JP2015048894A - Damping device using piezoelectric material - Google Patents

Damping device using piezoelectric material Download PDF

Info

Publication number
JP2015048894A
JP2015048894A JP2013181005A JP2013181005A JP2015048894A JP 2015048894 A JP2015048894 A JP 2015048894A JP 2013181005 A JP2013181005 A JP 2013181005A JP 2013181005 A JP2013181005 A JP 2013181005A JP 2015048894 A JP2015048894 A JP 2015048894A
Authority
JP
Japan
Prior art keywords
load receiving
force
receiving portion
piezoelectric material
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013181005A
Other languages
Japanese (ja)
Other versions
JP6190217B2 (en
Inventor
丹羽 直幹
Naomiki Niwa
直幹 丹羽
賢二 高木
Kenji Takagi
賢二 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2013181005A priority Critical patent/JP6190217B2/en
Publication of JP2015048894A publication Critical patent/JP2015048894A/en
Application granted granted Critical
Publication of JP6190217B2 publication Critical patent/JP6190217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To effectively utilize elongation and contraction generated in piezoelectric materials for suppressing the vibration of a construction while effectively utilizing piezoelectric effects of the piezoelectric materials themselves when suppressing the vibration of the construction by incorporating the piezoelectric materials generating voltages corresponding to deformation amounts and reaction forces by the deformation amounts corresponding to the voltages into a pair of load receiving parts on which a compression force and a tensile force alternately and repeatedly act when the construction receives a horizontal force.SOLUTION: Piezoelectric materials 4, 5 are incorporated into one load receiving part 2 and the other load receiving part 3 in a state that the load receiving parts are alternately loaded with a compression force and a tensile force when a horizontal force acts, and when the tensile force or the compression force acts on one load receiving part 2, a voltage which is generated by the piezoelectric material 4 of one load receiving part 2 and corresponds to an elongation deformation amount or a contraction deformation amount is applied to the piezoelectric material 5 of the other load receiving part 3.

Description

本発明は構造物が地震等による水平力を受けたときに引張力と圧縮力が交互に繰り返して作用し、一方に引張力が作用するときに他方に圧縮力が作用する関係にある、対になる荷重受け部に、引張力を受けたときに変形量に応じた電圧を発生し、また電圧に応じた変形量分の反力を発生する圧電材料を組み込むことで構造物の振動を抑制する圧電材料を用いた制震装置に関するものである。   In the present invention, when a structure receives a horizontal force due to an earthquake or the like, a tensile force and a compressive force are alternately and repeatedly applied, and when a tensile force is applied to one, a compressive force is applied to the other. The vibration of the structure is suppressed by incorporating a piezoelectric material that generates a voltage corresponding to the amount of deformation when receiving a tensile force, and a reaction force corresponding to the amount of deformation corresponding to the voltage. The present invention relates to a vibration control device using a piezoelectric material.

構造物内における構造部材が軸方向の引張力、または圧縮力を受けたときに変形(歪み)量に応じた電圧(電位差)を発生し、また電圧に応じた変形量分の軸方向力を発生する圧電材料は、加えられる電圧に応じて生ずる伸縮変形が構造物の揺れを抑制する向きの反力として利用可能であることから、構造物の振動を低減、あるいは抑制する制震装置(ダンパ)の構成材料として利用されることがある(特許文献1、2、非特許文献1参照)。   When a structural member in the structure receives an axial tensile force or compressive force, a voltage (potential difference) corresponding to the amount of deformation (distortion) is generated, and an axial force corresponding to the amount of deformation corresponding to the voltage is generated. The generated piezoelectric material can be used as a reaction force in a direction in which the expansion and contraction generated according to the applied voltage suppresses the shaking of the structure. Therefore, a vibration damping device (damper) that reduces or suppresses the vibration of the structure. (See Patent Documents 1 and 2 and Non-Patent Document 1).

これらの場合、圧電材料が両面間に与えられる電圧に応じて生じる、例えば伸び変形の発生方向を構造物に作用する外力に抵抗する反力の作用方向に一致させることで、圧電材料の変形(反力)が構造物に対しては外力の向きと逆向きの抵抗力として作用するため、振動の発生と同時に圧電材料に電圧を印加することで、構造物の振幅を抑制し、振動を低減する効果を得ることができる。   In these cases, the piezoelectric material is deformed (for example, by making the direction of elongation deformation generated according to the voltage applied between the two surfaces coincide with the direction of reaction force resisting external force acting on the structure). (Reaction force) acts on the structure as a resistance force opposite to the direction of the external force. By applying a voltage to the piezoelectric material at the same time as vibration is generated, the amplitude of the structure is suppressed and vibration is reduced. Effect can be obtained.

特許文献1と非特許文献1では構造物に振動が発生したときの加速度を検出し、加速度の値から、圧電材料が発生すべき変形量(軸方向力)に対応した、圧電材料に与えるべき最適な電圧(制御電圧信号)を算出(生成)し、この電圧を圧電材料に加えることで圧電材料を伸縮させ、構造物に反力(抵抗力)を作用させている。   In Patent Document 1 and Non-Patent Document 1, acceleration when vibration is generated in a structure is detected, and the piezoelectric material corresponding to the amount of deformation (axial force) to be generated by the piezoelectric material should be given to the piezoelectric material from the acceleration value. An optimal voltage (control voltage signal) is calculated (generated), and this voltage is applied to the piezoelectric material to expand and contract the piezoelectric material, thereby causing a reaction force (resistance force) to act on the structure.

特許文献2では構造物に生じた振動に応じて発生した圧電材料の電圧を検出し、この電圧を構造物の振動とは逆向きの振動のために印加する電圧として利用し、圧電材料に構造物の振動を抑制する振動を発生させることで構造物の振動の増幅を回避している。   In Patent Document 2, the voltage of the piezoelectric material generated according to the vibration generated in the structure is detected, and this voltage is used as a voltage to be applied for the vibration opposite to the vibration of the structure. Amplification of the vibration of the structure is avoided by generating a vibration that suppresses the vibration of the object.

特開平10−227149号公報(段落0002〜0004、0038〜0044、図3、図4、図8)JP-A-10-227149 (paragraphs 0002 to 0004, 0038 to 0044, FIGS. 3, 4, and 8) 特開2010−216140号公報(段落0019〜0026、図1、図2)JP 2010-216140 A (paragraphs 0019 to 0026, FIGS. 1 and 2) 遠山幸太郎他、21468「固体アクチュエータを用いたスマート構造のアクティブ制振に関する研究」、日本建築学会大会学術講演梗概集、1996年9月、第931頁〜第932頁Kotaro Toyama et al., 21468 “Study on Active Vibration Control of Smart Structures Using Solid Actuators”, Abstracts of Annual Conference of Architectural Institute of Japan, September 1996, 931-932

特許文献1では構造物に生じた振動の加速度から圧電材料に与えるべき電圧を算出し、算出された電圧を圧電材料に加えることで圧電材料を伸縮させているが、圧電材料が構造物の振動に伴って伸縮したときに発生する電圧が他の圧電材料の伸縮には直接、反映されていないため、外力を受けて変形したことに起因して電圧を発生することの、圧電材料自体の圧電効果が有効に利用されているとは必ずしも言えない。   In Patent Document 1, the voltage to be applied to the piezoelectric material is calculated from the acceleration of vibration generated in the structure, and the piezoelectric material is expanded and contracted by applying the calculated voltage to the piezoelectric material. Since the voltage generated when it expands and contracts with it is not directly reflected in the expansion and contraction of other piezoelectric materials, the piezoelectric material itself generates a voltage due to deformation due to external force. It cannot be said that the effect is used effectively.

特許文献2では構造物の振動に伴って圧電材料が発生する電圧が圧電材料の伸縮のために利用されているが、圧電材料は特許文献1のように構造物の振動(正負)の方向に対になる状態で配置されてはいないため、電圧に応じて圧電材料に生じる伸縮が構造物の振動を抑制するために有効に利用されているとは言い難い。   In Patent Document 2, the voltage generated by the piezoelectric material with the vibration of the structure is used for expansion and contraction of the piezoelectric material. However, the piezoelectric material is in the direction of vibration (positive or negative) of the structure as in Patent Document 1. Since they are not arranged in a paired state, it is difficult to say that the expansion and contraction generated in the piezoelectric material according to the voltage is effectively used to suppress the vibration of the structure.

本発明は上記背景より、圧電材料自体の圧電効果を有効に利用しながら、電圧に応じて圧電材料に生じる伸縮を構造物の振動抑制のために有効に利用することが可能な圧電材料を用いた制震装置を提案するものである。   In view of the above background, the present invention uses a piezoelectric material that can effectively use the expansion and contraction that occurs in the piezoelectric material in response to the voltage while suppressing the vibration of the structure. It proposes a vibration control device.

請求項1に記載の発明の圧電材料を用いた制震装置は、構造物が水平力を受けたときに引張力と圧縮力が交互に繰り返して作用し、一方に引張力が作用するときに他方に圧縮力が作用する関係にある、対になる荷重受け部において、一方の荷重受け部と他方の荷重受け部のそれぞれに組み込まれ、前記水平力の作用時に前記引張力と圧縮力を厚さ方向の圧力として負担する圧電材料を備え、
前記一方の荷重受け部に前記引張力、または圧縮力が作用したときに、その一方の荷重受け部の圧電材料が発生する、伸び変形量、または縮み変形量に応じた電圧が前記他方の、圧縮力、または引張力が作用している荷重受け部の圧電材料に印加され、この他方の荷重受け部の圧電材料が、前記一方の荷重受け部の圧電材料が発生し、印加された前記電圧に応じた伸び変形、または縮み変形を前記圧縮力、または引張力の作用方向に生じ、この伸び変形量、または縮み変形量に応じた反力を前記他方の荷重受け部に作用させることを構成要件とする。
In the vibration control device using the piezoelectric material according to the first aspect of the invention, when the structure receives a horizontal force, the tensile force and the compressive force act alternately and alternately, and when the tensile force acts on one. A pair of load receiving portions that are in a relationship in which compressive force acts on the other are incorporated in one load receiving portion and the other load receiving portion, respectively, and the tensile force and compressive force are increased when the horizontal force is applied. With a piezoelectric material that bears as the pressure in the direction,
When the tensile force or compressive force is applied to the one load receiving portion, the piezoelectric material of the one load receiving portion generates a voltage corresponding to the amount of expansion deformation or the amount of contraction deformation of the other, Applied to the piezoelectric material of the load receiving portion on which a compressive force or tensile force is applied, the piezoelectric material of the other load receiving portion is generated by the piezoelectric material of the one load receiving portion, and the applied voltage An expansion deformation or a contraction deformation corresponding to the direction of the compression force or a tensile force is generated, and a reaction force corresponding to the expansion deformation amount or the contraction deformation amount is applied to the other load receiving portion. Requirement.

「一方に引張力が作用するときに他方に圧縮力が作用する関係にある、対になる荷重受け部」とは、構造物に入力する水平力の作用に伴い、構造物内外におけるいずれかの構造部材の一部(継手部等)において、または構造部材同士の接合部等において引張力と圧縮力を交互に負担する部分(部位)を指す。引張力を負担する部分と圧縮力を交互に負担する部分に作用する外力の向きは水平力の向きの変化に応じて交互に入れ替わるため、水平力の向きの変化に伴い、引張力を負担する部分は圧縮力を負担する部分になり、圧縮力を負担する部分は引張力を負担する部分になる。圧電材料(圧電素子)は荷重受け部における配置状態に応じ、厚さ方向の圧力としての引張力と圧縮力を圧電材料の厚さ方向、または軸方向に交互に受ける。   “A pair of load receivers that have a relationship in which a compressive force acts on the other when a tensile force acts on one side” means any of the inside and outside of the structure in accordance with the action of the horizontal force input to the structure. It refers to a portion (part) that alternately bears a tensile force and a compressive force at a part of a structural member (joint portion or the like) or at a joint portion or the like between structural members. The direction of the external force acting on the part that bears the tensile force and the part that bears the compressive force alternately changes according to the change in the direction of the horizontal force, so bear the tensile force with the change in the direction of the horizontal force. The portion is a portion that bears the compressive force, and the portion that bears the compressive force is a portion that bears the tensile force. The piezoelectric material (piezoelectric element) alternately receives tensile force and compressive force as pressure in the thickness direction in the thickness direction or the axial direction of the piezoelectric material according to the arrangement state in the load receiving portion.

「水平力の作用時に引張力と圧縮力を厚さ方向の圧力として負担する圧電材料」とは、一方と他方の各荷重受け部に組み込まれた各圧電材料が各荷重受け部に作用する引張力と圧縮力を厚さ方向の引張力、もしくは圧縮力として負担することを言う。原則的には各圧電材料4、5が各荷重受け部2、3に作用する引張力と圧縮力を交互に負担することになるが、荷重受け部2、3の部位によっては圧電材料4、5は図3に示すように荷重受け部2、3に作用する引張力を圧縮力として負担する状態に荷重受け部2、3に組み込まれることもある。一方と他方の荷重受け部2、3が引張力を受けるときには、荷重受け部2、3を構成する一方の構造部材(図3の鉄骨梁71)と他方の構造部材(図3の鉄骨柱61)が互いに遠ざかる向きに相対変位しようとするため、一方の構造部材と他方の構造部材間に介在する圧電材料4、5は原則的には引張力を負担することになる。   "Piezoelectric material that bears tensile force and compressive force as pressure in the thickness direction when a horizontal force is applied" means that each piezoelectric material incorporated in one and the other load receiving part acts on each load receiving part. This means that the force and compressive force are borne as a tensile force or compressive force in the thickness direction. In principle, the piezoelectric materials 4 and 5 alternately bear the tensile force and the compressive force acting on the load receiving portions 2 and 3, but depending on the portion of the load receiving portions 2 and 3, the piezoelectric material 4, As shown in FIG. 3, 5 may be incorporated in the load receiving portions 2 and 3 so as to bear a tensile force acting on the load receiving portions 2 and 3 as a compressive force. When one and the other load receiving portions 2, 3 receive a tensile force, one structural member (steel beam 71 in FIG. 3) and the other structural member (steel column 61 in FIG. 3) constituting the load receiving portions 2, 3 are used. ) Tend to be relatively displaced in a direction away from each other, the piezoelectric materials 4 and 5 interposed between the one structural member and the other structural member basically bear a tensile force.

但し、引張力が作用する荷重受け部2、3に組み込まれる圧電材料4、5に引張力を負担させるには、一方の構造部材を他方の構造部材に接合している、例えばボルトがいずれかの構造部材に対して軸方向に相対移動可能であることと、圧電材料4、5の厚さ方向の両面全面が両構造部材に接着された状態を維持する必要があるため、荷重受け部2、3に引張力が作用するときに、圧電材料4、5に圧縮力を負担させる方が両構造部材間に圧電材料4、5を介在させ易い場合がある。このような場合には図3に示すように荷重受け部2、3に引張力が作用するときに圧電材料4、5が圧縮力を負担する状態に荷重受け部2、3に組み込まれることがある。詳しくは後述する。   However, in order to bear the tensile force on the piezoelectric materials 4 and 5 incorporated in the load receiving portions 2 and 3 on which the tensile force acts, one structural member is joined to the other structural member, for example, any bolt is used. The load receiving portion 2 is capable of relatively moving in the axial direction with respect to the structural member and maintaining the state where the entire surfaces of the piezoelectric materials 4 and 5 are adhered to both structural members. When a tensile force acts on 3, it may be easier to interpose the piezoelectric materials 4, 5 between the two structural members when the compressive force is applied to the piezoelectric materials 4, 5. In such a case, as shown in FIG. 3, the piezoelectric materials 4 and 5 may be incorporated into the load receiving portions 2 and 3 in a state where the compressive force is applied when a tensile force acts on the load receiving portions 2 and 3. is there. Details will be described later.

対になる荷重受け部2、3は、例えば一方と他方の構造部材が図2−(a)に示すように梁7と柱6であれば、梁7の上部と下部における柱6との接合部であり、特に図2−(b)に示すように梁7が鉄骨梁71であれば、上部のフランジ71aと柱6との接合部、及び下部のフランジ71aと柱6との接合部である。一方と他方の構造部材が図8に示すようにブレース12と、フレームを構成する梁7、または柱6等であれば、圧縮側のブレース12とフレーム(梁7、または柱6)との接合部、及び引張側のブレース12とフレームと(梁7、または柱6)の接合部が対になる荷重受け部2、3になる。荷重受け部2、3は構造部材自体の一部であることもあり、図8に示すブレース12における軸方向の一部の、軸方向等に分離した部分間に跨って圧電材料4、5が組み込まれることもある。   For example, if the one and the other structural members are the beam 7 and the column 6 as shown in FIG. 2A, the pair of load receiving portions 2 and 3 are joined to the column 6 at the upper and lower portions of the beam 7. If the beam 7 is a steel beam 71 as shown in FIG. 2- (b), in particular, the joint between the upper flange 71a and the column 6 and the joint between the lower flange 71a and the column 6 is there. If one and the other structural members are braces 12 and beams 7 or columns 6 constituting the frame as shown in FIG. 8, the braces 12 on the compression side and the frames (beams 7 or columns 6) are joined. And the load receiving portions 2 and 3 in which the joint portion of the brace 12 on the pulling side and the frame (the beam 7 or the column 6) is paired. The load receiving portions 2 and 3 may be a part of the structural member itself, and the piezoelectric materials 4 and 5 extend across a portion of the brace 12 shown in FIG. Sometimes incorporated.

また図9に示すように構造物20が積層ゴム支承等の免震装置15、16を挟んで上部構造17と下部構造18に区分される場合には、構造物20に入力する外力(水平力)の作用に伴い、引張力を負担する側になる免震装置15と上部構造17、もしくは下部構造18との接合部、及び圧縮力を負担する側になる免震装置16と上部構造17、もしくは下部構造18との接合部が対になる荷重受け部2、3になる。荷重受け部2、3を構成する上部構造17と免震装置15(16)、及び下部構造18と免震装置16(15)は一方と他方の構造部材になる。   In addition, as shown in FIG. 9, when the structure 20 is divided into the upper structure 17 and the lower structure 18 with the seismic isolation devices 15 and 16 such as laminated rubber bearings interposed therebetween, an external force (horizontal force) input to the structure 20 ), The joint between the seismic isolation device 15 and the upper structure 17 on the side bearing the tensile force, and the seismic isolation device 16 and the upper structure 17 on the side bearing the compressive force. Or it becomes the load receiving part 2 and 3 which a junction part with the lower structure 18 becomes a pair. The upper structure 17 and the seismic isolation device 15 (16) constituting the load receiving portions 2 and 3 and the lower structure 18 and the seismic isolation device 16 (15) are one and the other structural members.

図9の場合、構造物20が水平力を受けたときに軸方向(鉛直方向)の引張力を受けるいずれかの免震装置15と、それと対になり、軸方向の圧縮力を受けるいずれかの免震装置16が荷重受け部2、3を構成する。免震装置15、16が介在する上部構造17と下部構造18の接合部は上部構造17の柱と下部構造18の柱との間に形成される他、上部構造17の基礎と下部構造18の基礎との間等に形成される場合があり、下部構造18は杭である場合もある。   In the case of FIG. 9, any seismic isolation device 15 that receives a tensile force in the axial direction (vertical direction) when the structure 20 receives a horizontal force, and any one that receives a compressive force in the axial direction paired therewith. The seismic isolation device 16 constitutes the load receiving portions 2 and 3. The joint between the upper structure 17 and the lower structure 18 where the seismic isolation devices 15 and 16 are interposed is formed between the column of the upper structure 17 and the column of the lower structure 18, and the foundation of the upper structure 17 and the lower structure 18 In some cases, the lower structure 18 may be a pile.

対になる荷重受け部2、3は2箇所で一組になり、一方の荷重受け部2(3)が引張力を受ける(負担する)ときに他方の荷重受け部3(2)が圧縮力を受ける(負担する)関係にある。但し、引張力と圧縮力は交互に作用し、一方の荷重受け部2(3)は引張力を受けた直後には圧縮力を受け、他方の荷重受け部3(2)は圧縮力を受けた直後には引張力を受けるため、対になる荷重受け部2、3はいずれも引張力と圧縮力を交互に負担する関係にあり、符号2、3は便宜的に付されているに過ぎない。   The pair of load receiving portions 2 and 3 form a pair at two locations. When one load receiving portion 2 (3) receives (bears) a tensile force, the other load receiving portion 3 (2) compresses. Receiving (paying). However, the tensile force and the compressive force act alternately, one load receiving portion 2 (3) receives the compressing force immediately after receiving the tensile force, and the other load receiving portion 3 (2) receives the compressive force. Immediately after that, since it receives a tensile force, the load receiving portions 2 and 3 that are paired have a relationship of alternately bearing a tensile force and a compressive force, and the reference numerals 2 and 3 are only provided for convenience. Absent.

請求項1における「一方の荷重受け部に引張力、または圧縮力が作用したときの圧電材料の伸び変形量、または縮み変形量」とは、一方の荷重受け部2(3)の圧電材料4(5)が一方の荷重受け部2(3)に作用する引張力を負担して伸び変形する場合と、荷重受け部2(3)に作用する引張力を圧縮力として負担して縮み変形する場合の他、荷重受け部2(3)に作用する圧縮力を負担して縮み変形する場合と、荷重受け部2(3)に作用する圧縮力を引張力として負担して伸び変形をする場合の変形量を言う。圧電材料4(5)は伸び変形量、または縮み変形量に応じた大きさの電圧を発生する。   The term “the amount of expansion or contraction of the piezoelectric material when a tensile force or compressive force is applied to one load receiving portion” in claim 1 refers to the piezoelectric material 4 of one load receiving portion 2 (3). When (5) bears a tensile force acting on one load receiving portion 2 (3) and deforms by extension, and when the tensile force acting on the load receiving portion 2 (3) bears as a compressive force, it deforms and deforms. In addition to the case, the compressive force acting on the load receiving portion 2 (3) is distorted and deformed, and the compressive force acting on the load receiving portion 2 (3) is borne as the tensile force and deformed. Say the amount of deformation. The piezoelectric material 4 (5) generates a voltage having a magnitude corresponding to the amount of expansion or contraction.

一方の荷重受け部2(3)の圧電材料4(5)が引張力を負担して伸び変形を生ずるときには、圧電材料4(5)の、引張力の作用方向両面の内、一方の面(例えば上面(一方の側面))に正の電荷が、他方の面(例えば下面(他方の側面))に負の電荷が生じ、両面間に電位差(電圧)が生ずる。同時に、他方の荷重受け部3(2)の圧電材料5(4)は圧縮力を負担して縮み変形するときに、圧電材料5(4)の、圧縮力の作用方向両面の内、一方の面(上面(一方の側面))に負の電荷が、他方の面(下面(他方の側面))に正の電荷が生じ、両面間に電位差(電圧)が生ずる。以下、圧電材料4(5)の厚さ方向の一方の面と他方の面をそれぞれ上面と下面に代表させる。   When the piezoelectric material 4 (5) of one load receiving portion 2 (3) bears a tensile force to cause elongation deformation, one of the two surfaces in the direction of application of the tensile force of the piezoelectric material 4 (5) ( For example, a positive charge is generated on the upper surface (one side surface) and a negative charge is generated on the other surface (for example, the lower surface (the other side surface)), and a potential difference (voltage) is generated between both surfaces. At the same time, when the piezoelectric material 5 (4) of the other load receiving portion 3 (2) bears a compressive force and contracts and deforms, one of the both sides of the acting direction of the compressive force of the piezoelectric material 5 (4) A negative charge is generated on the surface (upper surface (one side surface)) and a positive charge is generated on the other surface (lower surface (the other side surface)), and a potential difference (voltage) is generated between both surfaces. Hereinafter, one surface and the other surface in the thickness direction of the piezoelectric material 4 (5) are represented by an upper surface and a lower surface, respectively.

一方、圧電材料4(5)は引張力と圧縮力の作用方向両面間に電圧を掛けられたときには、外力(引張力、または圧縮力)を負担したときに発生する電圧と逆向きの電圧を掛けられたときの変形を生ずる。すなわち、圧電材料4(5)は引張力を負担して伸び変形するときに発生する電圧とは逆向きの電圧を両面間に掛けられたときに伸び変形を生じ、圧縮力を負担して縮み変形するときに発生する電圧とは逆向きの電圧を両面間に掛けられたときに縮み変形を生ずる。   On the other hand, the piezoelectric material 4 (5) has a voltage opposite to the voltage generated when an external force (tensile force or compressive force) is applied when a voltage is applied between both sides of the acting direction of the tensile force and the compressive force. Causes deformation when hung. That is, the piezoelectric material 4 (5) is stretched and deformed when a voltage opposite to the voltage generated when the piezoelectric material 4 is stretched and deformed by applying a tensile force is applied between both surfaces, and the compressive force is applied and contracted. When a voltage opposite to the voltage generated when deforming is applied between both surfaces, shrinkage deformation occurs.

例えば圧電材料4(5)が引張力を負担して伸び変形するときには、上記の通り、一方の面(上面)に正の電荷が、他方の面(下面)に負の電荷が生ずるが、両面間に電圧を掛けられるときには、一方の面(上面)に負の電位を与え、他方の面(下面)に正の電位を与えたときに伸び変形する。同様に圧電材料5(4)が圧縮力を負担して縮み変形するときには、一方の面(上面)に負の電荷が、他方の面(下面)に正の電荷が生ずるが、両面間に電圧を掛けられるときには、一方の面(上面)に正の電位を与え、他方の面(下面)に負の電位を与えたときに縮み変形する。   For example, when the piezoelectric material 4 (5) is stretched and deformed under a tensile force, as described above, a positive charge is generated on one surface (upper surface) and a negative charge is generated on the other surface (lower surface). When a voltage is applied between them, a negative potential is applied to one surface (upper surface), and deformation occurs when a positive potential is applied to the other surface (lower surface). Similarly, when the piezoelectric material 5 (4) bears a compressive force and contracts and deforms, a negative charge is generated on one surface (upper surface) and a positive charge is generated on the other surface (lower surface). When a positive potential is applied to one surface (upper surface) and a negative potential is applied to the other surface (lower surface), the material contracts and deforms.

このような特性から、一方に引張力が作用するときに他方に圧縮力が作用する関係にある荷重受け部2、3に圧電材料4、5を対にして組み込むことで、一方の圧電材料4(5)が変形時に発生する電圧を他方の圧電材料5(4)を変形させるために使用し、他方の圧電材料5(4)の変形(伸び変形、または縮み変形)をその側の荷重受け部3(2)に作用している外力(圧縮力、または引張力)に対する抵抗力(反力)として活用することが可能になる。一方の圧電材料4(5)が発生する電圧を他方の圧電材料5(4)の変形に利用することは、他方の圧電材料5(4)が発生する電圧を一方の圧電材料4(5)の変形とそれによる反力の発生に利用することにも当てはまる(請求項2)。   From such characteristics, one piezoelectric material 4 can be obtained by incorporating a pair of piezoelectric materials 4 and 5 in the load receiving portions 2 and 3 that have a relationship in which a compressive force acts on the other when a tensile force acts on one. (5) uses the voltage generated at the time of deformation to deform the other piezoelectric material 5 (4), and deforms the other piezoelectric material 5 (4) (elongation deformation or contraction deformation) by receiving the load on that side. It can be utilized as a resistance force (reaction force) against an external force (compression force or tensile force) acting on the portion 3 (2). Utilizing the voltage generated by one piezoelectric material 4 (5) for deformation of the other piezoelectric material 5 (4) means that the voltage generated by the other piezoelectric material 5 (4) is used by one piezoelectric material 4 (5). This also applies to the use of the deformation and the generation of the reaction force caused thereby (claim 2).

例えば図2−(a)に示すように圧縮力が作用している他方の荷重受け部3(2)において圧電材料5(4)が厚さ方向の圧力として圧縮力、もしくは引張力を負担して縮み変形、もしくは伸び変形しているときに、引張力が作用している一方の荷重受け部2(3)において厚さ方向の圧力として引張力、もしくは圧縮力を負担して伸び変形、もしくは縮み変形している圧電材料4(5)が発生する電圧を他方の圧電材料5(4)に印加することで、他方の圧電材料5(4)に伸び変形、もしくは縮み変形を生じさせ、他方の荷重受け部3に圧縮力に対する抵抗力(押し返す力)を発生させることができる(請求項1)。一方の圧電材料4(5)が発生した電圧を他方の圧電材料5(4)に印加するには、一方の圧電材料4(5)の厚さ方向の両面に接続された電極を他方の圧電材料5(4)の厚さ方向の両面に直接、接続するか、一方の圧電材料4(5)が発生した電圧を、正負を維持したまま他方の圧電材料5(4)に印加するための電気回路、もしくは後述の反転回路10等の電気回路を介して間接的に接続すればよい。   For example, as shown in FIG. 2- (a), the piezoelectric material 5 (4) bears a compressive force or a tensile force as a pressure in the thickness direction in the other load receiving portion 3 (2) where the compressive force is acting. When one of the load receiving portions 2 (3) where the tensile force is acting when contracted or stretched, the tensile deformation or the compressive force is applied as the pressure in the thickness direction, or By applying a voltage generated by the piezoelectric material 4 (5) that is contracted and deformed to the other piezoelectric material 5 (4), the other piezoelectric material 5 (4) is expanded or contracted, and the other It is possible to generate a resistance force (a force to push back) against the compressive force in the load receiving portion 3 (claim 1). In order to apply a voltage generated by one piezoelectric material 4 (5) to the other piezoelectric material 5 (4), electrodes connected to both surfaces in the thickness direction of the one piezoelectric material 4 (5) are connected to the other piezoelectric material 5 (4). Directly connected to both sides in the thickness direction of the material 5 (4), or a voltage generated by one piezoelectric material 4 (5) is applied to the other piezoelectric material 5 (4) while maintaining positive and negative. What is necessary is just to connect indirectly via an electric circuit or electric circuits, such as the inversion circuit 10 mentioned later.

同様に引張力が作用している一方の荷重受け部2(3)において圧電材料4(5)が厚さ方向の圧力として引張力、もしくは圧縮力を受けて伸び変形、もしくは縮み変形しているときに、圧縮力が作用している他方の荷重受け部3(2)において圧縮力、もしくは引張力を受けて縮み変形、もしくは伸び変形している圧電材料5(4)が発生する電圧を一方の圧電材料4(5)に印加することで、一方の圧電材料4(5)に縮み変形、もしくは伸び変形を生じさせ、一方の荷重受け部2に引張力に対する抵抗力(引き寄せる力)を発生させることが可能である(請求項2)。   Similarly, in one load receiving portion 2 (3) where a tensile force is acting, the piezoelectric material 4 (5) is stretched or contracted by receiving a tensile force or a compressive force as a pressure in the thickness direction. Sometimes, the voltage generated by the piezoelectric material 5 (4) that is contracted or deformed by receiving the compressive force or tensile force at the other load receiving portion 3 (2) on which the compressive force is applied is generated. When applied to the piezoelectric material 4 (5), one of the piezoelectric materials 4 (5) is contracted or stretched, and a resistance force (a pulling force) against the tensile force is generated in one of the load receiving portions 2. (Claim 2).

但し、前記のように伸び変形している圧電材料4(5)が発生する電圧と、縮み変形している圧電材料5(4)を伸び変形させるために与えるべき電圧の向きは逆であり、縮み変形している圧電材料5(4)が発生する電圧と、伸び変形している圧電材料4(5)を縮み変形させるために与えるべき電圧の向きは逆になる。このため、一方の圧電材料4(5)の変形と他方の圧電材料5(4)の変形が逆である場合、すなわち一方の圧電材料4(5)が伸び変形し、他方の圧電材料5(4)が縮み変形している場合には、一方の圧電材料4(5)が発生する電圧を他方の圧電材料5(4)に印加する際に、一方の圧電材料4(5)が発生する電圧の向きを逆にして他方の圧電材料5(4)に印加することが必要になる。他方の圧電材料5(4)が発生する電圧を一方の圧電材料4(5)に印加する場合も、両圧電材料5、4の変形が逆である場合には、電圧の向きを逆にする必要がある。   However, the direction of the voltage generated by the piezoelectric material 4 (5) deforming and deforming as described above and the direction of the voltage to be applied to stretch and deform the compressive deforming piezoelectric material 5 (4) are opposite to each other. The direction of the voltage generated by the piezoelectric material 5 (4) that is contracted and deformed is opposite to the direction of the voltage that should be applied to contract and deform the piezoelectric material 4 (5) that is deformed and deformed. Therefore, when the deformation of one piezoelectric material 4 (5) and the deformation of the other piezoelectric material 5 (4) are opposite, that is, one piezoelectric material 4 (5) is stretched and deformed, and the other piezoelectric material 5 ( When 4) is contracted and deformed, one piezoelectric material 4 (5) is generated when a voltage generated by one piezoelectric material 4 (5) is applied to the other piezoelectric material 5 (4). It is necessary to reverse the direction of the voltage and apply it to the other piezoelectric material 5 (4). Even when the voltage generated by the other piezoelectric material 5 (4) is applied to the one piezoelectric material 4 (5), the direction of the voltage is reversed if the deformation of the piezoelectric materials 5 and 4 is opposite. There is a need.

一方の圧電材料4(5)の変形と他方の圧電材料5(4)の変形が同一である場合、すなわち一方の圧電材料4(5)が伸び変形し、他方の圧電材料5(4)も伸び変形している場合、または一方の圧電材料4(5)が縮み変形し、他方の圧電材料5(4)も縮み変形している場合には、一方の圧電材料4(5)が発生する電圧の向きを逆にして他方の圧電材料5(4)に印加する必要はない。他方の圧電材料5(4)が発生する電圧を一方の圧電材料4(5)に印加するときも(請求項2)、一方と他方の圧電材料4、5の変形が同一であれば、電圧の向きを逆にする必要はない。   When the deformation of one piezoelectric material 4 (5) and the deformation of the other piezoelectric material 5 (4) are the same, that is, one piezoelectric material 4 (5) is stretched and deformed, and the other piezoelectric material 5 (4) is also deformed. When the piezoelectric material 4 (5) is contracted and deformed while the other piezoelectric material 5 (4) is also contracted and deformed, one piezoelectric material 4 (5) is generated. It is not necessary to reverse the direction of the voltage and apply it to the other piezoelectric material 5 (4). Even when the voltage generated by the other piezoelectric material 5 (4) is applied to one piezoelectric material 4 (5) (Claim 2), if the deformation of one and the other piezoelectric materials 4, 5 is the same, the voltage There is no need to reverse the direction.

例えば縮み変形している他方の圧電材料5(4)の上面と下面にそれぞれ負の電荷と正の電荷が生じているとすれば、この状態にある圧電材料5(4)を伸び変形させるには、圧電材料5(4)の上面と下面に存在する負の電荷と正の電荷をそれぞれ反対側へ移動させる必要があり、それには圧電材料5(4)の上面と下面に外部からそれぞれ負の電荷と正の電荷を掛ける必要がある。同様に伸び変形している一方の圧電材料4(5)の上面と下面にはそれぞれ正の電荷と負の電荷が生じているため、この圧電材料4(5)を縮み変形させるには、圧電材料4(5)の上面と下面に外部からそれぞれ正の電荷と負の電荷を掛ける必要がある。   For example, if a negative charge and a positive charge are generated on the upper and lower surfaces of the other piezoelectric material 5 (4) that is contracted and deformed, respectively, the piezoelectric material 5 (4) in this state is stretched and deformed. Needs to move the negative charge and the positive charge existing on the upper and lower surfaces of the piezoelectric material 5 (4) to the opposite sides, respectively. Must be multiplied by the positive charge. Similarly, a positive charge and a negative charge are generated on the upper surface and the lower surface of one piezoelectric material 4 (5) that is stretched and deformed. In order to contract and deform the piezoelectric material 4 (5), a piezoelectric material is used. It is necessary to apply a positive charge and a negative charge to the upper surface and the lower surface of the material 4 (5) from the outside, respectively.

ここで、前記のように伸び変形している一方の圧電材料4(5)の上面と下面にはそれぞれ正の電荷と負の電荷が生じているため、この圧電材料4(5)から取り出した電圧を縮み変形している他方の圧電材料5(4)の上面と下面間に印加するときに、正負を入れ替えることが必要になる。同様に縮み変形している他方の圧電材料5(4)の上面と下面にはそれぞれ負の電荷と正の電荷が生じているため、この圧電材料5(4)から取り出した電圧を伸び変形している一方の圧電材料4(5)の上面と下面間に印加するときに、正負を入れ替えることが必要になる。   Here, since the positive and negative charges are generated on the upper surface and the lower surface of one piezoelectric material 4 (5) that is stretched and deformed as described above, the piezoelectric material 4 (5) is taken out from the piezoelectric material 4 (5). When applying the voltage between the upper surface and the lower surface of the other piezoelectric material 5 (4) that is deformed by contraction, it is necessary to switch the positive and negative. Similarly, a negative charge and a positive charge are generated on the upper surface and the lower surface of the other piezoelectric material 5 (4) that is contracted and deformed, and therefore the voltage extracted from the piezoelectric material 5 (4) is expanded and deformed. When applying between the upper surface and the lower surface of one piezoelectric material 4 (5), it is necessary to switch the positive and negative.

従って一方の圧電材料4(5)の変形と他方の圧電材料5(4)の変形が逆である場合、縮み変形している他方の圧電材料5(4)を伸び変形させるには、伸び変形している一方の圧電材料4(5)が発生した電圧を、正負を入れ替えて印加しなければならず、伸び変形している一方の圧電材料4(5)を縮み変形させるには、縮み変形している他方の圧電材料5(4)が発生した電圧を、正負を入れ替えて印加しなければならない。一方の圧電材料4(5)の変形と他方の圧電材料5(4)の変形が同一である場合、すなわち一方の圧電材料4(5)が縮み変形し、他方の圧電材料5(4)も縮み変形している場合、または一方の圧電材料4(5)が伸び変形し、他方の圧電材料5(4)も伸び変形している場合には、電圧の正負を入れ替える必要はないため、電圧を発生した一方の圧電材料4(5)から取り出した電圧をそのまま他方の圧電材料5(4)に印加すればよい。   Accordingly, when the deformation of one piezoelectric material 4 (5) and the deformation of the other piezoelectric material 5 (4) are opposite, in order to stretch and deform the other piezoelectric material 5 (4) that is contracted and deformed, the extension deformation The voltage generated by one of the piezoelectric materials 4 (5) must be applied with the polarity changed, and in order to contract and deform the one piezoelectric material 4 (5) that is expanding and contracting, contraction deformation The voltage generated by the other piezoelectric material 5 (4) must be applied with the polarity changed. When the deformation of one piezoelectric material 4 (5) and the deformation of the other piezoelectric material 5 (4) are the same, that is, one piezoelectric material 4 (5) contracts and deforms, and the other piezoelectric material 5 (4) is also deformed. When the piezoelectric material 4 (5) is contracted or deformed, and when the other piezoelectric material 5 (4) is also deformed by expansion, it is not necessary to change the positive / negative of the voltage. The voltage taken out from one piezoelectric material 4 (5) that has generated the above may be applied to the other piezoelectric material 5 (4) as it is.

電圧の正負を入れ替える場合、伸び変形している一方の圧電材料4(5)が発生した電圧を、正負を入れ替えて他方の圧電材料5(4)に印加するための、電圧の正負を入れ替える手段として、一方の圧電材料4(5)と他方の圧電材料5(4)との間に反転増幅器(反転増幅回路)等、負の電圧を正の電圧に変換するための反転回路10が接続される。縮み変形している他方の圧電材料5(4)が発生した電圧を、正負を入れ替えて一方の圧電材料4(5)に印加する場合(請求項2)は、図2−(b)に示すように他方の圧電材料5(4)と一方の圧電材料4(5)との間に反転回路11が接続される。   In the case where the positive / negative of the voltage is switched, the voltage generated by one of the piezoelectric materials 4 (5) that is deformed by stretching is applied to the other piezoelectric material 5 (4) by switching the positive / negative. Inverting circuit 10 for converting a negative voltage into a positive voltage, such as an inverting amplifier (inverting amplifier circuit), is connected between one piezoelectric material 4 (5) and the other piezoelectric material 5 (4). The When the voltage generated by the other piezoelectric material 5 (4) which is contracted and deformed is applied to one piezoelectric material 4 (5) with the positive and negative sides switched (claim 2), it is shown in FIG. Thus, the inverting circuit 11 is connected between the other piezoelectric material 5 (4) and the one piezoelectric material 4 (5).

反転増幅器を使用する場合、一方の荷重受け部2(3)の、伸び変形、または縮み変形した圧電材料4(5)が発生した電圧が反転増幅器の負の入力端子に接続されることで、出力端子から正負が入れ替わった電圧が出力されるため、他方の荷重受け部3(2)の、縮み変形、または伸び変形している圧電材料5(4)の両面に、伸び変形、または縮み変形を生じさせる向きの電圧を印加することが可能になる。   When the inverting amplifier is used, the voltage generated by the piezoelectric material 4 (5) that is deformed or contracted in one of the load receiving portions 2 (3) is connected to the negative input terminal of the inverting amplifier. Since a voltage in which positive and negative are switched is output from the output terminal, the other load receiving portion 3 (2) is subjected to expansion deformation or contraction deformation on both surfaces of the piezoelectric material 5 (4) which is contracted or expanded. It is possible to apply a voltage in a direction that causes

電圧の正負を入れ替える場合と入れ替えない場合のいずれも、一方の圧電材料4(5)が発生した電圧が他方の圧電材料5(4)に印加されることで、他方の圧電材料5(4)は印加された電圧に応じた伸び変形、または縮み変形を圧縮力、または引張力の作用方向に生じ、この伸び変形量、または縮み変形量に応じた反力(押し返す力、または引き寄せる力)を他方の荷重受け部3(2)に作用させることになる。他方の圧電材料5(4)が発生した電圧が一方の圧電材料4(5)に印加されるときにも、一方の圧電材料4(5)は印加された電圧に応じた縮み変形、または伸び変形を引張力、または圧縮力の作用方向に生じ、この縮み変形量、または伸び変形量に応じた反力(引き寄せる力、または押し返す力)を一方の荷重受け部2(3)に作用させる(請求項2)。   In both cases where the positive and negative voltages are switched, the voltage generated by one piezoelectric material 4 (5) is applied to the other piezoelectric material 5 (4), so that the other piezoelectric material 5 (4) is switched. Produces an expansion or contraction deformation according to the applied voltage in the direction of the action of the compressive force or tensile force, and a reaction force (pushing back force or pulling force) according to the expansion deformation amount or the contraction deformation amount. It will be made to act on the other load receiving part 3 (2). When the voltage generated by the other piezoelectric material 5 (4) is applied to one piezoelectric material 4 (5), the other piezoelectric material 4 (5) is contracted or stretched according to the applied voltage. Deformation occurs in the direction of application of tensile force or compressive force, and a reaction force (a pulling force or a pushing force) according to the contraction deformation amount or elongation deformation amount is applied to one load receiving portion 2 (3) ( Claim 2).

他方の圧電材料5(4)が圧縮力、または引張力を受けて縮み変形、または伸び変形しているときに、その圧電材料5(4)が現在、生じている変形と逆向きの伸び変形、または縮み変形を生ずることで、圧電材料5(4)は他方の荷重受け部3(2)において圧縮力、または引張力に対する抵抗力としての押し返す力、または引き寄せる力を発生する。他方の圧電材料5(4)の伸び変形量、または縮み変形量は一方の圧電材料4(5)が発生した電圧に応じた大きさであり、外力に対する抵抗力は伸び変形量、または縮み変形量に応じた大きさになる。   When the other piezoelectric material 5 (4) is contracted or stretched by receiving a compressive force or tensile force, the piezoelectric material 5 (4) is stretched in a direction opposite to the current deformation. In other words, the piezoelectric material 5 (4) generates a compressing force, a pushing back force as a resistance force against a tensile force, or a pulling force in the other load receiving portion 3 (2). The amount of expansion deformation or contraction deformation of the other piezoelectric material 5 (4) is a magnitude corresponding to the voltage generated by one piezoelectric material 4 (5), and the resistance force to the external force is the amount of expansion deformation or contraction deformation. It becomes the size according to the amount.

縮み変形している他方の圧電材料5(4)が伸び変形しようとするときに発生する抵抗力は外力の圧縮力に抵抗する反力(押し返す力)として作用するため、外力としての圧縮力は抵抗力分、相殺され、外力の圧縮力が軽減される。外力として作用する圧縮力が軽減されることで、実質的に外力として荷重受け部3(2)に作用する圧縮力が小さくなるため、荷重受け部3(2)に生ずる変形量も小さくなり、結果的に外力による構造物20の揺れが低減される。   The resistance force that is generated when the other piezoelectric material 5 (4) that is contracting and deforming tries to stretch and deform acts as a reaction force that resists the compression force of the external force (the force that pushes back), so the compression force as the external force is The resistance force is offset and the compression force of the external force is reduced. By reducing the compressive force acting as an external force, the compressive force acting on the load receiving portion 3 (2) as the external force is substantially reduced, so that the amount of deformation occurring in the load receiving portion 3 (2) is also reduced. As a result, shaking of the structure 20 due to external force is reduced.

同様に一方の圧電材料4(5)が引張力、または圧縮力を受けて伸び変形、または縮み変形しているときに、その圧電材料4(5)が現在、生じている変形と逆向きの縮み変形、または伸び変形を生ずることで、圧電材料4(5)は一方の荷重受け部2(3)において引張力、または圧縮力に対する抵抗力としての引き寄せる力、または押し返す力を発生する。一方の圧電材料4(5)の縮み変形量、または伸び変形量は他方の圧電材料5(4)が発生した電圧に応じた大きさであり、外力に対する抵抗力は縮み変形量、または伸び変形量に応じた大きさになる。   Similarly, when one piezoelectric material 4 (5) is subjected to a tensile force or a compressive force and is deformed to expand or contract, the piezoelectric material 4 (5) is in a direction opposite to the current deformation. The piezoelectric material 4 (5) generates a pulling force or a pulling back force as a resistance force against a tensile force or a compressive force in one of the load receiving portions 2 (3) by causing a contraction deformation or an expansion deformation. One piezoelectric material 4 (5) has a contraction deformation amount or an elongation deformation amount according to a voltage generated by the other piezoelectric material 5 (4), and a resistance force to an external force is a contraction deformation amount or an extension deformation. It becomes the size according to the amount.

伸び変形している一方の圧電材料4(5)が縮み変形しようとするときに発生する抵抗力は外力の引張力に抵抗する反力(引き寄せる力)として作用するため、外力としての引張力は抵抗力分、相殺され、外力の引張力が軽減される。外力として作用する引張力が軽減されることで、実質的に外力として荷重受け部3(2)に作用する引張力が小さくなるため、荷重受け部3(2)に生ずる変形量も小さくなり、結果的に外力による構造物20の揺れが低減される。   The resistance force that is generated when one piezoelectric material 4 (5) that is expanding and contracting is contracted and deformed acts as a reaction force (a pulling force) that resists the pulling force of the external force. The resistance force is offset and the external tensile force is reduced. By reducing the tensile force acting as an external force, the tensile force acting on the load receiving portion 3 (2) as the external force is substantially reduced, so that the amount of deformation occurring in the load receiving portion 3 (2) is also reduced. As a result, shaking of the structure 20 due to external force is reduced.

図1は引張力を受けた圧電材料4が発生した電圧を反転回路10に出力し、反転回路10から出力された電圧を、圧縮力を受けた圧電材料5に印加することで圧縮力を受けた圧電材料5に圧縮力に対する反力を発生させる様子を概念的に示している。この場合、圧縮力を受けた圧電材料5が発生した電圧を反転回路10(11)に出力し、反転回路10(11)から出力された電圧を、引張力を受けた圧電材料4に印加することで、引張力を受けた圧電材料4に引張力に対する反力を発生させることも可能である(請求項2)。   In FIG. 1, a voltage generated by the piezoelectric material 4 subjected to the tensile force is output to the inverting circuit 10, and the voltage output from the inverting circuit 10 is applied to the piezoelectric material 5 that receives the compressive force. The manner in which a reaction force against the compressive force is generated in the piezoelectric material 5 is conceptually shown. In this case, the voltage generated by the piezoelectric material 5 receiving the compressive force is output to the inverting circuit 10 (11), and the voltage output from the inverting circuit 10 (11) is applied to the piezoelectric material 4 receiving the tensile force. Accordingly, it is possible to generate a reaction force against the tensile force in the piezoelectric material 4 that has received the tensile force.

以上のように対になる荷重受け部2、3の各圧電材料4、5の内、少なくとも一方の荷重受け部2(3)の圧電材料4(5)が構造物20の振動に伴って伸び変形、または縮み変形したときに発生する電圧が他方の荷重受け部3(2)の、縮み変形、または伸び変形している圧電材料5(4)の伸び変形、または縮み変形に直接、反映されるため、圧電材料自体が外力を受けて変形したことに起因して電圧を発生することの圧電効果が有効に利用される。また電圧の授受が行われる圧電材料4、5は特許文献1のように構造物20の振動に伴って正負の向きに交互に変形する方向に対になる状態で配置されているため、与えられる電圧に応じて圧電材料4、5に生じる伸長が直接、構造物20の振動を抑制するために有効に利用される。   Among the piezoelectric materials 4 and 5 of the load receiving portions 2 and 3 that are paired as described above, the piezoelectric material 4 (5) of at least one of the load receiving portions 2 (3) expands with the vibration of the structure 20. The voltage generated when the deformation or contraction is deformed is directly reflected in the expansion or contraction of the piezoelectric material 5 (4) that is deformed or contracted in the other load receiving portion 3 (2). Therefore, the piezoelectric effect of generating a voltage due to deformation of the piezoelectric material itself due to external force is effectively used. Moreover, since the piezoelectric materials 4 and 5 to which voltage is exchanged are arranged in a state of being paired in a direction alternately deforming in the positive and negative directions in accordance with the vibration of the structure 20 as in Patent Document 1, the piezoelectric materials 4 and 5 are given. The elongation generated in the piezoelectric materials 4 and 5 according to the voltage is effectively used to directly suppress the vibration of the structure 20.

構造物20に入力する外力としての水平力は正負の向きに交互に作用することから、例えば前記のように一方の荷重受け部2(3)が引張力を受け、圧電材料4(5)が伸び変形したときには、同時に他方の荷重受け部3(2)が圧縮力を受け、圧電材料5(4)が縮み変形しており、それぞれの圧電材料4、5が発生する電圧は互いに対になる側の圧電材料5、4に生じている変形と逆向きの変形を生じさせるために利用可能である。   Since the horizontal force as an external force input to the structure 20 alternately acts in the positive and negative directions, for example, as described above, one of the load receiving portions 2 (3) receives a tensile force, and the piezoelectric material 4 (5) At the same time, the other load receiving portion 3 (2) receives a compressive force and the piezoelectric material 5 (4) is contracted and deformed, and the voltages generated by the piezoelectric materials 4 and 5 are paired with each other. It can be used to cause a deformation opposite to the deformation occurring in the piezoelectric materials 5 and 4 on the side.

そこで、一方の荷重受け部2、3に引張力、または圧縮力が作用したときに、他方の荷重受け部3、2において厚さ方向の圧力を負担して縮み変形、または伸び変形している圧電材料5、4が発生する、縮み変形量、または伸び変形量に応じた電圧を一方の、引張力、または圧縮力を負担している荷重受け部2、3の、伸び変形、または縮み変形している圧電材料4、5に印加することで(請求項2)、対になる荷重受け部2、3の圧電材料4、5が同時に発生する電圧を互いに他方側の荷重受け部3、2に、外力と逆向きの反力を発生させるために利用することが可能になる。この場合も、一方の圧電材料4(5)の変形と他方の圧電材料5(4)の変形が逆である場合には、電圧の授受の際に電圧の正負を入れ替えることが必要になる。   Therefore, when a tensile force or a compressive force is applied to one of the load receiving portions 2 and 3, the other load receiving portion 3 or 2 bears a pressure in the thickness direction and is contracted or stretched. The piezoelectric material 5, 4 generates an expansion deformation or a contraction deformation of the load receiving portions 2, 3 that bears a tensile force or a compressive force on one side according to the contraction deformation amount or the expansion deformation amount. By applying the applied voltage to the piezoelectric materials 4 and 5 (Claim 2), the voltages simultaneously generated by the piezoelectric materials 4 and 5 of the paired load receiving portions 2 and 3 are mutually applied to the load receiving portions 3 and 2 on the other side. In addition, it can be used to generate a reaction force opposite to the external force. Also in this case, when the deformation of one piezoelectric material 4 (5) and the deformation of the other piezoelectric material 5 (4) are opposite, it is necessary to switch the polarity of the voltage at the time of voltage transfer.

請求項2では前記のように一方の荷重受け部2、3の圧電材料4、5は、他方の荷重受け部3、2の圧電材料5、4が発生し、印加された電圧に応じた縮み変形、または伸び変形を引張力、または圧縮力の作用方向(圧電材料4、5の厚さ方向)に生ずるため、縮み変形量、または伸び変形量に応じた反力(引き寄せる力、または押し返す力)を一方の荷重受け部2、3に作用させることになる。   In the second aspect, as described above, the piezoelectric materials 4 and 5 of the one load receiving portion 2 and 3 are generated by the piezoelectric materials 5 and 4 of the other load receiving portion 3 and 2, and contract according to the applied voltage. Deformation or elongation deformation occurs in the direction of application of tensile force or compression force (thickness direction of the piezoelectric materials 4 and 5), so that the amount of contraction deformation or reaction force corresponding to the amount of elongation deformation (force of pulling or pushing back) ) Acts on one of the load receiving portions 2 and 3.

請求項2では対になる荷重受け部2、3の圧電材料4、5が外力の作用時に同時に発生する電圧を互いに他方側の荷重受け部3、2に、外力と逆向きの反力を発生させるために利用できる関係が成立することで、正負の向きに交互に繰り返される外力(水平力)の向きに関係なく、常に一方の荷重受け部2(3)の圧電材料4(5)が発生した電圧を他方の荷重受け部3(2)の圧電材料5(4)に印加すると同時に、他方の荷重受け部3(2)の圧電材料5(4)が発生した電圧を一方の荷重受け部2(3)の圧電材料4(5)に印加する状態が得られる。   In claim 2, a voltage generated simultaneously when the piezoelectric materials 4 and 5 of the pair of load receiving portions 2 and 3 are applied with an external force generates a reaction force opposite to the external force in the load receiving portions 3 and 2 on the other side. By establishing the relationship that can be used for this purpose, the piezoelectric material 4 (5) of the load receiving portion 2 (3) is always generated regardless of the direction of the external force (horizontal force) that is alternately repeated in the positive and negative directions. While the applied voltage is applied to the piezoelectric material 5 (4) of the other load receiving portion 3 (2), the voltage generated by the piezoelectric material 5 (4) of the other load receiving portion 3 (2) is applied to the one load receiving portion. A state of applying to the piezoelectric material 4 (5) of 2 (3) is obtained.

従って外力(水平力)が作用し続ける限り、対になる荷重受け部2、3の内、いずれか一方の荷重受け部2(3)の、伸び変形、または縮み変形した圧電材料4(5)が発生する電圧を他方の荷重受け部3(2)の、縮み変形、または伸び変形した圧電材料5(4)に加えると同時に、他方の荷重受け部3(2)の、伸び変形、または縮み変形した圧電材料5(4)が発生する電圧を一方の荷重受け部2(3)の、縮み変形、または伸び変形した圧電材料4(5)に加える状況が連続して繰り返される。   Therefore, as long as the external force (horizontal force) continues to act, the piezoelectric material 4 (5) in which one of the pair of load receiving portions 2 and 3 is expanded or contracted in one of the load receiving portions 2 (3). Is applied to the piezoelectric material 5 (4) that has undergone shrinkage deformation or expansion deformation of the other load receiving portion 3 (2), and at the same time, expansion deformation or contraction of the other load receiving portion 3 (2). The situation in which the voltage generated by the deformed piezoelectric material 5 (4) is applied to the piezoelectric material 4 (5) contracted or stretched in one of the load receiving portions 2 (3) is continuously repeated.

この結果、一方の荷重受け部2(3)と他方の荷重受け部3(2)は互いに、いずれか一方が負担する外力を他方が負担する外力に起因する反力が打ち消す関係になり、外力のいずれの向きの作用時にも外力を軽減する効果が生ずるため、構造物20の振動を低減し、減衰させる効果が向上する。   As a result, one load receiving portion 2 (3) and the other load receiving portion 3 (2) are in a relationship in which the external force borne by either one cancels the reaction force caused by the external force borne by the other. Since the effect of reducing the external force is produced at the time of the action in any of the directions, the vibration of the structure 20 is reduced and the effect of damping is improved.

各荷重受け部2、3の圧電材料4、5には圧縮力と引張力の作用方向に予め圧縮力が与えられていることもある(請求項3)。   The piezoelectric materials 4 and 5 of the load receiving portions 2 and 3 may be preliminarily given a compressive force in the direction of action of the compressive force and the tensile force.

圧電材料4、5に予め圧縮力が与えられることは、例えば後述のように荷重受け部2、3を構成する一方の構造部材と他方の構造部材との間に圧電材料4、5が介在した状態で、一方の構造部材と他方の構造部材が圧電材料4、5の外力を受ける方向の正負の向きに相対変位自在な状態に接合されることで可能になる(請求項4)。その上で、図3に示すように圧電材料4、5が厚さ方向、もしくは軸方向に縮み変形可能な範囲で、一方の構造部材と他方の構造部材が互いに接近する向きに圧力を及ぼし合った状態で接合されることで、圧電材料4、5に予め圧縮力が与えられる状態になる。   The fact that the compressive force is given to the piezoelectric materials 4 and 5 in advance means that the piezoelectric materials 4 and 5 are interposed between one structural member and the other structural member constituting the load receiving portions 2 and 3 as described later, for example. In this state, one structural member and the other structural member can be joined in a state in which they can be relatively displaced in the positive and negative directions in which the external force of the piezoelectric materials 4 and 5 is received. In addition, as shown in FIG. 3, pressure is exerted in the direction in which one structural member and the other structural member approach each other within a range in which the piezoelectric materials 4 and 5 can be contracted and deformed in the thickness direction or the axial direction. By being joined in a state in which the piezoelectric materials 4 and 5 are joined, a compression force is applied to the piezoelectric materials 4 and 5 in advance.

各荷重受け部2、3は前記のように主に構造部材同士の接合部(継手部を含む)であり、圧電材料4、5は接合部において異なる構造部材間に挟まれた状態で介在するが、外力の作用していない状態から、外力の作用の向きに応じて伸び変形、または縮み変形を生じ、その変形の直後に縮み変形、または伸び変形を生ずることから、外力の作用していない平常時には伸び変形と縮み変形のいずれの変形も生じ得る状態にある必要がある。   As described above, the load receiving portions 2 and 3 are mainly joint portions (including joint portions) between the structural members, and the piezoelectric materials 4 and 5 are interposed between the different structural members at the joint portions. However, from the state where no external force is applied, an expansion or contraction deformation occurs depending on the direction of the external force operation, and a contraction deformation or an expansion deformation occurs immediately after the deformation, so no external force is applied. In normal times, it is necessary to be in a state where both deformation and contraction deformation can occur.

そこで、接合部等の荷重受け部2、3を構成する一方の構造部材と他方の構造部材との間に圧電材料4、5が介在した状態で、一方の構造部材と他方の構造部材が圧電材料4、5の、外力を受ける方向である厚さ方向、もしくは軸方向の正負の向きに相対変位自在な状態に接合されていることが適切である(請求項4)。一方と他方の構造部材は前記した柱、梁、ブレース、免震装置等である。   Therefore, in a state where the piezoelectric materials 4 and 5 are interposed between the one structural member constituting the load receiving portions 2 and 3 such as the joint and the other structural member, the one structural member and the other structural member are piezoelectric. It is appropriate that the materials 4 and 5 are joined so as to be relatively displaceable in the thickness direction, which is a direction in which an external force is received, or in the positive and negative directions in the axial direction. One and the other structural members are the aforementioned columns, beams, braces, seismic isolation devices, and the like.

圧電材料4、5は両構造部材間に直接、もしくは間接的に挟み込まれる。「間接的に」とは、圧電材料4、5が直接的には構造部材に突設(接合)されるプレート等の部材に挟み込まれるようなことを言う。また請求項4における「一方の構造部材と他方の構造部材が相対変位自在な状態」とは、一方の構造部材と他方の構造部材が圧電材料4、5を挟んだ状態で、両構造部材が圧電材料4、5の厚さ方向(対向する方向)に互いに相対移動できる状態に連結されていることを言う。このことは例えば圧電材料4、5が図2−(b)に示すように一方の構造部材(鉄骨梁71)に接合されたプレート(フランジプレート8a)と他方の構造部材(鉄骨柱61)のプレート(フランジ61a)との間に挟み込まれ、両プレートが対向する方向を向くボルト9により連結される場合に、図3−(a)、(b)に示すように両プレートがボルト9の軸方向に互いに接近する向きにも、遠ざかる向きにも相対移動可能な状態にあることを言う。   The piezoelectric materials 4 and 5 are sandwiched directly or indirectly between the two structural members. “Indirectly” means that the piezoelectric materials 4 and 5 are directly sandwiched between members such as a plate protruding (joined) to the structural member. In addition, the “state in which one structural member and the other structural member are relatively displaceable” in claim 4 refers to a state in which one structural member and the other structural member sandwich the piezoelectric materials 4 and 5, It means that the piezoelectric materials 4 and 5 are connected so as to be able to move relative to each other in the thickness direction (opposite direction). This is because, for example, as shown in FIG. 2B, the piezoelectric material 4 and the plate (flange plate 8a) joined to one structural member (steel beam 71) and the other structural member (steel column 61). When the plates 9 are sandwiched between the plates (flange 61a) and are connected by bolts 9 facing both plates, the plates are connected to the shafts of the bolts 9 as shown in FIGS. It means that it is in a state in which it can move relative to each other in both directions toward and away from each other.

圧電材料4、5を挟み込む構造部材同士が圧電材料4、5を挟み込んだ状態で、外力の作用に応じて圧電材料4、5の厚さ方向等のいずれの向きにも相対変位可能であることで、圧電材料4、5は平常時の状態から外力の作用の向きに応じて伸び変形することも縮み変形することもできる状態にあり、伸び変形と縮み変形を交互に繰り返すことができるため、いずれの変形を生じたときにも変形量に応じた電圧を発生することが可能になる。   The structural members that sandwich the piezoelectric materials 4 and 5 can be relatively displaced in any direction such as the thickness direction of the piezoelectric materials 4 and 5 in accordance with the action of an external force with the piezoelectric materials 4 and 5 sandwiched therebetween. Thus, since the piezoelectric materials 4 and 5 are in a state where they can be expanded and contracted according to the direction of the action of the external force from the normal state and can be contracted and deformed, and the expansion and contraction can be alternately repeated. It is possible to generate a voltage corresponding to the amount of deformation when any deformation occurs.

圧電材料4、5が圧縮力と引張力の作用方向、すなわち圧電材料4、5の厚さ方向(軸方向)に予め圧縮力(初期圧縮力)が与えられている場合(請求項3)、外力として作用する引張力の大きさが初期圧縮力の大きさ以下であれば、例えば図2−(b)に示す対になる荷重受け部2、3の各圧電材料4、5に外力としての圧縮力が作用したときと引張力が作用したときのいずれのときにも、図6−(a)に示すように圧電材料4、5を、時刻毎に荷重の大きさが変動する圧縮力を負担した状態に置くことができる。   When the piezoelectric materials 4 and 5 are preliminarily applied with a compressive force (initial compressive force) in the acting direction of the compressive force and the tensile force, that is, in the thickness direction (axial direction) of the piezoelectric materials 4 and 5 (Claim 3), If the magnitude of the tensile force acting as an external force is less than or equal to the magnitude of the initial compressive force, for example, the piezoelectric materials 4 and 5 of the pair of load receiving portions 2 and 3 shown in FIG. As shown in FIG. 6- (a), the piezoelectric material 4 or 5 is subjected to a compressive force whose load varies with time, both when the compressive force is applied and when the tensile force is applied. Can be placed in a burdened state.

厚さ方向に初期圧縮力が与えられた圧電材料4、5は想定される外力としての引張力の大きさ以上の大きさの初期圧縮力が与えられていれば、荷重受け部2、3に外力として引張力が作用し、圧電材料4、5が引張力を負担していないときにも圧縮力を負担し続ける状態になるため、図6−(b)に示すように外力として引張力が作用している間にも圧電材料4、5は電圧を発生し続けることができる。   The piezoelectric materials 4 and 5 to which an initial compressive force is applied in the thickness direction are applied to the load receiving portions 2 and 3 if an initial compressive force larger than the tensile force as an external force is applied. Since the tensile force acts as an external force and the piezoelectric materials 4 and 5 continue to bear the compressive force even when they do not bear the tensile force, the tensile force is applied as the external force as shown in FIG. The piezoelectric materials 4 and 5 can continue to generate a voltage while acting.

荷重受け部2、3に引張力が作用したときにも圧電材料4、5が圧縮力を負担し続ける状態になることで、実際に圧電材料4、5が引張力や圧縮力を負担していなくても、圧縮力を負担している場合と同じように圧縮力を負担し、電圧を発生し続けることができるため、外力として引張力が作用している間も対になる他方の圧電材料5、4に、圧縮力の負担による縮み変形分の電圧を供給することが可能になる。このことは圧電材料4、5に初期圧縮力を与えておけば、荷重受け部2、3に引張力が作用するときに、必ずしも圧電材料4、5に引張力を負担させる状態に、圧電材料4、5を荷重受け部2、3に組み込んでおく必要がないことを意味する。   When the tensile force acts on the load receiving portions 2 and 3, the piezoelectric materials 4 and 5 continue to bear the compressive force, so that the piezoelectric materials 4 and 5 actually bear the tensile force and compressive force. Even if it is not, since it can continue to generate a voltage and bear a compressive force in the same way as when it bears a compressive force, the other piezoelectric material that is paired while a tensile force is acting as an external force 5 and 4 can be supplied with a voltage corresponding to the contraction deformation caused by the load of the compressive force. This means that if an initial compressive force is applied to the piezoelectric materials 4 and 5, the piezoelectric material 4 and 5 are not necessarily loaded with a tensile force when the tensile force acts on the load receiving portions 2 and 3. 4 and 5 do not need to be incorporated in the load receiving portions 2 and 3.

予め初期圧縮力が与えられた一方の圧電材料4(5)はその側の荷重受け部2(3)に外力としての引張力が作用しているときに、引張力を負担せずに縮み変形分の電圧を発生し続ける。その荷重受け部2(3)と対になる他方の荷重受け部3(2)における、電圧を供給される他方の圧電材料5、4は外力としての圧縮力を負担し、縮み変形しているため、予め初期圧縮力が与えられた一方の圧電材料4(5)が発生した電圧を伸び変形のために利用することができる。逆に一方の圧電材料4(5)が外力としての圧縮力を負担し、縮み変形するときに、引張力が作用する他方の荷重受け部3(2)の圧電材料5(4)に予め初期圧縮力を与えておくことで、圧縮力を負担して縮み変形している一方の圧電材料4(5)を伸び変形させるために、縮み変形し続けている他方の圧電材料5(4)が発生する電圧を利用することができる。これらの場合、荷重受け部2、3に外力が作用しているときは対になる圧電材料4、5は共に縮み変形しているため、電圧の正負を入れ替える必要はない。   One piezoelectric material 4 (5) to which an initial compressive force is applied in advance contracts and deforms without bearing a tensile force when a tensile force as an external force is applied to the load receiving portion 2 (3) on that side. Continue to generate voltage in minutes. In the other load receiving portion 3 (2) paired with the load receiving portion 2 (3), the other piezoelectric material 5 and 4 to which a voltage is supplied bears a compressive force as an external force and is deformed by contraction. Therefore, the voltage generated by one piezoelectric material 4 (5) to which an initial compressive force is applied in advance can be used for elongation deformation. Conversely, when one piezoelectric material 4 (5) bears a compressive force as an external force and contracts and deforms, the piezoelectric material 5 (4) of the other load receiving portion 3 (2) on which the tensile force acts is initially set in advance. By applying a compressive force, the other piezoelectric material 5 (4) that continues to contract and deform in order to stretch and deform one piezoelectric material 4 (5) that contracts and deforms while bearing the compressive force The generated voltage can be used. In these cases, when an external force is acting on the load receiving portions 2 and 3, the paired piezoelectric materials 4 and 5 are both contracted and deformed, and therefore, it is not necessary to change the polarity of the voltage.

図2−(b)の例においても、上部のフランジ71aに配置された圧電材料4と下部のフランジ71aに配置された圧電材料5の双方に初期圧縮力を与えておく場合には、圧電材料4と圧電材料5が常に縮み変形して電圧を発生する状況になるため、圧電材料4、5のそれぞれが発生した電圧を、正負を入れ替えることなく互いに授受すればよいことになる。   Also in the example of FIG. 2B, when an initial compressive force is applied to both the piezoelectric material 4 disposed on the upper flange 71a and the piezoelectric material 5 disposed on the lower flange 71a, the piezoelectric material is used. 4 and the piezoelectric material 5 are always shrunk and deformed to generate a voltage, so that the voltages generated by the piezoelectric materials 4 and 5 may be exchanged with each other without changing the sign.

ある荷重受け部2、3に外力としての圧縮力と引張力が交互に作用するときの時刻毎の荷重は図4に示すように変動する。外力としての引張力が作用したときに引張力を負担できる状態にない圧電材料4、5に初期圧縮力が与えられていない場合には、圧電材料4、5は図5−(a)に示すように外力としての圧縮力が作用したときにのみ圧縮力を負担し、図5−(b)に示すように圧縮力を負担したときにのみ電圧を発生する。外力として引張力が作用したときには圧縮力を負担することはなく、引張力も負担しないため、電圧を発生することはない。   The load for each time when the compressive force and the tensile force as the external force are alternately applied to a certain load receiving portion 2, 3 varies as shown in FIG. When an initial compressive force is not applied to the piezoelectric materials 4 and 5 that are not in a state where the tensile force can be applied when an external tensile force is applied, the piezoelectric materials 4 and 5 are shown in FIG. Thus, the compression force is borne only when the compression force as an external force is applied, and the voltage is generated only when the compression force is borne as shown in FIG. When a tensile force is applied as an external force, no compressive force is applied, and no tensile force is applied, so that no voltage is generated.

これに対し、図2−(b)における圧電材料4、5に初期圧縮力が与えられている場合(請求項3)には、圧電材料4、5は前記のように荷重受け部2、3に外力としての圧縮力が作用しているときと引張力が作用しているときのいずれのときにも、図6−(a)に示すように大きさが時刻毎に変動する圧縮力を負担し続ける状態になる。この結果、初期圧縮力が与えられたる圧電材料4、5は図6−(b)に示すように電圧を発生し続けることができるため、電圧の発生効率が向上する。圧電材料4、5は静的荷重には応答しにくい性質があるが、荷重受け部2、3に外力としての圧縮力と引張力のいずれが作用しているときにも、圧電材料4、5が圧縮力を変動荷重として負担し続ける状態になることで、圧電材料4、5の応答性が向上するため、圧電材料4、5が発生する電圧を有効に利用することが可能である。   On the other hand, when an initial compressive force is applied to the piezoelectric materials 4 and 5 in FIG. 2 (b) (Claim 3), the piezoelectric materials 4 and 5 have the load receiving portions 2 and 3 as described above. As shown in FIG. 6- (a), a compressive force whose magnitude varies with time is borne both when a compressive force acting as an external force is applied to and when a tensile force is applied. Will continue to do. As a result, since the piezoelectric materials 4 and 5 to which the initial compressive force is applied can continue to generate a voltage as shown in FIG. 6B, the voltage generation efficiency is improved. Although the piezoelectric materials 4 and 5 have a property that it is difficult to respond to a static load, the piezoelectric materials 4 and 5 can be applied to the load receiving portions 2 and 3 even when either a compressive force or a tensile force is applied as an external force. However, since the responsiveness of the piezoelectric materials 4 and 5 is improved by continuing to bear the compressive force as a fluctuating load, the voltage generated by the piezoelectric materials 4 and 5 can be used effectively.

このことから、図3−(a)、(b)に示すように各荷重受け部2(3)において、圧電材料4(5)を荷重受け部2(3)に黒塗りの矢印で示す圧縮力が作用したときに圧縮力を負担する圧縮抵抗部41(51)と、荷重受け部2(3)に白抜きの矢印で示す引張力が作用したときに圧縮力を負担する引張抵抗部42(52)とに分割し、圧縮抵抗部41(51)と引張抵抗部42(52)の少なくともいずれか一方に、厚さ方向に予め圧縮力(初期圧縮力)を与えておくことで(請求項7、8)、後述のように一方の荷重受け部2(3)と他方の荷重受け部3(2)の圧縮抵抗部41、51間、または引張抵抗部42、52間で互いに電圧を授受させる関係を成立させることが可能になる。   Therefore, as shown in FIGS. 3A and 3B, in each load receiving portion 2 (3), the piezoelectric material 4 (5) is compressed by a black arrow on the load receiving portion 2 (3). A compression resistance portion 41 (51) that bears a compression force when a force is applied, and a tension resistance portion 42 that bears a compression force when a tensile force indicated by a white arrow acts on the load receiving portion 2 (3). (52) and by applying a compressive force (initial compressive force) in advance in the thickness direction to at least one of the compression resistance portion 41 (51) and the tensile resistance portion 42 (52) (invoice) Items 7 and 8), as will be described later, voltage is applied between the compression resistance parts 41 and 51 of one load receiving part 2 (3) and the other load receiving part 3 (2) or between the tensile resistance parts 42 and 52. It is possible to establish a relationship to be exchanged.

初期圧縮力が与えられている場合の圧縮抵抗部41(51)と引張抵抗部42(52)のいずれかは外力として圧縮力が作用しているときと引張力が作用しているときのいずれのときにも、図6−(a)に示すように圧縮力を負担した状態になる。   Either the compression resistance portion 41 (51) or the tensile resistance portion 42 (52) when the initial compression force is applied is either when the compression force is acting as an external force or when the tensile force is acting At this time, the compression force is borne as shown in FIG.

但し、図3−(a)〜(c)に示す例のように圧電材料4と圧電材料5をそれぞれ圧縮抵抗部41、51と引張抵抗部42、52とに分割する場合に、一方の荷重受け部2(3)の圧縮抵抗部41(51)と、他方の荷重受け部3(2)の引張抵抗部42(52)との間で互いに電圧を授受させる場合(請求項5、6)には、圧縮抵抗部41(51)と引張抵抗部42(52)に厚さ方向の初期圧縮力を与えておくことは必要ではない。   However, when the piezoelectric material 4 and the piezoelectric material 5 are divided into the compression resistance portions 41 and 51 and the tensile resistance portions 42 and 52, respectively, as in the example shown in FIGS. When voltage is exchanged between the compression resistance portion 41 (51) of the receiving portion 2 (3) and the tensile resistance portion 42 (52) of the other load receiving portion 3 (2) (claims 5 and 6) It is not necessary to apply an initial compressive force in the thickness direction to the compression resistance portion 41 (51) and the tensile resistance portion 42 (52).

図3−(a)〜(c)に示すように各荷重受け部2(3)において、圧電材料4(5)を荷重受け部2(3)に黒塗りの矢印で示す圧縮力が作用したときに圧縮力を負担する圧縮抵抗部41(51)と、荷重受け部2(3)に白抜きの矢印で示す引張力が作用したときに圧縮力を負担する引張抵抗部42(52)とに分割した場合(請求項5〜8)を考える。この場合に、圧縮抵抗部41(51)と引張抵抗部42(52)に初期圧縮力が与えられていない場合(請求項5、6)、各荷重受け部2(3)に圧縮力が作用するときと引張力が作用するときのいずれのときにも、圧縮抵抗部41(51)と引張抵抗部42(52)のいずれかが圧縮力を負担し、負担した圧縮力に応じた電圧を発生させることが可能になる。この場合、荷重受け部2(3)に圧縮力が作用したとき、圧縮抵抗部41(51)が圧縮力を負担しながら圧縮力に応じた電圧を発生し、荷重受け部2(3)に引張力が作用したときに引張抵抗部42(52)が圧縮力を負担しながら圧縮力に応じた電圧を発生する。   As shown in FIGS. 3A to 3C, in each load receiving portion 2 (3), the piezoelectric material 4 (5) is subjected to a compressive force indicated by a black arrow on the load receiving portion 2 (3). A compression resistance portion 41 (51) that sometimes bears the compression force, and a tension resistance portion 42 (52) that bears the compression force when the tensile force indicated by the white arrow acts on the load receiving portion 2 (3). Consider the case of dividing into (claims 5 to 8). In this case, when the initial compression force is not applied to the compression resistance portion 41 (51) and the tensile resistance portion 42 (52) (Claims 5 and 6), the compression force acts on each load receiving portion 2 (3). Either the compression resistance portion 41 (51) or the tensile resistance portion 42 (52) bears the compression force at any time when the tensile force acts or a voltage corresponding to the burdened compression force. Can be generated. In this case, when a compressive force acts on the load receiving portion 2 (3), the compression resistance portion 41 (51) generates a voltage corresponding to the compressive force while bearing the compressive force, and the load receiving portion 2 (3) When a tensile force is applied, the tensile resistance portion 42 (52) generates a voltage corresponding to the compressive force while bearing the compressive force.

図3−(a)は荷重受け部2、3を構成する一方の構造部材である鉄骨梁71に接合されたスプリットティー金物8のフランジ8aと、他方の構造部材である鉄骨柱61のフランジ61aとの間に圧縮抵抗部41(51)を介在させ、引張抵抗部42(52)をフランジ61aとナット91との間に介在させた場合の例を示している。スプリットティー金物8のフランジ8aと鉄骨柱61のフランジ61aとは両者を貫通するボルト9により接合されている。この例では荷重受け部2(3)に圧縮力が作用し、圧縮抵抗部41(51)がフランジ8aとフランジ61aから圧縮力を受けたときに、圧縮抵抗部41(51)が縮み変形して電圧を発生し、荷重受け部2(3)に引張力が作用し、引張抵抗部42(52)がフランジ61aとナット91から圧縮力を受けたときに、引張抵抗部42(52)が縮み変形して電圧を発生する。   FIG. 3A shows the flange 8a of the split tee hardware 8 joined to the steel beam 71 which is one structural member constituting the load receiving portions 2 and 3, and the flange 61a of the steel column 61 which is the other structural member. The compression resistance part 41 (51) is interposed between the two, and the tensile resistance part 42 (52) is interposed between the flange 61a and the nut 91. The flange 8a of the split tee hardware 8 and the flange 61a of the steel column 61 are joined by a bolt 9 penetrating both. In this example, when the compression force acts on the load receiving portion 2 (3) and the compression resistance portion 41 (51) receives the compression force from the flange 8a and the flange 61a, the compression resistance portion 41 (51) is contracted and deformed. When a tensile force acts on the load receiving portion 2 (3) and the tensile resistance portion 42 (52) receives a compressive force from the flange 61a and the nut 91, the tensile resistance portion 42 (52) Shrinks and deforms to generate voltage.

図3−(b)は引張抵抗部42(52)をスプリットティー金物8のフランジ8aと、その側に位置するボルト9の頭部との間に介在させた場合であり、(c)は(a)における1枚板の圧縮抵抗部41(51)を各ボルト9単位で分割した場合である。図3−(b)に示す例では荷重受け部2(3)に圧縮力が作用したときに、圧縮抵抗部41(51)がフランジ8aとフランジ61aから圧縮力を受けて縮み変形し、荷重受け部2(3)に引張力が作用したときには、引張抵抗部42(52)がボルト9の頭部とフランジ8aから圧縮力を受けて縮み変形する。   FIG. 3- (b) shows a case where the tensile resistance portion 42 (52) is interposed between the flange 8a of the split tee hardware 8 and the head of the bolt 9 located on the side, and (c) is ( This is a case where the single-plate compression resistance portion 41 (51) in a) is divided in units of 9 bolts. In the example shown in FIG. 3B, when a compressive force is applied to the load receiving portion 2 (3), the compression resistance portion 41 (51) receives the compressive force from the flange 8a and the flange 61a and contracts and deforms. When a tensile force is applied to the receiving portion 2 (3), the tensile resistance portion 42 (52) receives a compressive force from the head of the bolt 9 and the flange 8a and contracts and deforms.

一方の荷重受け部2(3)の引張抵抗部42(52)が圧縮力を負担したときに発生する電圧を、対になる他方の荷重受け部3(2)の圧縮抵抗部51(41)に印加する場合(請求項5)、図7−(a)に示すように一方の荷重受け部2(3)に引張力が作用し、その一方の荷重受け部2(3)の引張抵抗部42(52)が圧縮力を負担したときに発生する縮み変形量に応じた電圧が、圧縮力が作用している他方の荷重受け部3(2)において圧縮力を負担し、縮み変形している圧縮抵抗部51(41)に印加される。この他方の荷重受け部3(2)の圧縮抵抗部51(41)は一方の荷重受け部2(3)の引張抵抗部42(52)が発生し、印加された電圧に応じた伸び変形を圧縮力の作用方向に生じ、この伸び変形量に応じた反力を他方の荷重受け部3(2)に作用させる(請求項5)。   The voltage generated when the tensile resistance portion 42 (52) of one load receiving portion 2 (3) bears a compressive force is applied to the compression resistance portion 51 (41) of the other load receiving portion 3 (2). (Claim 5), as shown in FIG. 7- (a), a tensile force acts on one load receiving portion 2 (3), and the tensile resistance portion of the one load receiving portion 2 (3) The voltage according to the amount of contraction deformation generated when 42 (52) bears the compressive force bears the compressive force at the other load receiving portion 3 (2) on which the compressive force is acting, and contracts and deforms. Is applied to the compression resistor 51 (41). The compression resistance portion 51 (41) of the other load receiving portion 3 (2) is generated by the tensile resistance portion 42 (52) of the one load receiving portion 2 (3), and undergoes elongation deformation according to the applied voltage. A reaction force generated in the direction of the action of the compressive force is applied to the other load receiving portion 3 (2) according to the amount of elongation deformation (claim 5).

同様に一方の荷重受け部2(3)の圧縮抵抗部41(51)が圧縮力を負担したときに発生する電圧を他方の荷重受け部3(2)の引張抵抗部52(42)に印加する場合(請求項6)も図7−(a)に示すように一方の荷重受け部2(3)に圧縮力が作用し、その一方の荷重受け部2(3)の圧縮抵抗部41(51)が圧縮力を負担したときに発生する縮み変形量に応じた電圧が、引張力が作用している他方の荷重受け部3(2)において圧縮力を負担し、縮み変形している引張抵抗部52(42)に印加される。この他方の荷重受け部3(2)の引張抵抗部52(42)は一方の荷重受け部2(3)の圧縮抵抗部41(51)が発生し、印加された電圧に応じた伸び変形を引張力の作用方向に生じ、この伸び変形量に応じた反力を他方の荷重受け部3(2)に作用させる(請求項6)。   Similarly, a voltage generated when the compression resistance portion 41 (51) of one load receiving portion 2 (3) bears a compressive force is applied to the tensile resistance portion 52 (42) of the other load receiving portion 3 (2). In the case of (Claim 6), as shown in FIG. 7- (a), a compressive force acts on one load receiving portion 2 (3), and the compression resistance portion 41 ( 51) The voltage corresponding to the amount of contraction deformation generated when the compressive force is borne is applied to the other load receiving portion 3 (2) on which the tensile force acts, and the tensile force that is contracted and deformed. It is applied to the resistance part 52 (42). The tensile resistance portion 52 (42) of the other load receiving portion 3 (2) is generated by the compression resistance portion 41 (51) of the one load receiving portion 2 (3), and undergoes elongation deformation according to the applied voltage. A reaction force generated in the direction of application of the tensile force is applied to the other load receiving portion 3 (2) according to the amount of elongation deformation (claim 6).

図7−(a)に示す電圧の授受の場合(請求項5、6)も、共に圧縮力を負担して縮み変形している圧縮抵抗部41(51)と引張抵抗部52(42)間で電圧を授受するため、電圧の正負を入れ替える必要はない。   Also in the case of the voltage transfer shown in FIG. 7- (a) (Claims 5 and 6), between the compression resistance portion 41 (51) and the tension resistance portion 52 (42), both of which bear the compression force and are deformed by contraction. It is not necessary to switch the polarity of the voltage in order to transfer the voltage.

圧電材料4、5が圧縮抵抗部41、51と引張抵抗部42、52とに分割され、圧縮抵抗部41、51と引張抵抗部42、52の少なくともいずれか一方に、厚さ方向に予め圧縮力(初期圧縮力)を与えておく場合(請求項7、8)においては、圧縮抵抗部41(51)が圧縮力を負担していないときは荷重受け部2(3)に引張力が作用しているときであり、引張抵抗部42(52)が圧縮力を負担しているときである。この関係から、初期圧縮力は図7−(b)に示すように圧縮抵抗部41(51)に与えられ、この圧縮抵抗部41(51)が圧縮力を負担せずに縮み変形し続けるときの電圧は他方の荷重受け部3(2)において圧縮力を負担し、縮み変形している圧縮抵抗部41(51)に印加される(請求項7)。   The piezoelectric materials 4 and 5 are divided into compression resistance portions 41 and 51 and tensile resistance portions 42 and 52, and are compressed in advance in the thickness direction into at least one of the compression resistance portions 41 and 51 and the tensile resistance portions 42 and 52. In the case where a force (initial compression force) is applied (claims 7 and 8), when the compression resistance portion 41 (51) does not bear the compression force, a tensile force acts on the load receiving portion 2 (3). When the tensile resistance portion 42 (52) bears the compressive force. From this relationship, when the initial compression force is applied to the compression resistance portion 41 (51) as shown in FIG. 7- (b), the compression resistance portion 41 (51) continues to shrink and deform without bearing the compression force. Is applied to the compression resistance portion 41 (51) which bears a compressive force in the other load receiving portion 3 (2) and is deformed by contraction (Claim 7).

同様に引張抵抗部42(52)が圧縮力を負担していないときは荷重受け部2(3)に圧縮力が作用しているときであり、圧縮抵抗部41(51)が圧縮力を負担しているときであるから、初期圧縮力は図7−(c)に示すように引張抵抗部42(52)に与えられ、引張抵抗部42(52)が圧縮力を負担せずに縮み変形し続けるときの電圧は他方の荷重受け部3(2)において圧縮力を負担し、縮み変形している引張抵抗部45(42)に印加される(請求項8)。   Similarly, when the tensile resistance portion 42 (52) does not bear the compressive force, it is when the compressive force acts on the load receiving portion 2 (3), and the compressive resistance portion 41 (51) bears the compressive force. Therefore, the initial compressive force is applied to the tensile resistance portion 42 (52) as shown in FIG. 7- (c), and the tensile resistance portion 42 (52) shrinks and deforms without bearing the compressive force. The voltage at the time of continuing is applied to the tensile resistance part 45 (42) which bears a compressive force in the other load receiving part 3 (2) and is deformed by shrinkage (claim 8).

請求項7では図7−(b)に示すように一方の荷重受け部2(3)に引張力が作用し、圧縮力を負担せずに縮み変形し続ける圧縮抵抗部41(51)が発生する縮み変形量に応じた電圧が他方の荷重受け部3(2)の圧縮抵抗部51(41)に印加される。他方の荷重受け部3(2)の圧縮抵抗部51(41)は一方の荷重受け部2(3)の圧縮抵抗部41(51)が発生し、印加された電圧に応じた伸び変形を他方の荷重受け部3(2)に作用している外力としての圧縮力の作用方向に生じ、伸び変形量に応じた反力を他方の荷重受け部3(2)に作用させる。   In claim 7, as shown in FIG. 7- (b), a tensile force acts on one load receiving portion 2 (3), and a compression resistance portion 41 (51) is generated that continues to shrink and deform without bearing a compression force. A voltage corresponding to the amount of contraction deformation is applied to the compression resistance portion 51 (41) of the other load receiving portion 3 (2). The compression resistance portion 51 (41) of the other load receiving portion 3 (2) is generated by the compression resistance portion 41 (51) of the one load receiving portion 2 (3), and the other is subjected to elongation deformation according to the applied voltage. The reaction force generated in the direction of the compressive force acting on the load receiving portion 3 (2) is applied to the other load receiving portion 3 (2).

図7−(b)に示すように一方の荷重受け部2(3)に引張力が作用し、引張抵抗部42(52)が外力としての引張力により圧縮力を負担し、縮み変形しているとき、一方の圧縮抵抗部41(51)は図6−(a)に示すように初期圧縮力により圧縮された状態にあり、縮み変形中であるから、(b)に示すように電圧を発生し続けている。他方の荷重受け部3(2)の圧縮抵抗部51(41)は一方の荷重受け部2(3)の圧縮抵抗部41(51)が発生した電圧が印加されることで、伸び変形を生じ、伸び変形量に応じた反力を他方の荷重受け部3(2)に生じさせる(請求項7)。図3−(a)〜(c)の例では圧縮抵抗部51(41)の伸び変形は収縮しているスプリットティー金物8のフランジ8aと鉄骨柱61のフランジ61aとの間の距離を拡大しようとする。   As shown in FIG. 7- (b), a tensile force acts on one of the load receiving portions 2 (3), and the tensile resistance portion 42 (52) bears a compressive force by a tensile force as an external force, and contracts and deforms. When one of the compression resistance portions 41 (51) is in a compressed state due to the initial compression force as shown in FIG. 6- (a) and is undergoing shrinkage deformation, the voltage is applied as shown in (b). It continues to occur. The compression resistance portion 51 (41) of the other load receiving portion 3 (2) is stretched and deformed by applying the voltage generated by the compression resistance portion 41 (51) of the one load receiving portion 2 (3). Then, a reaction force corresponding to the amount of elongation deformation is generated in the other load receiving portion 3 (2). In the example of FIGS. 3A to 3C, the expansion deformation of the compression resistance portion 51 (41) is to increase the distance between the flange 8a of the split tee hardware 8 and the flange 61a of the steel column 61 that are contracted. And

請求項8では図7−(c)に示すように一方の荷重受け部2(3)に圧縮力が作用し、圧縮力を負担せずに縮み変形し続ける引張抵抗部42(52)が発生する縮み変形量に応じた電圧が他方の荷重受け部3(2)の引張抵抗部52(42)に印加される。他方の荷重受け部3(2)の引張抵抗部52(42)は一方の荷重受け部2(3)の引張抵抗部42(52)が発生し、印加された電圧に応じた伸び変形を他方の荷重受け部3(2)に作用している外力としての引張力の作用方向に生じ、伸び変形量に応じた反力を他方の荷重受け部3(2)に作用させる。   In claim 8, as shown in FIG. 7- (c), a compressive force acts on one load receiving portion 2 (3), and a tensile resistance portion 42 (52) is generated that continues to shrink and deform without bearing the compressive force. A voltage corresponding to the amount of shrinkage deformation is applied to the tensile resistance portion 52 (42) of the other load receiving portion 3 (2). The tensile resistance portion 52 (42) of the other load receiving portion 3 (2) is generated by the tensile resistance portion 42 (52) of the one load receiving portion 2 (3), and the other is subjected to elongation deformation according to the applied voltage. It is generated in the direction of the tensile force acting as an external force acting on the load receiving portion 3 (2), and a reaction force corresponding to the amount of elongation deformation is applied to the other load receiving portion 3 (2).

図7−(c)に示すように一方の荷重受け部2(3)に圧縮力が作用し、圧縮抵抗部41(51)が外力としての圧縮力をそのまま負担し、縮み変形しているとき、一方の引張抵抗部42(52)は初期圧縮力により圧縮された状態にあり、縮み変形中であるから、電圧を発生し続けている。他方の荷重受け部3(2)の引張抵抗部52(42)は一方の荷重受け部2(3)の引張抵抗部42(52)が発生した電圧が印加されることで、伸び変形を生じ、伸び変形量に応じた反力を他方の荷重受け部3(2)に生じさせる(請求項8)。図3−(a)、(c)の例では引張抵抗部52(42)の伸び変形は収縮しているフランジ61aとナット91との間の距離を拡大しようとする。図3−(b)の例では引張抵抗部52(42)の伸び変形は収縮しているボルト9頭部とフランジ8aとの間の距離を拡大しようとする。   As shown in FIG. 7- (c), when a compressive force is applied to one of the load receiving portions 2 (3), and the compressive resistance portion 41 (51) bears the compressive force as an external force as it is and is contracted and deformed. One tension resistance portion 42 (52) is in a state compressed by the initial compressive force and is in a contraction deformation state, and therefore continues to generate a voltage. The tensile resistance portion 52 (42) of the other load receiving portion 3 (2) is stretched and deformed by applying the voltage generated by the tensile resistance portion 42 (52) of the one load receiving portion 2 (3). Then, a reaction force corresponding to the amount of elongation deformation is generated in the other load receiving portion 3 (2). In the example of FIGS. 3A and 3C, the extension deformation of the tensile resistance portion 52 (42) attempts to increase the distance between the flange 61a and the nut 91 that are contracted. In the example of FIG. 3B, the extension deformation of the tensile resistance portion 52 (42) attempts to increase the distance between the shrinking bolt 9 head and the flange 8a.

対になる圧電材料の内、一方の圧電材料が構造物の振動に伴って伸び変形、または縮み変形したときに発生する電圧を、縮み変形、または伸び変形している他方の圧電材料に印加し、他方の圧電材料を伸び変形、または縮み変形させるために利用し、他方の圧電材料に、受けている外力の向きに抵抗する向きの変形を生じさせるため、他方の荷重受け部に作用している外力を相殺させ、軽減することができる。他方の圧電材料が発生した電圧を一方の圧電材料に印加する場合には、対になる圧電材料が互いに外力を相殺する向きの変形を他方側の圧電材料が発生した電圧から生じさせられるため、より効果的に対になる荷重受け部に作用する外力を軽減し、構造物の揺れを低減することができる。   The voltage generated when one of the pair of piezoelectric materials expands or contracts due to the vibration of the structure is applied to the other piezoelectric material that contracts or contracts. The other piezoelectric material is used to stretch or contract, and the other piezoelectric material is deformed in a direction that resists the direction of the external force being received. The external force that is present can be offset and reduced. When the voltage generated by the other piezoelectric material is applied to one piezoelectric material, deformation in a direction in which the paired piezoelectric materials cancel each other out from each other can be caused from the voltage generated by the other piezoelectric material, The external force acting on the load receiving portions that are paired more effectively can be reduced, and the shaking of the structure can be reduced.

構造物に外力(水平力)が作用して引張力を受けた圧電材料が発生した電圧を反転回路に出力し、反転回路から出力された電圧を、圧縮力を受けた圧電材料に印加し、圧縮力を受けた圧電材料に圧縮力に対する反力を発生させる様子を示した概念図である。The voltage generated by the piezoelectric material that received tensile force due to the external force (horizontal force) acting on the structure is output to the inverting circuit, the voltage output from the inverting circuit is applied to the piezoelectric material that has received the compressive force, It is the conceptual diagram which showed a mode that the reaction force with respect to a compressive force was generated in the piezoelectric material which received the compressive force. (a)は荷重受け部が圧縮力と引張力を交互に受けるフレームの梁と柱との接合部である場合に、梁の上端部に引張力が作用し、下端部に圧縮力が作用しているときの様子を示した立面図、(b)は(a)における梁が特に鉄骨梁である場合の梁と圧電材料との関係を示した(a)における破線円部分の拡大図である。(A) In the case where the load receiving portion is a joint between the beam and the column of the frame that alternately receives the compressive force and the tensile force, the tensile force acts on the upper end portion of the beam and the compressive force acts on the lower end portion. (B) is an enlarged view of the broken-line circle portion in (a) showing the relationship between the beam and the piezoelectric material when the beam in (a) is a steel beam in particular. is there. (a)、(b)は荷重受け部を構成する一方の構造部材である梁と他方の構造部材である柱が圧電材料の厚さ方向の正負の向きに相対変位自在な状態に接合されている様子を示した図2−(b)の拡大断面図であり、(a)は一方と他方の圧電材料を鉄骨梁のフランジに接合されたスプリットティー金物と鉄骨柱のフランジとの間、及び鉄骨柱フランジとナットとの間に介在させた場合、(b)は一方と他方の圧電材料をスプリットティー金物と鉄骨柱のフランジとの間、及びスプリットティー金物とボルト頭部との間に介在させた場合である。(c)は図3−(a)における1枚の圧縮抵抗部を複数個の圧縮抵抗部に分割した場合の例を示した断面図である。(A), (b) is a state in which a beam, which is one structural member constituting the load receiving portion, and a column, which is the other structural member, are joined so as to be relatively displaceable in the positive and negative directions of the thickness direction of the piezoelectric material. FIG. 2B is an enlarged cross-sectional view of FIG. 2B showing a state in which one and the other piezoelectric material are joined to the flange of the steel beam and the flange of the steel column; When the steel column flange is interposed between the nut and the nut, (b) shows that one and the other piezoelectric material are interposed between the split tee hardware and the steel column flange, and between the split tee hardware and the bolt head. This is the case. (C) is sectional drawing which showed the example at the time of dividing | segmenting the compression resistance part of 1 sheet in Fig.3- (a) into several compression resistance part. 圧電材料に初期圧縮力が与えられていない場合に、時間の経過に伴い、圧電材料に外力としての圧縮力と引張力が交互に作用する様子を示したグラフである。6 is a graph showing a state in which a compressive force and a tensile force as an external force are alternately applied to a piezoelectric material as time passes when an initial compressive force is not applied to the piezoelectric material. (a)は圧縮力の負担時に電圧を発生する圧電材料に図4に示す外力が作用したときに圧縮力の作用時にのみ圧縮力を負担している様子を示したグラフ、(b)は(a)に示す圧電材料が圧縮力の負担時にのみ電圧を発生している様子を示したグラフである。4A is a graph showing a state in which a compressive force is applied only when the external force shown in FIG. 4 is applied to the piezoelectric material that generates a voltage when the compressive force is applied, and FIG. It is the graph which showed a mode that the voltage was generate | occur | produced only when the piezoelectric material shown to a) bears a compressive force. (a)は初期圧縮力が与えられている圧電材料に図4に示す外力が作用したときに圧縮力と引張力の作用時のいずれのときにも圧縮力を負担している様子を示したグラフ、(b)は(a)に示す圧電材料が外力としての圧縮力と引張力が作用しているときのいずれのときにも電圧を発生している様子を示したグラフである。(A) shows a state in which the compressive force is borne when the external force shown in FIG. 4 is applied to the piezoelectric material to which the initial compressive force is applied, both when the compressive force and the tensile force are applied. The graph (b) is a graph showing a state in which the piezoelectric material shown in (a) generates a voltage at any time when a compressive force and a tensile force are acting as external forces. (a)は対になる荷重受け部の圧縮抵抗部と引張抵抗部間での電圧の授受の様子を示した概要図、(b)は対になる荷重受け部の圧縮抵抗部間での電圧の授受の様子を示した概要図、(c)は対になる荷重受け部の引張抵抗部間での電圧の授受の様子を示した概要図である。(A) is the outline figure which showed the mode of the transfer of the voltage between the compression resistance part and tensile resistance part of the load receiving part which becomes a pair, (b) is the voltage between the compression resistance parts of the load receiving part which becomes a pair (C) is the schematic diagram which showed the mode of the transmission / reception of the voltage between the tensile resistance parts of the load receiving part which becomes a pair. 荷重受け部が圧縮力と引張力を交互に受けるブレースとフレームとの接合部である場合のブレースと圧電材料の関係を示した立面図である。It is an elevational view showing the relationship between the brace and the piezoelectric material when the load receiving portion is a joint portion between the brace and the frame that alternately receive the compressive force and the tensile force. (a)は構造物が免震装置を介して上部構造と下部構造とに区分される場合に、荷重受け部が上部構造と下部構造との間に設置される免震装置と上部構造、もしくは下部構造との接合部である場合の免震装置と圧電材料の関係を示した立面図、(b)は(a)における免震装置部分の拡大図である。(A) is when the structure is divided into an upper structure and a lower structure via a seismic isolation device, and the seismic isolation device and the upper structure in which the load receiving part is installed between the upper structure and the lower structure, or The elevation which showed the relationship between the seismic isolation apparatus and piezoelectric material in the case of a junction part with a lower structure, (b) is an enlarged view of the seismic isolation apparatus part in (a).

図1は構造物20が水平力を受けたときに引張力と圧縮力が交互に繰り返して作用し、一方に引張力が作用するときに他方に圧縮力が作用する関係にある、対になる荷重受け部2、3において、一方の荷重受け部2(3)と他方の荷重受け部3(2)のそれぞれに組み込まれ、水平力の作用時に引張力と圧縮力を厚さ方向の圧力として負担する圧電材料(圧電素子)4、5を備えた制震装置1が外力を受けたときの、対になる圧電材料4、5に作用する外力と変形の関係を示す。制震装置1は負担する力の向きが互いに相違する、対になる圧電材料4、5の組み合わせからなる。圧電材料4、5には水晶、圧電セラミックス等が使用される。   FIG. 1 shows a pair in which a tensile force and a compressive force act alternately and alternately when the structure 20 receives a horizontal force, and a compressive force acts on the other when a tensile force acts on one. In the load receiving portions 2 and 3, the load receiving portions 2 (3) and the other load receiving portion 3 (2) are incorporated into the load receiving portions 2 and 3, respectively. The relationship between the external force acting on the paired piezoelectric materials 4 and 5 and the deformation when the vibration control device 1 including the piezoelectric materials (piezoelectric elements) 4 and 5 that receive the load receives external force is shown. The vibration control device 1 is composed of a combination of paired piezoelectric materials 4 and 5 that have different directions of force to be borne. For the piezoelectric materials 4 and 5, quartz, piezoelectric ceramics, or the like is used.

対になる荷重受け部2、3は一方の荷重受け部2に引張力が作用するときに、他方の荷重受け部3に圧縮力が作用する関係にあればよく、対になる荷重受け部2、3の構造物20内、あるいは構造物20外における部位は特定されない。制震装置1は図1等に示す建築構造物の他、橋梁の橋脚と橋桁との接合部等にも適用可能であるため、構造物20は土木構造物も含まれる。   The load receiving portions 2 and 3 that form a pair need only have a relationship in which a compressive force acts on the other load receiving portion 3 when a tensile force acts on one load receiving portion 2. The site | part in the structure 20 of 3 or the structure 20 outside is not specified. Since the vibration control device 1 can be applied to, for example, a joint structure between a bridge pier and a bridge girder in addition to the building structure shown in FIG. 1 and the like, the structure 20 includes a civil engineering structure.

対になる荷重受け部2、3の内、一方の荷重受け部2(3)に引張力、または圧縮力が作用したときに、その一方の荷重受け部2(3)の圧電材料4(5)はそれが負担する厚さ方向の圧力に応じ、伸び変形量、または縮み変形量に応じた電圧を発生する。この一方の圧電材料4(5)が発生する電圧はそのまま、または正負が入れ替わった状態で他方の、圧縮力、または引張力が作用している荷重受け部3(2)の、縮み変形、または伸び変形している圧電材料5(4)に印加される。一方の圧電材料4(5)が発生した電圧は両端の正極と負極を維持したまま、または反転増幅器(反転増幅回路)等の反転回路10を経由することで、正極と負極が入れ替えられた状態で、他方の圧電材料5(4)に印加される。   When a tensile force or a compressive force is applied to one load receiving portion 2 (3) of the pair of load receiving portions 2, 3, the piezoelectric material 4 (5) of the one load receiving portion 2 (3) is provided. ) Generates a voltage corresponding to the amount of expansion or contraction according to the pressure in the thickness direction that it bears. The voltage generated by the one piezoelectric material 4 (5) is left as it is, or in the state in which the sign is switched, the other deformation of the load receiving portion 3 (2) on which the compressive force or tensile force is applied, or It is applied to the piezoelectric material 5 (4) which is stretched and deformed. The voltage generated by one piezoelectric material 4 (5) maintains the positive and negative electrodes at both ends, or passes through an inverting circuit 10 such as an inverting amplifier (inverting amplifier circuit), so that the positive and negative electrodes are switched. Then, it is applied to the other piezoelectric material 5 (4).

一方の荷重受け部2(3)の圧電材料4(5)が一方の荷重受け部2(3)に作用する引張力を負担して伸び変形したときに発生する電圧を、他方の荷重受け部3(2)の縮み変形している圧電材料5(4)に印加する場合のように、電圧を発生する圧電材料4(5)の変形と電圧が印加される圧電材料5(4)の変形が逆、すなわち一方の圧電材料4(5)が伸び変形(縮み変形)を生じ、他方の圧電材料5(4)が縮み変形(伸び変形)を生ずる場合には、一方の圧電材料4(5)が発生した電圧は正極と負極が入れ替えられて他方の圧電材料5(4)に印加される。   The voltage generated when the piezoelectric material 4 (5) of the one load receiving portion 2 (3) is stretched and deformed under a tensile force acting on the one load receiving portion 2 (3) is used as the other load receiving portion. The deformation of the piezoelectric material 4 (5) that generates a voltage and the deformation of the piezoelectric material 5 (4) to which a voltage is applied, as in the case of applying to the contracted and deformed piezoelectric material 5 (4) of 3 (2) Is opposite, that is, when one piezoelectric material 4 (5) undergoes expansion deformation (contraction deformation) and the other piezoelectric material 5 (4) undergoes contraction deformation (extension deformation), one piezoelectric material 4 (5 ) Is applied to the other piezoelectric material 5 (4) with the positive electrode and the negative electrode interchanged.

一方の荷重受け部2(3)の圧電材料4(5)が一方の荷重受け部2(3)に作用する引張力を圧縮力として負担し、縮み変形したときに発生する電圧を他方の荷重受け部3(2)の縮み変形している圧電材料5(4)に印加する場合のように、電圧を発生する圧電材料4(5)の変形と電圧が印加される圧電材料5(4)の変形が同一の場合、すなわち両圧電材料4、5が共に縮み変形の場合、または共に伸び変形の場合には、一方の圧電材料4(5)が発生した電圧は正極と負極が入れ替えられることなく、他方の圧電材料5(4)に印加される。   The piezoelectric material 4 (5) of the one load receiving portion 2 (3) bears the tensile force acting on the one load receiving portion 2 (3) as a compressive force, and the voltage generated when contracting and deforming is applied to the other load. The piezoelectric material 5 (4) to which a voltage is applied and the deformation of the piezoelectric material 4 (5) that generates a voltage, as in the case of applying to the shrinking and deforming piezoelectric material 5 (4) of the receiving portion 3 (2). When the deformation of the piezoelectric material 4 (5) is the same, that is, when both the piezoelectric materials 4 and 5 are contracted or deformed together, the voltage generated by one piezoelectric material 4 (5) is switched between the positive electrode and the negative electrode. And applied to the other piezoelectric material 5 (4).

他方の圧電材料5(4)は一方の圧電材料4(5)が発生し、正負極を維持したまま、または正負極が反転して印加された電圧に応じた伸び変形、または縮み変形を現在、受けている圧縮力、または引張力の作用方向に生じ、この伸び変形量、または縮み変形量に応じた反力を圧縮力に対する押し返す力、または引張力に対する引き寄せる力として他方の荷重受け部3(2)に作用させる。反力は外力としての圧縮力、または引張力の作用の向きとは逆向きに作用するため、外力に対する抵抗力になり、外力を低減(相殺)する。   The other piezoelectric material 5 (4) is generated by one piezoelectric material 4 (5), and is currently undergoing expansion deformation or contraction deformation depending on the applied voltage while maintaining the positive and negative electrodes or by reversing the positive and negative electrodes. The other load receiving portion 3 is generated in the acting direction of the compressive force or tensile force received, and the reaction force corresponding to the amount of expansion or contraction is pushed back against the compression force or the force attracting the tensile force. Act on (2). The reaction force acts in a direction opposite to the direction of the action of the compressive force or tensile force as an external force, and thus becomes a resistance force to the external force, and reduces (cancels) the external force.

図2−(a)は対になる荷重受け部2、3が柱6と梁7からなるフレームにおける、一方の構造部材である梁7と他方の構造部材である柱6との接合部であり、一方の荷重受け部2が梁7の上端部と柱6との接合部で、他方の荷重受け部3が梁7の下端部と柱6との接合部である場合の、外力と各荷重受け部2、3における圧電材料4、5に生ずる変形の様子を示す。一方の荷重受け部2と他方の荷重受け部3は便宜的に区別されているだけであり、ある時点で圧縮力を受ける荷重受け部2と引張力を受ける荷重受け部3の外力の負担状態は交互に入れ替わるから、一方の荷重受け部2が圧縮力を受けた直後には引張力を受け、他方の荷重受け部3が引張力を受けた直後には圧縮力を受ける状態になる。図2−(a)の具体例を(b)に示す。   FIG. 2- (a) is a joint between the beam 7 which is one structural member and the column 6 which is the other structural member in the frame in which the load receiving portions 2 and 3 which are paired are the column 6 and the beam 7. External load and each load when one load receiving portion 2 is a joint portion between the upper end portion of the beam 7 and the column 6 and the other load receiving portion 3 is a joint portion between the lower end portion of the beam 7 and the column 6. A state of deformation occurring in the piezoelectric materials 4 and 5 in the receiving portions 2 and 3 is shown. One load receiving portion 2 and the other load receiving portion 3 are only distinguished for convenience, and the external force load state of the load receiving portion 2 that receives a compressive force and the load receiving portion 3 that receives a tensile force at a certain point in time. Are alternately switched, so that one load receiving portion 2 receives a tensile force immediately after receiving a compressive force, and the other load receiving portion 3 receives a compressive force immediately after receiving a tensile force. A specific example of FIG. 2- (a) is shown in (b).

図2−(b)は特に柱6と梁7が共に鉄骨であり、一方の荷重受け部2が構造部材としての鉄骨梁71の上部のフランジ71aと、構造部材としての鉄骨柱61のフランジ61aとの接合部であり、他方の荷重受け部3が鉄骨梁71の下部のフランジ71aと鉄骨柱61のフランジ61aとの接合部である場合の具体例を示している。   In FIG. 2- (b), both the column 6 and the beam 7 are both steel frames, and one load receiving portion 2 is a flange 71a at the upper part of the steel beam 71 as a structural member, and a flange 61a of the steel column 61 as a structural member. A specific example is shown in which the other load receiving portion 3 is a joint between the lower flange 71 a of the steel beam 71 and the flange 61 a of the steel column 61.

ここでは鉄骨梁71の上部と下部のフランジ71a、71aの端部に接合金物としてのスプリットティー金物8を接合し、このスプリットティー金物8のフランジ8aと鉄骨柱61のフランジ61aとの間に圧電材料4、5を介在させている。スプリットティー金物8はウェブ8bにおいて鉄骨梁71のフランジ71aにボルト等により接合されるが、鉄骨柱61のフランジ61aとの間には圧電材料4、5が介在することから、鉄骨柱61のフランジ61aにはスプリットティー金物8のフランジ8aとフランジ61aを貫通するボルト9を用いて接合している。ボルト9は圧電材料4、5も貫通する。   Here, a split tee hardware 8 as a joint hardware is joined to the ends of the upper and lower flanges 71a and 71a of the steel beam 71, and a piezoelectric element is interposed between the flange 8a of the split tee hardware 8 and the flange 61a of the steel column 61. Materials 4 and 5 are interposed. The split tee hardware 8 is joined to the flange 71a of the steel beam 71 by a bolt or the like in the web 8b. Since the piezoelectric materials 4 and 5 are interposed between the flange 61a of the steel column 61, the flange of the steel column 61 is provided. The flange 61a of the split tee hardware 8 is joined to 61a using bolts 9 penetrating the flange 61a. The bolt 9 also penetrates the piezoelectric materials 4 and 5.

ここで、スプリットティー金物8のフランジ8aと鉄骨柱61のフランジ61aとの間に介在する圧電材料4、5が柱・梁の接合部に作用する曲げモーメントによる引張力を受けて伸び変形を生じ、圧縮力を受けて縮み変形を生じ得るよう、スプリットティー金物8のフランジ8aは鉄骨柱61のフランジ61aに対しては、圧電材料4、5の厚さ方向の変形量を見込んだ距離分程度、鉄骨梁71の軸方向に相対変位可能な状態に接合される。詳しくは図3−(a)、(b)に示すように圧電材料4、5がスプリットティー金物8のフランジ8aと鉄骨柱61のフランジ61aとの間に挟まれた状態から、更にスプリットティー金物8のフランジ8aが鉄骨柱61のフランジ61aに接近する向きと遠ざかる向きに変位可能な状態に、フランジ8aがフランジ61aに接合される。   Here, the piezoelectric materials 4 and 5 interposed between the flange 8a of the split tee hardware 8 and the flange 61a of the steel column 61 are subjected to a tensile force due to a bending moment acting on the column / beam joint, thereby causing elongation deformation. The flange 8a of the split tee hardware 8 is approximately the distance from the flange 61a of the steel column 61 in consideration of the amount of deformation in the thickness direction of the piezoelectric materials 4 and 5 so that it can be deformed by receiving a compressive force. The steel beam 71 is joined so as to be relatively displaceable in the axial direction. Specifically, as shown in FIGS. 3A and 3B, from the state where the piezoelectric materials 4 and 5 are sandwiched between the flange 8a of the split tee hardware 8 and the flange 61a of the steel column 61, further split tee hardware. The flange 8a is joined to the flange 61a so that the flange 8a can be displaced in a direction approaching and away from the flange 61a of the steel column 61.

図2、図3に示す例では圧電材料4、5はスプリットティー金物8のフランジ8aと鉄骨柱61のフランジ61aとの間に鉄骨梁71の軸方向に直接、もしくは間接的に介在した状態にある。これらの例では、原則として図2に示すように構造物20の振動開始と同時に引張力を受けるいずれか一方の荷重受け部2の圧電材料4が鉄骨梁6の軸方向に伸び変形を生じ、伸び変形量に応じた電圧を発生する。この場合、引張力を受けた荷重受け部2の圧電材料4に生ずる変形(伸び変形)と、圧縮力を受けた荷重受け部3の圧電材料5に生ずる変形(縮み変形)は逆であるため、伸び変形を生じた圧電材料4の電圧は正負が入れ替えられて他方の荷重受け部3において外力として圧縮力を受けて収縮している圧電材料5に印加される。   In the example shown in FIGS. 2 and 3, the piezoelectric materials 4 and 5 are directly or indirectly interposed in the axial direction of the steel beam 71 between the flange 8 a of the split tee hardware 8 and the flange 61 a of the steel column 61. is there. In these examples, as shown in FIG. 2, as a general rule, the piezoelectric material 4 of any one of the load receiving portions 2 that receives a tensile force at the same time as the vibration of the structure 20 starts extending and deforms in the axial direction of the steel beam 6, A voltage corresponding to the amount of elongation deformation is generated. In this case, the deformation (elongation deformation) that occurs in the piezoelectric material 4 of the load receiving portion 2 that receives a tensile force and the deformation (contraction deformation) that occurs in the piezoelectric material 5 of the load receiving portion 3 that receives a compressive force are opposite. The voltage of the piezoelectric material 4 that has undergone elongation deformation is applied to the piezoelectric material 5 that is contracted by receiving a compressive force as an external force in the other load receiving portion 3 with the positive and negative being switched.

伸び変形した一方の圧電材料4(5)が発生した電圧を縮み変形した他方の圧電材料5(4)に印加する際、または縮み変形した他方の圧電材料5(4)が発生した電圧を伸び変形した一方の圧電材料4(5)に印加する際には、電圧の向きを入れ替える必要があるため、一方の圧電材料4(5)の電圧の正負を入れ替えて他方の圧電材料5(4)に印加するために、一方の圧電材料4(5)と他方の圧電材料5(4)には電圧の向きを変換する、反転増幅器(反転増幅回路)等の反転回路10が接続される。電圧を発生した圧電材料4(5)の、外力の作用方向の両面側に接続された正負の電極を反転回路10の正負の入力端子にそれぞれ接続することで、圧電材料4(5)が発生した電圧の正負が反転回路10で入れ替えられる。   When the voltage generated by the one piezoelectric material 4 (5) that has been deformed is applied to the other piezoelectric material 5 (4) that has been contracted or deformed, the voltage that has been generated by the other piezoelectric material 5 (4) that has been contracted or deformed is expanded. When applying to one deformed piezoelectric material 4 (5), it is necessary to change the direction of the voltage. Therefore, the other piezoelectric material 5 (4) is switched by switching the polarity of the voltage of one piezoelectric material 4 (5). Therefore, an inverting circuit 10 such as an inverting amplifier (inverting amplifier circuit) that converts the direction of voltage is connected to one piezoelectric material 4 (5) and the other piezoelectric material 5 (4). The piezoelectric material 4 (5) is generated by connecting the positive and negative electrodes of the piezoelectric material 4 (5) that has generated the voltage to the positive and negative input terminals of the inverting circuit 10 respectively. The positive and negative voltages are exchanged by the inverting circuit 10.

この場合、一方の荷重受け部2(3)の圧電材料4(5)は鉄骨梁71の軸方向に伸び変形したときに、鉄骨梁71の軸方向(負担する引張力の作用方向)の両面間に電位差(電圧)を発生し、この電位差が反転回路10の正負の入力端子に加えられる。反転回路10の出力端子からは入力電圧と同じ大きさの、逆向きの電圧が出力され、この電圧が他方の荷重受け部3(2)の縮み変形している圧電材料5(4)の、鉄骨梁71軸方向(負担する圧縮力の作用方向)の両面間に加えられる。   In this case, when the piezoelectric material 4 (5) of one load receiving portion 2 (3) is stretched and deformed in the axial direction of the steel beam 71, both surfaces in the axial direction of the steel beam 71 (the acting direction of the tensile force to be borne). A potential difference (voltage) is generated between them, and this potential difference is applied to the positive and negative input terminals of the inverting circuit 10. A reverse voltage having the same magnitude as the input voltage is output from the output terminal of the inverting circuit 10, and this voltage of the piezoelectric material 5 (4) of the other load receiving portion 3 (2) is contracted and deformed. It is applied between both surfaces of the steel beam 71 in the axial direction (the direction of the acting compressive force).

図2−(a)に示す時点で、いずれか一方の荷重受け部2の圧電材料4が引張力を受けて伸び変形したときには、同時に他方の荷重受け部3の圧電材料5が圧縮力を受けて縮み変形しているため、他方の圧電材料5は縮み変形量に応じた電圧を発生している。この他方の圧電材料5が発生した電圧を、伸び変形をしている一方の圧電材料4を縮み変形させるために利用する場合には、他方の圧電材料5が発生した電圧を一方の荷重受け部2の圧電材料4に印加するために、図2−(b)に示すように他方の荷重受け部3の圧電材料5と一方の荷重受け部2の圧電材料4との間にも反転回路11が接続される。   At the time shown in FIG. 2A, when the piezoelectric material 4 of one of the load receiving portions 2 is stretched and deformed by receiving a tensile force, the piezoelectric material 5 of the other load receiving portion 3 is simultaneously subjected to a compressive force. The other piezoelectric material 5 generates a voltage corresponding to the amount of shrinkage deformation. When the voltage generated by the other piezoelectric material 5 is used for contracting and deforming one of the piezoelectric materials 4 that has been deformed by extension, the voltage generated by the other piezoelectric material 5 is used by one load receiving portion. In order to apply to the second piezoelectric material 4, the inverting circuit 11 is also provided between the piezoelectric material 5 of the other load receiving portion 3 and the piezoelectric material 4 of the one load receiving portion 2 as shown in FIG. Is connected.

図2−(b)において外力として圧縮力を受け、鉄骨梁6の軸方向に縮み変形している、他方の荷重受け部3の圧電材料5に、引張力を受け、伸び変形量に応じた電圧を発生した一方の荷重受け部2の圧電材料4の両面間の電圧が印加されることで、他方の荷重受け部3の圧電材料5は鉄骨梁71の軸方向に電圧分の伸び変形を生じ、外力としての圧縮力に対する抵抗力を発生する。外力の圧縮力に対する抵抗力は外力に対し、押し返す力として作用し、圧縮力を軽減するため、外力として作用する圧縮力による荷重受け部5の、鉄骨梁71の軸方向の変形量は実際の圧縮力に伴って生ずる変形量より小さくなる。   In FIG. 2B, the piezoelectric material 5 of the other load receiving portion 3 that receives a compressive force as an external force and contracts and deforms in the axial direction of the steel beam 6 receives a tensile force and responds to the amount of expansion deformation. By applying a voltage between both surfaces of the piezoelectric material 4 of one load receiving portion 2 that generates a voltage, the piezoelectric material 5 of the other load receiving portion 3 is deformed and deformed by the voltage in the axial direction of the steel beam 71. It generates and generates a resistance force against the compression force as an external force. The resistance force of the external force against the compressive force acts as a force to push back the external force, and the compressive force is reduced. Therefore, the amount of deformation in the axial direction of the steel beam 71 of the load receiving portion 5 by the compressive force acting as the external force is actual. It becomes smaller than the amount of deformation caused by the compression force.

特に図2−(b)に示すように一方の荷重受け部2(3)の圧電材料4(5)が発生した電圧を他方の荷重受け部3(2)の圧電材料5(4)に加える反転回路10と、他方の荷重受け部3(2)の圧電材料5(4)が発生した電圧を一方の荷重受け部2(3)の圧電材料4(5)に加える反転回路11が圧電材料4、5間に接続された場合には、外力の作用の向きに関係なく、対になる圧電材料4、5のいずれか一方に生ずる伸び変形による電圧を他方の圧縮力に対する抵抗力として利用し、他方に生ずる縮み変形による電圧を一方の引張力に対する抵抗力として利用することが可能になる。   In particular, as shown in FIG. 2B, the voltage generated by the piezoelectric material 4 (5) of one load receiving portion 2 (3) is applied to the piezoelectric material 5 (4) of the other load receiving portion 3 (2). The inverter circuit 11 and the inverter circuit 11 for applying the voltage generated by the piezoelectric material 5 (4) of the other load receiving portion 3 (2) to the piezoelectric material 4 (5) of the one load receiving portion 2 (3) are piezoelectric materials. 4 and 5, regardless of the direction of the action of external force, the voltage due to elongation deformation generated in one of the paired piezoelectric materials 4 and 5 is used as a resistance force against the other compressive force. Thus, it is possible to use the voltage due to the contraction deformation generated on the other side as a resistance force against one tensile force.

この場合、一方の圧電材料4(5)が発生した電圧が他方の圧電材料5(4)に加えられると同時に、他方の圧電材料5(4)が発生した電圧が一方の圧電材料4(5)に加えられる状態になるため、両荷重受け部2、3において外力(水平力)の作用と同時に外力の圧縮力を軽減する反力を発生させ、構造物20の振動を早期に減衰させることが可能になる。   In this case, the voltage generated by one piezoelectric material 4 (5) is applied to the other piezoelectric material 5 (4), and at the same time, the voltage generated by the other piezoelectric material 5 (4) is applied to one piezoelectric material 4 (5). ), The reaction force for reducing the compression force of the external force is generated simultaneously with the action of the external force (horizontal force) in both load receiving portions 2 and 3, and the vibration of the structure 20 is attenuated at an early stage. Is possible.

図3−(a)、(b)は図2−(b)の具体例として荷重受け部2、3を構成する一方の構造部材である梁7(鉄骨梁71)と他方の構造部材である柱6(鉄骨柱61)を圧電材料4、5の厚さ方向の正負の向きに相対変位自在な状態に接合した場合の具体例を示す。図2−(b)は鉄骨梁71のフランジ71aと鉄骨柱61のフランジ61aを、スプリットティー金物8を介して間接的に接合した場合の例を示しているが、図3では特にスプリットティー金物8のフランジ8aと鉄骨柱61のフランジ61aを、圧電材料4、5の厚さ方向(軸方向)に互いに相対移動できる状態にボルト9により連結した様子を示している。   FIGS. 3A and 3B are a beam 7 (steel beam 71) as one structural member constituting the load receiving portions 2 and 3 and the other structural member as a specific example of FIG. A specific example in which the column 6 (steel column 61) is joined in a state in which relative displacement is possible in the positive and negative directions of the thickness direction of the piezoelectric materials 4 and 5 will be shown. FIG. 2B shows an example in which the flange 71a of the steel beam 71 and the flange 61a of the steel column 61 are indirectly joined via the split tee hardware 8, but FIG. 8 shows a state in which the flange 8a of the steel 8 and the flange 61a of the steel column 61 are connected by the bolt 9 so as to be movable relative to each other in the thickness direction (axial direction) of the piezoelectric materials 4 and 5.

具体的にはスプリットティー金物8のフランジ8aと鉄骨柱61のフランジ61aとの間に架設されるボルト9の軸部を鉄骨柱61のフランジ61aに、ボルト9の軸方向に相対移動自在に挿通させ、ボルト9の頭部をフランジ8aとフランジ61aの一方に、対向する面の外側に係止させると共に、ボルト9の軸部に螺合するナット91を他方に、対向する面の外側に係止させている。その上で、図3−(a)では圧電材料4、5をフランジ8aとフランジ61aとの間、及びフランジ61aとナット91、もしくはボルト9の頭部との間に介在させている。   Specifically, the shaft portion of the bolt 9 installed between the flange 8a of the split tee hardware 8 and the flange 61a of the steel column 61 is inserted into the flange 61a of the steel column 61 so as to be relatively movable in the axial direction of the bolt 9. The head of the bolt 9 is engaged with one of the flange 8a and the flange 61a on the outside of the opposing surface, and the nut 91 that is screwed into the shaft portion of the bolt 9 is engaged with the other side and the outside of the opposing surface. It is stopped. 3A, the piezoelectric materials 4 and 5 are interposed between the flange 8a and the flange 61a, and between the flange 61a and the nut 91 or the head of the bolt 9.

図3−(a)、(b)に示す例では各荷重受け部2、3が圧縮力を受けるときと引張力を受けるときのいずれのときにも圧電材料4、5が圧縮力を負担するよう、荷重受け部2、3が圧縮力を受けるときにその圧縮力を負担する圧縮抵抗部41、51と、荷重受け部2、3が引張力を受けるときにその引張力を圧縮力として負担する引張抵抗部42、52とに分割している。引張抵抗部42、52は荷重受け部2、3が引張力を受けるときに厚さ方向に圧縮力を負担することによりその引張力に抵抗する。   In the example shown in FIGS. 3A and 3B, the piezoelectric materials 4 and 5 bear the compressive force when each of the load receiving portions 2 and 3 receives the compressive force and when it receives the tensile force. Thus, when the load receiving portions 2 and 3 receive the compressive force, the compression resistance portions 41 and 51 that bear the compressive force, and when the load receiving portions 2 and 3 receive the tensile force, the tensile force is applied as the compressive force. The tensile resistance portions 42 and 52 are divided. The tensile resistance portions 42 and 52 resist the tensile force by bearing a compressive force in the thickness direction when the load receiving portions 2 and 3 receive the tensile force.

この場合、圧縮抵抗部41、51はフランジ8aとフランジ61aとの間に介在させられ、引張抵抗部42、52は図3−(a)に示すようにフランジ61aとナット91との間、もしくは(b)に示すようにフランジ8aとボルト9の頭部との間に介在させられ、圧縮抵抗部41、51と引張抵抗部42、52はいずれも、厚さ方向に圧縮力を負担したときに電圧を発生する状態に荷重受け部2、3に組み込まれる。図3−(a)に破断した断面で示すようにスプリットティー金物8のフランジ8aと柱6のフランジ61aを貫通するボルト9はフランジ61aを軸方向に相対移動自在に挿通し、フランジ8aはフランジ61aに対してボルト9の軸方向に相対移動自在な状態にある。   In this case, the compression resistance portions 41 and 51 are interposed between the flange 8a and the flange 61a, and the tension resistance portions 42 and 52 are disposed between the flange 61a and the nut 91 as shown in FIG. As shown in (b), when interposed between the flange 8a and the head of the bolt 9, the compression resistance portions 41 and 51 and the tensile resistance portions 42 and 52 all bear a compression force in the thickness direction. Are incorporated in the load receiving portions 2 and 3 in a state where a voltage is generated. 3A, the bolt 9 passing through the flange 8a of the split tee hardware 8 and the flange 61a of the column 6 is inserted through the flange 61a so as to be relatively movable in the axial direction, and the flange 8a is a flange. It is in a state of being relatively movable in the axial direction of the bolt 9 with respect to 61a.

図3(図2)の例では鉄骨梁71の上部のフランジ71a側の荷重受け部2は黒塗りの矢印で示す、上部のフランジ71aが鉄骨柱61に接近する向きの相対変位が生じたときに圧縮力を受け、白抜きの矢印で示す、遠ざかる向きの相対変位が生じたときに引張力を受ける。鉄骨梁71の下部のフランジ71a側の荷重受け部3も同様に下部のフランジ71aが鉄骨柱61に接近する向きの相対変位が生じたときに圧縮力を受け、遠ざかる向きの相対変位が生じたときに引張力を受ける。   In the example of FIG. 3 (FIG. 2), the load receiving portion 2 on the upper flange 71a side of the steel beam 71 is indicated by a black arrow, and when the relative displacement in the direction in which the upper flange 71a approaches the steel column 61 occurs. A tensile force is applied when a relative displacement in the direction of moving away is generated as indicated by a white arrow. Similarly, the load receiving portion 3 on the lower flange 71a side of the steel beam 71 is also subjected to a compressive force when a relative displacement occurs in a direction in which the lower flange 71a approaches the steel column 61, and a relative displacement in a direction away from the steel beam 71 occurs. Sometimes receives tensile force.

フランジ61aとナット91との間に介在させられた図3−(a)に示す引張抵抗部42、52と、フランジ8aとボルト9の頭部との間に介在させられた図3−(b)に示す引張抵抗部42、52はいずれも、荷重受け部2、3が引張力を受けてフランジ8aがフランジ61aから遠ざかる向きに相対移動したときに圧縮力を負担する状態にある。よって図3−(a)、(b)に示す例の場合、圧縮抵抗部41、51は荷重受け部2、3が圧縮力を受けたときに圧縮力を負担することにより縮み変形して縮み変形量に応じた電圧を発生し、引張抵抗部42、52は荷重受け部2、3が引張力を受けたときに圧縮力を負担することにより縮み変形して縮み変形量に応じた電圧を発生する。   3- (b) interposed between the flange 61a and the nut 91 as shown in FIG. 3- (a), and between the flange 8a and the head of the bolt 9. The tensile resistance portions 42 and 52 shown in FIG. 2 are in a state in which the load receiving portions 2 and 3 receive a compressive force when the flange 8a moves relative to the flange 61a in a direction away from the flange 61a. Therefore, in the case of the example shown in FIGS. 3A and 3B, the compression resistance portions 41 and 51 contract and deform by contracting by bearing the compression force when the load receiving portions 2 and 3 receive the compression force. A voltage corresponding to the amount of deformation is generated, and when the load receiving portions 2 and 3 receive a tensile force, the tensile resistance portions 42 and 52 are contracted and deformed by bearing a compressive force, and a voltage corresponding to the amount of contraction is generated. Occur.

図3−(a)、(b)に示す例の場合に、対になる荷重受け2、3の圧電材料4と圧電材料5との間で電圧の授受をする場合には、図7−(a)に示すように引張力を受けた一方の荷重受け部2において圧縮力を負担している引張抵抗部42が発生した電圧が圧縮力を受けた他方の荷重受け部3において圧縮力を負担し、縮み変形している圧縮抵抗部51に印加される。同時に他方の荷重受け部3において圧縮力を負担している圧縮抵抗部51が発生した電圧が引張力を受けた一方の荷重受け部2において圧縮力を負担し、縮み変形している引張抵抗部42に印加される(請求項5)。この場合、他方の荷重受け部3(2)の圧縮抵抗部41(51)は一方の荷重受け部2(3)の引張抵抗部42(52)が発生し、印加された電圧に応じた伸び変形を圧縮力の作用方向に生じ、伸び変形量に応じた反力を他方の荷重受け部3(2)に作用させる(請求項5)。   In the case of the example shown in FIGS. 3A and 3B, when voltage is exchanged between the piezoelectric material 4 and the piezoelectric material 5 of the pair of load receivers 2 and 3, FIG. As shown in a), the voltage generated by the tensile resistance portion 42 that bears the compressive force in one load receiving portion 2 that has received the tensile force bears the compressive force in the other load receiving portion 3 that has received the compressive force. Then, it is applied to the compression resistance portion 51 which is contracted and deformed. At the same time, the voltage generated by the compression resistance portion 51 bearing the compressive force in the other load receiving portion 3 bears the compressive force in the one load receiving portion 2 subjected to the tensile force, and the tensile resistance portion is contracted and deformed. (Claim 5). In this case, the compression resistance portion 41 (51) of the other load receiving portion 3 (2) is generated by the tensile resistance portion 42 (52) of the one load receiving portion 2 (3), and the elongation corresponding to the applied voltage is generated. Deformation occurs in the direction of the compressive force, and a reaction force corresponding to the amount of elongation deformation is applied to the other load receiving portion 3 (2).

同様に圧縮力を受けた一方の荷重受け部2において圧縮力を負担している圧縮抵抗部41が発生した電圧が引張力を受けた他方の荷重受け部3において圧縮力を負担し、縮み変形している引張抵抗部52に印加され、同時に他方の荷重受け部3において圧縮力を負担している引張抵抗部52が発生した電圧が圧縮力を受けた一方の荷重受け部2において圧縮力を負担し、縮み変形している圧縮抵抗部41に印加される(請求項6)。この場合、他方の荷重受け部3(2)の引張抵抗部42(52)は一方の荷重受け部2(3)の圧縮抵抗部41(51)が発生し、印加された電圧に応じた伸び変形を引張力の作用方向に生じ、伸び変形量に応じた反力を他方の荷重受け部3(2)に作用させる(請求項6)。   Similarly, the voltage generated by the compression resistance portion 41 that bears the compressive force in the one load receiving portion 2 that has received the compressive force bears the compressive force in the other load receiving portion 3 that has received the tensile force, and contracts and deforms. The voltage generated by the tensile resistance portion 52 that is applied to the tensile resistance portion 52 that is applied and simultaneously bears the compressive force in the other load receiving portion 3 receives the compressive force in the one load receiving portion 2 that has received the compressive force. It is applied to the compression resistance portion 41 that bears and contracts. In this case, the tensile resistance portion 42 (52) of the other load receiving portion 3 (2) is generated by the compression resistance portion 41 (51) of the one load receiving portion 2 (3), and the elongation corresponding to the applied voltage is generated. Deformation is caused in the direction of application of the tensile force, and a reaction force corresponding to the amount of elongation deformation is applied to the other load receiving portion 3 (2).

これらの場合、電圧の授受をする引張力を受けた荷重受け部2の圧電材料4(引張抵抗部42)に生ずる変形(縮み変形)と、圧縮力を受けた荷重受け部3の圧電材料5(圧縮抵抗部51)に生ずる変形(縮み変形)が同一であり、圧縮力を受けた荷重受け部2の圧電材料4(圧縮抵抗部41)に生ずる変形(縮み変形)と、引張力を受けた荷重受け部3の圧電材料5(引張抵抗部52)に生ずる変形(縮み変形)が同一であるため、一方と他方の圧電材料4、5が発生する電圧をそれぞれ他方と一方の圧電材料5、4に印加する際には、各圧電材料4、5が発生した電圧の正負を入れ替える必要はない。   In these cases, the deformation (contraction deformation) that occurs in the piezoelectric material 4 (tensile resistance portion 42) of the load receiving portion 2 that has received a tensile force for transferring voltage, and the piezoelectric material 5 of the load receiving portion 3 that has received a compressive force. The deformation (contraction deformation) generated in the (compression resistance portion 51) is the same, and the deformation (contraction deformation) generated in the piezoelectric material 4 (compression resistance portion 41) of the load receiving portion 2 subjected to the compression force and the tensile force are received. Since the deformation (contraction deformation) generated in the piezoelectric material 5 (tensile resistance portion 52) of the load receiving portion 3 is the same, the voltages generated by the one and the other piezoelectric materials 4 and 5 are applied to the other and the one piezoelectric material 5 respectively. 4, it is not necessary to change the sign of the voltage generated by each piezoelectric material 4, 5.

なお、図3−(a)に示す例ではボルト9の頭部をスプリットティー金物8のフランジ8aに溶接等により固定しておき、引張抵抗部42、52の厚さ方向両面を鉄骨柱61のフランジ61aとナット91に接着しておけば、荷重受け部2、3に圧縮力が作用したときに、引張抵抗部42、52に厚さ方向に引張力を作用させ、伸び変形を生じさせることはできる。同様に図3−(b)に示す例の引張抵抗部42、52の厚さ方向両面をフランジ8aとボルト9の頭部に接着しておけば、荷重受け部2、3に圧縮力が作用したときに、引張抵抗部42、52に厚さ方向に引張力を作用させ、伸び変形を生じさせることはできる。   In addition, in the example shown in FIG. 3A, the head of the bolt 9 is fixed to the flange 8a of the split tee hardware 8 by welding or the like, and the both sides in the thickness direction of the tensile resistance portions 42 and 52 are attached to the steel column 61. If the flange 61a and the nut 91 are bonded, when a compressive force is applied to the load receiving portions 2 and 3, a tensile force is applied to the tensile resistance portions 42 and 52 in the thickness direction to cause elongation deformation. I can. Similarly, if the thickness direction both surfaces of the tensile resistance portions 42 and 52 of the example shown in FIG. 3B are bonded to the flange 8a and the head of the bolt 9, a compressive force acts on the load receiving portions 2 and 3. In this case, a tensile force can be applied to the tensile resistance portions 42 and 52 in the thickness direction to cause elongation deformation.

図3−(a)、(b)に示す例ではまた、一方の荷重受け部2に配置された圧電材料である圧縮抵抗部41と引張抵抗部42、及び他方の荷重受け部3に配置された圧電材料である圧縮抵抗部51と引張抵抗部52の少なくともいずれかに予め厚さ方向に圧縮力(初期圧縮力)を付与しておくことで、図6−(a)に示すように荷重受け部2、3のそれぞれに圧縮力が作用したときばかりでなく、引張力が作用したときにも、全圧電材料41、42、51、52に圧縮力を負担させた状態に置くことができ、図6−(b)に示すように荷重受け部2、3圧縮力が作用したときと引張力が作用したときのいずれのときにも、電圧を発生し続けさせることができる。   In the example shown in FIGS. 3A and 3B, the compression resistance portion 41 and the tensile resistance portion 42 which are piezoelectric materials arranged in one load receiving portion 2 and the other load receiving portion 3 are also arranged. By applying a compressive force (initial compressive force) in the thickness direction in advance to at least one of the compressive resistance portion 51 and the tensile resistance portion 52, which is a piezoelectric material, a load as shown in FIG. Not only when a compressive force is applied to each of the receiving portions 2 and 3, but also when a tensile force is applied, all the piezoelectric materials 41, 42, 51 and 52 can be placed in a state where the compressive force is borne. As shown in FIG. 6- (b), it is possible to continue to generate a voltage when the load receiving portion 2, 3 compressive force is applied and when a tensile force is applied.

具体的には圧電材料4(5)を荷重受け部2(3)に圧縮力が作用したときに圧縮力を負担する圧縮抵抗部41(51)と、荷重受け部2(3)に引張力が作用したときに圧縮力を負担する引張抵抗部42(52)とに分割し、圧縮抵抗部41(51)に厚さ方向に予め圧縮力(初期圧縮力)を与えておくことができる(請求項7)。この場合、図7−(b)に実線の矢印で示すように一方の荷重受け部2(3)に引張力が作用し、他方の荷重受け部3(2)に圧縮力が作用したときに、一方の荷重受け部2(3)の圧縮抵抗部41(51)が初期圧縮力により発生する縮み変形量に応じた電圧を他方の荷重受け部3(2)の圧縮抵抗部51(41)に印加し、他方の圧縮抵抗部51(41)に一方の荷重受け部2(3)の圧縮抵抗部41(51)が発生し、印加された電圧に応じた伸び変形を圧縮力の作用方向に生じさせ、伸び変形量に応じた反力を他方の荷重受け部3(2)に作用させることができる。   Specifically, when the compressive force is applied to the piezoelectric material 4 (5) on the load receiving portion 2 (3), the compression resistance portion 41 (51) that bears the compressive force, and the tensile force on the load receiving portion 2 (3). Can be divided into the tensile resistance portion 42 (52) that bears the compression force when applied, and a compression force (initial compression force) can be applied in advance to the compression resistance portion 41 (51) in the thickness direction ( Claim 7). In this case, when a tensile force acts on one load receiving portion 2 (3) and a compressive force acts on the other load receiving portion 3 (2) as shown by a solid arrow in FIG. 7- (b). The compression resistance portion 41 (51) of one load receiving portion 2 (3) applies a voltage corresponding to the amount of contraction deformation generated by the initial compression force to the compression resistance portion 51 (41) of the other load receiving portion 3 (2). The compression resistance portion 41 (51) of the one load receiving portion 2 (3) is generated in the other compression resistance portion 51 (41), and the expansion deformation according to the applied voltage is applied to the direction of action of the compression force. The reaction force corresponding to the amount of elongation deformation can be applied to the other load receiving portion 3 (2).

図7−(b)に示す時点の次の時点には破線の矢印で示すように一方の荷重受け部2(3)に圧縮力が作用し、他方の荷重受け部3(2)に引張力が作用するため、一方の荷重受け部2(3)と他方の荷重受け部3(2)の両圧縮抵抗部41、51に初期圧縮力を与えておけば、各荷重受け部2、3の圧縮抵抗部41、51に常に電圧を発生させ、それぞれの電圧を互いに対になる側の圧縮抵抗部51、41の反力の発生に利用する状態を得ることができる。   At a time point subsequent to the time point shown in FIG. 7- (b), a compressive force is applied to one load receiving portion 2 (3) and a tensile force is applied to the other load receiving portion 3 (2) as indicated by a broken arrow. Therefore, if an initial compressive force is applied to the compression resistance portions 41 and 51 of the one load receiving portion 2 (3) and the other load receiving portion 3 (2), the load receiving portions 2 and 3 It is possible to obtain a state in which voltages are always generated in the compression resistance portions 41 and 51 and the respective voltages are used to generate reaction forces of the compression resistance portions 51 and 41 on the pair side.

同様に圧電材料4(5)を荷重受け部2(3)に圧縮力が作用したときに圧縮力を負担する圧縮抵抗部41(51)と、荷重受け部2(3)に引張力が作用したときに圧縮力を負担する引張抵抗部42(52)とに分割し、引張抵抗部42(52)に厚さ方向に予め圧縮力(初期圧縮力)を与えておくことができる(請求項8)。この場合、図7−(c)に実線の矢印で示すように一方の荷重受け部2(3)に圧縮力が作用し、他方の荷重受け部3(2)に引張力が作用したときに、一方の荷重受け部2(3)の引張抵抗部42(52)が初期圧縮力により発生する縮み変形量に応じた電圧を他方の荷重受け部3(2)の引張抵抗部52(42)に印加し、他方の引張抵抗部52(42)に一方の荷重受け部2(3)の引張抵抗部42(52)が発生し、印加された電圧に応じた伸び変形を引張力の作用方向に生じさせ、伸び変形量に応じた反力を他方の荷重受け部3(2)に作用させることができる。   Similarly, when the compressive force is applied to the piezoelectric material 4 (5) on the load receiving portion 2 (3), the tensile resistance acts on the compression resistance portion 41 (51) that bears the compressive force and the load receiving portion 2 (3). The tensile resistance portion 42 (52) that bears the compressive force is divided, and a compressive force (initial compressive force) can be applied in advance to the tensile resistance portion 42 (52) in the thickness direction (claim). 8). In this case, when a compressive force acts on one load receiving portion 2 (3) and a tensile force acts on the other load receiving portion 3 (2) as shown by a solid arrow in FIG. 7- (c). The voltage corresponding to the amount of contraction and deformation generated by the initial compressive force of the tensile resistance portion 42 (52) of one load receiving portion 2 (3) is applied to the tensile resistance portion 52 (42) of the other load receiving portion 3 (2). The tensile resistance portion 42 (52) of one load receiving portion 2 (3) is generated in the other tensile resistance portion 52 (42), and the elongation deformation according to the applied voltage is applied to the direction of the tensile force. The reaction force corresponding to the amount of elongation deformation can be applied to the other load receiving portion 3 (2).

図7−(c)に示す時点の次の時点には破線の矢印で示すように一方の荷重受け部2(3)に引張力が作用し、他方の荷重受け部3(2)に圧縮力が作用するため、一方の荷重受け部2(3)と他方の荷重受け部3(2)の両引張抵抗部42、52に初期圧縮力を与えておけば、各荷重受け部2、3の引張抵抗部42、52に常に電圧を発生させ、それぞれの電圧を互いに対になる側の引張抵抗部52、42の反力の発生に利用する状態が得られる。   At a time point subsequent to the time point shown in FIG. 7- (c), a tensile force is applied to one load receiving portion 2 (3) and a compressive force is applied to the other load receiving portion 3 (2), as indicated by a broken arrow. Therefore, if an initial compressive force is applied to the tensile resistance portions 42 and 52 of one load receiving portion 2 (3) and the other load receiving portion 3 (2), the load receiving portions 2 and 3 It is possible to obtain a state in which voltages are always generated in the tensile resistance portions 42 and 52 and the respective voltages are used to generate reaction forces of the tensile resistance portions 52 and 42 on the pair side.

圧電材料4、5に初期圧縮力を与えておくことにより荷重受け部2、3に圧縮力と引張力が作用したときに圧電材料4、5に電圧を発生し続けさせることは、図2−(b)の例でも可能である。図2−(b)における一方の荷重受け部2の圧電材料4と他方の荷重受け部3の圧電材料5に共に初期圧縮力を付与しておくことで、両荷重受け部2、3に圧縮力と引張力が作用するときのいずれのときにも、両圧電材料4、5に常に変動する圧縮力を負担させることができるため、両圧電材料4、5が共に圧縮力を負担して電圧を発生する状況を形成することができる。その場合、電圧の授受をし合う両圧電材料4、5が共に縮み変形を生ずるため、一方の圧電材料4(5)が発生する電圧を他方の圧電材料5(4)の伸び変形に利用するために電圧の向きを入れ替える必要がないため、図2−(b)中の反転回路10、11は不要になる。   By applying an initial compressive force to the piezoelectric materials 4 and 5, it is possible to cause the piezoelectric materials 4 and 5 to continuously generate a voltage when a compressive force and a tensile force are applied to the load receiving portions 2 and 3, as shown in FIG. The example of (b) is also possible. The initial compressive force is applied to both the piezoelectric material 4 of one load receiving portion 2 and the piezoelectric material 5 of the other load receiving portion 3 in FIG. Since both the piezoelectric materials 4 and 5 can always bear a compressive force that fluctuates at any time when a force and a tensile force are applied, both the piezoelectric materials 4 and 5 bear the compressive force and voltage. A situation can be formed. In that case, both the piezoelectric materials 4 and 5 that exchange voltage are contracted and deformed, and the voltage generated by one piezoelectric material 4 (5) is used for the expansion and deformation of the other piezoelectric material 5 (4). Therefore, since it is not necessary to change the direction of the voltage, the inverting circuits 10 and 11 in FIG.

図8は対になる荷重受け部2、3が柱6と梁7からなるフレーム内に架設される、一方の構造部材であるブレース12と他方の構造部材であるフレームのいずれかの部分との接合部である場合の例を示す。   FIG. 8 shows a pair of load receiving portions 2 and 3 laid in a frame made up of a column 6 and a beam 7 and a brace 12 as one structural member and any part of the frame as the other structural member. An example in the case of a joint is shown.

図8ではフレーム内に対になる状態で架設される2本のブレース12、12の各フレームとの接合部が圧縮力と引張力を交互に受ける荷重受け部2、3となるよう、梁7の軸方向中央部の下面側にブラケット13を突設し、ブラケット13と各ブレース12の端面に固定されたエンドプレート14との間に圧電材料4、5を介在させている。この場合、圧電材料4、5はブレース12とフレーム間に、ブラケット13とエンドプレート14を介して間接的に挟み込まれる形になる。フレーム内に対になる状態で架設される2本のブレース12、12は一方のブレース12が圧縮力を負担するときに、他方のブレース12が引張力を負担する状態にあればよいため、図3に示すようなK型の架設状態には限らず、X型に互いに交差した状態で架設されることもある。   In FIG. 8, the beam 7 is formed so that the joint portion of the two braces 12, 12 laid in a pair in the frame becomes the load receiving portions 2, 3 that alternately receive the compressive force and the tensile force. A bracket 13 protrudes from the lower surface side of the central portion in the axial direction, and the piezoelectric materials 4 and 5 are interposed between the bracket 13 and the end plate 14 fixed to the end face of each brace 12. In this case, the piezoelectric materials 4 and 5 are indirectly sandwiched between the brace 12 and the frame via the bracket 13 and the end plate 14. The two braces 12, 12 installed in a pair in the frame only need to be in a state where one brace 12 bears a compressive force and the other brace 12 bears a tensile force. 3 is not limited to the K-type erection state, but may be erected in an X-type crossing state.

図8の例では対になる荷重受け部2、3はフレームを構成する上側の梁7の中央部に突設されたブラケット13に接合される2本のブレース12、12の内、一方のブレース12の接合部と他方のブレース12の接合部になる。下側の梁7の柱6、6との接合部(隅角部)に接合された一方のブラケット13とその側のブレース12の下端部との接合部と、他方のブラケット13とその側のブレース12の下端部との接合部も対になる荷重受け部2、3になる。   In the example of FIG. 8, the pair of load receiving portions 2 and 3 is one of the two braces 12 and 12 joined to the bracket 13 protruding from the center of the upper beam 7 constituting the frame. 12 joints and the other brace 12 joint. The joint between one bracket 13 joined to the joint (corner) with the pillars 6 and 6 of the lower beam 7 and the lower end of the brace 12 on the side, the other bracket 13 and the side on the side The joint portion with the lower end portion of the brace 12 also becomes a load receiving portion 2 and 3 that form a pair.

図8に示す例の場合、圧電材料4、5はエンドプレート14とブラケット13との間にブレース12の軸方向に直接、もしくは間接的に介在した状態にあり、構造物20が振動の開始と同時に引張力を受けるいずれか一方の荷重受け部2(3)の圧電材料4(5)がブレース12の軸方向に伸び変形を生じ、伸び変形量に応じた電圧を発生する。伸び変形を生じた圧電材料4(5)の電圧は反転回路10を経ることで逆向きに変換されて他方の荷重受け部3(2)の圧電材料5(4)に印加される。   In the case of the example shown in FIG. 8, the piezoelectric materials 4 and 5 are in a state of being directly or indirectly interposed between the end plate 14 and the bracket 13 in the axial direction of the brace 12, and the structure 20 At the same time, the piezoelectric material 4 (5) of one of the load receiving portions 2 (3) that receives a tensile force undergoes elongation deformation in the axial direction of the brace 12, and generates a voltage corresponding to the amount of elongation deformation. The voltage of the piezoelectric material 4 (5) that has undergone elongation deformation is converted in the reverse direction through the inverting circuit 10 and applied to the piezoelectric material 5 (4) of the other load receiving portion 3 (2).

構造物20が振動の開始と同時に圧縮力を受ける他方の荷重受け部3(2)の圧電材料5(4)はブレース12の軸方向に縮み変形し、縮み変形量に応じた電圧を発生するが、この他方の圧電材料5(4)が発生した電圧を、伸び変形を起こしている一方の圧電材料4(5)を縮み変形させるために利用する上では、他方の荷重受け部3(2)の圧電材料5(4)と一方の荷重受け部2(3)の圧電材料4(5)との間にも反転回路11が接続される。   The piezoelectric material 5 (4) of the other load receiving portion 3 (2) that receives the compression force simultaneously with the start of vibration of the structure 20 is contracted and deformed in the axial direction of the brace 12, and generates a voltage corresponding to the amount of contraction deformation. However, when the voltage generated by the other piezoelectric material 5 (4) is used for contracting and deforming one of the piezoelectric materials 4 (5) undergoing expansion and deformation, the other load receiving portion 3 (2) is used. The inverting circuit 11 is also connected between the piezoelectric material 5 (4) of the above and the piezoelectric material 4 (5) of the one load receiving portion 2 (3).

この例ではブラケット13の、エンドプレート14側の縁にエンドプレート14に対向するプレートが接合され、このプレートとエンドプレート14との間に圧電材料4、5が介在する。この場合も、エンドプレート14とブラケット13(プレート)との間に介在する圧電材料4、5が平常状態からブレース12に作用する軸方向力による引張力を受けたときに伸び変形を生じ、また圧縮力を受けたときにて縮み変形を生じ得るよう、図3に示す例と同様にエンドプレート14はブラケット13(プレート)に対し、ブレース12の軸方向に相対変位可能な状態に接合される。   In this example, a plate facing the end plate 14 is joined to the edge of the bracket 13 on the end plate 14 side, and the piezoelectric materials 4 and 5 are interposed between the plate and the end plate 14. Also in this case, when the piezoelectric materials 4 and 5 interposed between the end plate 14 and the bracket 13 (plate) are subjected to a tensile force due to an axial force acting on the brace 12 from a normal state, an elongation deformation occurs. As in the example shown in FIG. 3, the end plate 14 is joined to the bracket 13 (plate) so as to be relatively displaceable in the axial direction of the brace 12 so that it can be contracted and deformed when subjected to a compressive force. .

図9−(a)は構造物20が積層ゴム支承等、構造物20の振動時に鉛直方向の軸方向力が作用する形態の免震装置15、16を挟んで上部構造17と下部構造18とに区分された場合の圧電材料4、5の設置例を示す。この例では構造物20の振動時に鉛直方向の圧縮力を負担するいずれかの免震装置15と、鉛直方向の引張力を負担する他のいずれかの免震装置16が組になり、各免震装置15、16とそれぞれに対向する上部構造17との接合部が対になる荷重受け部2、3になり、各免震装置15、16とそれぞれに対向する下部構造18との接合部も対になる荷重受け部2、3になる。この場合、上部構造17と免震装置15(16)が荷重受け部2(3)を構成する一方と他方の構造部材になり、下部構造18と免震装置16(15)も荷重受け部3(2)を構成する一方と他方の構造部材になる。   9- (a) shows that the upper structure 17 and the lower structure 18 are sandwiched between seismic isolation devices 15 and 16 in which a vertical axial force acts when the structure 20 vibrates, such as a laminated rubber bearing. The example of installation of the piezoelectric materials 4 and 5 in the case of being divided into two is shown. In this example, any seismic isolation device 15 that bears a compressive force in the vertical direction when the structure 20 vibrates and any other seismic isolation device 16 that bears a tensile force in the vertical direction form a pair. The joints between the seismic devices 15 and 16 and the upper structure 17 facing each other become the load receiving portions 2 and 3, and the joints between the seismic isolation devices 15 and 16 and the lower structure 18 facing each other also The load receiving portions 2 and 3 are paired. In this case, the upper structure 17 and the seismic isolation device 15 (16) are one and the other structural members constituting the load receiving portion 2 (3), and the lower structure 18 and the seismic isolation device 16 (15) are also the load receiving portion 3. One and the other structural member constituting (2).

免震装置15、16は上下に一体化するフランジにおいて上部構造17と下部構造18に接合されるが、図9−(b)に示すようにこの上部フランジと上部構造17との間と、下部フランジと下部構造18との間の少なくともいずれか一方に圧電材料4、5が鉛直方向に圧縮力を受けた状態で介在させられる。   The seismic isolation devices 15 and 16 are joined to the upper structure 17 and the lower structure 18 in a vertically integrated flange, but as shown in FIG. 9- (b), between the upper flange and the upper structure 17, Piezoelectric materials 4 and 5 are interposed between at least one of the flange and the lower structure 18 in a state where a compressive force is applied in the vertical direction.

図9の例では構造物20が外力(水平力)を受けて水平方向の一方側へ揺れたときに、上部構造17が下部構造18から浮き上がろうとする側の免震装置15のフランジと上部構造17、もしくは下部構造18との間に介在する圧電材料4が鉛直方向(免震装置15の軸方向)の引張力を負担し、上部構造17が沈み込もうとする側の免震装置16のフランジと上部構造17、もしくは下部構造18との間に介在する圧電材料5が鉛直方向(免震装置16の軸方向)の圧縮力を負担する。   In the example of FIG. 9, when the structure 20 receives an external force (horizontal force) and sways to one side in the horizontal direction, the upper structure 17 and the flange of the seismic isolation device 15 on the side where the upper structure 17 is about to rise from the lower structure 18 The piezoelectric material 4 interposed between the upper structure 17 or the lower structure 18 bears a tensile force in the vertical direction (the axial direction of the seismic isolation device 15), and the seismic isolation device on the side where the upper structure 17 is about to sink. The piezoelectric material 5 interposed between the 16 flanges and the upper structure 17 or the lower structure 18 bears a compressive force in the vertical direction (the axial direction of the seismic isolation device 16).

この場合も、免震装置15、16のフランジと上部構造17、もしくは下部構造18との間に介在する圧電材料4、5が構造物20に作用する水平力に伴って免震装置15、16に軸方向に作用する軸方向力による引張力を受けて伸び変形を生じ、圧縮力を受けて縮み変形を生じ得るよう、図3に示す例と同様に免震装置15、16のフランジは上部構造17、もしくは下部構造18に対し、免震装置15、16の軸方向に相対変位可能な状態に接合される。   Also in this case, the seismic isolation devices 15, 16 are accompanied by the horizontal force that the piezoelectric materials 4, 5 interposed between the flanges of the seismic isolation devices 15, 16 and the upper structure 17 or the lower structure 18 act on the structure 20. As in the example shown in FIG. 3, the flanges of the seismic isolation devices 15, 16 are formed at the upper part so that they can be stretched and deformed by receiving a tensile force due to an axial force acting in the axial direction. It is joined to the structure 17 or the lower structure 18 so as to be relatively displaceable in the axial direction of the seismic isolation devices 15 and 16.

引張力を負担し、伸び変形を生じた一方の荷重受け部2(3)の圧電材料4(5)が発生した電圧は反転回路10を経て圧縮力を負担し、縮み変形を生じた他方の荷重受け部3(2)の圧電材料5(4)に逆向きの電圧として印加されることで、この圧電材料5(4)が伸び変形を生じ、圧縮力に対する抵抗力を発生する。   The voltage generated by the piezoelectric material 4 (5) of one load receiving portion 2 (3) that bears a tensile force and undergoes elongation deformation bears a compressive force via the inverting circuit 10 and the other that has undergone shrinkage deformation. By applying a reverse voltage to the piezoelectric material 5 (4) of the load receiving portion 3 (2), the piezoelectric material 5 (4) is stretched and deformed to generate a resistance force against the compressive force.

一方の荷重受け部2(3)が引張力を受けたときに圧縮力を受ける他方の荷重受け部3(2)の圧電材料5(4)は縮み変形による電圧を発生しているため、この電圧を一方の荷重受け部2(3)の、伸び変形している圧電材料4(5)を縮み変形させる目的で利用するために、他方の荷重受け部3(2)の圧電材料5(4)と一方の荷重受け部2(3)の圧電材料4(5)との間にも反転回路11が接続される。   Since the piezoelectric material 5 (4) of the other load receiving portion 3 (2) that receives a compressive force when the one load receiving portion 2 (3) receives a tensile force generates a voltage due to contraction, this In order to use the voltage for the purpose of contracting and deforming the piezoelectric material 4 (5) which is deformed and stretched in one load receiving portion 2 (3), the piezoelectric material 5 (4 in the other load receiving portion 3 (2) is used. ) And the piezoelectric material 4 (5) of one of the load receiving portions 2 (3), the inverting circuit 11 is also connected.

1……制震装置、20……構造物、
2……荷重受け部、3……荷重受け部、
4……圧電材料(一方の荷重受け部2)、41……圧縮抵抗部、42……引張抵抗部、
5……圧電材料(他方の荷重受け部3)、51……圧縮抵抗部、52……引張抵抗部、
6……柱、61……鉄骨柱、61a……フランジ、
7……梁、71……鉄骨梁、71a……フランジ、
8……スプリットティー金物、8a……フランジ、8b……ウェブ、
9……ボルト、91……ナット、
10……反転回路、11……反転回路、
12……ブレース、13……ブラケット、14……エンドプレート、
15……免震装置、16……免震装置、
17……上部構造、18……下部構造。
1 ... Damping device, 20 ... Structure,
2 …… Load receiving part, 3 …… Load receiving part,
4 ... Piezoelectric material (one load receiving part 2), 41 ... Compression resistance part, 42 ... Tensile resistance part,
5 ... Piezoelectric material (the other load receiving part 3) 51 ... Compression resistance part 52 ... Tensile resistance part
6 …… Column, 61 …… Steel column, 61a …… Flange,
7 ... Beam, 71 ... Steel beam, 71a ... Flange,
8 ... Split tea hardware, 8a ... Flange, 8b ... Web,
9 ... Bolt, 91 ... Nut,
10 ... Inverting circuit, 11 ... Inverting circuit,
12 ... Brace, 13 ... Bracket, 14 ... End plate,
15 ... Seismic isolation device, 16 ... Seismic isolation device,
17: Superstructure, 18: Substructure.

Claims (8)

構造物が水平力を受けたときに引張力と圧縮力が交互に繰り返して作用し、一方に引張力が作用するときに他方に圧縮力が作用する関係にある、対になる荷重受け部において、
一方の荷重受け部と他方の荷重受け部のそれぞれに組み込まれ、前記水平力の作用時に前記引張力と圧縮力を厚さ方向の圧力として負担する圧電材料を備え、
前記一方の荷重受け部に前記引張力、または圧縮力が作用したときに、その一方の荷重受け部の圧電材料が発生する、伸び変形量、または縮み変形量に応じた電圧が前記他方の、圧縮力、または引張力が作用している荷重受け部の圧電材料に印加され、この他方の荷重受け部の圧電材料は前記一方の荷重受け部の圧電材料が発生し、印加された前記電圧に応じた伸び変形、または縮み変形を前記圧縮力、または引張力の作用方向に生じ、この伸び変形量、または縮み変形量に応じた反力を前記他方の荷重受け部に作用させることを特徴とする圧電材料を用いた制震装置。
When the structure receives a horizontal force, a tensile force and a compressive force are alternately and repeatedly applied. When a tensile force acts on one side, a compressive force acts on the other. ,
A piezoelectric material that is incorporated in each of the one load receiving portion and the other load receiving portion and bears the tensile force and the compressive force as pressure in the thickness direction when the horizontal force is applied,
When the tensile force or compressive force is applied to the one load receiving portion, the piezoelectric material of the one load receiving portion generates a voltage corresponding to the amount of expansion deformation or the amount of contraction deformation of the other, Applied to the piezoelectric material of the load receiving portion on which the compressive force or tensile force is applied, the piezoelectric material of the other load receiving portion is generated by the piezoelectric material of the one load receiving portion, and the applied voltage is applied to the piezoelectric material. A corresponding expansion deformation or contraction deformation is generated in the direction of application of the compression force or tensile force, and a reaction force corresponding to the expansion deformation amount or the contraction deformation amount is applied to the other load receiving portion. A vibration control device that uses piezoelectric material.
前記他方の荷重受け部に前記圧縮力、または引張力が作用したときに、その他方の荷重受け部の圧電材料が発生する、縮み変形量、または伸び変形量に応じた電圧が前記一方の、引張力、または圧縮力が作用している荷重受け部の圧電材料に印加され、この一方の荷重受け部の圧電材料は前記他方の荷重受け部の圧電材料が発生し、印加された前記電圧に応じた縮み変形、または伸び変形を前記引張力、または圧縮力の作用方向に生じ、この縮み変形量、または伸び変形量に応じた反力を前記一方の荷重受け部に作用させることを特徴とする請求項1に記載の圧電材料を用いた制震装置。   When the compressive force or tensile force is applied to the other load receiving portion, the piezoelectric material of the other load receiving portion is generated. Applied to the piezoelectric material of the load receiving portion on which a tensile force or compressive force is applied, the piezoelectric material of this one load receiving portion is generated by the piezoelectric material of the other load receiving portion, and is applied to the applied voltage. According to the present invention, a corresponding shrinkage deformation or elongation deformation is generated in the direction of application of the tensile force or compression force, and a reaction force according to the shrinkage deformation amount or the elongation deformation amount is applied to the one load receiving portion. A vibration control device using the piezoelectric material according to claim 1. 前記各荷重受け部の圧電材料に、厚さ方向に予め圧縮力が与えられていることを特徴とする請求項1、もしくは請求項2に記載の圧電材料を用いた制震装置。   3. The vibration damping device using the piezoelectric material according to claim 1, wherein a compressive force is applied in advance in the thickness direction to the piezoelectric material of each of the load receiving portions. 前記圧電材料は前記荷重受け部を構成する一方の構造部材と他方の構造部材との間に介在し、前記一方の構造部材と前記他方の構造部材は前記圧電材料の、外力を受ける方向である厚さ方向、もしくは軸方向の正負の向きに相対変位自在な状態に接合されていることを特徴とする請求項1乃至請求項3のいずれかに記載の圧電材料を用いた制震装置。   The piezoelectric material is interposed between one structural member constituting the load receiving portion and the other structural member, and the one structural member and the other structural member are in a direction to receive an external force of the piezoelectric material. The vibration control device using the piezoelectric material according to any one of claims 1 to 3, wherein the vibration control device is joined so as to be relatively displaceable in the thickness direction or in the positive and negative directions in the axial direction. 構造物が水平力を受けたときに引張力と圧縮力が交互に繰り返して作用し、一方に引張力が作用するときに他方に圧縮力が作用する関係にある、対になる荷重受け部において、
一方の荷重受け部と他方の荷重受け部のそれぞれに組み込まれ、前記水平力の作用時に前記引張力と圧縮力を厚さ方向の圧力として負担する圧電材料を備え、
前記圧電材料は前記荷重受け部に圧縮力が作用したときに圧縮力を負担する圧縮抵抗部と、前記荷重受け部に引張力が作用したときに圧縮力を負担する引張抵抗部とに分割され、
前記一方の荷重受け部に引張力が作用し、その一方の荷重受け部の引張抵抗部が圧縮力を負担したときに発生する縮み変形量に応じた電圧が、圧縮力が作用している前記他方の荷重受け部において圧縮力を負担している前記圧縮抵抗部に印加され、この他方の荷重受け部の圧縮抵抗部は前記一方の荷重受け部の前記引張抵抗部が発生し、印加された前記電圧に応じた伸び変形を前記圧縮力の作用方向に生じ、この伸び変形量に応じた反力を前記他方の荷重受け部に作用させることを特徴とする圧電材料を用いた制震装置。
When the structure receives a horizontal force, a tensile force and a compressive force are alternately and repeatedly applied. When a tensile force acts on one side, a compressive force acts on the other. ,
A piezoelectric material that is incorporated in each of the one load receiving portion and the other load receiving portion and bears the tensile force and the compressive force as pressure in the thickness direction when the horizontal force is applied,
The piezoelectric material is divided into a compression resistance portion that bears a compression force when a compression force acts on the load receiving portion and a tension resistance portion that bears a compression force when a tensile force acts on the load reception portion. ,
The tensile force acts on the one load receiving portion, and the voltage corresponding to the amount of contraction deformation generated when the tensile resistance portion of the one load receiving portion bears the compressive force is the compressive force acting on the one load receiving portion. Applied to the compression resistance portion bearing the compressive force in the other load receiving portion, and the compression resistance portion of the other load receiving portion is generated by applying the tensile resistance portion of the one load receiving portion. A vibration damping device using a piezoelectric material, wherein an elongation deformation corresponding to the voltage is generated in a direction in which the compressive force is applied, and a reaction force corresponding to the amount of the expansion deformation is applied to the other load receiving portion.
前記一方の荷重受け部に圧縮力が作用し、その一方の荷重受け部の圧縮抵抗部が圧縮力を負担したときに発生する縮み変形量に応じた電圧が、引張力が作用している前記他方の荷重受け部において圧縮力を負担している前記引張抵抗部に印加され、この他方の荷重受け部の引張抵抗部は前記一方の荷重受け部の前記圧縮抵抗部が発生し、印加された前記電圧に応じた伸び変形を前記引張力の作用方向に生じ、この伸び変形量に応じた反力を前記他方の荷重受け部に作用させることを特徴とする請求項5に記載の圧電材料を用いた制震装置。   The compressive force is applied to the one load receiving portion, and the voltage corresponding to the amount of contraction deformation generated when the compression resistance portion of the one load receiving portion bears the compressive force is applied to the tensile force. Applied to the tensile resistance portion bearing a compressive force in the other load receiving portion, and the tensile resistance portion of the other load receiving portion is generated and applied to the compression resistance portion of the one load receiving portion. The piezoelectric material according to claim 5, wherein an elongation deformation corresponding to the voltage is generated in an acting direction of the tensile force, and a reaction force corresponding to the amount of the elongation deformation is applied to the other load receiving portion. Seismic control device used. 構造物が水平力を受けたときに引張力と圧縮力が交互に繰り返して作用し、一方に引張力が作用するときに他方に圧縮力が作用する関係にある、対になる荷重受け部において、
一方の荷重受け部と他方の荷重受け部のそれぞれに組み込まれ、前記水平力の作用時に前記引張力と圧縮力を厚さ方向の圧力として負担する圧電材料を備え、
前記圧電材料は前記各荷重受け部に圧縮力が作用したときに圧縮力を負担する圧縮抵抗部と、前記各荷重受け部に引張力が作用したときに圧縮力を負担する引張抵抗部とに分割され、前記圧縮抵抗部には厚さ方向に予め圧縮力が与えられており、
前記一方の荷重受け部に引張力が作用し、前記他方の荷重受け部に圧縮力が作用したときに、前記一方の荷重受け部の前記圧縮抵抗部が発生する縮み変形量に応じた電圧が前記他方の荷重受け部の前記圧縮抵抗部に印加され、この圧縮抵抗部は前記一方の荷重受け部の前記圧縮抵抗部が発生し、印加された前記電圧に応じた伸び変形を前記圧縮力の作用方向に生じ、この伸び変形量に応じた反力を前記他方の荷重受け部に作用させることを特徴とする圧電材料を用いた制震装置。
When the structure receives a horizontal force, a tensile force and a compressive force are alternately and repeatedly applied. When a tensile force acts on one side, a compressive force acts on the other. ,
A piezoelectric material that is incorporated in each of the one load receiving portion and the other load receiving portion and bears the tensile force and the compressive force as pressure in the thickness direction when the horizontal force is applied,
The piezoelectric material includes a compression resistance portion that bears a compression force when a compression force acts on each load receiving portion, and a tension resistance portion that bears a compression force when a tensile force acts on each load reception portion. The compression resistance portion is divided, and a compressive force is given in advance in the thickness direction,
When a tensile force acts on the one load receiving portion and a compressive force acts on the other load receiving portion, a voltage corresponding to the amount of contraction deformation generated by the compression resistance portion of the one load receiving portion is generated. The compression resistance portion of the other load receiving portion is applied to the compression resistance portion, and the compression resistance portion is generated by the compression resistance portion of the one load receiving portion, and is subjected to elongation deformation according to the applied voltage. A vibration control device using a piezoelectric material, characterized in that a reaction force generated in an acting direction is applied to the other load receiving portion according to the amount of elongation deformation.
構造物が水平力を受けたときに引張力と圧縮力が交互に繰り返して作用し、一方に引張力が作用するときに他方に圧縮力が作用する関係にある、対になる荷重受け部において、
一方の荷重受け部と他方の荷重受け部のそれぞれに組み込まれ、前記水平力の作用時に前記引張力と圧縮力を厚さ方向の圧力として負担する圧電材料を備え、
前記圧電材料は前記各荷重受け部に圧縮力が作用したときに圧縮力を負担する圧縮抵抗部と、前記各荷重受け部に引張力が作用したときに圧縮力を負担する引張抵抗部とに分割され、前記引張抵抗部には厚さ方向に予め圧縮力が与えられており、
前記一方の荷重受け部に圧縮力が作用し、前記他方の荷重受け部に引張力が作用したときに、前記一方の荷重受け部の前記引張抵抗部が発生する縮み変形量に応じた電圧が前記他方の荷重受け部の前記引張抵抗部に印加され、この引張抵抗部は前記一方の荷重受け部の前記引張抵抗部が発生し、印加された前記電圧に応じた伸び変形を前記引張力の作用方向に生じ、この伸び変形量に応じた反力を前記他方の荷重受け部に作用させることを特徴とする圧電材料を用いた制震装置。
When the structure receives a horizontal force, a tensile force and a compressive force are alternately and repeatedly applied. When a tensile force acts on one side, a compressive force acts on the other. ,
A piezoelectric material that is incorporated in each of the one load receiving portion and the other load receiving portion and bears the tensile force and the compressive force as pressure in the thickness direction when the horizontal force is applied,
The piezoelectric material includes a compression resistance portion that bears a compression force when a compression force acts on each load receiving portion, and a tension resistance portion that bears a compression force when a tensile force acts on each load reception portion. The tensile resistance portion is divided, and a compressive force is given in advance in the thickness direction,
When a compressive force acts on the one load receiving portion and a tensile force acts on the other load receiving portion, a voltage corresponding to the amount of contraction deformation generated by the tensile resistance portion of the one load receiving portion is generated. The tensile resistance portion of the other load receiving portion is applied to the tensile resistance portion, and the tensile resistance portion of the one load receiving portion is generated, and an elongation deformation corresponding to the applied voltage is applied to the tensile force. A vibration control device using a piezoelectric material, characterized in that a reaction force generated in an acting direction is applied to the other load receiving portion according to the amount of elongation deformation.
JP2013181005A 2013-09-02 2013-09-02 Vibration control device using piezoelectric material Active JP6190217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181005A JP6190217B2 (en) 2013-09-02 2013-09-02 Vibration control device using piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181005A JP6190217B2 (en) 2013-09-02 2013-09-02 Vibration control device using piezoelectric material

Publications (2)

Publication Number Publication Date
JP2015048894A true JP2015048894A (en) 2015-03-16
JP6190217B2 JP6190217B2 (en) 2017-08-30

Family

ID=52699085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181005A Active JP6190217B2 (en) 2013-09-02 2013-09-02 Vibration control device using piezoelectric material

Country Status (1)

Country Link
JP (1) JP6190217B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106878A (en) * 2015-12-12 2017-06-15 鹿島建設株式会社 Structural damage detection method and system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221044A (en) * 1988-07-08 1990-01-24 Mitsubishi Mining & Cement Co Ltd Vibration proofing method and device thereof
JPH047749U (en) * 1990-05-09 1992-01-23
JPH04231750A (en) * 1990-12-28 1992-08-20 Nissan Motor Co Ltd Vibration-proof supporting device
JPH05133435A (en) * 1991-11-06 1993-05-28 Nissan Motor Co Ltd Natural vibration change controller for structure
JPH05149378A (en) * 1991-11-26 1993-06-15 Honda Motor Co Ltd Vibration control device
JPH0673915A (en) * 1992-08-25 1994-03-15 Shin Meiwa Ind Co Ltd Independent steel tower type multistory parking facility
JPH06276762A (en) * 1993-03-15 1994-09-30 Sumitomo Heavy Ind Ltd Piezoelectric linear actuator
JP2002070933A (en) * 2000-08-31 2002-03-08 Nkk Corp Structure vibration damping device
JP2002321700A (en) * 2001-04-27 2002-11-05 Mitsubishi Electric Corp Method and device for damping oscillation of satellite structural panel
JP2005162029A (en) * 2003-12-03 2005-06-23 Honda Motor Co Ltd Vehicle body frame buckling control device
JP2006207749A (en) * 2005-01-31 2006-08-10 Tokai Rubber Ind Ltd Damping device
JP2007532839A (en) * 2004-04-16 2007-11-15 フラウホファ−ゲゼルシャフト ツル フェルデルング デァ アンゲワンドテン フォルシェウング エー.フォオ. Shear force dissipating interface device for mechanical vibration damping
US20110109946A1 (en) * 2008-04-11 2011-05-12 Molecular Devices, Inc. Vibration control in scanners
JP2011106482A (en) * 2009-11-12 2011-06-02 Shimizu Corp Vibration control mechanism

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221044A (en) * 1988-07-08 1990-01-24 Mitsubishi Mining & Cement Co Ltd Vibration proofing method and device thereof
JPH047749U (en) * 1990-05-09 1992-01-23
JPH04231750A (en) * 1990-12-28 1992-08-20 Nissan Motor Co Ltd Vibration-proof supporting device
JPH05133435A (en) * 1991-11-06 1993-05-28 Nissan Motor Co Ltd Natural vibration change controller for structure
JPH05149378A (en) * 1991-11-26 1993-06-15 Honda Motor Co Ltd Vibration control device
JPH0673915A (en) * 1992-08-25 1994-03-15 Shin Meiwa Ind Co Ltd Independent steel tower type multistory parking facility
JPH06276762A (en) * 1993-03-15 1994-09-30 Sumitomo Heavy Ind Ltd Piezoelectric linear actuator
JP2002070933A (en) * 2000-08-31 2002-03-08 Nkk Corp Structure vibration damping device
JP2002321700A (en) * 2001-04-27 2002-11-05 Mitsubishi Electric Corp Method and device for damping oscillation of satellite structural panel
JP2005162029A (en) * 2003-12-03 2005-06-23 Honda Motor Co Ltd Vehicle body frame buckling control device
JP2007532839A (en) * 2004-04-16 2007-11-15 フラウホファ−ゲゼルシャフト ツル フェルデルング デァ アンゲワンドテン フォルシェウング エー.フォオ. Shear force dissipating interface device for mechanical vibration damping
JP2006207749A (en) * 2005-01-31 2006-08-10 Tokai Rubber Ind Ltd Damping device
US20110109946A1 (en) * 2008-04-11 2011-05-12 Molecular Devices, Inc. Vibration control in scanners
JP2011106482A (en) * 2009-11-12 2011-06-02 Shimizu Corp Vibration control mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106878A (en) * 2015-12-12 2017-06-15 鹿島建設株式会社 Structural damage detection method and system

Also Published As

Publication number Publication date
JP6190217B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
KR101379591B1 (en) Fork configuration dampers and method of using same
Chou et al. Experimental evaluation of large-scale dual-core self-centering braces and sandwiched buckling-restrained braces
JP2015113703A (en) Energy-dissipating junction assembly and aseismic structure using the same
US3963099A (en) Hysteretic energy absorber
Kelly et al. Stability and post-buckling behavior in nonbolted elastomeric isolators
CN103352521B (en) One-way energy-dissipation supporting component
JP6190217B2 (en) Vibration control device using piezoelectric material
KR20140069694A (en) Brace damping system having connection for preventing out plane buckling
Zhu et al. Shake-table tests and numerical analysis of steel frames with self-centering viscous-hysteretic devices under the mainshock–aftershock sequences
KR20210084027A (en) Seismic controling system of constructure and construction method thereof
CN103866882A (en) Post-tensioned prestressing self centering steel plate shear wall structure
JP2001248324A (en) Friction joint type energy absorbing device for frame
Hashemi Ductility and ultimate strength of eccentric braced frame
JP2019073883A (en) Vibration displacement suppressing structure of structure
JP2001152696A (en) Seismic isolation support device for roof framework
JP2011141026A (en) Tmd mechanism
Skalomenos et al. Experimental investigation of steel braces installed with intentional eccentricity using gusset plate connections
JP6134099B2 (en) Vibration control device and building
JP5338382B2 (en) Vibration control panel
JP3157352U (en) Elliptical leaf spring unit, elliptical multi-stage leaf spring device, vertical vibration damping device, horizontal uniaxial vibration damping device, and upper and lower floor seismic isolation device
JP6781099B2 (en) Power generation structure
JP2006336336A (en) Earthquake resistant structure of building
JP5292881B2 (en) Vibration control panel
JP6479371B2 (en) Joint structure of seismic control frame
Lukkunaprasit et al. Performance deterioration of slotted-bolted connection due to bolt impact and remedy by restrainers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170804

R150 Certificate of patent or registration of utility model

Ref document number: 6190217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250