の加温に必要な1日当たりの必要加温熱量と、炭化設備による脱水ケーキの炭化に必要な1日当たりの必要炭化熱量との和よりも大きい汚泥処理システムである。   In another aspect of the present invention, a sludge having a TS concentration of 4 to 12 wt% is introduced, and the sludge is subjected to anaerobic digestion to obtain a digestion tank containing methane gas and digested sludge, and the digested sludge is dehydrated. Dehydrator to obtain dehydrated cake, carbonization equipment to carbonize dehydrated cake to obtain carbonized sludge, heating device to heat digestion tank using digestion gas, and supply heat to carbonization equipment using digestion gas And a digestion gas supply line capable of supplying digestion gas generated in the digestion tank to the heating device and the heat supply apparatus, and can be generated by digestion gas generated from the digestion tank This is a sludge treatment system in which the amount of heat per day is greater than the sum of the amount of heat required per day required for heating the digester and the amount of heat required per day required for carbonization of the dehydrated cake by the carbonization facility. .

本発明に係る汚泥処理システムは更に別の一実施態様において、消化槽の水理学的滞留時間が20日以下である。   In yet another embodiment of the sludge treatment system according to the present invention, the hydraulic residence time of the digester is 20 days or less.

本発明に係る汚泥処理システムは更に別の一実施態様において、脱水機が、含水率70〜83%の脱水ケーキを生成させる。   In yet another embodiment of the sludge treatment system according to the present invention, the dehydrator generates a dehydrated cake having a moisture content of 70 to 83%.

本発明に係る汚泥処理システムは更に別の一実施態様において、消化ガス供給ラインが、加温装置と熱供給装置とに供給する消化ガス以外の余剰の消化ガスを発電設備に供給するための発電供給ラインを備える。   In yet another embodiment of the sludge treatment system according to the present invention, the digestion gas supply line generates power for supplying surplus digestion gas other than the digestion gas supplied to the heating device and the heat supply device to the power generation facility. Provide a supply line.

本発明に係る汚泥処理システムは更に別の一実施態様において、炭化汚泥を熱供給装置へ投入するための炭化汚泥投入ラインを更に備える。   In yet another embodiment, the sludge treatment system according to the present invention further includes a carbonized sludge charging line for charging the carbonized sludge into the heat supply device.

本発明に係る汚泥処理システムは更に別の一実施態様において、炭化設備から排出される排気ガスを処理可能な曝気槽を更に備える。   In yet another embodiment, the sludge treatment system according to the present invention further includes an aeration tank capable of treating the exhaust gas discharged from the carbonization facility.

本発明に係る汚泥処理システムは更に別の一実施態様において、消化槽で発生した消化ガスを貯蔵するガスホルダと、必要加温熱量を外気温に基づいて算出し、必要炭化熱量を脱水ケーキの含水率に基づいて算出し、算出された必要加温熱量及び必要炭化熱量に対応する換算消化ガス量をそれぞれ算出し、換算消化ガス量に基づいて、ガスホルダから消化ガス供給ラインを介して加温装置及び熱供給装置へそれぞれ供給する消化ガス量を制御する制御手段とを更に備える。   In yet another embodiment, the sludge treatment system according to the present invention is a gas holder for storing digestion gas generated in a digestion tank, calculates a required heating calorific value based on the outside air temperature, and calculates the required carbonization calorific value as water content of the dehydrated cake. The calculated digestion gas amount corresponding to the calculated required heating calorific value and the required carbonization calorie amount is calculated based on the rate, respectively, and the heating device from the gas holder through the digestion gas supply line based on the converted digestion gas amount And a control means for controlling the amount of digestion gas supplied to each of the heat supply devices.

本発明は更に別の一側面において、消化槽内にTS濃度4〜12wt%の汚泥を導入し、汚泥を嫌気性消化することにより、メタンガスを含む消化ガスと消化汚泥とを発生させることと、脱水機により消化汚泥を脱水して脱水ケーキを生成させることと、乾燥機により脱水ケーキを乾燥させて乾燥汚泥を生成させることと、加温装置により消化ガスを用いて消化槽を加温することと、熱供給装置により消化ガスを用いて乾燥機に熱を供給することと、消化槽で発生した消化ガスを、消化ガス供給ラインを通じて加温装置及び熱供給装置へ供給することを含む汚泥処理方法であって、消化槽から発生する消化ガスにより生成可能な1日当たりの熱量が、消化槽の加温に必要な1日当たりの必要加温熱量と乾燥機による脱水ケーキの乾燥に必要な1日当たりの必要乾燥熱量との和よりも大きい汚泥処理方法である。   Still another aspect of the present invention is to introduce a sludge having a TS concentration of 4 to 12 wt% into the digestion tank and anaerobically digest the sludge, thereby generating digested gas containing methane gas and digested sludge, Dewatering digested sludge with a dehydrator to produce a dehydrated cake, drying the dehydrated cake with a dryer to produce dry sludge, and heating the digester with digestion gas with a heating device Sludge treatment including supplying heat to the dryer using digestion gas by a heat supply device, and supplying digestion gas generated in the digestion tank to the heating device and the heat supply device through the digestion gas supply line The amount of heat per day that can be generated by the digestion gas generated from the digester is required for heating the digester and the required amount of heat per day for drying the dehydrated cake by the dryer. A great sludge processing method than the sum of the daily required drying heat.

本発明は更に別の一側面において、消化槽内にTS濃度4〜12wt%の汚泥を導入し、汚泥を嫌気性消化することにより、メタンガスを含む消化ガスと消化汚泥とを発生させることと、脱水機により消化汚泥を脱水して脱水ケーキを生成させることと、炭化設備により脱水ケーキを炭化させて炭化汚泥を生成させることと、加温装置により消化ガスを用いて消化槽を加温することと、熱供給装置により消化ガスを用いて炭化設備に熱を供給することと、消化槽で発生した消化ガスを、消化ガス供給ラインを通じて加温装置及び熱供給装置へ供給することを含む汚泥処理方法であって、消化槽から発生する消化ガスにより生成可能な1日当たりの熱量が、消化槽の加温に必要な1日当たりの必要加温熱量と炭化設備による脱水ケーキの炭化に必要な1日当たりの必要乾燥熱量との和よりも大きい汚泥処理方法である。   Still another aspect of the present invention is to introduce a sludge having a TS concentration of 4 to 12 wt% into the digestion tank and anaerobically digest the sludge, thereby generating digested gas containing methane gas and digested sludge, Dewatering digested sludge with a dehydrator to produce a dehydrated cake, carbonizing the dehydrated cake with a carbonization facility to produce carbonized sludge, and heating the digester with digestion gas with a heating device Sludge treatment including supplying heat to the carbonization facility using digestion gas by a heat supply device, and supplying digestion gas generated in the digestion tank to a heating device and a heat supply device through a digestion gas supply line The amount of heat per day that can be generated by the digestion gas generated from the digester is used for the required amount of heat per day required for heating the digester and the carbonization of the dehydrated cake by the carbonization equipment. A great sludge processing method than the sum of the principal of daily required drying heat.

本発明に係る汚泥処理方法は一実施態様において、汚泥の水理学的滞留時間を20日以下で処理する。   In one embodiment, the sludge treatment method according to the present invention treats the sludge with a hydraulic residence time of 20 days or less.

本発明に係る汚泥処理方法は別の一実施態様において、脱水ケーキの含水率を70〜83%に調整することを含む。   In another embodiment, the sludge treatment method according to the present invention includes adjusting the moisture content of the dewatered cake to 70 to 83%.

本発明において「%」は、特に言及がない限り「質量%」を意味する。本発明に係る汚泥処理システムは、各固有の装置間に汚泥を送るための手段、例えば、配管、ポンプ、バルブ等を適宜有することができる。   In the present invention, “%” means “% by mass” unless otherwise specified. The sludge treatment system according to the present invention can appropriately include means for sending sludge between each unique apparatus, for example, a pipe, a pump, a valve, and the like.

本発明によれば、システム内全体で用いられる補助燃料の量を低減でき、設備の小型化が可能で、CO2排出量の低減が可能な汚泥処理システム及び汚泥処理方法が得られる。 According to the present invention, it is possible to obtain a sludge treatment system and a sludge treatment method capable of reducing the amount of auxiliary fuel used in the entire system, miniaturizing equipment, and reducing CO 2 emission.

本発明の第1の実施の形態に係る汚泥処理システムの一例を示す概略図である。It is the schematic which shows an example of the sludge processing system which concerns on the 1st Embodiment of this invention. 図1の制御手段の制御アルゴリズムの一例を示すフロー図である。It is a flowchart which shows an example of the control algorithm of the control means of FIG. 第1の実施の形態に係る汚泥処理システムを年間を通して運転し、乾燥効率を70%と仮定した場合に、消化槽に供給すべき好適な供給汚泥濃度と脱水ケーキ含水率との関係を表す表(その1)である。The table | surface showing the relationship between the suitable supply sludge density | concentration which should be supplied to a digester, and a dehydrated cake moisture content, when the sludge treatment system which concerns on 1st Embodiment is drive | operated throughout the year and drying efficiency is assumed 70%. (Part 1). 第1の実施の形態に係る汚泥処理システムを年間を通して運転し、乾燥効率を70%と仮定した場合に、消化槽に供給すべき好適な供給汚泥濃度と脱水ケーキ含水率との関係を表す表(その2)である。The table | surface showing the relationship between the suitable supply sludge density | concentration which should be supplied to a digester, and a dehydrated cake moisture content, when the sludge treatment system which concerns on 1st Embodiment is drive | operated throughout the year and drying efficiency is assumed 70%. (Part 2). 第1の実施の形態に係る汚泥処理システムを年間を通して運転し、乾燥効率を70%と仮定した場合に、消化槽に供給すべき好適な供給汚泥濃度と脱水ケーキ含水率との関係を表す表(その3)である。The table | surface showing the relationship between the suitable supply sludge density | concentration which should be supplied to a digester, and a dehydrated cake moisture content, when the sludge treatment system which concerns on 1st Embodiment is drive | operated throughout the year and drying efficiency is assumed 70%. (Part 3). 第1の実施の形態に係る汚泥処理システムを年間を通して運転し、乾燥効率を60%と仮定した場合に、消化槽に供給すべき好適な供給汚泥濃度と脱水ケーキ含水率との関係を表す表(その1)である。The table | surface showing the relationship between the suitable supply sludge density | concentration which should be supplied to a digester, and a dehydrated cake moisture content, when the sludge treatment system which concerns on 1st Embodiment is drive | operated throughout the year and drying efficiency is assumed to be 60%. (Part 1). 第1の実施の形態に係る汚泥処理システムを年間を通して運転し、乾燥効率を60%と仮定した場合に、消化槽に供給すべき好適な供給汚泥濃度と脱水ケーキ含水率との関係を表す表(その2)である。The table | surface showing the relationship between the suitable supply sludge density | concentration which should be supplied to a digester, and a dehydrated cake moisture content, when the sludge treatment system which concerns on 1st Embodiment is drive | operated throughout the year and drying efficiency is assumed to be 60%. (Part 2). 第1の実施の形態に係る汚泥処理システムを年間を通して運転し、乾燥効率を60%と仮定した場合に、消化槽に供給すべき好適な供給汚泥濃度と脱水ケーキ含水率との関係を表す表(その3)である。The table | surface showing the relationship between the suitable supply sludge density | concentration which should be supplied to a digester, and a dehydrated cake moisture content, when the sludge treatment system which concerns on 1st Embodiment is drive | operated throughout the year and drying efficiency is assumed to be 60%. (Part 3). 第1の実施の形態に係る汚泥処理システムを年間を通して運転し、乾燥効率を50%と仮定した場合に、消化槽に供給すべき好適な供給汚泥濃度と脱水ケーキ含水率との関係を表す表(その1)である。The table | surface showing the relationship between the suitable supply sludge density | concentration which should be supplied to a digester, and a dehydrated cake moisture content, when the sludge treatment system which concerns on 1st Embodiment is drive | operated throughout the year and drying efficiency is assumed to be 50%. (Part 1). 第1の実施の形態に係る汚泥処理システムを年間を通して運転し、乾燥効率を50%と仮定した場合に、消化槽に供給すべき好適な供給汚泥濃度と脱水ケーキ含水率との関係を表す表(その2)である。The table | surface showing the relationship between the suitable supply sludge density | concentration which should be supplied to a digester, and a dehydrated cake moisture content, when the sludge treatment system which concerns on 1st Embodiment is drive | operated throughout the year and drying efficiency is assumed to be 50%. (Part 2). 第1の実施の形態に係る汚泥処理システムを年間を通して運転し、乾燥効率を50%と仮定した場合に、消化槽に供給すべき好適な供給汚泥濃度と脱水ケーキ含水率との関係を表す表(その3)である。The table | surface showing the relationship between the suitable supply sludge density | concentration which should be supplied to a digester, and a dehydrated cake moisture content, when the sludge treatment system which concerns on 1st Embodiment is drive | operated throughout the year and drying efficiency is assumed to be 50%. (Part 3). 図1の消化槽に従来の汚泥処理の消化槽を適用した場合の試算結果を表す表である。It is a table | surface showing the trial calculation result at the time of applying the digester tank of the conventional sludge process to the digester tank of FIG. 本発明の第2の実施の形態に掛かる汚泥処理システムの一例を表す概略図である。It is the schematic showing an example of the sludge processing system concerning the 2nd Embodiment of this invention. 図13の制御手段の制御アルゴリズムの一例を示すフロー図である。It is a flowchart which shows an example of the control algorithm of the control means of FIG.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the structure, arrangement, etc. of components as follows. Not what you want.

(第1の実施の形態)
<汚泥処理システム>
本発明の第1の実施の形態に係る汚泥処理システムは、図1に示すように、汚泥を嫌気性消化することによりメタンガスを含む消化ガスと消化汚泥とを発生させる消化槽1と、消化槽1を加温する加温装置2と、消化汚泥を脱水して脱水ケーキを得る脱水機3と、脱水ケーキを乾燥させて乾燥汚泥を得る乾燥機4と、乾燥機4に熱を供給する熱供給装置5と、消化槽1で発生した消化ガスを加温装置2及び熱供給装置5へ供給可能な消化ガス供給ラインGL(GL1〜GL3)を備える。
(First embodiment)
<Sludge treatment system>
As shown in FIG. 1, the sludge treatment system according to the first embodiment of the present invention includes a digester tank 1 that generates digested gas containing methane gas and digested sludge by anaerobically digesting sludge, and a digester tank. Heating device 2 for heating 1, dehydrator 3 for dewatering digested sludge to obtain a dehydrated cake, dryer 4 for drying dehydrated cake to obtain dry sludge, and heat for supplying heat to dryer 4 A digestion gas supply line GL (GL1 to GL3) capable of supplying digestion gas generated in the digestion tank 1 to the heating device 2 and the heat supply device 5 is provided.

本発明において「汚泥」とは、下水、屎尿、厨芥などの有機性物質を処理する工程で排出される汚泥を意味する。汚泥としては、廃水処理設備の最初沈殿池から発生する初沈汚泥と最終沈殿池から発生する余剰汚泥とから選択される少なくとも1種であることが好ましく、両者からの混合汚泥であることが更に好ましい。   In the present invention, “sludge” means sludge discharged in a process of treating organic substances such as sewage, manure, and soot. The sludge is preferably at least one selected from an initial sludge generated from the first sedimentation basin of the wastewater treatment facility and an excess sludge generated from the final sedimentation basin, and is further a mixed sludge from both. preferable.

汚泥は、貯留槽に貯留され、重力濃縮されて得られた汚泥であることが好ましい。汚泥には、ポリ硫酸第二鉄、PAC、硫酸バンドなどの無機系凝集剤または有機高分子凝集剤等が単独又は組み合わせて添加されることが好ましい。廃水処理場の系外から搬入した有機性廃液又は廃棄物も汚泥として更に含むことができる。外部から搬入した有機性廃液又は廃棄物とは、工場、下水処理場等の設備から排出される有機化合物を少なくとも含み、汚泥、草本類などを含んでもよい。   The sludge is preferably sludge stored in a storage tank and obtained by gravity concentration. It is preferable to add inorganic flocculants such as polyferric sulfate, PAC, sulfuric acid band, or organic polymer flocculants to the sludge alone or in combination. Organic waste liquid or waste carried from outside the wastewater treatment plant can be further included as sludge. The organic waste liquid or waste brought in from the outside includes at least an organic compound discharged from facilities such as factories and sewage treatment plants, and may include sludge, herbs, and the like.

消化槽1としては、特に限定されないが、完全混合型消化槽を用いることが好ましい。嫌気性消化槽は、槽内液の均質化や温度分布の均一化とともに、スカムの発生を防止するために撹拌が必須である。撹拌方法としては、機械撹拌方式を用いることが最も効果的であるが、設備環境や処理条件に応じて、ポンプ撹拌方式又はガス撹拌方式を付属させることも効果的である。これらの要件を備えた水密かつ気密な構造の消化槽1であれば、鉄筋コンクリート造または鋼板製のいずれで製造されてもよく、既設の嫌気性消化槽を処理条件に合わせて改造又は更新することによっても適用可能である。   Although it does not specifically limit as the digester 1, It is preferable to use a complete mixed digester. In an anaerobic digestion tank, stirring is indispensable for homogenizing the liquid in the tank and uniforming the temperature distribution and preventing the occurrence of scum. As the stirring method, it is most effective to use a mechanical stirring method, but it is also effective to attach a pump stirring method or a gas stirring method depending on the equipment environment and processing conditions. If it is a digestion tank 1 having a watertight and airtight structure with these requirements, it may be made of either reinforced concrete or steel plate, and the existing anaerobic digester should be modified or renewed according to the processing conditions. It is also applicable.

図1の消化槽1内には、TS(Total Solids)濃度が4〜12wt%、好ましくは6〜12wt%の汚泥が導入される。現在一般的な汚泥の嫌気性消化技術では、供給汚泥のTS濃度は2〜3wt%であるが、本実施形態では、従来よりも高濃度なTS濃度4〜12wt%の汚泥を消化槽1へ導入することで、高濃度の汚泥を小容量で投入でき、小容量の消化槽1から多量の消化ガスを発生させることができる。   In the digester 1 of FIG. 1, sludge having a TS (Total Solids) concentration of 4 to 12 wt%, preferably 6 to 12 wt% is introduced. In the present general sludge anaerobic digestion technology, the supply sludge has a TS concentration of 2 to 3 wt%. In this embodiment, a sludge having a TS concentration of 4 to 12 wt% higher than the conventional one is supplied to the digester 1. By introducing, high-concentration sludge can be introduced in a small volume, and a large amount of digestion gas can be generated from the small-capacity digester 1.

汚泥の嫌気性消化は処理温度30〜60℃、HRT(水理学的滞留時間)20日以下、より好ましくは15日以下、更に好ましくは12日以下で処理される。この場合の汚泥の分解率は50〜60%であり、より具体的には55〜58%である。消化槽1の容量は、一般に、投入原料(汚泥)の容量とHRTにより決定される。そのため、本実施形態のようにTS濃度4〜12wt%の汚泥をHRT20日以下で実施可能な消化槽1を配置することにより、TS濃度2〜3wt%程度の汚泥を約30日かけて処理する従来の汚泥消化の消化槽よりも、消化槽1の容積を1/2〜1/8程度に縮小できるため、設置スペースを低減でき、システム全体の小型化が図られる。   The anaerobic digestion of the sludge is performed at a treatment temperature of 30 to 60 ° C. and an HRT (hydraulic residence time) of 20 days or less, more preferably 15 days or less, and even more preferably 12 days or less. In this case, the sludge decomposition rate is 50 to 60%, more specifically 55 to 58%. The capacity of the digester 1 is generally determined by the capacity of the input raw material (sludge) and HRT. Therefore, the sludge having a TS concentration of 2 to 3 wt% is treated for about 30 days by arranging the digestion tank 1 capable of implementing the sludge having a TS concentration of 4 to 12 wt% in HRT 20 days or less as in this embodiment. Since the volume of the digestion tank 1 can be reduced to about 1/2 to 1/8 of the digestion tank for conventional sludge digestion, the installation space can be reduced and the entire system can be downsized.

本発明は以下の条件に制限されるものではないが、消化槽1における汚泥の嫌気性消化は、汚泥を可溶化及び酸発酵処理する前段消化工程と、前段消化工程で処理された汚泥をメタン発酵処理して消化汚泥を調整するメタン発酵工程とにより行ってもよい。前段消化工程は、メタン発酵工程の嫌気性処理を促進する機能を有するため、その後のメタン発酵工程でのHRTを低減することができるとともに、消化ガス(バイオガス)の回収を効率化且つ安定化させ、粗浮遊物含有率を高く安定に維持し、発酵液粘度を低減させることができる。   Although this invention is not restrict | limited to the following conditions, the anaerobic digestion of the sludge in the digestion tank 1 is a methane from the first-stage digestion process which solubilizes sludge and acid-fermentation, and the sludge processed by the first-stage digestion process. You may carry out by the methane fermentation process which ferments and adjusts digested sludge. The pre-stage digestion process has a function to promote the anaerobic treatment of the methane fermentation process, so that HRT in the subsequent methane fermentation process can be reduced and the recovery of digestion gas (biogas) is made efficient and stable. It is possible to maintain the high content of the crude suspended solids stably and to reduce the viscosity of the fermentation broth.

前段消化工程は例えば処理温度30〜60℃、HRT1〜3日の条件で行うことができる。メタン発酵工程は例えば処理温度30〜60℃、HRT17日以下、より好ましくは10〜15日程度で行うことが好ましく、汚泥のSS(懸濁粒子)に対する粗浮遊物含有率が3〜20質量%、好ましくは5〜18質量%となるように調整されることが好ましい。粗浮遊物とはセルロース等の繊維状又は粒状物質等を意味する。これにより消化汚泥濃縮物の脱水性を改善し脱水ケーキの含水率低減を図ることができる。   The pre-stage digestion step can be performed, for example, under conditions of a processing temperature of 30 to 60 ° C. and an HRT of 1 to 3 days. For example, the methane fermentation step is preferably performed at a treatment temperature of 30 to 60 ° C. and an HRT of 17 days or less, more preferably about 10 to 15 days, and the content of crude suspended solids with respect to SS (suspended particles) of sludge is 3 to 20% by mass. It is preferably adjusted to 5 to 18% by mass. The coarse suspended substance means a fibrous or granular substance such as cellulose. As a result, the dewaterability of the digested sludge concentrate can be improved and the moisture content of the dewatered cake can be reduced.

消化槽1で生成された消化汚泥は脱水機3で脱水され、脱水ケーキが得られる。脱水機3としては、特に制限されず公知の装置が利用可能である。例えば、フィルタープレス機、遠心分離機、スクリュープレス機、ベルトプレス機、真空脱水機などによって消化汚泥を脱水することができる。なお、脱水ケーキの生成時に消化汚泥から分離された分離液は水処理設備9aで水処理することができる。   The digested sludge generated in the digester 1 is dehydrated by the dehydrator 3 to obtain a dehydrated cake. The dehydrator 3 is not particularly limited and a known device can be used. For example, the digested sludge can be dehydrated by a filter press machine, a centrifuge, a screw press machine, a belt press machine, a vacuum dehydrator or the like. In addition, the separation liquid separated from the digested sludge when the dehydrated cake is generated can be water-treated by the water treatment facility 9a.

一般的には、脱水機3により含水率の低い脱水ケーキを製造するほど乾燥機4での乾燥に必要な熱量を低減できる。しかしながら、消化汚泥の含水率を過度に低下させようとすると脱水時間が長くなり、処理効率が悪化する場合がある。また、汚泥が難脱水性である場合は、脱水時間を長くしても汚泥含水率が十分に下がらない場合もある。一方で、脱水ケーキの含水率が高すぎると、消化ガスによって、加温装置2による消化槽1の加温と熱供給装置5による乾燥機4の熱供給に必要な熱を全て賄い切れなくなる場合がある。   In general, the amount of heat required for drying in the dryer 4 can be reduced as the dehydrated cake having a lower moisture content is produced by the dehydrator 3. However, if the moisture content of the digested sludge is reduced excessively, the dehydration time becomes longer and the processing efficiency may deteriorate. In addition, when the sludge is difficult to dehydrate, the sludge moisture content may not be sufficiently lowered even if the dewatering time is extended. On the other hand, if the moisture content of the dehydrated cake is too high, the digestion gas cannot cover all the heat necessary for heating the digester 1 by the heating device 2 and supplying heat to the dryer 4 by the heat supply device 5. There is.

よって、消化槽1で得られた消化ガスを、加温装置2の加温及び熱供給装置5の熱供給により有効に利用するためには、脱水ケーキの含水率は83%以下とすることができ、より好ましくは81%以下、更に好ましくは79%以下である。含水率の下限値は一般的には低いほど好ましいため以下に制限されるものではないが、典型的には60%以上、より好ましくは70%以上、更に好ましくは75%以上、更に好ましくは78%以上である。   Therefore, in order to effectively use the digestion gas obtained in the digestion tank 1 by the heating of the heating device 2 and the heat supply of the heat supply device 5, the moisture content of the dehydrated cake should be 83% or less. More preferably, it is 81% or less, More preferably, it is 79% or less. The lower limit of the moisture content is generally preferably as low as possible and is not limited to the following, but is typically 60% or more, more preferably 70% or more, still more preferably 75% or more, and still more preferably 78. % Or more.

本システムによれば、脱水ケーキの含水率をそれほど低く調整しなくとも、消化槽1から得られる消化ガスの熱量によって、本システム運転時の消化槽1の加温及び乾燥機4への熱供給に必要な熱をほぼ100%まかなうことができる。これにより、加温装置2及び熱供給装置5へ供給される補助燃料は原則不要となるため、補助燃料の使用量を低減できる。   According to this system, even if the moisture content of the dehydrated cake is not adjusted so low, heating of the digester 1 and heat supply to the dryer 4 during operation of this system are performed by the amount of heat of digestion gas obtained from the digester 1. It is possible to cover almost 100% of the heat required for heating. Thereby, since the auxiliary fuel supplied to the heating device 2 and the heat supply device 5 becomes unnecessary in principle, the amount of auxiliary fuel used can be reduced.

乾燥機4では、脱水機3で生成された脱水ケーキを加熱して、含水率10〜40 %程度の乾燥汚泥を生成させる。乾燥機4としては、特に制限されず公知の装置が利用可能である。   In the dryer 4, the dehydrated cake generated in the dehydrator 3 is heated to generate dry sludge having a water content of about 10 to 40%. The dryer 4 is not particularly limited and a known device can be used.

本システムで得られる消化ガスのみにより消化槽1及び乾燥機4への熱供給を補って、補助燃料を極力使用しない態様を考慮すると、乾燥機4の乾燥効率は50%以上、より好ましくは60%以上、更に好ましくは70%以上とするのが好ましい。「乾燥効率」とは、熱供給装置5から乾燥機4に供給される熱量に対して実際の脱水ケーキに含有する水分の蒸発に必要とされる熱量の割合を意味する。   Considering a mode in which the heat supply to the digester 1 and the dryer 4 is supplemented only by the digestion gas obtained by this system and the auxiliary fuel is not used as much as possible, the drying efficiency of the dryer 4 is 50% or more, more preferably 60. % Or more, more preferably 70% or more. “Drying efficiency” means the ratio of the amount of heat required for evaporation of the water contained in the actual dehydrated cake to the amount of heat supplied from the heat supply device 5 to the dryer 4.

乾燥機4で得られた乾燥汚泥は、造粒機8により所定の形状及び粒径に造粒された後に場外搬出される。或いは、乾燥機4で得られた乾燥汚泥は、配管等で構成された乾燥汚泥ラインDSLを介して熱供給装置5へ供給されることが可能である。乾燥汚泥を熱供給装置5で使用することにより、乾燥汚泥を焼却灰とすることができるため、乾燥汚泥をすべて場外搬出する場合に比べて、乾燥汚泥の場外搬出量を減らすもしくは無くすことができ、システムの更なる効率化が図れる。また、乾燥汚泥の燃焼熱利用により消化ガスを発電等に利用できる量を増やせる等の環境面におけるシステムの更なる効率化も図れる。なお、第1の実施の形態に係る汚泥処理システムにおいては、造粒機8は必須ではなく、特に配置しなくても構わない。   The dried sludge obtained by the dryer 4 is granulated into a predetermined shape and particle size by the granulator 8 and then carried out of the field. Or the dry sludge obtained with the dryer 4 can be supplied to the heat supply apparatus 5 via the dry sludge line DSL comprised by piping etc. By using the dried sludge with the heat supply device 5, the dried sludge can be made into incinerated ash, so that the amount of dried sludge carried out of the field can be reduced or eliminated compared to the case where all the dried sludge is carried out of the field. The system can be made more efficient. Further, the efficiency of the system in terms of the environment can be improved, such as increasing the amount of digestion gas that can be used for power generation and the like by using the combustion heat of the dried sludge. In the sludge treatment system according to the first embodiment, the granulator 8 is not essential and may not be particularly arranged.

乾燥機4で発生した排ガスは、排ガス処理設備9bへ送られる。ここで、乾燥機4で発生した排ガスの一部または全部を水処理設備9aへ送ることも可能である。水処理設備9a内には曝気槽(図示せず)が設けられている。乾燥機4で発生した排ガスを水処理設備9aが具備するこの曝気槽へ導入することによって、排ガスを水処理することも可能である。   The exhaust gas generated in the dryer 4 is sent to the exhaust gas treatment facility 9b. Here, part or all of the exhaust gas generated in the dryer 4 can be sent to the water treatment facility 9a. An aeration tank (not shown) is provided in the water treatment facility 9a. By introducing the exhaust gas generated in the dryer 4 into the aeration tank provided in the water treatment facility 9a, the exhaust gas can be water-treated.

一方、図1の消化槽1の汚泥の消化によって生成された消化ガスは、配管等を介して一次精製設備11へ供給され、硫黄分等の不純物が除去される。一次精製設備11で精製された消化ガスは、配管等を介してガスホルダ12内へと供給される。ガスホルダ12は、一次精製設備11から供給された精製後の消化ガスを一時的に保持する。   On the other hand, the digestion gas produced | generated by digestion of the sludge of the digestion tank 1 of FIG. 1 is supplied to the primary purification equipment 11 via piping etc., and impurities, such as a sulfur content, are removed. The digestion gas purified by the primary purification equipment 11 is supplied into the gas holder 12 through piping or the like. The gas holder 12 temporarily holds the purified digestion gas supplied from the primary purification equipment 11.

ガスホルダ12には、消化槽1で発生した消化ガスを加温装置2へ供給可能な消化ガス供給ラインGL1と、消化槽1で発生した消化ガスを熱供給装置5へ供給可能な消化ガス供給ラインGL2と、加温装置2と熱供給装置5とに供給する消化ガス以外の余剰の消化ガスを発電設備7に供給するための消化ガス供給ラインGL3が接続されている。   The gas holder 12 includes a digestion gas supply line GL1 that can supply digestion gas generated in the digestion tank 1 to the heating device 2, and a digestion gas supply line that can supply digestion gas generated in the digestion tank 1 to the heat supply device 5. A digestion gas supply line GL3 for supplying surplus digestion gas other than the digestion gas supplied to the GL 2 and the heating device 2 and the heat supply device 5 to the power generation facility 7 is connected.

加温装置2は、消化ガスを利用して消化槽1を一定温度(例えば35℃)に加温する。加温装置2の種類は特に制限されず、様々な装置が利用可能である。例えば、加温装置2が、消化ガスを燃焼させて得た熱を水に伝え水蒸気や温水に換えるボイラーなどの熱源機器であってもよい。   The heating device 2 heats the digester 1 to a certain temperature (for example, 35 ° C.) using digestion gas. The type of the heating device 2 is not particularly limited, and various devices can be used. For example, the heating device 2 may be a heat source device such as a boiler that transfers heat obtained by burning digestion gas to water and replaces it with water vapor or hot water.

熱供給装置5は、消化ガスを利用して乾燥機4に熱を供給する装置であれば特に制限されない。例えば、熱供給装置5は、消化ガスを燃焼させて熱風ガスを得るための熱風炉であってもよいし、消化ガスを利用して蒸気を発生させるボイラーなどであってもよい。発電設備7は公知の発電設備を利用することができる。   The heat supply device 5 is not particularly limited as long as it is a device that supplies heat to the dryer 4 using digestion gas. For example, the heat supply device 5 may be a hot stove for burning the digestion gas to obtain the hot air gas, or a boiler that generates steam using the digestion gas. As the power generation facility 7, a known power generation facility can be used.

ガスホルダ12には、ガスホルダ12から各消化ガス供給ラインGL1〜3へ供給する消化ガスのガス量を調整するための制御手段3aが接続されていてもよい。制御手段3aとしては、例えば本発明に係る制御アルゴリズムに基づいて、所定の動作指令を送出する汎用又は専用の計算機(コンピュータ)が利用可能である。   The gas holder 12 may be connected to a control means 3a for adjusting the amount of digestion gas supplied from the gas holder 12 to the digestion gas supply lines GL1 to GL3. As the control means 3a, for example, a general-purpose or dedicated computer (computer) that sends a predetermined operation command can be used based on a control algorithm according to the present invention.

制御手段3aは、図示しないが、外気温の測定結果を抽出する抽出部と、消化槽1の1日当たりの加温に必要な熱量(以下「必要加熱熱量」という)を外気温に基づいて算出し、乾燥機4が処理する脱水ケーキの乾燥に必要な一日当たりの熱量(以下「必要乾燥熱量」という)を乾燥汚泥の含水率と乾燥機の乾燥効率に基づいて算出するための算出部と、算出部が算出した必要加熱熱量と必要乾燥熱量とを消化ガスの発熱量で補うために必要な消化ガスの容量に換算する換算部と、換算結果をガスホルダ12へ出力し、ガスホルダから消化ガス供給ラインGL1、GL2、GL3を介して、加温装置2、熱供給装置5及び余剰のガスを発電設備7へそれぞれ供給する消化ガス量を調整するための信号を生成する調整部とを備えることができる。   Although not shown, the control means 3a calculates an amount of heat necessary for heating the digester 1 per day (hereinafter referred to as “necessary heating heat amount”) based on the outside air temperature, and an extraction unit that extracts the measurement result of the outside air temperature. A calculation unit for calculating the amount of heat per day (hereinafter referred to as “necessary drying heat amount”) necessary for drying the dehydrated cake processed by the dryer 4 based on the moisture content of the dried sludge and the drying efficiency of the dryer; The conversion unit that converts the necessary heating heat amount and the required drying heat amount calculated by the calculation unit into the digestion gas capacity necessary for supplementing the calorific value of the digestion gas, and outputs the conversion result to the gas holder 12, and the digestion gas from the gas holder An adjustment unit that generates a signal for adjusting the amount of digestion gas to be supplied to the power generation facility 7 through the supply lines GL1, GL2, and GL3, respectively. Can

第1の実施の形態に係る汚泥処理システムによれば、TS濃度4〜12wt%の汚泥を導入し、この汚泥を嫌気性消化することによりメタンガスを含む消化ガスと消化汚泥とを発生させる消化槽1が配置される。この消化槽1は、汚泥をHRT20日以下、より好ましくは15日以下で分解率50〜60%程度にまで消化可能な小型消化槽であるので、従来の汚泥処理に用いられていた大型消化槽に比べ、消化槽1の加温に必要な熱量を小さくできる。その結果、消化槽1から発生した消化ガスにより生成可能な1日当たりの熱量が、消化槽1の加温に必要な1日当たりの必要加温熱量と乾燥機4による脱水ケーキの乾燥に必要な1日当たりの必要乾燥熱量との和より大きくなるため、消化ガスにより消化槽1と乾燥機4に必要な熱を100%補うことが可能となり、補助燃料が原則的に不要なシステムが構築できる。補助燃料の使用が削減されることで、システム全体としてのCO2使用量も低減される。また、HRT20日以下で処理する小型の消化槽1が配置されることで、システム全体の小型化も図られる。 According to the sludge treatment system which concerns on 1st Embodiment, the digestion tank which introduce | transduces the sludge of 4-12 wt% of TS density | concentration, and produces | generates the digestion gas and digestion sludge containing methane gas by anaerobically digesting this sludge 1 is arranged. Since this digester 1 is a small digester capable of digesting sludge to HRT 20 days or less, more preferably 15 days or less to a decomposition rate of about 50 to 60%, a large digester used for conventional sludge treatment. As compared with the above, the amount of heat required for heating the digester 1 can be reduced. As a result, the amount of heat per day that can be generated by the digestion gas generated from the digester 1 is the amount of heat required per day required for heating the digester 1 and the amount of heat required for drying the dehydrated cake by the dryer 4. Since it becomes larger than the sum of the required amount of drying heat per day, it is possible to supplement 100% of the heat required for the digester 1 and the dryer 4 with digestion gas, and a system in which no auxiliary fuel is required in principle can be constructed. By reducing the use of auxiliary fuel, the amount of CO 2 used in the entire system is also reduced. Moreover, the miniaturization of the whole system is also attained by arrange | positioning the small digestion tank 1 processed in HRT 20 days or less.

<汚泥処理方法>
次に、本発明の第1の実施の形態に係る汚泥処理方法について説明する。第1の実施の形態に係る汚泥処理方法では、まずTS濃度4〜12wt%の汚泥を消化槽1へ導入する。消化槽1は加温装置2により処理温度30〜60℃に加温され、消化槽1内に供給された汚泥を撹拌しながらHRT20日以下、好ましくは12〜17日程度、更に好ましくは15日程度処理することにより、消化汚泥と消化ガスが発生する。この際の汚泥の分解率は50〜60%程度である。発生した消化ガスは、一次精製設備11で脱硫処理等が施され、ガスホルダ12へ貯蔵される。消化汚泥は脱水機3へ供給される。
<Sludge treatment method>
Next, the sludge treatment method according to the first embodiment of the present invention will be described. In the sludge treatment method according to the first embodiment, first, sludge having a TS concentration of 4 to 12 wt% is introduced into the digestion tank 1. The digester 1 is heated to a treatment temperature of 30 to 60 ° C. by the heating device 2, and HRT is 20 days or less, preferably about 12 to 17 days, more preferably 15 days while stirring the sludge supplied into the digester 1. Digested sludge and digestion gas are generated by the treatment. The sludge decomposition rate at this time is about 50 to 60%. The generated digested gas is subjected to a desulfurization process or the like in the primary purification equipment 11 and stored in the gas holder 12. Digested sludge is supplied to the dehydrator 3.

脱水機3では、消化汚泥が固液分離され、脱水ケーキと分離液とが生成される。含水率の調整は、乾燥機4の乾燥効率を考慮するとより低い方が好ましいが、本システムにおける脱水処理では、例えば脱水ケーキの含水率を70〜83%となるように調整すれば十分である。脱水機3で得られた脱水ケーキは乾燥機4へ投入される。分離液は水処理設備9aへ送られる。   In the dehydrator 3, the digested sludge is subjected to solid-liquid separation, and a dehydrated cake and a separated liquid are generated. The moisture content is preferably adjusted to be lower in consideration of the drying efficiency of the dryer 4. However, in the dehydration process in the present system, for example, it is sufficient to adjust the moisture content of the dehydrated cake to be 70 to 83%. . The dehydrated cake obtained by the dehydrator 3 is put into the dryer 4. The separated liquid is sent to the water treatment facility 9a.

乾燥機4では、熱供給装置5から供給される例えば熱風ガス等の熱により脱水ケーキを乾燥させ、含水率10〜40%程度の乾燥汚泥を生成させる。得られた乾燥汚泥は、必要に応じて造粒機8により所定の大きさ及び形状に造粒した後、場外搬出する。或いは、得られた乾燥汚泥は熱供給装置5に投入することができる。乾燥機4で発生した排ガスは、排ガス処理設備9bへ送るか、或いは水処理設備9aの曝気槽内に供給することで浄化させる。   In the dryer 4, the dehydrated cake is dried by heat such as hot air gas supplied from the heat supply device 5 to generate dry sludge having a moisture content of about 10 to 40%. The obtained dried sludge is granulated to a predetermined size and shape by the granulator 8 as necessary, and then carried out of the field. Alternatively, the obtained dried sludge can be put into the heat supply device 5. The exhaust gas generated in the dryer 4 is purified by being sent to the exhaust gas treatment facility 9b or by being supplied into the aeration tank of the water treatment facility 9a.

ガスホルダ12に貯蔵された消化ガスは、消化ガス供給ラインGL1〜GL3を介して加温装置2、熱供給装置5及び必要に応じて発電設備7へと供給される。制御手段3aは、ガスホルダ12から消化ガス供給ラインGL1〜GL3を介して加温装置2及び熱供給装置5へ供給する消化ガス量を制御するために、供給すべき消化ガス量を算出する。ここで図2のフローチャートを利用しながら、制御手段3aによる消化ガス量の算出方法の一例を説明する。   The digestion gas stored in the gas holder 12 is supplied to the heating device 2, the heat supply device 5, and, if necessary, the power generation facility 7 through the digestion gas supply lines GL1 to GL3. The control means 3a calculates the amount of digestion gas to be supplied in order to control the amount of digestion gas supplied from the gas holder 12 to the heating device 2 and the heat supply device 5 via the digestion gas supply lines GL1 to GL3. Here, an example of a digestion gas amount calculation method by the control means 3a will be described using the flowchart of FIG.

図2のステップS11において、制御手段3aの抽出部により、汚泥処理システム周囲の外気温が抽出される。ステップS12において、制御手段3aの算出部は、消化槽1の設定温度と外気温とを比較して消化槽1の温度を何度昇温すべきか(昇温温度)を決定する。算出部は更に、消化槽1に投入される汚泥の容量、消化槽1の昇温温度、消化槽1からの放熱量及び消化槽1の昇温効率に基づき、消化槽1の加温に必要な1日当たりの必要加温熱量を算出する。ステップS13において、制御手段3aの算出部は、乾燥機4に投入される脱水ケーキの重量及び含水率と乾燥に必要な蒸発水分量と乾燥汚泥の含水率と乾燥機4の乾燥効率に基づき、乾燥機4内の脱水ケーキの乾燥に必要な1日当たりの必要乾燥熱量を算出する。ステップS14において、制御手段3aの換算部は、算出部により算出された必要加温熱量及び必要乾燥熱量に相当する発熱量を有する消化ガスの容量を換算する。ステップS15において、制御手段3aの調整部は、換算結果をガスホルダ12へ出力する。その結果、ガスホルダ12から加温装置2及び熱供給装置5への消化ガスの振り分けが行われる。   In step S11 of FIG. 2, the ambient temperature around the sludge treatment system is extracted by the extraction unit of the control means 3a. In step S <b> 12, the calculation unit of the control unit 3 a compares the set temperature of the digestion tank 1 with the outside air temperature and determines how many times the temperature of the digestion tank 1 should be increased (temperature increase temperature). The calculation unit is further required for heating the digestion tank 1 based on the volume of the sludge charged into the digestion tank 1, the temperature rise temperature of the digestion tank 1, the amount of heat released from the digestion tank 1, and the temperature rise efficiency of the digestion tank 1. Calculate the required amount of heat per day. In step S13, the calculation unit of the control means 3a is based on the weight and moisture content of the dehydrated cake put into the dryer 4, the amount of evaporated water necessary for drying, the moisture content of the dried sludge, and the drying efficiency of the dryer 4. The necessary amount of drying heat per day necessary for drying the dewatered cake in the dryer 4 is calculated. In step S <b> 14, the conversion unit of the control unit 3 a converts the volume of digestion gas having a calorific value corresponding to the required heating heat amount and the required drying heat amount calculated by the calculation unit. In step S <b> 15, the adjustment unit of the control unit 3 a outputs the conversion result to the gas holder 12. As a result, the digestion gas is distributed from the gas holder 12 to the heating device 2 and the heat supply device 5.

第1の実施の形態に係る汚泥処理方法によれば、消化槽1から発生した消化ガスが、消化槽1を加温する加温装置2及び乾燥機4に熱を供給する熱供給装置5へ供給される。図1の消化槽1は、汚泥濃度2〜3%程度の汚泥を処理する消化槽に比べて小型であるため、加温に必要な熱量が少なくて済む。その結果、消化槽1の加温と乾燥機4の熱供給に必要な熱を消化ガスの燃焼等により生成される熱によって全て補うことができる。よって定常運転時の消化槽1及び乾燥機4への加熱には、補助燃料を利用することがないので、システム全体としてCO2排出量の低減が図られる。 According to the sludge treatment method according to the first embodiment, the digestion gas generated from the digestion tank 1 is supplied to the heating apparatus 2 that heats the digestion tank 1 and the heat supply apparatus 5 that supplies heat to the dryer 4. Supplied. The digestion tank 1 of FIG. 1 is smaller than a digestion tank that treats sludge having a sludge concentration of about 2 to 3%, and therefore requires less heat for heating. As a result, all the heat required for heating the digester 1 and supplying heat to the dryer 4 can be supplemented by heat generated by digestion gas combustion or the like. Therefore, since the auxiliary fuel is not used for heating the digester 1 and the dryer 4 during the steady operation, the CO 2 emission amount can be reduced as a whole system.

(第1の試算結果)
図1に示す汚泥処理システムを導入して生汚泥を処理した場合の試算結果の例を以下に示す。
(First calculation result)
An example of a trial calculation result when raw sludge is treated by introducing the sludge treatment system shown in FIG. 1 is shown below.

1.処理すべき生汚泥
処理すべき生汚泥等の条件を以下の通りと想定した。
年間汚泥量 503883t/年(1381m3/日)
汚泥含水率 99%
TS 10000mg/L(13.81tTS/日)
VS 8000mg/L(11.04tVS/日)
メタンガス発生率 550L/kgΔVS
メタンガス発熱量 35.8 MJ/m3N−CH4
1. Raw sludge to be treated Conditions of raw sludge to be treated were assumed as follows.
Annual sludge volume 503883t / year (1381m 3 / day)
Sludge moisture content 99%
TS 10000mg / L (13.81tTS / day)
VS 8000mg / L (11.04tVS / day)
Methane gas generation rate 550L / kgΔVS
Methane gas calorific value 35.8 MJ / m 3 N-CH 4

2.消化槽1へ供給する供給汚泥
生汚泥を濃縮して高濃度化及び低容量化し、供給汚泥とした。
TS 80000mg/L(13.81tTS/日)
VS 64000mg/L(11.04tVS/日)
供給汚泥有機分率(VS/TS) 0.8
供給汚泥TS濃度 8%
供給汚泥容量 約173m3/日
2. Supply sludge to be supplied to digester 1 Raw sludge was concentrated to increase the concentration and reduce the volume to obtain supply sludge.
TS 80000mg / L (13.81tTS / day)
VS 64000mg / L (11.04tVS / day)
Supply sludge organic fraction (VS / TS) 0.8
Supply sludge TS concentration 8%
Supply sludge capacity: 173m 3 / day

3.消化
高濃度化及び低容量化した供給汚泥を図1の消化槽1へ供給し、加温装置2を用いて消化槽1を35℃に加温し、処理日数(HRT)15日、分解率58%での汚泥の嫌気性処理を実施することを想定し、消化槽容量を決定した。
消化槽容量=投入原料容量×HRT=173×15=約2600m3
3. Digestion Supply sludge with high concentration and low capacity is supplied to the digestion tank 1 of FIG. 1, the digestion tank 1 is heated to 35 ° C. using the heating device 2, and the decomposition rate is 15 days (HRT). Assuming that the anaerobic treatment of sludge at 58% was carried out, the digester capacity was determined.
Digestion tank capacity = input raw material capacity × HRT = 173 × 15 = about 2600 m 3

4.消化汚泥と消化ガスの試算結果
上記の容量の消化槽1で汚泥を嫌気性消化した結果得られる消化汚泥、消化ガス量及び消化ガスから1日当たりに得られる熱量(発熱量)を試算した。
<消化汚泥>
消化汚泥容量 約173m3/日
消化汚泥TS=(供給汚泥TS−供給汚泥VS×分解率)
=13.81−11.04×0.58=約7.4tTS/日
<消化ガス>
硫化水素含有量 2000ppm以下
メタンガス発生量=(供給汚泥VS×分解率×メタンガス発生率)
=約3523m3/日
メタンガス含有率60%と想定した場合の消化ガス発生容量=約5872m3/日
低位発熱量=メタンガス発熱量×メタンガス分率=21480kJ/m3
消化ガスから一日当たりに得られる熱量(発熱量)=
低位発熱量×消化ガス発生容量=約126125MJ/日
4). Trial Calculation Results of Digested Sludge and Digested Gas Digested sludge, digested gas amount obtained from digesting sludge in digestion tank 1 having the above capacity, digested gas amount, and calorific value (calorific value) obtained per day were calculated.
<Digested sludge>
Digested sludge capacity approx. 173m 3 / day
Digested sludge TS = (Supply sludge TS-Supply sludge VS x Decomposition rate)
= 13.81-11.04 × 0.58 = about 7.4 tTS / day <digestion gas>
Hydrogen sulfide content 2000ppm or less Methane gas generation amount = (Supply sludge VS x Decomposition rate x Methane gas generation rate)
= About 3523 m 3 / day Digestion gas generation capacity assuming a methane gas content of 60% = About 5872 m 3 / day Lower heating value = Methane gas heating value × Methane gas fraction = 21480 kJ / m 3
The amount of heat (calorific value) obtained from digestion gas per day =
Lower heating value x digestion gas generation capacity = approx. 126125 MJ / day

5.脱水
脱水機3により得られる脱水ケーキの含水率と脱水機3からの脱水ケーキの回収率を下記値と想定した結果、以下の脱水ケーキが得られたものと試算した。
脱水ケーキ含水率 77%
脱水ケーキ回収率 95%
回収した脱水ケーキTS=消化汚泥TS×回収率=約7.0tTS/日
回収した脱水ケーキ重量=消化汚泥TS/(1−含水率)=約31t/日
5. Assuming that the water content of the dehydrated cake obtained by the dehydrator 3 and the recovery rate of the dehydrated cake from the dehydrator 3 were as follows, it was estimated that the following dehydrated cake was obtained.
Water content of dehydrated cake 77%
Dehydration cake recovery rate 95%
Recovered dehydrated cake TS = digested sludge TS × recovery rate = about 7.0 tTS / day Recovered dehydrated cake weight = digested sludge TS / (1-water content) = about 31 t / day

6.乾燥
脱水機3から取り出された脱水ケーキから得る乾燥汚泥の含水率を20%と仮定し、乾燥汚泥の重量を試算した。
一日当たりに得られる乾燥汚泥重量=脱水ケーキTS/(1−含水率)
=約8.8t/日
6). Drying The weight of the dried sludge was calculated assuming that the moisture content of the dried sludge obtained from the dewatered cake taken out from the dehydrator 3 was 20%.
Dry sludge weight obtained per day = dehydrated cake TS / (1-water content)
= About 8.8t / day

7.加温装置2の必要加温熱量
加温装置2の消化槽1の加温に必要な1日当たりの熱量(必要加温熱量)を試算した。
消化槽1の昇温温度 20℃ (消化汚泥温度15℃の場合を想定)
放熱量 0.30℃/m3
昇温効率 80%
必要加温熱量=(供給汚泥容量×昇温温度+消化槽1の容量×放熱量)/昇温効率
=約22140MJ/日
7). Heating amount required for the heating device 2 The amount of heat per day (necessary heating amount) required for heating the digester 1 of the heating device 2 was estimated.
Digestion tank 1 temperature rise 20 ° C (assuming digestion sludge temperature 15 ° C)
Heat dissipation 0.30 ° C / m 3 days Heating efficiency 80%
Necessary heating heat amount = (Supply sludge capacity x Temperature rise temperature + Digestion tank 1 capacity x Heat release amount) / Heating efficiency
= Approx. 22140 MJ / day

8.消化槽1の昇温に利用すべき換算消化ガス量(容量)
昇温のための換算消化ガス量=必要加温熱量/消化ガス低位発熱量=約1031m3/日
8). Equivalent digestion gas volume (capacity) to be used for heating the digester 1
Equivalent digestion gas amount for temperature rise = Necessary heating calorie / Digestion gas lower calorific value = About 1031 m 3 / day

9.熱供給装置5の必要乾燥熱量
熱供給装置5による乾燥機4の熱供給に1日当たりに必要な熱量(必要乾燥熱量)を試算した。
脱水ケーキ温度 20℃から100℃へ昇温
潜熱 2.258kJ/kg
顕熱 4.186kJ/kg・℃
乾燥効率 70%
蒸発水分量=回収した脱水ケーキ−乾燥汚泥=22t/日
必要乾燥熱量={蒸発水分量×潜熱+(脱水ケーキ中水分)×(脱水ケーキ温度変化)×顕熱}/乾燥効率
=約81502MJ/日
9. Required amount of drying heat of the heat supply device 5 The amount of heat necessary for the heat supply of the dryer 4 by the heat supply device 5 per day (necessary drying heat amount) was calculated.
Dehydrated cake temperature Increased from 20 ℃ to 100 ℃ Latent heat 2.258kJ / kg
Sensible heat 4.186kJ / kg ・ ℃
70% drying efficiency
Evaporated moisture = recovered dehydrated cake-dried sludge = 22 t / day Necessary drying heat = {evaporated moisture x latent heat + (moisture in dehydrated cake) x (change in temperature of dehydrated cake) x sensible heat} / drying efficiency = about 81502 MJ / Day

10.熱供給装置5に利用すべき換算消化ガス量(容量)
熱供給のための換算消化ガス量=熱供給装置の熱量/低位発熱量
=約3794m3/日
10. Equivalent digestion gas volume (capacity) to be used for the heat supply device 5
Equivalent digestion gas amount for heat supply = heat amount of heat supply device / lower heating value
= About 3794m 3 / day

11.余剰ガス(発電施設等へ供給可能なガス量)
消化槽1で得られる消化ガスを加温装置2及び熱供給装置5へ供給した後の余剰ガスについて試算した。
余剰ガス=消化ガス発生容量−消化槽1の昇温に利用すべき換算ガス量−熱供給装置5に利用すべき換算消化ガス量
=約1047m3/日
11. Surplus gas (Amount of gas that can be supplied to power generation facilities, etc.)
The surplus gas after supplying the digestion gas obtained in the digester 1 to the heating device 2 and the heat supply device 5 was estimated.
Surplus gas = digestion gas generation capacity-equivalent amount of gas to be used for heating the digester 1-equivalent amount of digestion gas to be used for the heat supply device 5
= Approximately 1047m 3 / day

上記の試算結果によれば、消化槽1から発生した消化ガスにより生成可能な1日当たりの熱量が、消化槽1の加温に必要な1日当たりの必要加温熱量と乾燥機による脱水ケーキの乾燥に必要な1日当たりの必要乾燥熱量との和よりも大きくなる。即ち、消化槽1から発生する消化ガスにより、消化槽1の加温と乾燥機4による脱水ケーキの乾燥に必要な熱を全て補うことができることが分かる。   According to the above calculation results, the amount of heat per day that can be generated by the digestion gas generated from the digester 1 is the required amount of heat per day required for heating the digester 1 and the drying of the dehydrated cake by the dryer. It becomes larger than the sum of the required amount of dry heat per day necessary for the above. That is, it can be seen that the digestion gas generated from the digestion tank 1 can supplement all the heat necessary for heating the digestion tank 1 and drying the dehydrated cake by the dryer 4.

12.年間収支
月毎の平均気温に基づいて、消化槽1で発生した消化ガスを用いて、年間を通して、消化槽1の加温と乾燥機4の乾燥に必要な熱量を補えるか否かを試算した。ここでは、愛知県蒲郡市の各月毎の平均気温データを用いて試算した。消化槽1内の汚泥温度を外気温15度未満の場合は15℃、外気温が15℃以上の場合は外気温と想定し、消化槽設定温度を35℃と想定した。消化槽1からの放熱量は、気温差20℃の場合を0.3℃/m3日とし、汚泥温度と消化槽設定温度(35℃)との関係に基づいて、各月毎に昇温温度と放熱量をそれぞれ算出した。得られた各月毎の昇温温度と放熱量に基づいて、消化槽1の加温に必要な必要加温熱量と必要乾燥熱量を各月毎にそれぞれ算出した。得られた必要加温熱量と必要乾燥熱量とを、消化槽1から得られる消化ガスの発熱量から減算し、余剰ガス量を試算した。試算結果を表1に示す。
12 Annual income and expenditure Based on the average monthly temperature, the digestion gas generated in the digester 1 was used to calculate whether the heat required for heating the digester 1 and drying the dryer 4 could be compensated throughout the year. . Here, calculations were made using average monthly temperature data in Gamagori City, Aichi Prefecture. The sludge temperature in the digester 1 was assumed to be 15 ° C. when the outside temperature was less than 15 ° C., the outside temperature was assumed to be 35 ° C. when the outside temperature was 15 ° C. or higher, and the digester set temperature was assumed to be 35 ° C. The amount of heat released from the digester 1 is 0.3 ° C / m 3 days when the temperature difference is 20 ° C, and the temperature rises every month based on the relationship between the sludge temperature and the digester set temperature (35 ° C). Temperature and heat dissipation were calculated respectively. Based on the obtained monthly temperature rise and heat release, the required heating heat and required drying heat required for heating the digester 1 were calculated for each month. The obtained required heating heat amount and required drying heat amount were subtracted from the heating value of the digestion gas obtained from the digestion tank 1, and the surplus gas amount was estimated. Table 1 shows the results of the trial calculation.

Figure 2015051417
Figure 2015051417

表1に示すように、TS濃度約8%の汚泥を容量約2600m3の消化槽1を用いてHRT15日(分解率58%)で運転し、脱水ケーキの含水率を77%、乾燥効率70%で運転した場合、消化槽1の加温と乾燥機4の熱供給のために消化槽1から発生した消化ガスを利用したとしても、年間を通して余剰ガスが発生していることが分かる。第1の実施の形態によれば、消化槽1から発生する消化ガスにより、消化槽1の加温と乾燥機4の熱供給に必要な熱量を100%補うことができるため、システム系内の補助燃料の使用をより少なくして、システムの効率化を図れる。 As shown in Table 1, sludge having a TS concentration of about 8% is operated on a digestion tank 1 having a capacity of about 2600 m 3 on HRT 15 days (decomposition rate 58%), the moisture content of the dehydrated cake is 77%, and the drying efficiency is 70%. When operating at%, even if the digestion gas generated from the digestion tank 1 is used for heating the digestion tank 1 and supplying heat to the dryer 4, it can be seen that surplus gas is generated throughout the year. According to the first embodiment, the digestion gas generated from the digester 1 can make up for 100% of the amount of heat necessary for heating the digester 1 and supplying heat to the dryer 4. The system can be made more efficient by using less auxiliary fuel.

(第2の試算結果)
図1の汚泥処理システムにおいて、消化槽1へ供給する汚泥の濃度、汚泥処理日数(HRT)、汚泥の分解率、供給汚泥の有機分率、脱水ケーキの脱水率、乾燥機の乾燥効率をそれぞれ変化させた場合について、消化槽1から発生する消化ガスにより、消化槽1への加温と乾燥機4への熱供給に必要な熱を年間を通して100%補えるか否かを試算した。試算結果を図3〜図11に示す。なお、図3〜図11においては、年間を通して、消化ガスにより生成可能な熱で消化槽1の加温と乾燥機4への熱供給に必要な熱をすべて補える場合を「○」、一部の月だけ補える場合を「△」、補えない場合を「×」として表す。
(Second estimation result)
In the sludge treatment system shown in FIG. 1, the concentration of sludge supplied to the digester 1, the number of days of sludge treatment (HRT), the sludge decomposition rate, the organic fraction of the supplied sludge, the dewatering rate of the dehydrated cake, and the drying efficiency of the dryer are shown. About the case where it changed, it was estimated whether the heat | fever required for the heating to the digester 1 and the heat supply to the dryer 4 could be compensated 100% with the digestion gas generated from the digester 1 throughout the year. The trial calculation results are shown in FIGS. In addition, in FIGS. 3-11, the case where all the heat | fever required for the heating of the digestion tank 1 and the heat supply to the dryer 4 can be supplemented with the heat | fever which can be produced | generated with digestion gas throughout the year is "(circle)", and a part The case where only the month is compensated is represented by “Δ”, and the case where it is not supplemented is represented by “x”.

(第3の試算結果)
処理すべき生汚泥の量を第1の試算結果と同量とし、消化槽1へ供給する供給汚泥を一般的な供給濃度である3%(供給汚泥容量460m3/日)に濃縮して、HRT30日で汚泥を嫌気性消化した場合以外は、上記第1の試算結果と同様な手順及び条件で熱量バランスを試算した結果、消化槽1の容量が13900m3と大きくなり、システムが大型化した。更に、第1の試算結果と同様な手順でシステム全体の熱量バランスを試算した結果、消化槽1から発生する消化ガスのみでは消化槽1の加温と乾燥機4の熱供給に必要な熱量を100%補うことはできなかった。
(Third trial calculation result)
The amount of raw sludge to be treated is the same as the result of the first calculation, and the supply sludge supplied to the digester 1 is concentrated to 3% (supply sludge capacity: 460 m 3 / day), which is a general supply concentration. Except for the case where the sludge was anaerobically digested on the 30th day of HRT, the heat balance was calculated using the same procedure and conditions as the first trial calculation result. As a result, the capacity of the digester 1 was increased to 13900 m 3 and the system was enlarged. . Furthermore, as a result of the trial calculation of the heat balance of the entire system in the same procedure as the first trial calculation result, only the digestion gas generated from the digestion tank 1 has the amount of heat necessary for heating the digestion tank 1 and supplying heat to the dryer 4. 100% could not be compensated.

更に、汚泥の分解効率、脱水ケーキ含水率、汚泥の有機分率、乾燥機4の乾燥効率を変化させた場合において、第2の試算結果と同様な手順で年間収支を試算した。結果を図12に示す。第3の試算結果では消化槽の容量が第1の実施の形態に係る消化槽1と比べて顕著に大きくなるとともに、システム全体の補助燃料の使用量を減らすためには脱水ケーキの含水率をおおむね70%以下、場合によっては60〜65%程度にまで低減させる必要が生じ、第2の試算結果に比べて脱水機に高い負荷がかかる試算となった。   Furthermore, when the sludge decomposition efficiency, dehydrated cake water content, sludge organic content, and drying efficiency of the dryer 4 were changed, the annual balance was calculated in the same procedure as the second calculation result. The results are shown in FIG. In the third calculation result, the capacity of the digester is significantly larger than that of the digester 1 according to the first embodiment, and the water content of the dehydrated cake is reduced in order to reduce the amount of auxiliary fuel used in the entire system. In general, it was necessary to reduce the amount to 70% or less, and in some cases, about 60 to 65%, which resulted in a higher load on the dehydrator compared to the second calculation result.

(第2の実施の形態)
<汚泥処理システム>
図13に示すように、第2の実施の形態に係る汚泥処理システムは、脱水ケーキを乾燥させる乾燥機4の代わりに、脱水ケーキを炭化させて炭化汚泥を得る炭化設備6が配置されている点が、図1に示す汚泥処理システムと異なる。更に、制御手段3bが、炭化設備6による脱水ケーキの炭化に必要な1日当たりの必要炭化熱量を算出する点が、図1に示す制御手段3aと異なる。他は図1に示す汚泥システムと実質的に同様であるので、重複した記載を省略する。炭化設備6としては特に制限されず公知の装置が利用可能である。
(Second Embodiment)
<Sludge treatment system>
As shown in FIG. 13, in the sludge treatment system according to the second embodiment, instead of the dryer 4 that dries the dewatered cake, a carbonization facility 6 that carbonizes the dehydrated cake to obtain carbonized sludge is disposed. The point differs from the sludge treatment system shown in FIG. Furthermore, the control means 3b is different from the control means 3a shown in FIG. 1 in that the required amount of heat of carbonization per day necessary for carbonization of the dewatered cake by the carbonization equipment 6 is calculated. Since others are substantially the same as the sludge system shown in FIG. 1, the repeated description is abbreviate | omitted. The carbonization facility 6 is not particularly limited, and a known device can be used.

炭化設備6で得られた炭化汚泥は場外搬出される。或いは、炭化設備6で得られた炭化汚泥は、配管等で構成された炭化汚泥ラインCSLを介して熱供給装置5へ供給されることが可能である。炭化汚泥を熱供給装置5で使用することにより、炭化汚泥を焼却灰とすることができるため、炭化汚泥をすべて場外搬出する場合に比べて、炭化汚泥の場外搬出量を減らすもしくは無くすことができ、システムの更なる効率化が図れる。また、炭化汚泥の燃焼熱利用により消化ガスを発電等に利用できる量を増やせる等の環境面におけるシステムの更なる効率化も図れる。   Carbonized sludge obtained in the carbonization facility 6 is carried out of the field. Alternatively, the carbonized sludge obtained in the carbonization facility 6 can be supplied to the heat supply device 5 via the carbonized sludge line CSL constituted by piping or the like. By using the carbonized sludge in the heat supply device 5, the carbonized sludge can be made into incineration ash, so the amount of carbonized sludge carried out of the field can be reduced or eliminated compared to the case where all the carbonized sludge is carried out of the field. The system can be made more efficient. Further, the efficiency of the system in terms of the environment can be improved, such as increasing the amount of digestion gas that can be used for power generation and the like by using the combustion heat of carbonized sludge.

炭化設備6で発生した排ガスは、排ガス処理設備9bへ送られる。ここで、炭化設備6で発生した排ガスの一部または全部を水処理設備9aへ送ることも可能である。水処理設備9a内には曝気槽(図示せず)が設けられている。炭化設備6で発生した排ガスを水処理設備9aが具備するこの曝気槽へ導入することによって、排ガスを水処理することも可能である。   The exhaust gas generated in the carbonization facility 6 is sent to the exhaust gas treatment facility 9b. Here, part or all of the exhaust gas generated in the carbonization facility 6 can be sent to the water treatment facility 9a. An aeration tank (not shown) is provided in the water treatment facility 9a. By introducing the exhaust gas generated in the carbonization facility 6 into the aeration tank provided in the water treatment facility 9a, the exhaust gas can be treated with water.

制御手段3bは、図示しないが、外気温の測定結果を抽出する抽出部と、消化槽1の1日当たりの加温に必要な熱量(以下「必要加熱熱量」という)を外気温に基づいて算出するとともに、炭化設備6が処理する脱水ケーキの炭化に必要な一日当たりの熱量(以下「必要炭化熱量」という)を脱水ケーキの含水率及び重量に基づいて算出するための算出部と、算出部が算出した必要加熱熱量と必要炭化熱量とを消化ガスの発熱量で補うために必要な消化ガスの容量に換算する換算部と、換算結果をガスホルダ12へ出力し、ガスホルダから消化ガス供給ラインGL1、GL2、GL3を介して加温装置2、熱供給装置5及び余剰のガスを発電設備7へ供給する消化ガス量を調整するための信号を生成する調整部とを備えることができる。   Although not shown, the control means 3b calculates an amount of heat necessary for heating the digestion tank 1 per day (hereinafter referred to as “necessary heating heat amount”) based on the outside air temperature, and extracts an outside temperature measurement result. And a calculation unit for calculating the amount of heat per day necessary for carbonization of the dewatered cake processed by the carbonization facility 6 (hereinafter referred to as “necessary heat of carbonization”) based on the moisture content and weight of the dehydrated cake; Converts the required heating calorific value and the required carbonization calorific value into the digestion gas capacity required to supplement the calorific value of the digestion gas, and outputs the conversion result to the gas holder 12 from the gas holder to the digestion gas supply line GL1. , GL2, and GL3, the heating device 2, the heat supply device 5, and an adjustment unit that generates a signal for adjusting the amount of digestion gas that supplies surplus gas to the power generation facility 7.

第2の実施の形態に係る汚泥処理システムによれば、消化槽1から発生した消化ガスにより生成可能な1日当たりの熱量が、消化槽1の加温に必要な1日当たりの必要加温熱量と炭化設備6による脱水ケーキの炭化に必要な1日当たりの必要炭化熱量との和より大きくなるため、消化ガスにより消化槽1と炭化設備6に必要な熱を100%補うことが可能となり、補助燃料が原則的に不要なシステムが構築できる。補助燃料の使用が削減されることで、システム全体としてのCO2使用量も低減される。また、HRT20日以下で処理する小型の消化槽1が配置されることで、システム全体の小型化も図られる。 According to the sludge treatment system according to the second embodiment, the amount of heat per day that can be generated by the digestion gas generated from the digester 1 is the required amount of heat per day that is necessary for heating the digester 1. Since it becomes larger than the sum of the required amount of heat of carbonization per day required for carbonization of the dewatered cake by the carbonization facility 6, it becomes possible to supplement the heat required for the digester 1 and the carbonization facility 6 by digestion gas 100%, and auxiliary fuel However, in principle, an unnecessary system can be constructed. By reducing the use of auxiliary fuel, the amount of CO 2 used in the entire system is also reduced. Moreover, the miniaturization of the whole system is also attained by arrange | positioning the small digestion tank 1 processed in HRT 20 days or less.

<汚泥処理方法>
次に、本発明の第2の実施の形態に係る汚泥処理方法について説明する。第2の実施の形態に係る汚泥処理方法では、まずTS濃度4〜12wt%の汚泥を消化槽1へ導入する。消化槽1は加温装置2により処理温度30〜60℃に加温され、消化槽1内に供給された汚泥を撹拌しながらHRT20日以下、好ましくは12〜17日程度、更に好ましくは15日程度処理することにより、消化汚泥と消化ガスが発生する。この際の汚泥の分解率は50〜60%程度である。発生した消化ガスは、一次精製設備11で脱硫処理等が施され、ガスホルダ12へ貯蔵される。消化汚泥は脱水機3へ供給される。
<Sludge treatment method>
Next, a sludge treatment method according to the second embodiment of the present invention will be described. In the sludge treatment method according to the second embodiment, first, sludge having a TS concentration of 4 to 12 wt% is introduced into the digestion tank 1. The digester 1 is heated to a treatment temperature of 30 to 60 ° C. by the heating device 2, and HRT is 20 days or less, preferably about 12 to 17 days, more preferably 15 days while stirring the sludge supplied into the digester 1. Digested sludge and digestion gas are generated by the treatment. The sludge decomposition rate at this time is about 50 to 60%. The generated digested gas is subjected to a desulfurization process or the like in the primary purification equipment 11 and stored in the gas holder 12. Digested sludge is supplied to the dehydrator 3.

脱水機3では、消化汚泥が固液分離され、脱水ケーキと分離液とが生成される。含水率の調整は、炭化設備6の炭化効率を考慮するとより低い方が好ましいが、本システムにおける脱水処理では、例えば脱水ケーキの含水率を70〜83%となるように調整すれば十分である。脱水機3で得られた脱水ケーキは炭化設備6へ投入される。   In the dehydrator 3, the digested sludge is subjected to solid-liquid separation, and a dehydrated cake and a separated liquid are generated. The water content is preferably adjusted to be lower in consideration of the carbonization efficiency of the carbonization facility 6. However, in the dehydration process in this system, for example, it is sufficient to adjust the water content of the dehydrated cake to 70 to 83%, for example. . The dehydrated cake obtained by the dehydrator 3 is put into the carbonization facility 6.

炭化設備6では、熱供給装置5から供給される例えば熱風などの熱を利用して脱水ケーキを炭化させて炭化汚泥を生成させる。得られた炭化汚泥は場外搬出する。或いは、得られた炭化汚泥を、炭化汚泥供給ラインCSLを介して熱供給装置5に投入することができる。炭化設備6で発生した排ガスは排ガス処理施設9b及び/又は水処理設備9aが備える曝気槽へ送られる。   In the carbonization facility 6, the dehydrated cake is carbonized using heat such as hot air supplied from the heat supply device 5 to generate carbonized sludge. The obtained carbonized sludge is transported off-site. Or the obtained carbonized sludge can be thrown into the heat supply apparatus 5 via the carbonized sludge supply line CSL. The exhaust gas generated in the carbonization facility 6 is sent to an aeration tank provided in the exhaust gas treatment facility 9b and / or the water treatment facility 9a.

ガスホルダ12に貯蔵された消化ガスは、消化ガス供給ラインGL1〜GL3を介して加温装置2、熱供給装置5及び必要に応じて発電設備7へと供給される。制御手段3bは、ガスホルダ12から消化ガス供給ラインGL1〜GL3を介して加温装置2及び熱供給装置5へ供給する消化ガス量を制御するために、供給すべき消化ガス量を算出する。ここで図14のフローチャートを利用しながら、制御手段3bによる算出方法の一例を説明する。   The digestion gas stored in the gas holder 12 is supplied to the heating device 2, the heat supply device 5, and, if necessary, the power generation facility 7 through the digestion gas supply lines GL1 to GL3. The control means 3b calculates the amount of digestion gas to be supplied in order to control the amount of digestion gas supplied from the gas holder 12 to the heating device 2 and the heat supply device 5 via the digestion gas supply lines GL1 to GL3. Here, an example of a calculation method by the control means 3b will be described using the flowchart of FIG.

図14のステップS21において、制御手段3bの抽出部により、汚泥処理システム周囲の外気温が抽出される。ステップS22において、制御手段3bの算出部は、消化槽1の設定温度と外気温とを比較して消化槽1の温度を何度昇温すべきか(昇温温度)を決定する。算出部は更に、消化槽1に投入される汚泥の容量、消化槽1の昇温温度、消化槽1からの放熱量及び消化槽1の昇温効率に基づき、消化槽1の加温に必要な1日当たりの必要加温熱量を算出する。ステップS23において、制御手段3bの算出部は、炭化設備6に投入される脱水ケーキの重量及び含水率に基づき、炭化設備6内の脱水ケーキの乾燥に必要な1日当たりの必要炭化熱量を算出する。ステップS24において、制御手段3bの換算部は、算出部により算出された必要加温熱量及び必要炭化熱量に相当する発熱量を有する消化ガスの容量を換算する。ステップS25において、制御手段3bの調整部は、換算結果をガスホルダ12へ出力し、ガスホルダ12から消化ガスの振り分けが行われる。   In step S21 of FIG. 14, the ambient temperature around the sludge treatment system is extracted by the extraction unit of the control means 3b. In step S22, the calculation unit of the control unit 3b compares the set temperature of the digester 1 and the outside air temperature to determine how many times the temperature of the digester 1 should be increased (temperature increase temperature). The calculation unit is further required for heating the digestion tank 1 based on the volume of the sludge charged into the digestion tank 1, the temperature rise temperature of the digestion tank 1, the amount of heat released from the digestion tank 1, and the temperature rise efficiency of the digestion tank 1. Calculate the required amount of heat per day. In step S23, the calculation part of the control means 3b calculates the required amount of carbonization heat per day necessary for drying the dehydrated cake in the carbonization facility 6 based on the weight and moisture content of the dehydrated cake charged into the carbonization facility 6. . In step S24, the conversion unit of the control means 3b converts the volume of digestion gas having a calorific value corresponding to the required heating heat amount and the required carbonization heat amount calculated by the calculation unit. In step S <b> 25, the adjustment unit of the control unit 3 b outputs the conversion result to the gas holder 12, and the digestion gas is distributed from the gas holder 12.

第2の実施の形態に係る汚泥処理方法によれば、消化槽1から発生した消化ガスが、消化槽1を加温する加温装置2及び炭化設備6に熱を供給する熱供給装置5へ供給される。図1の消化槽1は、汚泥濃度2〜3%程度の汚泥を処理する消化槽に比べて小型であるため、加温に必要な熱量が少なくて済む。これにより、消化槽1の加温と炭化設備6の熱供給に必要な熱を、消化ガスの燃焼等により生成される熱によって全て補うことができる。その結果、定常運転時の消化槽1及び炭化設備6への加熱に補助燃料を利用することがないので、システム全体としてCO2排出量の低減が図られる。 According to the sludge treatment method according to the second embodiment, the digestion gas generated from the digestion tank 1 is supplied to the heating apparatus 2 that heats the digestion tank 1 and the heat supply apparatus 5 that supplies heat to the carbonization facility 6. Supplied. The digestion tank 1 of FIG. 1 is smaller than a digestion tank that treats sludge having a sludge concentration of about 2 to 3%, and therefore requires less heat for heating. Thereby, all the heat required for the heating of the digestion tank 1 and the heat supply of the carbonization facility 6 can be supplemented by the heat generated by the digestion gas combustion or the like. As a result, since auxiliary fuel is not used for heating the digester 1 and the carbonization facility 6 during steady operation, the entire system can reduce CO 2 emissions.

(第4の試算結果)
図13に示す汚泥処理システムを導入して生汚泥を処理した場合の第2の実施形態に係る試算結果の例を以下に示す。
1.処理すべき生汚泥
処理すべき生汚泥を以下の通りと想定した。
年間汚泥量 503883t/年(1381m3/日)
汚泥含水率 99%
TS 10000mg/L(13.81tTS/日)
VS 8000mg/L(11.04tVS/日)
メタンガス発生率 550L/kgΔVS
メタンガス発熱量 35.8 MJ/m3N−CH4
(Fourth calculation result)
An example of a trial calculation result according to the second embodiment when raw sludge is treated by introducing the sludge treatment system shown in FIG. 13 is shown below.
1. Raw sludge to be treated The raw sludge to be treated was assumed as follows.
Annual sludge volume 503883t / year (1381m 3 / day)
Sludge moisture content 99%
TS 10000mg / L (13.81tTS / day)
VS 8000mg / L (11.04tVS / day)
Methane gas generation rate 550L / kgΔVS
Methane gas calorific value 35.8 MJ / m 3 N-CH 4

2.消化槽1へ供給する供給汚泥
生汚泥を濃縮して高濃度化及び低容量化し、供給汚泥とした。
TS 80000mg/L(13.81tTS/日)
VS 64000mg/L(11.04tVS/日)
供給汚泥有機分率(VS/TS) 0.8
供給汚泥TS濃度 8%
供給汚泥容量 約173m3/日
2. The feed sludge raw sludge supplied to the digester 1 was concentrated to increase the concentration and reduce the volume to obtain the feed sludge.
TS 80000mg / L (13.81tTS / day)
VS 64000mg / L (11.04tVS / day)
Supply sludge organic fraction (VS / TS) 0.8
Supply sludge TS concentration 8%
Supply sludge capacity: 173m 3 / day

3.消化
高濃度化及び低容量化した上記供給汚泥を図13の消化槽1へ供給し、加温装置2を用いて消化槽1を35℃に加温し、処理日数(HRT)15日、分解率58%での汚泥の嫌気性処理を実施することを想定し、消化槽容量を決定した。
消化槽容量=投入原料容量×HRT=173×15=約2600m3
3. Digestion The above-mentioned supply sludge having a high concentration and a low volume is supplied to the digestion tank 1 of FIG. 13, the digestion tank 1 is heated to 35 ° C. using the heating device 2, and the treatment days (HRT) is 15 days. The digester capacity was determined on the assumption that anaerobic treatment of sludge at a rate of 58% was carried out.
Digestion tank capacity = input raw material capacity × HRT = 173 × 15 = about 2600 m 3

4.消化汚泥と消化ガスの試算結果
上記の容量の消化槽で汚泥を嫌気性消化した結果得られる消化汚泥、消化ガス量及び消化ガスから1日当たりに得られる熱量(発熱量)を試算した。
<消化汚泥>
消化汚泥容量 173m3/日
消化汚泥TS=(供給汚泥TS−供給汚泥VS×分解率)
=13.81−11.04×0.58=約7.4tTS/日
<消化ガス>
硫化水素含有量 2000ppm以下
メタンガス発生量=(供給汚泥VS×分解率×メタンガス発生率)
=約3523m3/日
メタンガス含有率60%と想定した場合の消化ガス発生量=約5872m3/日
低位発熱量=メタンガス発熱量×メタンガス分率=21480kJ/m3
消化ガスから一日当たりに得られる熱量(発熱量)=
低位発熱量×消化ガス発生量=約126125MJ/日
4). Results of Trial Calculation of Digested Sludge and Digested Gas The digested sludge obtained as a result of anaerobic digestion of the sludge in the digestion tank with the above capacity, the amount of digested gas and the amount of heat (calorific value) obtained from the digested gas per day were calculated.
<Digested sludge>
Digested sludge capacity 173m 3 / day
Digested sludge TS = (Supply sludge TS-Supply sludge VS x Decomposition rate)
= 13.81-11.04 × 0.58 = about 7.4 tTS / day <digestion gas>
Hydrogen sulfide content 2000ppm or less Methane gas generation amount = (Supply sludge VS x Decomposition rate x Methane gas generation rate)
= About 3523 m 3 / day Digestion gas generation amount assuming about 60% methane gas content = about 5872 m 3 / day Lower heating value = Methane gas heating value × Methane gas fraction = 21480 kJ / m 3
The amount of heat (calorific value) obtained from digestion gas per day =
Low calorific value x digestion gas generation amount = about 126125 MJ / day

5.脱水
脱水機3により得られる脱水ケーキの含水率と脱水ケーキの脱水機3からの回収率を下記値と想定した結果、以下の脱水ケーキが得られたものと試算した。
脱水ケーキ含水率 82%
脱水ケーキ回収率 95%
回収した脱水ケーキTS=消化汚泥TS×回収率=約7.0tTS/日
回収した脱水ケーキ重量=消化汚泥TS/(1−含水率)=約39t/日
5. Assuming that the water content of the dehydrated cake obtained by the dehydrator 3 and the recovery rate of the dehydrated cake from the dehydrator 3 were as follows, it was estimated that the following dehydrated cake was obtained.
Moisture content of dehydrated cake 82%
Dehydration cake recovery rate 95%
Collected dewatered cake TS = digested sludge TS × recovery rate = about 7.0 tTS / day Collected dewatered cake weight = digested sludge TS / (1-water content) = about 39 t / day

6.炭化
炭化設備6から1日当たりに得られる炭化汚泥重量は、脱水ケーキのTSと仮定した。
炭化汚泥重量 約7.0t/日
6). Carbonization The weight of the carbonized sludge obtained from the carbonization facility 6 per day was assumed to be TS of the dewatered cake.
Carbonized sludge weight about 7.0t / day

7.加温装置2の必要加温熱量
加温装置2による消化槽1の加温に1日当たりに必要な熱量を試算した。
消化槽1の昇温温度 20℃ (消化汚泥温度15℃の場合を想定)
放熱量 0.30℃/m3
昇温効率 80%
必要加温熱量=(供給汚泥容量×昇温温度+消化槽1の容量×放熱量)/昇温効率
=約22108MJ/日
7). Heating amount required for the heating device 2 The amount of heat required for heating the digester 1 by the heating device 2 per day was estimated.
Digestion tank 1 temperature rise 20 ° C (assuming digestion sludge temperature 15 ° C)
Heat dissipation 0.30 ° C / m 3 days Heating efficiency 80%
Necessary heating heat amount = (Supply sludge capacity x Temperature rise temperature + Digestion tank 1 capacity x Heat release amount) / Heating efficiency
= Approx. 22108 MJ / day

8.消化槽1の昇温に利用すべき換算消化ガス量
昇温のための換算消化ガス量=必要加温熱量/消化ガス低位発熱量=約1029m3/日
8). Equivalent digestion gas amount to be used for raising the temperature of digester 1 Equivalent digestion gas amount for raising temperature = necessary heating calorie / digestion gas lower calorific value = approximately 1029 m 3 / day

9.熱供給装置5の必要炭化熱量
炭化設備6による脱水ケーキの炭化に1日当たりに必要な熱量(必要炭化熱量)を、A重油を用いて所定の含水率の脱水ケーキを炭化処理した場合のA重油使用量と乾燥汚泥固形物量との関係の実証データに基づいて試算した。この実証データは、炭化設備メーカーによる試算結果を使用したものである。処理能力80t/日の炭化設備を用いた場合(強熱減量85%と仮定する)の脱水ケーキの含水率とA重油使用量及び炭化汚泥の固形物量との関係を表2に示す。
9. Amount of heat of carbonization required for heat supply device 5 The amount of heat necessary for carbonization of dehydrated cake by carbonization facility 6 (the amount of heat of carbonization) per day, A heavy oil when carbonized dehydrated cake with a predetermined moisture content using A heavy oil The calculation was based on the empirical data on the relationship between the amount used and the amount of dried sludge solids. This demonstration data uses the results of trial calculations by a carbonization equipment manufacturer. Table 2 shows the relationship between the moisture content of the dehydrated cake, the amount of heavy oil A used, and the solid content of the carbonized sludge when a carbonization facility with a processing capacity of 80 t / day is used (assuming that the loss on ignition is 85%).

Figure 2015051417
Figure 2015051417

表2より、固形物量が13.8t−TS/日の場合の各含水率における相当脱水ケーキ量を試算し、80t/日に対する比例計算で各含水率に対する燃費及び必要炭化熱量を算出した。A重油熱量低位発熱量は36.5MJ/Lとした。結果を表3に示す。   From Table 2, the estimated amount of dehydrated cake at each moisture content when the solid content was 13.8 t-TS / day was estimated, and the fuel consumption and the required carbonization heat amount for each moisture content were calculated by proportional calculation with respect to 80 t / day. A heavy oil calorie low calorific value was set to 36.5 MJ / L. The results are shown in Table 3.

Figure 2015051417
Figure 2015051417

表3の試算結果より、含水率82%の脱水ケーキの炭化に1日当たり必要な熱量(必要炭化熱量)は92345MJ/日と試算した。   From the trial calculation results in Table 3, the amount of heat necessary for carbonization of a dehydrated cake having a moisture content of 82% (necessary amount of carbonization) per day was calculated to be 92345 MJ / day.

10.熱供給装置5に利用すべき換算消化ガス量(容量)
熱供給のための換算消化ガス量=必要炭化熱量/低位発熱量
=約4306m3/日
10. Equivalent digestion gas volume (capacity) to be used for the heat supply device 5
Equivalent digestion gas for heat supply = Necessary calorific value / Lower calorific value
= Approximately 4306m 3 / day

11.余剰ガス(発電施設等へ供給可能なガス量)
消化槽1で得られる消化ガスを加温装置2及び熱供給装置5へ供給した後の余剰ガスについて試算した。
余剰ガス=消化ガス発生量−消化槽1の昇温に利用すべき換算ガス量−熱供給装置5に利用すべき換算消化ガス量
=約539m3/日
11. Surplus gas (Amount of gas that can be supplied to power generation facilities, etc.)
The surplus gas after supplying the digestion gas obtained in the digester 1 to the heating device 2 and the heat supply device 5 was estimated.
Surplus gas = digested gas generation amount−converted gas amount to be used for heating the digester 1 −converted digestive gas amount to be used for the heat supply device 5
= Approximately 539m 3 / day

上記の試算結果によれば、消化槽1から発生した消化ガスにより生成可能な1日当たりの熱量が、消化槽1の加温に必要な1日当たりの必要加温熱量と炭化設備6による脱水ケーキの乾燥に必要な1日当たりの必要炭化熱量との和よりも大きくなっている。即ち、消化槽1から発生する消化ガスにより、消化槽1の加温と炭化設備6による脱水ケーキの炭化に必要な熱を全て補うことができる。   According to the above calculation results, the amount of heat per day that can be generated by the digestion gas generated from the digester 1 is the required amount of heat per day necessary for heating the digester 1 and the dehydrated cake of the carbonization facility 6. It is larger than the sum of the required heat of carbonization per day necessary for drying. That is, the digestion gas generated from the digester 1 can compensate for all the heat necessary for heating the digester 1 and carbonizing the dehydrated cake by the carbonization facility 6.

12.年間収支
月毎の平均気温に基づいて、消化槽1で発生した消化ガスを用いて、年間を通して、消化槽1の加温と炭化設備6の炭化に必要な熱量を補えるか否かを試算した。第1の実施の形態と同様に、愛知県蒲郡市の各月毎の平均気温データを用いて試算した。ここでは、消化槽1内の汚泥温度を外気温15度未満の場合は15℃、外気温が15℃以上の場合は外気温と想定し、消化槽設定温度を35℃と想定した。消化槽1からの放熱量は、気温差20℃の場合を0.3℃/m3日とし、汚泥温度と消化槽設定温度(35℃)との関係に基づいて、各月毎に昇温温度と放熱量をそれぞれ設定した。得られた各月毎の昇温温度と放熱量に基づいて、消化槽1の加温に必要な必要加温熱量と必要炭化熱量を各月毎にそれぞれ計算した。得られた必要加温熱量と必要炭化熱量とを、消化槽1から得られる消化ガスの発熱量から減算し、余剰ガス量を試算した。余剰ガスを試算した。試算結果を表4に示す。
12 Annual balance Based on the average temperature of each month, the digestion gas generated in the digester 1 was used to calculate whether the heat required for heating the digester 1 and the carbonization of the carbonization facility 6 could be compensated throughout the year. . As in the first embodiment, trial calculation was performed using average monthly temperature data in Gamagori City, Aichi Prefecture. Here, the sludge temperature in the digester 1 is assumed to be 15 ° C. when the outside air temperature is less than 15 ° C., the outside air temperature is assumed to be 35 ° C. when the outside air temperature is 15 ° C. or higher, and the digester set temperature is assumed to be 35 ° C. The amount of heat released from the digester 1 is 0.3 ° C / m 3 days when the temperature difference is 20 ° C, and the temperature rises every month based on the relationship between the sludge temperature and the digester set temperature (35 ° C). Temperature and heat dissipation were set respectively. Based on the obtained monthly temperature rise and heat release, the required heating heat and required carbonization required for heating the digester 1 were calculated for each month. The obtained required heating calorific value and required calorific value were subtracted from the calorific value of the digestion gas obtained from the digestion tank 1, and the surplus gas amount was estimated. Surplus gas was calculated. Table 4 shows the results of the trial calculation.

Figure 2015051417
Figure 2015051417

表4に示すように、TS濃度約8%の汚泥を容量約2600m3の消化槽1を用いてHRT15日(分解率58%)で運転し、脱水ケーキの含水率を82%とした場合、消化槽1の加温と炭化設備6の熱供給のために消化槽1から発生した消化ガスを利用したとしても、年間を通して余剰ガスが発生することが分かる。第2の実施の形態によれば、消化槽1から発生する消化ガスにより、消化槽1の加温と炭化設備6の炭化のための熱供給に必要な熱量を100%補うことができるため、システム系内の補助燃料の使用をより少なくして、システムの効率化を図れることが分かる。 As shown in Table 4, when the sludge having a TS concentration of about 8% was operated on the HRT for 15 days (decomposition rate 58%) using the digester 1 having a capacity of about 2600 m 3 , and the moisture content of the dehydrated cake was 82%, Even if digestion gas generated from the digestion tank 1 is used for heating the digestion tank 1 and supplying heat to the carbonization facility 6, it can be seen that surplus gas is generated throughout the year. According to the second embodiment, the digestion gas generated from the digestion tank 1 can make up for 100% of the amount of heat necessary for heating the digestion tank 1 and heat supply for carbonization of the carbonization facility 6, It can be seen that the efficiency of the system can be improved by using less auxiliary fuel in the system.

(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments and operational techniques will be apparent to those skilled in the art.

図1及び図13に示す汚泥処理システムにおいては、制御手段3a、3bを使用して、消化槽1の加温に必要な1日当たりの必要加温熱量と乾燥機4又は炭化設備6による脱水ケーキの乾燥又は炭化に必要な必要乾燥熱量又は必要炭化熱量を自動計算する方法を説明している。しかしながら、制御手段3a、3bによって各熱量を自動計算する構成は特に配置せずとも例えば消化槽1の温度条件のみに基づいて操作者が手動でシステム内の各条件を設定して運転することも可能である。   In the sludge treatment system shown in FIG. 1 and FIG. 13, using the control means 3 a and 3 b, the necessary heating heat amount per day necessary for heating the digester 1 and the dehydrated cake by the dryer 4 or the carbonization equipment 6. Is a method for automatically calculating the required amount of heat of drying or the amount of heat of carbonization necessary for the drying or carbonization. However, the configuration for automatically calculating each heat quantity by the control means 3a, 3b is not particularly arranged, and for example, the operator can manually set each condition in the system based on only the temperature condition of the digester 1 and operate. Is possible.

このように、本発明は上記の開示から妥当な特許請求の範囲の発明特定事項によって表されるものであり、実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得るものである。   As described above, the present invention is expressed by the invention specifying matters in the scope of claims appropriate from the above disclosure, and can be modified and embodied without departing from the spirit of the invention in the implementation stage.

1…消化槽
2…加温装置
3…脱水機
3a、3b…制御手段
4…乾燥機
5…熱供給装置
6…炭化設備
7…発電設備
8…造粒機
9a…水処理設備
9b…排ガス処理設備
11…一次精製設備
12…ガスホルダ
GL1〜GL3…消化ガス供給ライン
DESCRIPTION OF SYMBOLS 1 ... Digestion tank 2 ... Heating device 3 ... Dehydrator 3a, 3b ... Control means 4 ... Dryer 5 ... Heat supply device 6 ... Carbonization equipment 7 ... Power generation equipment 8 ... Granulator 9a ... Water treatment equipment 9b ... Exhaust gas treatment Equipment 11 ... Primary refining equipment 12 ... Gas holders GL1-GL3 ... Digestion gas supply line

Claims (20)

TS濃度4〜12wt%の汚泥を導入し、前記汚泥を嫌気性消化することにより、メタンガスを含む消化ガスと消化汚泥とを発生させる消化槽と、
前記消化汚泥を脱水して脱水ケーキを得る脱水機と、
前記脱水ケーキを乾燥させて乾燥汚泥を得る乾燥機と、
前記消化ガスを用いて前記消化槽を加温する加温装置と、
前記消化ガスを用いて前記乾燥機に熱を供給する熱供給装置と、
前記消化槽で発生した消化ガスを前記加温装置及び前記熱供給装置へ供給可能な消化ガス供給ラインと
を備える汚泥処理システムであって、
前記消化槽から発生する前記消化ガスにより生成可能な1日当たりの熱量が、前記消化槽の加温に必要な1日当たりの必要加温熱量と前記乾燥機による前記脱水ケーキの乾燥に必要な1日当たりの必要乾燥熱量との和よりも大きいことを特徴とする汚泥処理システム。
Introducing sludge having a TS concentration of 4 to 12 wt% and anaerobic digestion of the sludge, thereby generating digestion gas containing methane gas and digested sludge,
A dehydrator to dehydrate the digested sludge to obtain a dehydrated cake;
A dryer for drying the dehydrated cake to obtain dried sludge;
A heating device for heating the digestion tank using the digestion gas;
A heat supply device for supplying heat to the dryer using the digestion gas;
A digestion gas supply line capable of supplying digestion gas generated in the digestion tank to the heating device and the heat supply device, and a sludge treatment system comprising:
The amount of heat per day that can be generated by the digestion gas generated from the digester is the required amount of heat per day necessary for heating the digester and the amount of heat required for drying the dehydrated cake by the dryer. A sludge treatment system characterized in that it is greater than the sum of the required amount of drying heat.
前記消化槽の水理学的滞留時間が20日以下である請求項1に記載の汚泥処理システム。   The sludge treatment system according to claim 1, wherein a hydraulic residence time in the digestion tank is 20 days or less. 前記消化槽における前記汚泥の分解率が50〜60%である請求項1又は2に記載の汚泥処理システム。   The sludge treatment system according to claim 1 or 2, wherein a decomposition rate of the sludge in the digestion tank is 50 to 60%. 前記脱水機が、含水率70〜83%の脱水ケーキを生成させることを含む請求項1〜3のいずれか1項に記載の汚泥処理システム。   The sludge treatment system according to any one of claims 1 to 3, wherein the dehydrator includes generating a dehydrated cake having a moisture content of 70 to 83%. 前記乾燥機の乾燥効率が50%以上である請求項1〜4のいずれか1項に記載の汚泥処理システム。   The sludge treatment system according to any one of claims 1 to 4, wherein the drying efficiency of the dryer is 50% or more. 前記消化ガス供給ラインが、前記加温装置と前記熱供給装置とに供給する消化ガス以外の余剰の消化ガスを発電設備に供給するための供給ラインを備えることを含む請求項1〜5のいずれか1項に記載の汚泥処理システム。   The said digestion gas supply line is provided with the supply line for supplying surplus digestion gas other than the digestion gas supplied to the said heating apparatus and the said heat supply apparatus to an electric power generation installation. 2. The sludge treatment system according to item 1. 前記乾燥汚泥を前記熱供給装置へ投入するための乾燥汚泥投入ラインを更に備える請求項1〜6のいずれか1項に記載の汚泥処理システム。   The sludge treatment system according to any one of claims 1 to 6, further comprising a dry sludge charging line for charging the dried sludge into the heat supply device. 前記乾燥機から排出される排気ガスを処理可能な曝気槽を更に備える請求項1〜7のいずれか1項に記載の汚泥処理システム。   The sludge treatment system according to any one of claims 1 to 7, further comprising an aeration tank capable of treating the exhaust gas discharged from the dryer. 前記消化槽で発生した前記消化ガスを貯蔵するガスホルダと、
前記必要加温熱量を外気温に基づいて算出し、前記必要乾燥熱量を前記乾燥汚泥の含水率と前記乾燥機の乾燥効率に基づいて算出し、算出された前記必要加温熱量及び前記必要乾燥熱量に対応する換算消化ガス量をそれぞれ換算し、前記換算消化ガス量に基づいて、前記ガスホルダから前記消化ガス供給ラインを介して前記加温装置及び前記熱供給装置へそれぞれ供給する消化ガス量を制御する制御手段と
を更に備える請求項1〜8のいずれか1項に記載の汚泥処理システム。
A gas holder for storing the digestion gas generated in the digestion tank;
The required heating heat amount is calculated based on the outside air temperature, the required drying heat amount is calculated based on the moisture content of the dried sludge and the drying efficiency of the dryer, and the calculated required heating heat amount and the required drying amount are calculated. The converted digestion gas amount corresponding to the amount of heat is converted respectively, and based on the converted digestion gas amount, the digestion gas amount supplied from the gas holder to the heating device and the heat supply device via the digestion gas supply line, respectively. The sludge treatment system according to any one of claims 1 to 8, further comprising control means for controlling.
TS濃度4〜12wt%の汚泥を導入し、前記汚泥を嫌気性消化することにより、メタンガスを含む消化ガスと消化汚泥とを得る消化槽と、
前記消化汚泥を脱水して脱水ケーキを得る脱水機と、
前記脱水ケーキを炭化させて炭化汚泥を得る炭化設備と、
前記消化ガスを用いて前記消化槽を加温する加温装置と、
前記消化ガスを用いて前記炭化設備に熱を供給する熱供給装置と、
前記消化槽で発生した消化ガスを前記加温装置及び前記熱供給装置へ供給可能な消化ガス供給ラインと
を備える汚泥処理システムであって、
前記消化槽から発生する前記消化ガスにより生成可能な1日当たりの熱量が、前記消化槽の加温に必要な1日当たりの必要加温熱量と、前記炭化設備による前記脱水ケーキの炭化に必要な1日当たりの必要炭化熱量との和よりも大きいことを特徴とする汚泥処理システム。
Introducing sludge having a TS concentration of 4 to 12 wt% and anaerobically digesting the sludge, thereby obtaining a digestion gas containing methane gas and digested sludge,
A dehydrator to dehydrate the digested sludge to obtain a dehydrated cake;
A carbonization facility for carbonizing the dehydrated cake to obtain carbonized sludge;
A heating device for heating the digestion tank using the digestion gas;
A heat supply device for supplying heat to the carbonization facility using the digestion gas;
A digestion gas supply line capable of supplying digestion gas generated in the digestion tank to the heating device and the heat supply device, and a sludge treatment system comprising:
The amount of heat per day that can be generated by the digestion gas generated from the digester is the required amount of heat per day that is necessary for heating the digester, and 1 that is necessary for the carbonization of the dehydrated cake by the carbonization facility. A sludge treatment system characterized by being larger than the sum of the required amount of carbonization per day.
前記消化槽の水理学的滞留時間が20日以下である請求項10に記載の汚泥処理システム。   The sludge treatment system according to claim 10, wherein a hydraulic residence time in the digestion tank is 20 days or less. 前記脱水機が、含水率70〜83%の脱水ケーキを生成させることを含む請求項10又は11に記載の汚泥処理システム。   The sludge treatment system according to claim 10 or 11, wherein the dehydrator includes generating a dehydrated cake having a moisture content of 70 to 83%. 前記消化ガス供給ラインが、前記加温装置と前記熱供給装置とに供給する消化ガス以外の余剰の消化ガスを発電設備に供給するための発電供給ラインを備えることを含む請求項10〜12のいずれか1項に記載の汚泥処理システム。   The said digestion gas supply line is provided with the electric power generation supply line for supplying surplus digestion gas other than the digestion gas supplied to the said heating apparatus and the said heat supply apparatus to an electric power generation installation. The sludge treatment system according to any one of the items. 前記炭化汚泥を前記熱供給装置へ投入するための炭化汚泥投入ラインを更に備える請求項10〜13のいずれか1項に記載の汚泥処理システム。   The sludge treatment system according to any one of claims 10 to 13, further comprising a carbonized sludge charging line for charging the carbonized sludge into the heat supply device. 前記炭化設備から排出される排気ガスを処理可能な曝気槽を更に備える請求項10〜14のいずれか1項に記載の汚泥処理システム。   The sludge treatment system according to any one of claims 10 to 14, further comprising an aeration tank capable of treating exhaust gas discharged from the carbonization facility. 前記消化槽で発生した消化ガスを貯蔵するガスホルダと、
前記必要加温熱量を外気温に基づいて算出し、前記必要炭化熱量を前記脱水ケーキの含水率に基づいて算出し、算出された前記必要加温熱量及び前記必要炭化熱量に対応する換算消化ガス量をそれぞれ算出し、前記換算消化ガス量に基づいて、前記ガスホルダから前記消化ガス供給ラインを介して前記加温装置及び前記熱供給装置へそれぞれ供給する消化ガス量を制御する制御手段と
を更に備える請求項10〜15のいずれか1項に記載の汚泥処理システム。
A gas holder for storing digestion gas generated in the digestion tank;
The required heating heat amount is calculated based on the outside air temperature, the required carbonization heat amount is calculated based on the moisture content of the dehydrated cake, and the converted digestion gas corresponding to the calculated required heating heat amount and the required carbonization heat amount And a control means for controlling the amount of digestion gas respectively supplied to the heating device and the heat supply device from the gas holder via the digestion gas supply line based on the converted digestion gas amount. The sludge treatment system according to any one of claims 10 to 15.
消化槽内にTS濃度4〜12wt%の汚泥を導入し、前記汚泥を嫌気性消化することにより、メタンガスを含む消化ガスと消化汚泥とを発生させることと、
脱水機により前記消化汚泥を脱水して脱水ケーキを生成させることと、
乾燥機により前記脱水ケーキを乾燥させて乾燥汚泥を生成させることと、
加温装置により前記消化ガスを用いて前記消化槽を加温することと、
熱供給装置により前記消化ガスを用いて前記乾燥機に熱を供給することと、
前記消化槽で発生した消化ガスを、消化ガス供給ラインを通じて前記加温装置及び前記熱供給装置へ供給することと
を含む汚泥処理方法であって、
前記消化槽から発生する前記消化ガスにより生成可能な1日当たりの熱量が、前記消化槽の加温に必要な1日当たりの必要加温熱量と前記乾燥機による前記脱水ケーキの乾燥に必要な1日当たりの必要乾燥熱量との和よりも大きいことを特徴とする汚泥処理方法。
Introducing sludge having a TS concentration of 4 to 12 wt% into the digestion tank and anaerobically digesting the sludge to generate digested gas containing methane gas and digested sludge;
Dewatering the digested sludge with a dehydrator to produce a dehydrated cake;
Drying the dehydrated cake with a dryer to produce dry sludge;
Heating the digester using the digestion gas with a heating device;
Supplying heat to the dryer using the digestion gas by a heat supply device;
Supplying the digestion gas generated in the digestion tank to the heating device and the heat supply device through a digestion gas supply line,
The amount of heat per day that can be generated by the digestion gas generated from the digester is the required amount of heat per day necessary for heating the digester and the amount of heat required for drying the dehydrated cake by the dryer. A sludge treatment method characterized by being greater than the sum of the required amount of drying heat.
消化槽内にTS濃度4〜12wt%の汚泥を導入し、前記汚泥を嫌気性消化することにより、メタンガスを含む消化ガスと消化汚泥とを発生させることと、
脱水機により前記消化汚泥を脱水して脱水ケーキを生成させることと、
炭化設備により前記脱水ケーキを炭化させて炭化汚泥を生成させることと、
加温装置により前記消化ガスを用いて前記消化槽を加温することと、
熱供給装置により前記消化ガスを用いて前記炭化設備に熱を供給することと、
前記消化槽で発生した消化ガスを、消化ガス供給ラインを通じて前記加温装置及び前記熱供給装置へ供給することと
を含む汚泥処理方法であって、
前記消化槽から発生する前記消化ガスにより生成可能な1日当たりの熱量が、前記消化槽の加温に必要な1日当たりの必要加温熱量と前記炭化設備による前記脱水ケーキの炭化に必要な1日当たりの必要炭化熱量との和よりも大きいことを特徴とする汚泥処理方法。
Introducing sludge having a TS concentration of 4 to 12 wt% into the digestion tank and anaerobically digesting the sludge to generate digested gas containing methane gas and digested sludge;
Dewatering the digested sludge with a dehydrator to produce a dehydrated cake;
Carbonizing the dehydrated cake with a carbonization facility to produce carbonized sludge;
Heating the digester using the digestion gas with a heating device;
Supplying heat to the carbonization facility using the digestion gas by a heat supply device;
Supplying the digestion gas generated in the digestion tank to the heating device and the heat supply device through a digestion gas supply line,
The amount of heat per day that can be generated by the digestion gas generated from the digester is the required amount of heat per day required for heating the digester and the amount of heat required for carbonization of the dehydrated cake by the carbonization facility. A sludge treatment method characterized by being greater than the sum of the required amount of carbonization heat.
前記汚泥の水理学的滞留時間を20日以下で処理する請求項17又は18に記載の汚泥処理方法。   The sludge treatment method according to claim 17 or 18, wherein the sludge has a hydraulic residence time of 20 days or less. 前記脱水ケーキの含水率を70〜83%に調整することを含む請求項17〜19のいずれか1項に記載の汚泥処理方法。   The sludge treatment method according to any one of claims 17 to 19, comprising adjusting a moisture content of the dehydrated cake to 70 to 83%.
JP2013186655A 2013-09-09 2013-09-09 Sludge treatment system and sludge treatment method Active JP6211356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186655A JP6211356B2 (en) 2013-09-09 2013-09-09 Sludge treatment system and sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186655A JP6211356B2 (en) 2013-09-09 2013-09-09 Sludge treatment system and sludge treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017174281A Division JP2017209680A (en) 2017-09-11 2017-09-11 Sludge treatment system and sludge treatment method

Publications (3)

Publication Number Publication Date
JP2015051417A true JP2015051417A (en) 2015-03-19
JP2015051417A5 JP2015051417A5 (en) 2016-09-29
JP6211356B2 JP6211356B2 (en) 2017-10-11

Family

ID=52700858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186655A Active JP6211356B2 (en) 2013-09-09 2013-09-09 Sludge treatment system and sludge treatment method

Country Status (1)

Country Link
JP (1) JP6211356B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787995A (en) * 2015-04-15 2015-07-22 刘国庆 Sludge treatment system and treatment method
JP2020015028A (en) * 2018-07-27 2020-01-30 株式会社東芝 Sludge treatment system, sludge treatment method and organic wastewater treatment system
CN115286205A (en) * 2022-07-28 2022-11-04 国能龙源环保有限公司 Sludge drying treatment system and monitoring method
CN117105502A (en) * 2023-10-23 2023-11-24 威海华友节能科技有限公司 Self-adaptive sludge treatment control system and control method based on machine learning

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146452A (en) * 1978-05-04 1979-11-15 Hitachi Plant Eng & Constr Co Ltd Disposal of organic waste
JPS562898A (en) * 1979-06-19 1981-01-13 Fuji Electric Co Ltd Sludge fermentation apparatus utilizing methane fermentation
JPS56147696A (en) * 1980-04-17 1981-11-16 Kurita Water Ind Ltd Treatment for organic waste water of high concentration
JPS5973099A (en) * 1982-10-20 1984-04-25 Toshiba Corp Temperature controller in equipment for anaerobic digestion
JPS59123600A (en) * 1982-12-28 1984-07-17 Ebara Infilco Co Ltd Treatment of organic hydrous material
JPS61114798A (en) * 1984-11-12 1986-06-02 Hitachi Ltd Apparatus for controlling production of electric power corresponding to amount of digestion gas
JPS61120699A (en) * 1984-11-16 1986-06-07 Ebara Infilco Co Ltd Treatment of organic sludge
US4818405A (en) * 1988-01-15 1989-04-04 Vroom Kenneth B Sludge treatment
JPH0824899A (en) * 1994-07-20 1996-01-30 Ohbayashi Corp Organic waste treatment
US6410283B1 (en) * 2001-06-07 2002-06-25 Endesco Clean Harbors, L.L.C. Conversion of sewage sludge into electric power
JP2003290750A (en) * 2002-04-01 2003-10-14 Takuma Co Ltd Facility and method for treating organic waste
JP2007330918A (en) * 2006-06-16 2007-12-27 Kawasaki Heavy Ind Ltd Method and apparatus for recycling sludge
JP2009034569A (en) * 2007-07-31 2009-02-19 Chugoku Electric Power Co Inc:The Food waste, and system for recovering energy from sludge
WO2012077778A1 (en) * 2010-12-10 2012-06-14 水ing株式会社 Anaerobic processing method and device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146452A (en) * 1978-05-04 1979-11-15 Hitachi Plant Eng & Constr Co Ltd Disposal of organic waste
JPS562898A (en) * 1979-06-19 1981-01-13 Fuji Electric Co Ltd Sludge fermentation apparatus utilizing methane fermentation
JPS56147696A (en) * 1980-04-17 1981-11-16 Kurita Water Ind Ltd Treatment for organic waste water of high concentration
JPS5973099A (en) * 1982-10-20 1984-04-25 Toshiba Corp Temperature controller in equipment for anaerobic digestion
JPS59123600A (en) * 1982-12-28 1984-07-17 Ebara Infilco Co Ltd Treatment of organic hydrous material
JPS61114798A (en) * 1984-11-12 1986-06-02 Hitachi Ltd Apparatus for controlling production of electric power corresponding to amount of digestion gas
JPS61120699A (en) * 1984-11-16 1986-06-07 Ebara Infilco Co Ltd Treatment of organic sludge
US4818405A (en) * 1988-01-15 1989-04-04 Vroom Kenneth B Sludge treatment
JPH0824899A (en) * 1994-07-20 1996-01-30 Ohbayashi Corp Organic waste treatment
US6410283B1 (en) * 2001-06-07 2002-06-25 Endesco Clean Harbors, L.L.C. Conversion of sewage sludge into electric power
JP2003290750A (en) * 2002-04-01 2003-10-14 Takuma Co Ltd Facility and method for treating organic waste
JP2007330918A (en) * 2006-06-16 2007-12-27 Kawasaki Heavy Ind Ltd Method and apparatus for recycling sludge
JP2009034569A (en) * 2007-07-31 2009-02-19 Chugoku Electric Power Co Inc:The Food waste, and system for recovering energy from sludge
WO2012077778A1 (en) * 2010-12-10 2012-06-14 水ing株式会社 Anaerobic processing method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104787995A (en) * 2015-04-15 2015-07-22 刘国庆 Sludge treatment system and treatment method
CN104787995B (en) * 2015-04-15 2017-01-18 刘国庆 Sludge treatment system and treatment method
JP2020015028A (en) * 2018-07-27 2020-01-30 株式会社東芝 Sludge treatment system, sludge treatment method and organic wastewater treatment system
CN115286205A (en) * 2022-07-28 2022-11-04 国能龙源环保有限公司 Sludge drying treatment system and monitoring method
CN115286205B (en) * 2022-07-28 2023-03-10 国能龙源环保有限公司 Sludge drying treatment system and monitoring method
CN117105502A (en) * 2023-10-23 2023-11-24 威海华友节能科技有限公司 Self-adaptive sludge treatment control system and control method based on machine learning

Also Published As

Publication number Publication date
JP6211356B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP4510782B2 (en) Sludge recycling method and apparatus.
JP2007260538A (en) Organic waste treatment system
CN103722002A (en) Domestic waste comprehensive treatment method based on anaerobic digestion and hydrothermal carbonization
JP6211356B2 (en) Sludge treatment system and sludge treatment method
EP3789475A1 (en) Combination of anaerobic treatment of carbonaceous material with hydrothermal gasification to maximize value added product recovery
BR112018076236B1 (en) METHOD AND SYSTEM FOR TREATMENT OF MUD
CN103224315A (en) Sludge comprehensive treatment and conversion product recycle method
KR101847082B1 (en) Recycling apparatus of organic waste and, its recycling method
KR20200077310A (en) Apparatus and Method of Producing Methane Gas using Sewage Sludge
CN110304786A (en) The processing water of debirs food waste water is without releasing processing equipment for recycling and its processing method
CN101056968A (en) Method of slurry dewatering and conversion of biosolids to a renewable fuel
KR20100041053A (en) The producing process of bio gas from wastewater and manufacturing apparatus
Zhang et al. Biorefinery-oriented full utilization of food waste and sewage sludge by integrating anaerobic digestion and combustion: Synergistic enhancement and energy evaluation
KR101565704B1 (en) Solid fuel production apparatus using sludge
Song et al. Assessment of four sewage sludge treatment routes with efficient biogas utilization and heat integration
JP2007105614A (en) Waste treatment method and system
JP2010149079A (en) Treatment method of waste containing highly hydrous waste and treatment device used for the same
JP2017209680A (en) Sludge treatment system and sludge treatment method
WO2014086278A1 (en) Heat recycling method and system for energy in eutrophicated water biomass
KR102389752B1 (en) Integrated Energy System Of Solid State And Liquid State Organic Waste
KR101113253B1 (en) Bio-gas system for organic material waste
US20160264444A1 (en) Thermal treatment system and method for efficient processing of organic material
JP2017177008A (en) Dry methane fermentation method and dry methane fermentation device
KR101135042B1 (en) Method of combustible syngas production by supercritical water gasification treatment of food wastewater
Chen et al. Energy balance of thermal hydrolysis and anaerobic digestion on waste activated sludge

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170913

R150 Certificate of patent or registration of utility model

Ref document number: 6211356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250