JP2015049134A - Ac magnetic field measurement instrument and ac magnetic field measurement method - Google Patents

Ac magnetic field measurement instrument and ac magnetic field measurement method Download PDF

Info

Publication number
JP2015049134A
JP2015049134A JP2013180807A JP2013180807A JP2015049134A JP 2015049134 A JP2015049134 A JP 2015049134A JP 2013180807 A JP2013180807 A JP 2013180807A JP 2013180807 A JP2013180807 A JP 2013180807A JP 2015049134 A JP2015049134 A JP 2015049134A
Authority
JP
Japan
Prior art keywords
magnetic field
probe
sample
signal
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013180807A
Other languages
Japanese (ja)
Other versions
JP6358788B2 (en
Inventor
準 齊藤
Jun Saito
準 齊藤
幸則 木下
Yukinori Kinoshita
幸則 木下
哲 吉村
Satoru Yoshimura
哲 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2013180807A priority Critical patent/JP6358788B2/en
Publication of JP2015049134A publication Critical patent/JP2015049134A/en
Application granted granted Critical
Publication of JP6358788B2 publication Critical patent/JP6358788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow measurement of an AC magnetic field generated from a sample by an instrument which measures the AC magnetic field by using an oscillating probe, even in the case where the sample generates the AC magnetic field having such a high frequency that an effective spring constant of the probe is not varied.SOLUTION: A probe 111 excited at an excitation frequency ωis magnetized by an AC magnetic field generated from a sample 2. A current modulated by a prescribed frequency is made to flow to a coil 21 of the sample 2, and a modulated AC magnetic field obtained by modulating a fundamental AC magnetic field (angular frequency ω) by an angular frequency ωis given to the probe 111. An effective spring constant of the probe 111 is varied by magnetic interaction of probe magnetization and the modulated AC magnetic field. Oscillation of the probe 111 is detected by a signal extractor 14, and a modulation signal generated in excited oscillation (a signal generated by variation in effective spring constant of the probe due to the modulated AC magnetic field) is extracted from the detection signal. An AC magnetic field response measurement instrument 15 measures an AC magnetic field response of the probe 111 on the basis of the extracted signal.

Description

本発明は、振動する探針を用いて、試料(交流信号を与えることで交流磁場を発生する試料)の交流磁場(または、交流磁場応答性)を測定する交流磁場測定装置およびに交流磁場測定方法に関する。
特に、本発明は、周波数が数KHzより高い高周波磁場(GHz以上の周波数)を、試料が発生する場合であっても、当該試料の交流磁場(または、交流磁場応答性)を測定することができる交流磁場測定装置および交流磁場測定方法に関する。
The present invention relates to an AC magnetic field measuring apparatus that measures an AC magnetic field (or AC magnetic field responsiveness) of a sample (a sample that generates an AC magnetic field by applying an AC signal) using a vibrating probe, and an AC magnetic field measurement Regarding the method.
In particular, the present invention can measure the alternating magnetic field (or alternating magnetic field responsiveness) of the sample even when the sample generates a high-frequency magnetic field (frequency of GHz or higher) whose frequency is higher than several KHz. The present invention relates to an alternating magnetic field measuring apparatus and an alternating magnetic field measuring method.

図4に示すように、試料80(図4では磁気ヘッド)の印加磁場応答性に係わる磁気特性は、磁気特性測定装置(磁気力顕微鏡)8により測定することができる。
磁気特性測定装置8では、カンチレバー81の先端の下面に、試料80に向けて形成したハード磁性体からなる探針(以下、「ハード磁性探針」とも言う)83を、カンチレバー81の始端に設けられた励振器(ピエゾ素子)82によって機械的に角周波数ω0(周波数f0(=ω0/(2π))で振動させる。
探針83の角周波数ω0の機械的な振動は、試料80から発生する角周波数ωsの交流磁場により周波数変調を受ける。
すなわち、探針83が、試料80が生成する交流磁場から磁気力を受けると、カンチレバー81のみかけ上のバネ定数が変化する。これにより、探針83の角周波数ω0の機械的な振動に周波数変調が生じる。
図4では励振器82の電源をAC1で示し、試料80に接続された電源をAC2で示す。
As shown in FIG. 4, the magnetic characteristics related to the applied magnetic field response of the sample 80 (magnetic head in FIG. 4) can be measured by a magnetic characteristic measuring device (magnetic force microscope) 8.
In the magnetic characteristic measuring device 8, a probe 83 made of a hard magnetic material (hereinafter also referred to as “hard magnetic probe”) 83 formed on the lower surface of the tip of the cantilever 81 is provided at the start end of the cantilever 81. The exciter (piezo element) 82 is mechanically vibrated at an angular frequency ω 0 (frequency f 0 (= ω 0 / (2π)).
The mechanical vibration of the probe 83 at the angular frequency ω 0 is subjected to frequency modulation by an alternating magnetic field having an angular frequency ω s generated from the sample 80.
That is, when the probe 83 receives a magnetic force from the AC magnetic field generated by the sample 80, the apparent spring constant of the cantilever 81 changes. As a result, frequency modulation occurs in the mechanical vibration of the probe 83 at the angular frequency ω 0 .
In FIG. 4, the power source of the exciter 82 is indicated by AC 1 , and the power source connected to the sample 80 is indicated by AC 2 .

探針83の振動(周波数変調振動)は、レーザ光源841とフォトダイオード842からなる振動検出器84により検出される。
すなわち、レーザ光源841からの光は、カンチレバー81の先端の上面に形成されたミラーにより反射され、反射光はフォトダイオード842により検出される。
フォトダイオード842からの信号は周波数復調器85に入射される。
復調器85は、入力信号を周波数復調し、復調信号を磁気特性測定回路86に送出する。
磁気特性測定回路86は、復調器85から受け取った復調信号を解析することで、試料80の交流磁場(または、交流磁場応答性)を測定することができる(特許文献1)。
The vibration of the probe 83 (frequency modulated vibration) is detected by a vibration detector 84 including a laser light source 841 and a photodiode 842.
That is, the light from the laser light source 841 is reflected by the mirror formed on the top surface of the tip of the cantilever 81, and the reflected light is detected by the photodiode 842.
A signal from the photodiode 842 enters the frequency demodulator 85.
The demodulator 85 frequency-demodulates the input signal and sends the demodulated signal to the magnetic characteristic measurement circuit 86.
The magnetic characteristic measurement circuit 86 can measure the AC magnetic field (or AC magnetic field responsiveness) of the sample 80 by analyzing the demodulated signal received from the demodulator 85 (Patent Document 1).

WO2009/101991WO2009 / 101991

図4の磁気特性測定装置を用いた交流磁場測定においては、試料80から発生する試料面に垂直な方向(z方向)の交流磁場の成分は、次式で表される。ここで、探針83が変位する方向を試料面と垂直な方向とする。
z(t)=Hz0 accos(ωst)=Hz0 accos(2πfst)
z0 ac:試料80から発生する試料面に垂直方向の交流磁場の成分の振幅
ωs:試料80から発生する交流磁場の角周波数
s:試料80から発生する交流磁場の周波数(fs=ωs/(2π))
In the alternating magnetic field measurement using the magnetic characteristic measuring apparatus of FIG. 4, the alternating magnetic field component in the direction (z direction) perpendicular to the sample surface generated from the sample 80 is expressed by the following equation. Here, the direction in which the probe 83 is displaced is a direction perpendicular to the sample surface.
H z (t) = H z0 ac cos (ω s t) = H z0 ac cos (2πf s t)
H z0 ac : amplitude of the component of the alternating magnetic field perpendicular to the sample surface generated from the sample 80 ω s : angular frequency of the alternating magnetic field generated from the sample 80 f s : frequency of the alternating magnetic field generated from the sample 80 (f s = ω s / (2π))

探針(ハード磁性探針)83に、カンチレバー81の共振周波数と異なる周波数の非共振の交流磁場を印加すると、非共振の交番磁気力が探針83に加わり、前述したように探針83の機械的な振動に周波数変調(FM)が誘起される。この周波数変調(FM)を利用して、試料80から発生する交流磁場を測定することができる。   When a non-resonant alternating magnetic field having a frequency different from the resonance frequency of the cantilever 81 is applied to the probe (hard magnetic probe) 83, a non-resonant alternating magnetic force is applied to the probe 83. Frequency modulation (FM) is induced in the mechanical vibration. Using this frequency modulation (FM), the alternating magnetic field generated from the sample 80 can be measured.

探針83が、単磁極型(探針83の先端の磁極が受ける磁気力が主となる磁性探針の様態)のハード磁性探針であり、試料80が発生する交流磁場の試料面に垂直方向の成分がHz0 accos(ωst)であるとき、非共振の交番磁気力が探針83(ハード磁性探針)の先端の磁極に加わる。このとき、カンチレバー81の実効的なバネ定数(みかけ上のバネ定数)の、時間変化Δk(t)は次式で与えられる。
Δk(t)=∂Fz/∂z=qtip dc{∂Hz(t)/∂z}
=qtip dc{∂Hz0 accos(ωst)/∂z}
tip dc:探針83(ハード磁性体探針)先端の磁極
z0 ac:試料80から発生する試料面に垂直方向の交流磁場の成分の振幅
ωs:試料80から発生する交流磁場の角周波数
The probe 83 is a hard magnetic probe of a single magnetic pole type (a state of a magnetic probe in which the magnetic force received by the magnetic pole at the tip of the probe 83 is the main), and is perpendicular to the sample surface of the AC magnetic field generated by the sample 80. when the direction of the component is H z0 ac cos (ω s t ), the alternating magnetic force of the non-resonant is applied to the magnetic poles of the tip of the probe 83 (hard magnetic probe). At this time, the time change Δk (t) of the effective spring constant (apparent spring constant) of the cantilever 81 is given by the following equation.
Δk (t) = ∂F z / ∂z = q tip dc {∂H z (t) / ∂z}
= Q tip dc {∂H z0 ac cos (ω s t) / ∂z}
q tip dc : magnetic pole at the tip of the probe 83 (hard magnetic probe) H z0 ac : amplitude of AC magnetic field component perpendicular to the sample surface generated from the sample 80 ω s : angle of AC magnetic field generated from the sample 80 frequency

また、探針83が双磁極型(探針83の磁化(磁気モーメント)の両端の磁極が磁気力を受ける磁性探針の様態)のハード磁性探針であり、探針の磁化の方向が試料面に垂直方向のz方向であるときには、非共振の交番磁気力が探針83(ハード磁性探針)の磁気モーメントに加わる。このとき、カンチレバー81の実効的なバネ定数の、時間変化Δk(t)は次式で与えられる。
Δk(t)=∂Fz/∂z=Mz dc{∂2z(t)/∂z2
=Mz dc{∂2z0 accos(ωst)/∂z2
z dc:ハード磁性探針の磁気モーメントの試料面に垂直な成分
The probe 83 is a hard magnetic probe of a double magnetic pole type (a state of a magnetic probe in which the magnetic poles at both ends of the magnetization (magnetic moment) of the probe 83 receive a magnetic force), and the direction of magnetization of the probe is the sample. When the z direction is perpendicular to the surface, a non-resonant alternating magnetic force is applied to the magnetic moment of the probe 83 (hard magnetic probe). At this time, the time change Δk (t) of the effective spring constant of the cantilever 81 is given by the following equation.
Δk (t) = ∂F z / ∂z = M z dc {∂ 2 H z (t) / ∂z 2 }
= M z dc {∂ 2 H z0 ac cos (ω s t) / ∂z 2}
M z dc : The component perpendicular to the sample surface of the magnetic moment of the hard magnetic probe

カンチレバー81実効的なバネ定数の時間変化Δk(t)が、カンチレバー81の本来のバネ定数k0と比較して、充分に小さい場合(Δk(t)<<k0)、Δk(t)は、探針振動に狭帯域の周波数変調を誘起する。ここで、周波数復調信号の試料磁場に対する同相成分であるcos(ωst)成分をロックイン検出することで、試料面に垂直方向の交流磁場Hz0 accos(ωst)の振幅の勾配(∂Hz0 ac/∂z)の分布、または当該勾配の微分(∂2z0 ac/∂z2)の分布を測定することができる。 When the time variation Δk (t) of the effective spring constant of the cantilever 81 is sufficiently small compared to the original spring constant k 0 of the cantilever 81 (Δk (t) << k 0 ), Δk (t) is Then, narrow band frequency modulation is induced in the probe vibration. Here, by detecting locking cos (ω s t) component is a phase component with respect to the sample field frequency demodulated signal in the slope of the amplitude of the AC in the vertical direction to the sample surface magnetic field H z0 ac cos (ω s t ) The distribution of (∂H z0 ac / ∂z) or the derivative of the gradient (∂ 2 H z0 ac / ∂z 2 ) can be measured.

なお、本発明では、Hz0 acがゼロの場合、ロックイン検出するcos(ωmt)成分が消滅するので、交流磁場のゼロ検出が可能である。また、本発明では、Hz0 acの方向が反転すると、cos(ωst)の位相が180°変化するので、垂直磁場の上向き・下向きも同時に検出できる特徴をもつ。 In the present invention, when H z0 ac is zero, the cos (ω m t) component for lock-in detection disappears, so that zero detection of an alternating magnetic field is possible. In the present invention, the direction of H z0 ac is inverted, the phase of the cos (ω s t) is changed 180 °, has a characteristic that an upward-downward vertical magnetic field can also be detected simultaneously.

実効的なバネ定数の時間変化Δk(t)が誘起する狭帯域の周波数変調のスペクトルは、機械的に励振した共振角周波数ω0(共振周波数f0)近傍の周波数成分の他に、一対のサイドバンドスペクトル(角周波数(ω0±ωs))の周波数成分を有する。
ここで、角周波数(ω0±ωs)の一対のサイドバンドスペクトルは、ωsが増加すると、共振角周波数ω0から遠ざかるので、共振効果がなくなる。これにより、カンチレバー81の実効的なバネ定数が探針本来のバネ定数と変わらなくなり、探針83が変位しにくくなる。
したがって、ωsが増加したときには、周波数変調FMが検出できなくなり、交流磁場の測定が困難になる場合がある。具体的には、周波数が数KHzを超えると交流磁場の検出が困難になる問題が生じる。
The spectrum of the narrowband frequency modulation induced by the time change Δk (t) of the effective spring constant includes a pair of frequency components in the vicinity of the mechanically excited resonance angular frequency ω 0 (resonance frequency f 0 ). It has a frequency component of the sideband spectrum (angular frequency (ω 0 ± ω s )).
Here, since the pair of sideband spectra of the angular frequency (ω 0 ± ω s ) moves away from the resonance angular frequency ω 0 when ω s increases, the resonance effect disappears. As a result, the effective spring constant of the cantilever 81 does not change from the original spring constant of the probe, and the probe 83 is difficult to displace.
Therefore, when ω s increases, frequency modulation FM cannot be detected, and it may be difficult to measure an alternating magnetic field. Specifically, when the frequency exceeds several KHz, there arises a problem that it is difficult to detect an alternating magnetic field.

本発明は、周波数が数KHzより高い高周波磁場(典型的には、GHz以上の周波数)を試料が発生する場合であっても、当該試料の交流磁場(または、交流磁場応答性)を、高分解能を維持したまま測定することができる交流磁場測定装置および交流磁場測定方法を提供することを目的とする。   Even if the sample generates a high-frequency magnetic field having a frequency higher than several KHz (typically a frequency of GHz or higher), the AC magnetic field (or AC magnetic field responsiveness) of the sample is increased. An object of the present invention is to provide an AC magnetic field measurement apparatus and an AC magnetic field measurement method that can perform measurement while maintaining the resolution.

本発明者等は、従来、交流磁場の周波数が高くなると、探針装置の実効的なバネ定数が探針装置本来のバネ定数と変わらなくなり探針が変位しにくくなる、という上述の現象に起因する不都合を、試料から変調した交流磁場を発生させて、探針磁化を励磁し、探針磁化と交流磁場の磁気的相互作用を利用することにより解消できる、との知見を得て本発明をなすに至った。
すなわち、本発明では、磁性探針を、交流磁場で探針の磁化が時間変化しないハード磁性探針から、交流磁場で探針の磁化が時間変化するソフト磁性体からなる探針(以下、「ソフト磁性探針」とも言う)に変え、探針に変調した交流磁場を印加することで、時間変化する探針の磁化と試料からの交流磁場との磁気的相互作用を利用する。そして、探針装置の実効的なバネ定数の時間変化を低い周波数に変換することで、高い周波数の交流磁場を測定することができる。
The inventors of the present invention have heretofore been attributed to the above phenomenon that when the frequency of the alternating magnetic field increases, the effective spring constant of the probe device does not change from the original spring constant of the probe device and the probe is difficult to displace. The present invention has been obtained based on the knowledge that the inconvenience can be eliminated by generating an alternating magnetic field modulated from a sample, exciting the probe magnetization, and utilizing the magnetic interaction between the probe magnetization and the alternating magnetic field. It came to an eggplant.
That is, in the present invention, the magnetic probe is changed from a hard magnetic probe in which the magnetization of the probe does not change with time in an alternating magnetic field to a probe made of a soft magnetic material in which the magnetization of the probe changes in time with an alternating magnetic field (hereinafter, “ Instead of “soft magnetic probe”, a modulated AC magnetic field is applied to the probe, thereby utilizing the magnetic interaction between the time-varying magnetization of the probe and the AC magnetic field from the sample. And the high frequency alternating current magnetic field can be measured by converting the time change of the effective spring constant of the probe device into a low frequency.

本発明の交流磁場測定装置は(1)〜(5)を要旨とする。
(1)
励磁用のコイルが形成された、交流磁場を発生する試料の交流磁場(または、交流磁場応答性)を測定する交流磁場測定装置であって、
磁性体からなる探針を備え、前記探針が前記試料から発生する交流磁場により磁化される(典型的には、フックの法則に従う梁部材)探針装置と、
前記探針を励振周波数で励振する励振器と、
前記コイルに電流を流して前記試料から交流磁場を発生させ、前記交流磁場によって、前記探針の磁化を交流磁場の極性に応じて周期的に反転させる試料駆動源と、
前記探針の振動を検出し、前記検出信号から、前記励振振動に生じた機械的変調にかかる信号(前記変調交流磁場により前記探針装置の実効的な(みかけ上の)バネ定数が変化することにより生じた信号)を抽出する信号抽出器と、
前記信号抽出器により抽出した信号に基づき、前記試料の交流磁場(または、交流磁場応答性)を測定する交流磁場応答測定器と、
を備え、
前記駆動源は、基本周波数の交流電流を所定周波数で変調した電流を出力する変調機能を有し、
前記交流磁場を発生する試料に形成された前記コイルに前記変調した電流を流すことで、前記試料から変調した交流磁場を発生し、
前記変調した交流磁場により前記探針の磁化を当該交流磁場の極性に応じて反転させるとともに、前記変調交流磁場の変調成分により前記実効的なバネ定数を変化させる、
ことを特徴とする交流磁場測定装置。
本発明で測定する、励磁用のコイルが形成された、交流磁場を発生する試料として、例えば磁気ヘッド(磁気記録ヘッド)がある。磁気記録ヘッドは、薄膜プロセスにより作成される。なお、本明細書では、薄膜プロセスにより作成される磁気ヘッドの構成等は周知であるので、詳細な説明はしない。
本発明では、探針は、典型的には強磁性体であるが、常磁性体であってもよい。
変調交流磁場の変調周波数は、試料から発生する磁場の周波数と比較して十分に小さく設定される。
本発明では、探針の磁化変調は、AM変調またはFM変調の何れでもよい。
(2)
(1)に記載の交流磁場測定装置であって、
前記信号抽出器が、
前記探針装置の振動を検出する振動検出装置と、
前記振動検出装置により検出した振動にかかる信号から、前記振動検出装置に与えられた磁気信号に対応する信号を復調する復調回路と、
を備えた、
ことを特徴とする交流磁場測定装置。
(3)
(1)に記載の交流磁場測定装置であって、
前記探針装置が、
前記探針と、
前記探針が先端に設けられたカンチレバーと、
からなり、
前記励振器が、
交流電源と、
カンチレバーと、
を含む、
ことを特徴とする交流磁場測定装置。
(4)
(1)に記載の交流磁場測定装置であって、
さらに走査機構を備え、
前記走査機構は、前記探針を前記試料に対して三次元移動させる、
ことを特徴とする交流磁場測定装置。
走査機構は、前記探針を前記試料の表面上で走査させること表面形状を学習することができる。
(5)
(4)に記載の交流磁場測定装置であって、
さらに画像表示装置を備え、
前記画像表示装置は、前記走査機構により走査した前記探針の前記試料の表面上での各位置での、前記試料の交流磁場(または、交流磁場応答性)を測定し、当該測定結果を画像表示する、
ことを特徴とする交流磁場測定装置。
The gist of the AC magnetic field measuring apparatus of the present invention is (1) to (5).
(1)
An AC magnetic field measuring apparatus for measuring an AC magnetic field (or AC magnetic field responsiveness) of a sample that generates an AC magnetic field, on which an exciting coil is formed,
A probe device comprising a probe made of a magnetic material, wherein the probe is magnetized by an alternating magnetic field generated from the sample (typically a beam member in accordance with Hooke's law);
An exciter for exciting the probe at an excitation frequency;
A sample driving source for causing an electric current to flow through the coil to generate an alternating magnetic field from the sample, and periodically reversing the magnetization of the probe according to the polarity of the alternating magnetic field by the alternating magnetic field;
The probe vibration is detected, and a signal relating to the mechanical modulation generated in the excitation vibration (the effective (apparent) spring constant of the probe device is changed by the modulation AC magnetic field) from the detection signal. A signal extractor for extracting a signal generated by
An AC magnetic field response measuring device for measuring an AC magnetic field (or AC magnetic field response) of the sample based on the signal extracted by the signal extractor;
With
The drive source has a modulation function for outputting a current obtained by modulating an alternating current having a fundamental frequency at a predetermined frequency;
By passing the modulated current through the coil formed in the sample that generates the alternating magnetic field, the alternating magnetic field generated from the sample is generated,
Reversing the magnetization of the probe according to the polarity of the alternating magnetic field by the modulated alternating magnetic field, and changing the effective spring constant by the modulation component of the modulated alternating magnetic field,
An AC magnetic field measuring apparatus characterized by that.
For example, a magnetic head (magnetic recording head) is a sample that generates an alternating magnetic field and has an exciting coil formed in the present invention. The magnetic recording head is produced by a thin film process. In the present specification, the configuration and the like of the magnetic head produced by the thin film process are well known, and thus will not be described in detail.
In the present invention, the probe is typically a ferromagnetic material, but may be a paramagnetic material.
The modulation frequency of the modulation alternating magnetic field is set sufficiently smaller than the frequency of the magnetic field generated from the sample.
In the present invention, the magnetization modulation of the probe may be either AM modulation or FM modulation.
(2)
The AC magnetic field measurement apparatus according to (1),
The signal extractor comprises:
A vibration detection device for detecting vibration of the probe device;
A demodulation circuit that demodulates a signal corresponding to a magnetic signal applied to the vibration detection device from a signal relating to vibration detected by the vibration detection device;
With
An AC magnetic field measuring apparatus characterized by that.
(3)
The AC magnetic field measurement apparatus according to (1),
The probe device is
The probe;
A cantilever provided with a tip at the tip;
Consists of
The exciter is
AC power supply,
Cantilevers,
including,
An AC magnetic field measuring apparatus characterized by that.
(4)
The AC magnetic field measurement apparatus according to (1),
Furthermore, a scanning mechanism is provided,
The scanning mechanism moves the probe three-dimensionally with respect to the sample;
An AC magnetic field measuring apparatus characterized by that.
The scanning mechanism can learn the surface shape by causing the probe to scan on the surface of the sample.
(5)
The AC magnetic field measurement apparatus according to (4),
Furthermore, an image display device is provided,
The image display device measures an alternating magnetic field (or alternating magnetic field responsiveness) of the sample at each position on the surface of the sample of the probe scanned by the scanning mechanism, and displays the measurement result as an image. indicate,
An AC magnetic field measuring apparatus characterized by that.

本発明の交流磁場測定方法は(6)〜(10)を要旨とする。
(6)
励磁用のコイルが形成された交流磁場を発生する試料の交流磁場(または、交流磁場応答性)を、磁性体からなる探針を備えた探針装置を用いて測定する交流磁場測定方法であって、
励振器により前記探針を励振周波数で励振する励振ステップ、
前記コイルに電流を流して前記試料から交流磁場を発生させる試料コイル駆動ステップ、
前記探針を前記試料から発生する交流磁場により磁化し、前記探針装置の実効的な(みかけ上の)バネ定数を変化させ、前記励振振動に機械変調を生じさせる機械変調生成ステップ、
前記探針の振動を検出し、前記検出信号から、前記励振振動に生じた機械変調にかかる信号を抽出する信号抽出ステップ、および、
前記信号抽出器により抽出した信号に基づき、前記試料の交流磁場(または、交流磁場応答性)を測定する測定ステップ、
を含み、
前記試料コイル駆動ステップでは、基本周波数の交流電流を所定周波数で変調した電流を出力し、
前記コイルに前記変調した電流を流すことで、前記試料から変調した交流磁場を発生させ、
前記変調した交流磁場により前記探針の磁化を当該交流磁場の極性に応じて反転させるとともに、探針磁化と交流磁場との磁気的相互作用により前記探針装置の実効的な(みかけ上の)バネ定数を変化させる、
ことを特徴とする交流磁場測定方法。
(7)
(6)に記載の交流磁場測定方法であって、
前記信号抽出ステップは、振動検出ステップおよび復調ステップを含み、
前記振動検出ステップでは、前記探針装置の振動を検出し、
前記復調ステップでは、前記振動検出ステップにより検出した信号から、前記磁気信号に対応する信号を復調する、
交流磁場測定方法。
(8)
(6)に記載の交流磁場測定方法であって、
前記信号抽出ステップでは、交流電源により圧電素子を励振する、
ことを特徴とする交流磁場測定方法。
(9)
(6)に記載の交流磁場測定方法であって、
さらに走査ステップを含み、
前記走査ステップでは、前記探針を前記試料に対して三次元移動させる、
ことを特徴とする交流磁場測定方法。
(10)
(9)に記載の交流磁場測定方法であって、
さらに画像表示ステップを含み、
前記画像表示ステップでは、前記走査ステップにおいて走査した前記探針の前記試料の表面上での各位置での、前記試料の交流磁場(または、交流磁場応答性)を測定し、当該測定結果を画像表示する、
ことを特徴とする交流磁場測定方法。
The AC magnetic field measurement method of the present invention is summarized as (6) to (10).
(6)
This is an AC magnetic field measurement method for measuring the AC magnetic field (or AC magnetic field responsiveness) of a sample that generates an AC magnetic field on which an exciting coil is formed, using a probe device having a probe made of a magnetic material. And
An excitation step of exciting the probe at an excitation frequency by an exciter;
A sample coil driving step for generating an alternating magnetic field from the sample by passing an electric current through the coil;
A mechanical modulation generating step for magnetizing the probe by an alternating magnetic field generated from the sample, changing an effective (apparent) spring constant of the probe device, and generating mechanical modulation in the excitation vibration;
A signal extracting step of detecting vibration of the probe and extracting a signal relating to mechanical modulation generated in the excitation vibration from the detection signal; and
A measurement step of measuring an alternating magnetic field (or alternating magnetic field response) of the sample based on the signal extracted by the signal extractor;
Including
In the sample coil driving step, a current obtained by modulating an alternating current having a fundamental frequency with a predetermined frequency is output,
By passing the modulated current through the coil, a modulated alternating magnetic field is generated from the sample,
The modulated alternating magnetic field reverses the magnetization of the probe according to the polarity of the alternating magnetic field, and the magnetic interaction between the probe magnetization and the alternating magnetic field effectively (apparently) the probe device. Change the spring constant,
AC magnetic field measurement method characterized by the above.
(7)
The AC magnetic field measurement method according to (6),
The signal extraction step includes a vibration detection step and a demodulation step,
In the vibration detection step, the vibration of the probe device is detected,
In the demodulation step, a signal corresponding to the magnetic signal is demodulated from the signal detected in the vibration detection step.
AC magnetic field measurement method.
(8)
The AC magnetic field measurement method according to (6),
In the signal extraction step, the piezoelectric element is excited by an AC power source.
AC magnetic field measurement method characterized by the above.
(9)
The AC magnetic field measurement method according to (6),
Further comprising a scanning step,
In the scanning step, the probe is three-dimensionally moved with respect to the sample.
AC magnetic field measurement method characterized by the above.
(10)
The alternating magnetic field measurement method according to (9),
Furthermore, an image display step is included,
In the image display step, the AC magnetic field (or AC magnetic field responsiveness) of the sample at each position on the surface of the sample of the probe scanned in the scanning step is measured, and the measurement result is imaged. indicate,
AC magnetic field measurement method characterized by the above.

探針に与えられる交流磁場の周波数が、前記探針に機械的な振動に変調を生じさせることができない程度に高い場合(たとえば、GHz以上)であっても、高分解能を維持しつつ試料の交流磁場(または、交流磁場応答性)を測定することができる。
また、垂直磁場の上向き・下向きも同時に検出できる。
Even when the frequency of the alternating magnetic field applied to the probe is high enough that the probe cannot cause mechanical vibration to be modulated (for example, GHz or higher), the high resolution is maintained while maintaining the high resolution. An alternating magnetic field (or alternating magnetic field response) can be measured.
In addition, upward and downward vertical magnetic fields can be detected simultaneously.

本発明(磁気特性測定装置および磁気特性測定方法)において、探針としてソフト磁性探針を用いた場合の作用を以下に説明する。なお、本発明の交流磁場測定方法は、本発明の交流磁場測定装置を用いて実施することができる。   In the present invention (magnetic characteristic measuring apparatus and magnetic characteristic measuring method), the operation when a soft magnetic probe is used as the probe will be described below. The AC magnetic field measurement method of the present invention can be implemented using the AC magnetic field measurement apparatus of the present invention.

本発明において、探針に与えられる変調交流磁場は、試料が発生する。
試料は、励磁用のコイルが形成された交流磁場を発生する試料である。
試料が発生する交流磁場は、基本角周波数ωsの交流磁場(基本周波数:fs、ωs=2πfs)の他、角周波数が異なる交流磁場成分を少なくとも1つ含む必要がある。
たとえば、スペクトラムに、基本角周波数ωsと異なる交流磁場成分を1つ含む、全部で2つの周波数成分が現れる場合もある。
また、振幅変調(AM変調)や狭帯域の周波数変調(FM変調)では、スペクトラムに、基本角周波数ωsと異なる交流磁場成分を2つ含む、全部で3つの周波数成分が現れる場合もある。
In the present invention, the modulated alternating magnetic field applied to the probe is generated by the sample.
The sample is a sample that generates an alternating magnetic field in which an exciting coil is formed.
The AC magnetic field generated by the sample needs to include at least one AC magnetic field component having a different angular frequency in addition to an AC magnetic field having a fundamental angular frequency ω s (fundamental frequencies: f s , ω s = 2πf s ).
For example, there may be a total of two frequency components including one AC magnetic field component different from the fundamental angular frequency ω s in the spectrum.
In addition, in amplitude modulation (AM modulation) and narrowband frequency modulation (FM modulation), there may be a case where a total of three frequency components including two alternating magnetic field components different from the basic angular frequency ω s appear in the spectrum.

まず、スペクトラムに、全部で2つの周波数成分が現れる場合を以下に説明する。
この場合、交流磁場の基本角周波数ωsは、数KHzより高くてもよい。
探針の磁化は、次のようにして変調される。
試料に、基本角周波数(本実施例では、実際の使用時に試料に与える角周波数と同じ角周波数)ωsの交流磁場、および基本角周波数ωsと僅かに異なる角周波数(ωs−ωm)または(ωs+ωm)(ωmは低角周波数)の交流磁場を加えた合わせた交流磁場(本発明における、変調磁場)を与える。
これにより、探針は、角周波数ωs−ωmまたはωs+ωmの変調磁場により励磁され、磁化が変調される。
First, the case where a total of two frequency components appear in the spectrum will be described below.
In this case, the basic angular frequency ω s of the alternating magnetic field may be higher than several KHz.
The magnetization of the probe is modulated as follows.
An AC magnetic field having a fundamental angular frequency (in this embodiment, the same angular frequency given to the specimen during actual use) ω s and an angular frequency slightly different from the fundamental angular frequency ω ss −ω m ) Or (ω s + ω m ) (ω m is a low angular frequency) and a combined alternating magnetic field (modulated magnetic field in the present invention) is applied.
As a result, the probe is excited by the modulation magnetic field having the angular frequency ω s −ω m or ω s + ω m , and the magnetization is modulated.

以上のような、変調した交流磁場の印加により、探針には、低角周波数(変調周波数)ωmの交番磁気力が誘起される。この低角周波数ωmの交番磁気力は、ソフト磁性探針と交流磁場との間の磁気的相互作用によるものである。
これにより、探針の機械的な振動に周波数変調が生じ、この周波数変調を利用して、試料(磁気ヘッド)の交流磁場の応答性、あるいは、試料が発生する交流磁場(高周波磁場)の測定が可能となる。
By applying the modulated alternating magnetic field as described above, an alternating magnetic force having a low angular frequency (modulation frequency) ω m is induced in the probe. This alternating magnetic force at the low angular frequency ω m is due to the magnetic interaction between the soft magnetic probe and the alternating magnetic field.
As a result, frequency modulation occurs in the mechanical vibration of the probe. Using this frequency modulation, the response of the AC magnetic field of the sample (magnetic head) or the AC magnetic field (high frequency magnetic field) generated by the sample is measured. Is possible.

以下に、基本角周波数ωsの交流磁場(高周波磁場)に、基本角周波数ωsとは僅かに角周波数が異なる交流磁場(角周波数(ωs+ωm)の変調磁場)を足し合わせた磁場を試料面に垂直に発生させ、試料の交流磁場(または、交流磁場応答性)を、単磁極型(探針の先端の磁極が受ける磁気力が主となる磁性探針の様態)のソフト磁性探針により測定する場合を説明する。
この試料面に垂直な交流磁場(変調磁場)Hz(t)は、以下のように表される。
z(t)=Hsample ac(t)
=Hz0 accos(ωst)+αHz0 accos(ωs+ωm)t (数式1)
z0 ac:試料から発生する交流磁場(基本角周波数ωs)のうち、試料面に垂直な成分の振幅
α:角周波数ωs+ωm成分による試料からの交流磁場の変調度
ωs:試料から発生する交流磁場の角周波数
ωm:変調角周波数
A magnetic field obtained by adding an alternating magnetic field (modulated magnetic field of angular frequency (ω s + ω m )) slightly different from the basic angular frequency ω s to an alternating magnetic field (high frequency magnetic field) of the basic angular frequency ω s. Is generated perpendicular to the sample surface, and the AC magnetic field (or AC magnetic field responsiveness) of the sample is changed to a single magnetic pole type (a magnetic probe mode in which the magnetic force received by the magnetic pole at the tip of the probe is the main). The case of measuring with a probe will be described.
The alternating magnetic field (modulated magnetic field) H z (t) perpendicular to the sample surface is expressed as follows.
H z (t) = H sample ac (t)
= H z0 ac cos (ω s t) + αH z0 ac cos (ω s + ω m ) t (Formula 1)
H z0 ac : Amplitude of component perpendicular to sample surface among AC magnetic field (basic angular frequency ω s ) generated from sample α: Modulation degree of AC magnetic field from sample due to angular frequency ω s + ω m component ω s : Sample Frequency of alternating magnetic field generated from ω m : Modulation angular frequency

この交流磁場Hz(t)により、ソフト磁性探針は、試料から発生する交流磁場により励磁される。
試料の交流磁場(または、交流磁場応答性)を測定する際には、空間分解能を向上させるために、探針と試料との距離(探針試料間距離)を減少させる必要がある。探針試料間距離の減少に伴い、探針の磁気的な挙動は、双磁極型(探針の磁化の磁気モーメントの両端の磁極が磁気力を受ける磁性探針の様態)から、上述した単磁極型に変化する。
このとき、探針の先端に発生する磁極密度は、交流磁場に応答して次式のように時間変化する。
ρ(t)=ρtip ac(t)
=ρ0 accos(ωst)+βρ0 accos(ωs+ωm)t (数式2)
ρ0 ac:角周波数ωs成分による探針先端の磁極密度(探針磁極)の振幅
β:角周波数ωs±ωm成分による探針磁極の変調度
By this alternating magnetic field H z (t), the soft magnetic probe is excited by the alternating magnetic field generated from the sample.
When measuring the AC magnetic field (or AC magnetic field responsiveness) of the sample, it is necessary to reduce the distance between the probe and the sample (distance between the probe and the sample) in order to improve the spatial resolution. As the probe-to-sample distance decreases, the magnetic behavior of the probe changes from the double-pole type (the state of a magnetic probe in which the magnetic poles at both ends of the magnetic moment of the probe's magnetization receive a magnetic force) to Change to magnetic pole type.
At this time, the density of the magnetic pole generated at the tip of the probe changes with time as shown in the following equation in response to the alternating magnetic field.
ρ (t) = ρ tip ac (t)
= Ρ 0 ac cos (ω s t) + βρ 0 ac cos (ω s + ω m ) t (Formula 2)
ρ 0 ac : Amplitude of the magnetic pole density at the tip of the probe (probe magnetic pole) due to the angular frequency ω s component β: Modulation degree of the probe magnetic pole due to the angular frequency ω s ± ω m component

探針の磁極の変調度は、一般的には、0<=β<=α<1である。なお、交流磁場(αHz0 accos(ωs+ωm)t:試料から発生する交流磁場(高周波磁場)に足し合わされる変調磁場)の強度が低い場合には、探針磁極の変調度は、通常、交流磁場の変調度より小さくなる。
(数式1)および(数式2)より、実効的なバネ定数の時間変化は、次式で与えられる。
Δk(t)=∂Fz/∂z
=ρ(t)(∂Hz(t)/∂z)
=ρtip ac(t)(∂Hsample ac(t)/∂z)
={ρ0 accos(ωst)+βρ0 accos(ωs+ωm)t}
{(∂Hz0 ac/∂z)cos(ωst)
+α(∂Hz0 ac/∂z)cos(ωs+ωm)t} (数式3)
(数式3)から、直流を含む、低角周波数の実効バネ定数成分Δklowは、次式で与えられる。
Δklow={1/2+(α+β)/2}ρ0 ac(∂Hz0 ac/∂z)
+{(α+β)/2}ρ0 ac(∂Hz0 ac/∂z)cos(ωmt) (数式4)
The degree of modulation of the magnetic pole of the probe is generally 0 <= β <= α <1. When the intensity of the alternating magnetic field ( αH z0 ac cos (ω s + ω m ) t: modulation magnetic field added to the alternating magnetic field (high frequency magnetic field) generated from the sample) is low, the modulation degree of the probe magnetic pole is Usually smaller than the modulation degree of the alternating magnetic field.
From (Equation 1) and (Equation 2), the time change of the effective spring constant is given by the following equation.
Δk (t) = ∂F z / ∂z
= Ρ (t) (∂H z (t) / ∂z)
= Ρ tip ac (t) (∂H sample ac (t) / ∂z)
= {Ρ 0 ac cos (ω s t) + βρ 0 ac cos (ω s + ω m ) t}
{(∂H z0 ac / ∂z) cos (ω s t)
+ Α (∂H z0 ac / ∂z) cos (ω s + ω m ) t} (Formula 3)
From (Equation 3), the effective spring constant component Δk low including DC is given by the following equation.
Δk low = {1/2 + (α + β) / 2} ρ 0 ac (∂H z0 ac / ∂z)
+ {(Α + β) / 2} ρ 0 ac (∂H z0 ac / ∂z) cos (ω m t) (Formula 4)

(数式4)は、実効バネ定数成分Δklowのcos(ωmt)成分による探針振動の周波数変調(FM)を利用し、高周波磁場Hz0 accos(ωst)を、低角周波数に周波数変換(ダウンコンバート)することで、高周波磁場の振幅(∂Hz0 ac/∂z)の測定が可能になることを意味する。
ここで、探針励磁用の交流信号に係わる、cos(ωmt)成分の振幅をロックインアンプにより検出することで、(∂Hz0 ac/∂z)の分布を、直流成分を利用する場合と比較して、交流磁場を高感度かつ空間分解能が向上する試料表面近傍でイメージングすることができる。なお、直流成分を利用する場合には、試料表面近傍では、表面に起因する近距離力と磁気力の分離ができないので、交流磁場の計測は困難である。
(Equation 4) using the effective spring constant component .DELTA.k low of cos (omega m t) frequency modulation of the probe vibration by component (FM), a high frequency magnetic field H z0 ac cos (ω s t ), a low angular frequency This means that the frequency of the high-frequency magnetic field (∂H z0 ac / ∂z) can be measured by frequency conversion (down-conversion).
Here, by detecting the amplitude of the cos (ω m t) component related to the AC signal for probe excitation by the lock-in amplifier, the distribution of (∂H z0 ac / ∂z) is used by the DC component. Compared to the case, an alternating magnetic field can be imaged near the sample surface with high sensitivity and improved spatial resolution. In the case of using a direct current component, it is difficult to measure an alternating magnetic field in the vicinity of the sample surface because a short distance force and a magnetic force due to the surface cannot be separated.

さらに、cos(ωmt)成分を検出する本発明では、試料面に垂直な磁場成分である、Hz0 acがゼロの場合、ロックイン検出による、cos(ωmt)成分が消滅するので、磁場のゼロ検出も可能である。なお、直流成分を利用する場合には、磁場のゼロ検出は不可能である。 Furthermore, in the present invention for detecting the cos (ω m t) component, when H z0 ac , which is a magnetic field component perpendicular to the sample surface, is zero, the cos (ω m t) component disappears due to lock-in detection. Also, zero detection of the magnetic field is possible. Note that when a DC component is used, zero detection of the magnetic field is impossible.

上記の例では、探針に印加される交流磁場は、ωsと(ωs+ωm)の2つの周波数成分を持つ交流磁場であった。
次に、3つの周波数成分を持つ交流磁場の代表例として、ωsと(ωs+ωm)および(ωs−ωm)の角周波数成分を有する、振幅変調した交流磁場を変調磁場として用いた場合について説明する。
In the above example, the AC magnetic field applied to the probe is an AC magnetic field having two frequency components ω s and (ω s + ω m ).
Next, as a representative example of an alternating magnetic field having three frequency components, an amplitude-modulated alternating magnetic field having angular frequency components of ω s and (ω s + ω m ) and (ω s −ω m ) is used as the modulating magnetic field. The case will be described.

このとき、探針に印加される交流磁場は、次式で与えられる。
z(t)=Hsample ac(t)
=Hz0 accos(ωst)+αHz0 accos(ωs+ωm)t
+αHz0 accos(ωs−ωm)t
=Hz0 ac(1+2αcos(ωmt))cos(ωst) (数式5)
探針の先端には、次式で表される磁極が発生する。
ρ(t)=ρtip ac(t)
=ρ0 accos(ωst)+βρ0 accos(ωs+ωm)t
+βρ0 accos(ωs−ωm)t (数式6)
At this time, the alternating magnetic field applied to the probe is given by the following equation.
H z (t) = H sample ac (t)
= H z0 ac cos (ω s t) + αH z0 ac cos (ω s + ω m ) t
+ ΑH z0 ac cos (ω s −ω m ) t
= H z0 ac (1 + 2αcos (ω m t)) cos (ω s t) ( Equation 5)
A magnetic pole represented by the following formula is generated at the tip of the probe.
ρ (t) = ρ tip ac (t)
= Ρ 0 ac cos (ω s t) + βρ 0 ac cos (ω s + ω m ) t
+ Βρ 0 ac cos (ω s −ω m ) t (Formula 6)

(数式5)および(数式6)より、実効的なバネ定数の時間変化は、次式で与えられる。
Δk(t)=∂Fz/∂z
=ρ(t)(∂Hz(t)/∂z)
=ρtip ac(t)(∂Hsample ac(t)/∂z)
={ρ0 accos(ωst)+βρ0 accos(ωs+ωm)t
+βρ0 accos(ωs−ωm)t}
{(∂Hz0 ac/∂z)cos(ωst)
+α(∂Hz0 ac/∂z)cos(ωs+ωm)t
+α(∂Hz0 ac/∂z)cos(ωs−ωm)t} (数式7)
From (Equation 5) and (Equation 6), the time change of the effective spring constant is given by the following equation.
Δk (t) = ∂F z / ∂z
= Ρ (t) (∂H z (t) / ∂z)
= Ρ tip ac (t) (∂H sample ac (t) / ∂z)
= {Ρ 0 ac cos (ω s t) + βρ 0 ac cos (ω s + ω m ) t
+ Βρ 0 ac cos (ω s −ω m ) t}
{(∂H z0 ac / ∂z) cos (ω s t)
+ Α (∂H z0 ac / ∂z) cos (ω s + ω m ) t
+ Α (∂H z0 ac / ∂z) cos (ω s −ω m ) t} (Formula 7)

(数式7)から、直流を含む、低角周波数の実効バネ定数成分Δklowは、次式で表される。
Δklow={1/2+(α+β)}ρ0 ac(∂Hz0 ac/∂z)
+(α+β)ρ0 ac(∂Hz0 ac/∂z)cos(ωmt) (数式8)
上記から、Δklowのcos(ωmt)成分による、探針振動の周波数変調(FM)を利用し、同様に高周波磁場の振幅(∂Hz0 ac/∂z)の測定が可能になることがわかる。
振幅変調した交流磁場を用いた場合、先に説明した2つの周波数の交流磁場の場合と比較して、cos(ωmt)成分の信号強度が2倍になる特徴がある。
From (Equation 7), the effective spring constant component Δk low including DC is expressed by the following equation.
Δk low = {1/2 + (α + β)} ρ 0 ac (∂H z0 ac / ∂z)
+ (Α + β) ρ 0 ac (∂H z0 ac / ∂z) cos (ω m t) (Formula 8)
From the above, it is possible to measure the amplitude (∂H z0 ac / ∂z) of the high-frequency magnetic field using the frequency modulation (FM) of the probe vibration by the cos (ω m t) component of Δk low. I understand.
The use of an amplitude-modulated AC magnetic field is characterized in that the signal intensity of the cos (ω m t) component is doubled compared to the case of the AC magnetic field having the two frequencies described above.

図1は本発明の交流磁場測定装置の一実施形態を示す説明図である。FIG. 1 is an explanatory view showing an embodiment of the AC magnetic field measurement apparatus of the present invention. 図2は本発明の交流磁場測定方法を示すフローチャートである。FIG. 2 is a flowchart showing the AC magnetic field measurement method of the present invention. 図3(A)磁気記録ヘッドの模式図であり、図3(B)は垂直磁気記録用の主磁極直上で取得した垂直磁場像(Lock−in X像)であり、図3(C)はその断面プロファイルである。FIG. 3A is a schematic diagram of the magnetic recording head, FIG. 3B is a perpendicular magnetic field image (Lock-in X image) acquired immediately above the main magnetic pole for perpendicular magnetic recording, and FIG. It is the cross-sectional profile. 図4は従来技術(交流磁場測定装置)の説明図である。FIG. 4 is an explanatory diagram of the prior art (AC magnetic field measuring apparatus).

図1は本発明の交流磁場測定装置を示す説明図であり、交流信号を与えることで交流磁場を発生する試料の交流磁場(または、交流磁場応答性)を探針装置により測定することができる。
図1において、交流磁場測定装置1は、探針装置(カンチレバー)11と、励振器12と、駆動源13と、信号抽出器14と、交流磁場応答測定器15と、走査機構16と、画像表示装置17とから構成されている。
FIG. 1 is an explanatory diagram showing an AC magnetic field measuring apparatus according to the present invention. An AC magnetic field (or AC magnetic field responsiveness) of a sample that generates an AC magnetic field by applying an AC signal can be measured by a probe device. .
In FIG. 1, an AC magnetic field measuring apparatus 1 includes a probe device (cantilever) 11, an exciter 12, a drive source 13, a signal extractor 14, an AC magnetic field response measuring instrument 15, a scanning mechanism 16, and an image. And a display device 17.

探針装置11は、図1ではカンチレバーである。図1では、探針装置11は、カンチレバー112と、カンチレバー112の先端(自由端)に設けられたソフト磁性体からなる探針111により構成される。探針111はソフト磁性体から構成されており、探針111の先端の磁極の極性は、試料2が発生する磁場の極性に追従して変化する。
本実施形態では、探針111は、シリコン探針にFeCoを被覆して形成される。
The probe device 11 is a cantilever in FIG. In FIG. 1, the probe device 11 includes a cantilever 112 and a probe 111 made of a soft magnetic material provided at the tip (free end) of the cantilever 112. The probe 111 is made of a soft magnetic material, and the polarity of the magnetic pole at the tip of the probe 111 changes following the polarity of the magnetic field generated by the sample 2.
In the present embodiment, the probe 111 is formed by covering a silicon probe with FeCo.

励振器12は、交流電源121と圧電素子(ピエゾ素子)122とからなり、探針111を励振する(機械振動させる)ことができる。交流電源121が圧電素子122に与える角周波数はω0である。励振器12は探針111を探針装置11の固有振動数または固有振動数に近い角周波数ω0(本実施形態では、周波数f0=300kHz程度)で励振している。
なお、探針111が交流磁場H0の影響を受けることで探針装置11の実効的な(みかけ上の)バネ定数が変化する。これにより、探針111の振動に周波数変調が生じる。
The exciter 12 includes an AC power source 121 and a piezoelectric element (piezo element) 122, and can excite the probe 111 (mechanically vibrate). The angular frequency that the AC power supply 121 gives to the piezoelectric element 122 is ω 0 . The exciter 12 excites the probe 111 at the natural frequency of the probe device 11 or an angular frequency ω 0 close to the natural frequency (in this embodiment, the frequency f 0 = about 300 kHz).
Note that the effective (apparent) spring constant of the probe device 11 changes as the probe 111 is affected by the AC magnetic field H 0 . Thereby, frequency modulation occurs in the vibration of the probe 111.

駆動源13は、角周波数ωsの交流電流を出力する第1駆動源(電流源または電圧源)131と、低角周波数ωmの信号を出力する第2駆動源(電流源または電圧源)132と、第1駆動源131からの出力と第2駆動源132との出力を合成する合成器133とからなる。
試料2に与える角周波数ωsの交流信号(電流)を、角周波数ωsよりも十分に低い変調角周波数ωmで変調し、この変調した角周波数(ωs±ωm)の交流信号iを試料2に与える。
試料2は、変調角周波数ωmで変調された交流信号iが与えられたときに、交流磁場H0cos(ωst}が変調角周波数ωmで変調された交流磁場H0cos{(ωs±ωm)t}を発生する。
図1では、試料2はコイル21を備えた磁気発生装置であり、試料2に与えられる交流信号(ωs±ωm)は、コイル21に流される交流電流である。なお、試料2は、典型的には、ハードディスクの書込み用の磁気ヘッドである。
The drive source 13 includes a first drive source (current source or voltage source) 131 that outputs an alternating current having an angular frequency ω s and a second drive source (current source or voltage source) that outputs a signal having a low angular frequency ω m. 132 and a combiner 133 that combines the output from the first drive source 131 and the output from the second drive source 132.
AC signal of the angular frequency omega s applied to the sample 2 (current), the angular frequency omega is modulated at a sufficiently low modulation angular frequency omega m than s, the AC signal i of the modulated angular frequency (ω s ± ω m) Is given to sample 2.
When the AC signal i modulated with the modulation angular frequency ω m is supplied, the sample 2 has an AC magnetic field H 0 cos {() in which the AC magnetic field H 0 cos (ω st t} is modulated with the modulation angular frequency ω m. ω s ± ω m ) t}.
In FIG. 1, the sample 2 is a magnetic generator provided with a coil 21, and the AC signal (ω s ± ω m ) given to the sample 2 is an AC current that flows through the coil 21. Sample 2 is typically a magnetic head for writing to a hard disk.

信号抽出器14は、探針振動検出器141と、復調回路142とからなる。
探針振動検出器141は、探針111の振動を検出する。探針振動検出器141は、レーザ1411と光センサ(フォトダイオード)1412からなる。
The signal extractor 14 includes a probe vibration detector 141 and a demodulation circuit 142.
The probe vibration detector 141 detects the vibration of the probe 111. The probe vibration detector 141 includes a laser 1411 and an optical sensor (photodiode) 1412.

探針111は、交流磁場が与えられていないときには、角周波数ω0で振動しているが交流磁場が与えられると探針磁化と交流磁場との磁気的相互作用により、角周波数が周期的に変化する周波数変調を受ける。本発明では、交流磁場は変調された高周波数磁場であり、探針装置11は変調周波数ωmでバネ定数が変化するように振舞う。したがって、探針111の角周波数ω0で振動している探針111は、変調周波数ωmで変調を受けるようになる。
復調回路142は、探針振動検出器141の検出信号を入力し、検出信号に含まれる探針111の機械振動に生じた変調信号(振動周波数がω0から周期的に変調周波数で時間変化する変調信号)から変調角周波数ωmの信号を復調することができる。
The probe 111 oscillates at an angular frequency ω 0 when no AC magnetic field is applied. However, when the AC magnetic field is applied, the angular frequency periodically varies due to the magnetic interaction between the probe magnetization and the AC magnetic field. Subject to changing frequency modulation. In the present invention, the alternating magnetic field is a modulated high-frequency magnetic field, and the probe device 11 behaves so that the spring constant changes at the modulation frequency ω m . Therefore, the probe 111 vibrating at the angular frequency ω 0 of the probe 111 is modulated at the modulation frequency ω m .
The demodulation circuit 142 receives the detection signal of the probe vibration detector 141 and receives a modulation signal (vibration frequency periodically changing from ω 0 to the modulation frequency) with respect to the mechanical vibration of the probe 111 included in the detection signal. The signal having the modulation angular frequency ω m can be demodulated from the modulation signal.

交流磁場応答測定器15は、復調回路142により復調した信号に基づき、試料2の交流磁場(または、交流磁場応答性)を測定する。言い換えると、交流磁場応答測定器15は、変調周波数ωmの信号は探針111の振動の周波数変調の程度より、試料2の交流磁場(または、交流磁場応答性)を測定する。
交流磁場応答測定器15は、ロックインアンプ151、振幅測定回路152、位相測定回路153、同相成分測定回路154および直交成分測定回路155から構成することができる。ロックインアンプ151は、第2駆動源132から同期をとるべく参照信号を入力している。
空間分解能向上のために、探針・試料間距離を減少させた場合に対応する、上述した単磁極型のソフト磁性探針の場合には、ロックインアンプ151の出力から、振幅測定回路152は周期変動磁場∂Hm/∂zの振幅を検出できるし、位相測定回路153は周期変動磁場∂Hzm/∂zの位相を検出できる。
The AC magnetic field response measuring device 15 measures the AC magnetic field (or AC magnetic field response) of the sample 2 based on the signal demodulated by the demodulation circuit 142. In other words, the AC magnetic field response measuring device 15 measures the AC magnetic field (or AC magnetic field responsiveness) of the sample 2 based on the degree of frequency modulation of the vibration of the probe 111 with respect to the signal of the modulation frequency ω m .
The AC magnetic field response measuring device 15 can be composed of a lock-in amplifier 151, an amplitude measuring circuit 152, a phase measuring circuit 153, an in-phase component measuring circuit 154, and a quadrature component measuring circuit 155. The lock-in amplifier 151 receives a reference signal from the second drive source 132 for synchronization.
In the case of the above-described single magnetic pole type soft magnetic probe, which corresponds to the case where the distance between the probe and the sample is decreased in order to improve the spatial resolution, the amplitude measuring circuit 152 is obtained from the output of the lock-in amplifier 151. The amplitude of the periodically varying magnetic field ∂H m / ∂z can be detected, and the phase measuring circuit 153 can detect the phase of the periodically varying magnetic field ∂H zm / ∂z.

走査機構16は、探針装置11を試料2に対して相対移動させることで探針111を試料2の面の上で走査させることができる。たとえば、走査機構16は、三次元移動ステージ(X−Y−Z方向に移動できるステージ)とすることができる。三次元移動ステージには、試料2が取り付けられる。
走査機構16による走査に際して、探針111と試料2との距離を予め検出しておくことができる。本実施形態では、走査機構16の機能が探針・試料間距離の調整を行うように構成されている。
The scanning mechanism 16 can scan the probe 111 on the surface of the sample 2 by moving the probe device 11 relative to the sample 2. For example, the scanning mechanism 16 can be a three-dimensional moving stage (a stage that can move in the XYZ direction). A sample 2 is attached to the three-dimensional movement stage.
During scanning by the scanning mechanism 16, the distance between the probe 111 and the sample 2 can be detected in advance. In this embodiment, the function of the scanning mechanism 16 is configured to adjust the distance between the probe and the sample.

画像表示装置17は、コンピュータとディスプレイから構成できる。画像表示装置17は、試料2の表面の交流磁場(または、交流磁場応答性)の測定結果を、走査機構16の走査位置情報(本実施形態では、xy座標情報またはxyz座標情報)を記憶装置171に記憶しておくことができる。そして、画像表示装置17は、走査位置情報に対応させて交流磁場(または、交流磁場応答性:各位置における磁場の強度)を二次元表示または三次元表示する。
画像表示装置17は、走査機構16により走査された探針111の試料2の面の上での多数の位置で、試料2の交流磁場(または、交流磁場応答性)を測定し、測定結果をメモリに記憶しておくことができる。そして、測定結果を画像表示することができる。
The image display device 17 can be composed of a computer and a display. The image display device 17 stores the measurement result of the alternating magnetic field (or alternating magnetic field responsiveness) on the surface of the sample 2 and the scanning position information of the scanning mechanism 16 (in this embodiment, xy coordinate information or xyz coordinate information). 171 can be stored. Then, the image display device 17 displays the alternating magnetic field (or alternating magnetic field response: the strength of the magnetic field at each position) in a two-dimensional or three-dimensional manner corresponding to the scanning position information.
The image display device 17 measures the AC magnetic field (or AC magnetic field responsiveness) of the sample 2 at a number of positions on the surface of the sample 2 of the probe 111 scanned by the scanning mechanism 16, and displays the measurement result. Can be stored in memory. The measurement result can be displayed as an image.

図2は本発明の交流磁場測定方法を示すフローチャートである。
図2に示す、ステップS110〜200の処理は、上述した本発明の交流磁場測定装置における各構成要素(探針装置11、励振器12、駆動源13、信号抽出器14、交流磁場応答測定器15、走査機構16および画像表示装置17)により行われる。
FIG. 2 is a flowchart showing the AC magnetic field measurement method of the present invention.
The processing in steps S110 to S200 shown in FIG. 2 is performed by each component (probe device 11, exciter 12, drive source 13, signal extractor 14, AC magnetic field response measuring device in the AC magnetic field measuring device of the present invention described above. 15, scanning mechanism 16 and image display device 17).

走査機構16が走査を開始する(初期座標X=0,Y=0に、座標がセットされる)(S110)。
駆動源13は、角周波数ωsの交流信号をこの周波数よりも低い変調角周波数ωmで変調し、この変調信号(交流電流i)で試料2を駆動する。試料2は、変調信号(交流電流i)に対応する変調周波数の交流磁場(変調交流磁場)を発生する(S120)
励振器12は、探針111を励振し(機械振動させ)、探針111の磁化を、変調された交流磁場で励磁する。交流磁場で励磁された探針磁化は、交流磁場との磁気的相互作用により、探針の実効的なバネ定数を変化させ、これにより、探針振動に周波数変調が発生する。(S130)。
信号抽出器14の一部を構成する探針振動検出器141は、探針111の振動を検出し検出信号を生成する(S140)。
信号抽出器14の一部を構成する復調回路142は、検出信号に含まれる探針111の機械振動に生じた変調信号(周波数変調による信号)を復調する(S150)。
交流磁場応答測定器15は、復調した信号に基づき、試料2の交流磁場応答性を測定する(S160)。探針111の振動に生じる周波数変調の程度より、試料2の交流磁場応答性を測定する。
交流磁場応答測定器15は、測定結果を記憶装置(図1の符号171参照)に格納する(S170)。
交流磁場応答測定器15は、走査機構16が全座標を走査したかを判断する(S180)。
走査機構16が全座標を走査していないときは、処理がS120に戻され、新たな座標についてS120〜180の処理が行われる。
走査機構16が全座標を走査したときは、画像表示装置17に、測定結果が画像表示される(S190)。
The scanning mechanism 16 starts scanning (coordinates are set to initial coordinates X = 0, Y = 0) (S110).
The drive source 13 modulates an AC signal having an angular frequency ωs with a modulation angular frequency ω m lower than this frequency, and drives the sample 2 with this modulation signal (AC current i). The sample 2 generates an alternating magnetic field (modulated alternating magnetic field) having a modulation frequency corresponding to the modulated signal (alternating current i) (S120).
The exciter 12 excites the probe 111 (mechanically vibrates), and excites the magnetization of the probe 111 with a modulated alternating magnetic field. The magnetization of the probe excited by the alternating magnetic field changes the effective spring constant of the probe by magnetic interaction with the alternating magnetic field, thereby generating frequency modulation in the probe vibration. (S130).
The probe vibration detector 141 constituting a part of the signal extractor 14 detects the vibration of the probe 111 and generates a detection signal (S140).
The demodulation circuit 142 that constitutes a part of the signal extractor 14 demodulates a modulation signal (signal by frequency modulation) generated by mechanical vibration of the probe 111 included in the detection signal (S150).
The AC magnetic field response measuring device 15 measures the AC magnetic field response of the sample 2 based on the demodulated signal (S160). The AC magnetic field responsiveness of the sample 2 is measured from the degree of frequency modulation that occurs in the vibration of the probe 111.
The AC magnetic field response measuring instrument 15 stores the measurement result in a storage device (see reference numeral 171 in FIG. 1) (S170).
The AC magnetic field response measuring device 15 determines whether the scanning mechanism 16 has scanned all the coordinates (S180).
When the scanning mechanism 16 has not scanned all the coordinates, the process returns to S120, and the processes of S120 to S180 are performed for the new coordinates.
When the scanning mechanism 16 scans all coordinates, the measurement result is displayed as an image on the image display device 17 (S190).

《実験例》
以下に、本実施形態における実験例を示す。
(A)
本実験例の条件は以下のとおりである。
試料2は磁気ヘッドである。
探針111は、Si探針にFeCo膜を30nm成膜して構成した。
交流磁場の周波数は、700MHzである。
交流磁場の変調方式は振幅変調(AM)であり、変調周波数は70Hz、変調度は90%である。
《Experimental example》
Below, the experiment example in this embodiment is shown.
(A)
The conditions of this experimental example are as follows.
Sample 2 is a magnetic head.
The probe 111 was configured by forming a 30 nm FeCo film on a Si probe.
The frequency of the alternating magnetic field is 700 MHz.
The modulation method of the alternating magnetic field is amplitude modulation (AM), the modulation frequency is 70 Hz, and the modulation degree is 90%.

(B)
実験では、探針111を上記の振幅変調磁場で励磁し、探針111に70Hzの交番磁気力を発生させた。
この交番磁気力により発生する探針111の機械変調信号(周波数変調信号(FM))を室温大気中で測定した。
(B)
In the experiment, the probe 111 was excited with the above-described amplitude-modulated magnetic field, and an alternating magnetic force of 70 Hz was generated on the probe 111.
A mechanical modulation signal (frequency modulation signal (FM)) of the probe 111 generated by this alternating magnetic force was measured in the air at room temperature.

(C)
図3(A)に交流磁場の測定を行った、磁気記録ヘッド(試料2)の模式図を示す。磁気記録ヘッドから発生する交流磁場の磁束Φは、交流信号が加えられるコイル21で取り囲まれている主磁極22からリターンヨーク23に向かって流れる。ここで主磁極とリターンヨークの間のギャップGapの部分では、ヘッド表面に垂直な磁場成分はゼロとなり、ヘッド表面に平行な磁場成分が最大となる。
図3(B)に磁気記録ヘッド(試料2)の主磁極22およびリターンヨーク23の直上で取得した垂直磁場像(Lock−in X像)示し、図3(C)にその断面プロファイルを示す。
図3(B)に示されるように、実線で示すギャップを挟んで、主磁極22からリターンヨーク23に向かうダウントラック方向で磁場像のコントラストが反転している。
主磁極PMからの磁束Φがギャップを挟んでリターンヨークRY側に流れる様子が明瞭に観察される。
図3(C)に示されるように、Lock−inX像の信号の値は、主磁極側で正、ギャップGapの領域でゼロ、リターンヨーク23側で負となっており、図3(A)で示した磁束の流れが明瞭に測定される。
(C)
FIG. 3A shows a schematic diagram of a magnetic recording head (sample 2) in which an alternating magnetic field was measured. The magnetic flux Φ of the AC magnetic field generated from the magnetic recording head flows from the main magnetic pole 22 surrounded by the coil 21 to which an AC signal is applied toward the return yoke 23. Here, in the gap Gap portion between the main magnetic pole and the return yoke, the magnetic field component perpendicular to the head surface is zero and the magnetic field component parallel to the head surface is maximum.
FIG. 3B shows a vertical magnetic field image (Lock-in X image) acquired immediately above the main magnetic pole 22 and the return yoke 23 of the magnetic recording head (sample 2), and FIG. 3C shows the cross-sectional profile thereof.
As shown in FIG. 3B, the contrast of the magnetic field image is reversed in the down-track direction from the main magnetic pole 22 toward the return yoke 23 with the gap indicated by the solid line interposed therebetween.
It is clearly observed that the magnetic flux Φ from the main magnetic pole PM flows to the return yoke RY side across the gap.
As shown in FIG. 3C, the signal value of the Lock-inX image is positive on the main pole side, zero in the gap gap region, and negative on the return yoke 23 side. The magnetic flux flow indicated by is clearly measured.

1 交流磁場測定装置
2 試料
11 探針装置
12 励振器
13 駆動源
14 信号抽出器
15 交流磁場応答測定器
16 走査機構
17 画像表示装置
21 コイル
22 主磁極
23 リターンヨーク
111 探針
112 カンチレバー
121 交流電源
122 圧電素子(ピエゾ素子)
131 第1駆動源
132 第2駆動源
141 探針振動検出器
142 復調回路
151 ロックインアンプ
152 振幅測定回路
153 位相測定回路
154 同相成分測定回路
155 垂直成分測定回路
171 記憶装置
1411 レーザ
1412 光センサ(フォトダイオード)
gp21211 主磁極とリターンヨークの間のギャップ
Φ 磁束
DESCRIPTION OF SYMBOLS 1 AC magnetic field measuring device 2 Sample 11 Probe device 12 Exciter 13 Drive source 14 Signal extractor 15 AC magnetic field response measuring device 16 Scanning mechanism 17 Image display device 21 Coil 22 Main magnetic pole 23 Return yoke 111 Probe 112 Cantilever 121 AC power supply 122 Piezoelectric element
131 First Drive Source 132 Second Drive Source 141 Probe Vibration Detector 142 Demodulation Circuit 151 Lock-in Amplifier 152 Amplitude Measurement Circuit 153 Phase Measurement Circuit 154 In-phase Component Measurement Circuit 155 Vertical Component Measurement Circuit 171 Storage Device 1411 Laser 1412 Optical Sensor ( Photodiode)
gp21211 gap between main pole and return yoke Φ magnetic flux

Claims (10)

励磁用のコイルが形成された、交流磁場を発生する試料の交流磁場(または、交流磁場応答性)を測定する交流磁場測定装置であって、
磁性体からなる探針を備え、前記探針が前記試料から発生する交流磁場により磁化される探針装置と、
前記探針を励振周波数で励振する励振器と、
前記コイルに電流を流して前記試料から交流磁場を発生させ、前記交流磁場によって、前記探針の磁化を交流磁場の極性に応じて周期的に反転させる試料駆動源と、
前記探針の振動を検出し、前記検出信号から、前記励振振動に生じた機械変調にかかる信号(前記変調交流磁場により前記探針装置の実効的なバネ定数が変化することにより生じた信号)を抽出する信号抽出器と、
前記信号抽出器により抽出した信号に基づき、前記試料の交流磁場(または、交流磁場応答性)を測定する交流磁場応答測定器と、
を備え、
前記駆動源は、基本周波数の交流電流を所定周波数で変調した電流を出力する変調機能を有し、
前記交流磁場を発生する試料に形成された前記コイルに前記変調した電流を流すことで、前記試料から変調した交流磁場を発生し、
前記変調した交流磁場により前記探針の磁化を当該交流磁場の極性に応じて反転させるとともに、探針磁化と交流磁場との磁気的相互作用により前記実効的なバネ定数を変化させる、
ことを特徴とする交流磁場測定装置。
An AC magnetic field measuring apparatus for measuring an AC magnetic field (or AC magnetic field responsiveness) of a sample that generates an AC magnetic field, on which an exciting coil is formed,
A probe device comprising a probe made of a magnetic material, wherein the probe is magnetized by an alternating magnetic field generated from the sample;
An exciter for exciting the probe at an excitation frequency;
A sample driving source for causing an electric current to flow through the coil to generate an alternating magnetic field from the sample, and periodically reversing the magnetization of the probe according to the polarity of the alternating magnetic field by the alternating magnetic field;
The probe vibration is detected, and a signal relating to the mechanical modulation generated in the excitation vibration from the detection signal (a signal generated by changing an effective spring constant of the probe device by the modulation AC magnetic field) A signal extractor for extracting
An AC magnetic field response measuring device for measuring an AC magnetic field (or AC magnetic field response) of the sample based on the signal extracted by the signal extractor;
With
The drive source has a modulation function for outputting a current obtained by modulating an alternating current having a fundamental frequency at a predetermined frequency;
By passing the modulated current through the coil formed in the sample that generates the alternating magnetic field, the alternating magnetic field generated from the sample is generated,
Reversing the magnetization of the probe according to the polarity of the alternating magnetic field by the modulated alternating magnetic field, and changing the effective spring constant by magnetic interaction between the probe magnetization and the alternating magnetic field,
An AC magnetic field measuring apparatus characterized by that.
請求項1に記載の交流磁場測定装置であって、
前記信号抽出器が、
前記探針装置の振動を検出する探針振動検出器と、
前記振動検出装置により検出した振動にかかる信号から、前記振動検出装置に与えられた磁気信号に対応する信号を復調する復調回路と、
を備えた、
ことを特徴とする交流磁場測定装置。
The AC magnetic field measurement apparatus according to claim 1,
The signal extractor comprises:
A probe vibration detector for detecting the vibration of the probe device;
A demodulation circuit that demodulates a signal corresponding to a magnetic signal applied to the vibration detection device from a signal relating to vibration detected by the vibration detection device;
With
An AC magnetic field measuring apparatus characterized by that.
請求項1に記載の交流磁場測定装置であって、
前記探針装置が、
前記探針と、
前記探針が先端に設けられたカンチレバーと、
からなり、
前記励振器が、
交流電源と、
カンチレバーと、
を含む、
ことを特徴とする交流磁場測定装置。
The AC magnetic field measurement apparatus according to claim 1,
The probe device is
The probe;
A cantilever provided with a tip at the tip;
Consists of
The exciter is
AC power supply,
Cantilevers,
including,
An AC magnetic field measuring apparatus characterized by that.
請求項1に記載の交流磁場測定装置であって、
さらに走査機構を備え、
前記走査機構は、前記探針装置の探針を前記試料に対して三次元移動させる、
ことを特徴とする交流磁場測定装置。
The AC magnetic field measurement apparatus according to claim 1,
Furthermore, a scanning mechanism is provided,
The scanning mechanism moves the probe of the probe device three-dimensionally with respect to the sample;
An AC magnetic field measuring apparatus characterized by that.
請求項4に記載の交流磁場測定装置であって、
さらに画像表示装置を備え、
前記画像表示装置は、前記走査機構により走査した前記探針の前記試料の表面上での各位置での、前記試料の交流磁場(または、交流磁場応答性)を測定し、当該測定結果を画像表示する、
ことを特徴とする交流磁場測定装置。
The AC magnetic field measurement apparatus according to claim 4,
Furthermore, an image display device is provided,
The image display device measures an alternating magnetic field (or alternating magnetic field responsiveness) of the sample at each position on the surface of the sample of the probe scanned by the scanning mechanism, and displays the measurement result as an image. indicate,
An AC magnetic field measuring apparatus characterized by that.
励磁用のコイルが形成された交流磁場を発生する試料の交流磁場(または、交流磁場応答性)を、磁性体からなる探針を備えた探針装置を用いて測定する交流磁場測定方法であって、
励振器により前記探針を励振周波数で励振する励振ステップ、
前記コイルに電流を流して前記試料から交流磁場を発生させる試料コイル駆動ステップ、
前記探針を前記試料から発生する交流磁場により磁化を周期的に反転させ、前記探針装置の実効的なバネ定数を変化させ、前記励振振動に機械変調を生じさせる機械変調生成ステップ、
前記探針の振動を検出し、前記検出信号から、前記励振振動に生じた機械変調にかかる信号を抽出する信号抽出ステップ、および、
前記信号抽出器により抽出した信号に基づき、前記試料の交流磁場(または、交流磁場応答性)を測定する測定ステップ、
を含み、
前記試料コイル駆動ステップでは、基本周波数の交流電流を所定周波数で変調した電流を出力し、
前記コイルに前記変調した電流を流すことで、前記試料から変調した交流磁場を発生させ、
前記機械変調生成ステップでは、探針磁化と交流磁場との磁気的相互作用により前記実効的なバネ定数を変化させ、前記機械変調を生じさせる、
ことを特徴とする交流磁場測定方法。
This is an AC magnetic field measurement method for measuring the AC magnetic field (or AC magnetic field responsiveness) of a sample that generates an AC magnetic field on which an exciting coil is formed, using a probe device having a probe made of a magnetic material. And
An excitation step of exciting the probe at an excitation frequency by an exciter;
A sample coil driving step for generating an alternating magnetic field from the sample by passing an electric current through the coil;
A mechanical modulation generating step of periodically reversing the magnetization of the probe by an alternating magnetic field generated from the sample, changing an effective spring constant of the probe device, and generating mechanical modulation in the excitation vibration;
A signal extracting step of detecting vibration of the probe and extracting a signal relating to mechanical modulation generated in the excitation vibration from the detection signal; and
A measurement step of measuring an alternating magnetic field (or alternating magnetic field response) of the sample based on the signal extracted by the signal extractor;
Including
In the sample coil driving step, a current obtained by modulating an alternating current having a fundamental frequency with a predetermined frequency is output,
By passing the modulated current through the coil, a modulated alternating magnetic field is generated from the sample,
In the mechanical modulation generation step, the effective spring constant is changed by magnetic interaction between the probe magnetization and the alternating magnetic field, and the mechanical modulation is generated.
AC magnetic field measurement method characterized by the above.
請求項6に記載の交流磁場測定方法であって、
前記信号抽出ステップは、振動検出ステップおよび復調ステップを含み、
前記振動検出ステップでは、前記探針装置の振動を検出し、
前記復調ステップでは、前記振動検出ステップにより検出した信号から、前記磁気信号に対応する信号を復調する、
交流磁場測定方法。
The AC magnetic field measurement method according to claim 6,
The signal extraction step includes a vibration detection step and a demodulation step,
In the vibration detection step, the vibration of the probe device is detected,
In the demodulation step, a signal corresponding to the magnetic signal is demodulated from the signal detected in the vibration detection step.
AC magnetic field measurement method.
請求項6に記載の交流磁場測定方法であって、
前記信号抽出ステップでは、交流電源により圧電素子を励振する、
ことを特徴とする交流磁場測定方法。
The AC magnetic field measurement method according to claim 6,
In the signal extraction step, the piezoelectric element is excited by an AC power source.
AC magnetic field measurement method characterized by the above.
請求項6に記載の交流磁場応測定方法であって、
さらに走査ステップを含み、
前記走査ステップでは、前記探針を前記試料に対して三次元移動させる、
ことを特徴とする交流磁場応測定方法。
The AC magnetic field response measuring method according to claim 6,
Further comprising a scanning step,
In the scanning step, the probe is three-dimensionally moved with respect to the sample.
AC magnetic field response measuring method characterized by the above.
請求項9に記載の交流磁場測定方法であって、
さらに画像表示ステップを含み、
前記画像表示ステップでは、前記走査ステップにおいて走査した前記探針の前記試料の表面上での各位置での、前記試料の交流磁場(または、交流磁場応答性)を測定し、当該測定結果を画像表示する、
ことを特徴とする交流磁場測定方法。
The AC magnetic field measurement method according to claim 9,
Furthermore, an image display step is included,
In the image display step, the AC magnetic field (or AC magnetic field responsiveness) of the sample at each position on the surface of the sample of the probe scanned in the scanning step is measured, and the measurement result is imaged. indicate,
AC magnetic field measurement method characterized by the above.
JP2013180807A 2013-08-31 2013-08-31 AC magnetic field measuring apparatus and AC magnetic field measuring method Active JP6358788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013180807A JP6358788B2 (en) 2013-08-31 2013-08-31 AC magnetic field measuring apparatus and AC magnetic field measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013180807A JP6358788B2 (en) 2013-08-31 2013-08-31 AC magnetic field measuring apparatus and AC magnetic field measuring method

Publications (2)

Publication Number Publication Date
JP2015049134A true JP2015049134A (en) 2015-03-16
JP6358788B2 JP6358788B2 (en) 2018-07-18

Family

ID=52699272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013180807A Active JP6358788B2 (en) 2013-08-31 2013-08-31 AC magnetic field measuring apparatus and AC magnetic field measuring method

Country Status (1)

Country Link
JP (1) JP6358788B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093476A (en) * 2016-06-15 2016-11-09 北京原力辰超导技术有限公司 A kind of scanning magnetic probe microscope

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064201A (en) * 1998-07-13 2000-05-16 Chartered Semiconductor Manufacturing Ltd. Method and apparatus to image metallic patches embedded in a non-metal surface
JP2001272327A (en) * 2000-03-27 2001-10-05 Toshiba Corp Magnetic field characteristic evaluation apparatus and measurement method
US6448766B1 (en) * 1999-03-20 2002-09-10 International Business Machines Corporation Method of imaging a magnetic field emanating from a surface using a conventional scanning force microscope
JP2003085717A (en) * 2001-09-14 2003-03-20 Toshiba Corp Magnetic recording head measuring device and measuring method applied to the device
JP2003248911A (en) * 2002-02-26 2003-09-05 Toshiba Corp Measuring apparatus of magnetic head and measuring method used in the apparatus
WO2009101991A1 (en) * 2008-02-12 2009-08-20 Akita University Surface state measuring device, and surface state measuring method using the device
JP2010175534A (en) * 2009-01-05 2010-08-12 Hitachi High-Technologies Corp Magnetic device inspection apparatus and magnetic device inspection method
WO2012029973A1 (en) * 2010-09-03 2012-03-08 国立大学法人秋田大学 Magnetic field observation device and magnetic field observation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064201A (en) * 1998-07-13 2000-05-16 Chartered Semiconductor Manufacturing Ltd. Method and apparatus to image metallic patches embedded in a non-metal surface
US6448766B1 (en) * 1999-03-20 2002-09-10 International Business Machines Corporation Method of imaging a magnetic field emanating from a surface using a conventional scanning force microscope
JP2001272327A (en) * 2000-03-27 2001-10-05 Toshiba Corp Magnetic field characteristic evaluation apparatus and measurement method
JP2003085717A (en) * 2001-09-14 2003-03-20 Toshiba Corp Magnetic recording head measuring device and measuring method applied to the device
JP2003248911A (en) * 2002-02-26 2003-09-05 Toshiba Corp Measuring apparatus of magnetic head and measuring method used in the apparatus
WO2009101991A1 (en) * 2008-02-12 2009-08-20 Akita University Surface state measuring device, and surface state measuring method using the device
JP2010175534A (en) * 2009-01-05 2010-08-12 Hitachi High-Technologies Corp Magnetic device inspection apparatus and magnetic device inspection method
WO2012029973A1 (en) * 2010-09-03 2012-03-08 国立大学法人秋田大学 Magnetic field observation device and magnetic field observation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093476A (en) * 2016-06-15 2016-11-09 北京原力辰超导技术有限公司 A kind of scanning magnetic probe microscope
CN106093476B (en) * 2016-06-15 2019-05-10 北京原力辰超导技术有限公司 A kind of scanning magnetic probe microscope

Also Published As

Publication number Publication date
JP6358788B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP4769918B1 (en) Magnetic field observation apparatus and magnetic field observation method
CN103336151A (en) Magnetic microscope and measurement method thereof
US6617848B2 (en) Magnetic head measuring apparatus and measuring method applied to the same apparatus
US9222914B2 (en) Magnetic profile measuring device and method for measuring magnetic profile for alternating-current magnetic field
JP2012198192A (en) Magnetic force microscope and high spatial resolution magnetic field measurement method
JP4913242B2 (en) Dynamic mode AFM device
JP6167265B2 (en) Apparatus for evaluating magnetic properties of magnetic fine particles and method for evaluating magnetic properties
JP6358788B2 (en) AC magnetic field measuring apparatus and AC magnetic field measuring method
JP5954809B2 (en) Magnetic field value measuring apparatus and magnetic field value measuring method
JP4024451B2 (en) Scanning Kelvin probe microscope
JP6481191B2 (en) AC magnetic field measuring apparatus and AC magnetic field measuring method
EP2762896B1 (en) Dc magnetic field magnetic profile measuring device and magnetic profile measuring method
JP3637297B2 (en) Magnetic recording head measuring apparatus and measuring method applied to the same
WO2015182564A1 (en) Evaluation device and evaluation method for magnetic force microscope probe, magnetic force microscope, and method of adjusting magnetic field for control of magnetic force microscope
JP6482129B2 (en) Electric force / magnetic force microscope and electric / magnetic field simultaneous measurement method
JP3597787B2 (en) Magnetic recording head measuring device and magnetic recording head measuring method
JP2013002944A (en) Method for detecting vibrational component and atomic force microscope
JP2010071674A (en) Scanning probe microscope
JP2022063163A (en) Scanning probe microscope
JP2012047689A (en) Scanning prove microscope
JP2004279099A (en) External magnetic field sweep magnetic force microscope and measuring method
JP2000146809A (en) Method for making image of sample surface in probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150