JP2015046947A - Piezoelectric sounder and electronic apparatus using the same - Google Patents

Piezoelectric sounder and electronic apparatus using the same Download PDF

Info

Publication number
JP2015046947A
JP2015046947A JP2014249302A JP2014249302A JP2015046947A JP 2015046947 A JP2015046947 A JP 2015046947A JP 2014249302 A JP2014249302 A JP 2014249302A JP 2014249302 A JP2014249302 A JP 2014249302A JP 2015046947 A JP2015046947 A JP 2015046947A
Authority
JP
Japan
Prior art keywords
piezoelectric
layer
thickness
layers
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014249302A
Other languages
Japanese (ja)
Other versions
JP5832000B2 (en
Inventor
則和 指田
Norikazu Sashita
則和 指田
茂雄 石井
Shigeo Ishii
茂雄 石井
嘉幸 渡部
Yoshiyuki Watabe
嘉幸 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2014249302A priority Critical patent/JP5832000B2/en
Publication of JP2015046947A publication Critical patent/JP2015046947A/en
Application granted granted Critical
Publication of JP5832000B2 publication Critical patent/JP5832000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable prevention of characteristic deterioration and downsizing by minimizing a flowing current value without impairing a displacement amount as an element of a piezoelectric sounder.SOLUTION: A piezoelectric driving element 10 used for a piezoelectric sounder includes: piezoelectric layers 20, 22, 24, 30, 32 and 34; electrode layers 40, 42, 44, 52 and 54 between the piezoelectric layers; and electrode layers 46 and 56 on the surfaces of a laminate. The piezoelectric layers 20, 22 and 24, and the piezoelectric layers 30, 32 and 34 are arranged on an upper side and on a lower side of the electrode layer 40 at a center in the thickness direction, respectively. The piezoelectric layers on the upper side and the piezoelectric layers on the lower side are polarized in opposite directions to each other. The piezoelectric layers 20 and 30 in a center portion having the smallest displacement amount are thickest, and are reduced in thickness at a predetermined rate as it goes toward the outside. The piezoelectric layers 22 and 32 have the same thickness and the piezoelectric layers 24 and 34 have the same thickness. The piezoelectric driving element 10 is attached to a support plate 70 and supported by a frame 80 to form the piezoelectric sounder.

Description

本発明は、圧電発音体及びそれを利用した電子機器に関し、更に具体的には、小型機器等への搭載に適した圧電発音体の改良に関するものである。   The present invention relates to a piezoelectric sounding body and an electronic device using the piezoelectric sounding body, and more specifically to an improvement of a piezoelectric sounding body suitable for mounting on a small device or the like.

近年、携帯電話やスマートフォンなどは、通話機能のみならず、携帯型個人情報端末としての機能が充実してきている。その中で、機器そのものの大きさに関しては、小型化・薄型化・軽量化の要望が強く、それに伴って、用いる部品に対する小型化・薄型化・軽量化への要求が高まっている。スピーカに関しても同じ要求があるが、圧電素子の31方向への伸縮変位を利用し、屈曲変位を用いて変位拡大を行う圧電スピーカは、構造的にも薄型化が容易であり、高い音圧を確保できることから、携帯機器に用いられてきている。また、圧電スピーカは、電圧駆動型であることから、ダイナミックスピーカと比べて消費電力が少ないという利点もあり、電池の寿命が重要視される携帯機器に用いる部品として適している。   In recent years, mobile phones, smartphones, and the like have been enhanced not only with call functions but also with functions as portable personal information terminals. Among them, regarding the size of the device itself, there is a strong demand for downsizing, thinning, and weight reduction, and accordingly, there is an increasing demand for downsizing, thinning, and weight reduction of components to be used. The same requirements apply to loudspeakers, but piezoelectric loudspeakers that use the displacement of the piezoelectric element in the 31 direction and expand the displacement using bending displacements are easy to make thin and structurally have high sound pressure. Since it can be secured, it has been used for portable devices. In addition, since the piezoelectric speaker is a voltage-driven type, it has an advantage that it consumes less power than a dynamic speaker, and is suitable as a component used in a portable device in which battery life is important.

これらの圧電スピーカは、特に駆動電圧の低減という観点から、8層程度までの積層体で形成されており、金属板などのシム板に貼り付けて用いられる。この際、金属板に積層圧電体を1枚だけ貼り付けたものをユニモルフ型,金属板の両面に各々逆方向に分極した積層圧電体を貼り付けたものをバイモルフ型と呼ぶ。このようなユニモルフ型,バイモルフ型の圧電スピーカとしては、例えば、下記特許文献1に記載の技術がある。バイモルフ型の場合、金属板を用いずに、積層圧電素子の上半分と下半分で分極方向を逆にすることで、1枚の素子でバイモルフ型を実現する方法もある。この一体型バイモルフ素子においては、金属板のような余計な構造体を含まないため、比較的屈曲変位の効率が高い。   These piezoelectric speakers are formed of a laminate of up to about eight layers, particularly from the viewpoint of reducing driving voltage, and are used by being attached to shim plates such as metal plates. At this time, a single laminated piezoelectric material attached to a metal plate is called a unimorph type, and a laminated piezoelectric material polarized in opposite directions on both sides of a metal plate is called a bimorph type. As such a unimorph type and bimorph type piezoelectric speaker, for example, there is a technique described in Patent Document 1. In the case of the bimorph type, there is also a method of realizing the bimorph type with one element by reversing the polarization direction between the upper half and the lower half of the laminated piezoelectric element without using a metal plate. Since this integrated bimorph element does not include an extra structure such as a metal plate, the bending displacement efficiency is relatively high.

特開2003−259488号公報JP 2003-259488 A

圧電スピーカは容量性の素子であり、実効消費電力の観点からすると、前述した通り、ダイナミック型のスピーカに比べ、遙かに消費電力が少なくて済み、電池の持続時間を延ばすことが可能である。しかしながら、特に可聴音域の上限近傍である10〜20kHzにおいては、インピーダンスが低下することから、流れる電流値は大きくなる。このように電流値が大きくなると、実効消費電力としては小さいものの、スピーカを構成する導線の接続部分のように他と比べて抵抗値の高い場所で発熱するという課題が生じる。そして、発熱により圧電素子の劣化が加速されるため、設計以下の時間で特性劣化を引き起こすおそれがある。また、スピーカを駆動するための回路にも大きな電流が流れることを考慮しなければならないため、太い導線等を用いる必要があり、携帯機器等の小型化を妨げる要因になるという課題があった。   A piezoelectric speaker is a capacitive element, and from the viewpoint of effective power consumption, as described above, it consumes much less power than a dynamic speaker and can extend the duration of a battery. . However, particularly at 10 to 20 kHz, which is near the upper limit of the audible sound range, the impedance decreases, so the value of the flowing current increases. When the current value increases as described above, although the effective power consumption is small, there arises a problem that heat is generated in a place having a higher resistance value compared to other parts, such as a connecting portion of a conducting wire constituting the speaker. And since deterioration of a piezoelectric element is accelerated by heat_generation | fever, there exists a possibility of causing characteristic deterioration in the time after a design. In addition, since it is necessary to consider that a large current flows also in a circuit for driving the speaker, it is necessary to use a thick conductor or the like, which causes a problem that hinders downsizing of portable devices and the like.

本発明は、以上のような点に着目したもので、素子としての変位量を損なうことなく、流れる電流値を低く抑えることで、特性劣化の防止と小型化を実現可能な圧電発音体を提供することを、その目的とする。他の目的は、前記圧電発音体を利用した電子機器を提供することである。   The present invention focuses on the above points, and provides a piezoelectric sounding body capable of preventing characteristic deterioration and miniaturization by keeping the flowing current value low without impairing the amount of displacement as an element. The purpose is to do. Another object is to provide an electronic device using the piezoelectric sounding body.

本発明の圧電発音体は、変位に寄与する圧電体層が、4層以上かつ偶数層積層されたバイモルフ型の圧電駆動素子を支持板によって支持した圧電発音体であって、前記複数の圧電体層の間に電極層が形成されており、積層方向の中央を境に、上下同数の圧電体層が逆方向に分極され、積層方向の中央部は分極しない層であり、前記中央から積層方向上下へ向けて圧電体層の厚みが順次薄くなっており、かつ、前記圧電体層の厚みは、前記中央の境を基点として上下の積層位置が同じものは同じ厚みを有するとともに、変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとしたときに、前記最も厚い圧電体層の前記中央の境側の面を基点として、該基点からn層(nは自然数)までの厚みが、tdmost×(√n)を満たすことを特徴とする The piezoelectric sounding body of the present invention is a piezoelectric sounding body in which a bimorph type piezoelectric driving element in which four or more piezoelectric layers that contribute to displacement are stacked is supported by a support plate, and the plurality of piezoelectric members An electrode layer is formed between the layers, and the same number of upper and lower piezoelectric layers are polarized in opposite directions with the center in the stacking direction as a boundary, and the center portion in the stacking direction is a non-polarized layer, and the stacking direction from the center The thickness of the piezoelectric layer is gradually reduced in the vertical direction, and the thickness of the piezoelectric layer is the same when the upper and lower stacking positions are the same from the central boundary, and contributes to displacement. Among the piezoelectric layers to be used, when the thickness of the thickest piezoelectric layer is t dmost , n layers (n is a natural number) from the base point with the surface on the central boundary side of the thickest piezoelectric layer as a base point the thickness of until, satisfy the t dmost × (√n) And wherein the Succoth

他の発明の圧電発音体は、変位に寄与する圧電体層が、4層以上かつ偶数層積層されたバイモルフ型の圧電駆動素子を支持板によって支持した圧電発音体であって、前記複数の圧電体層の間に電極層が形成されており、積層方向の中央を境に、上下同数の圧電体層が逆方向に分極され、積層方向の中央部はシム板からなり、前記中央から積層方向上下へ向けて圧電体層の厚みが順次薄くなっており、かつ、前記圧電体層の厚みは、前記中央の境を基点として上下の積層位置が同じものは同じ厚みを有するとともに、変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとしたときに、前記最も厚い圧電体層の前記中央の境側の面を基点として、該基点からn層(nは自然数)までの厚みが、tdmost×(√n)を満たすことを特徴とする。主要な形態の一つは、変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとし、変位に寄与する圧電体層の層数を2nとしたときに、全層厚が、2×tdmost×(√n)であることを特徴とする。 A piezoelectric sounding body according to another aspect of the invention is a piezoelectric sounding body in which a bimorph type piezoelectric driving element in which four or more piezoelectric layers contributing to displacement are laminated and supported by a support plate is supported by the support plate. An electrode layer is formed between the body layers, and the same number of upper and lower piezoelectric layers are polarized in the opposite direction with the center in the stacking direction as a boundary, and the center portion in the stacking direction is formed of a shim plate. The thickness of the piezoelectric layer is gradually reduced in the vertical direction, and the thickness of the piezoelectric layer is the same when the upper and lower stacking positions are the same from the central boundary, and contributes to displacement. Among the piezoelectric layers to be used, when the thickness of the thickest piezoelectric layer is t dmost , n layers (n is a natural number) from the base point with the surface on the central boundary side of the thickest piezoelectric layer as a base point the thickness of until, less than a t dmost × (√n) It is characterized in. One of the main forms is that when the thickness of the thickest piezoelectric layer among the piezoelectric layers contributing to displacement is t dmost and the number of piezoelectric layers contributing to displacement is 2n, the total thickness is Is 2 × t dmost × (√n).

更に他の圧電発音体は、変位に寄与する圧電体層が、4層以上かつ偶数層積層されたバイモルフ型の圧電駆動素子を支持板によって支持した圧電発音体であって、前記複数の圧電体層の間に電極層が形成されており、積層方向の中央を境に、上下同数の圧電体層が逆方向に分極され、積層方向の中央部は分極しない層であり、前記中央から積層方向上下へ向けて圧電体層の厚みが順次薄くなっており、かつ、前記圧電体層の厚みは、前記中央の境を基点として上下の積層位置が同じものは同じ厚みを有しており、変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとし、前記中央の境からn層目(nは自然数)の前記電極層の厚みをtie(n)としたときに、前記最も厚い圧電体層の前記中央の境側の面を基点として、該基点からn層までの厚みが、tdmost×(√n)+Σie(n-1)であることを特徴とする。 Still another piezoelectric sounding body is a piezoelectric sounding body in which a bimorph type piezoelectric driving element in which four or more piezoelectric layers that contribute to displacement are stacked is supported by a support plate, and the plurality of piezoelectric members An electrode layer is formed between the layers, and the same number of upper and lower piezoelectric layers are polarized in opposite directions with the center in the stacking direction as a boundary, and the center portion in the stacking direction is a non-polarized layer, and the stacking direction from the center The thickness of the piezoelectric layer is gradually reduced toward the upper and lower sides, and the thickness of the piezoelectric layer is the same when the upper and lower stacking positions are the same with respect to the central boundary. Among the piezoelectric layers contributing to the above, when the thickness of the thickest piezoelectric layer is t dmost and the thickness of the electrode layer of the nth layer (n is a natural number) from the central boundary is t ie (n) , With the central boundary side surface of the thickest piezoelectric layer as a base point, The thickness from the base point to the n layer, characterized in that it is a t dmost × (√n) + Σ ie (n-1).

更に他の圧電発音体は、変位に寄与する圧電体層が、4層以上かつ偶数層積層されたバイモルフ型の圧電駆動素子を支持板によって支持した圧電発音体であって、前記複数の圧電体層の間に電極層が形成されており、積層方向の中央を境に、上下同数の圧電体層が逆方向に分極され、積層方向の中央部はシム板からなり、前記中央から積層方向上下へ向けて圧電体層の厚みが順次薄くなっており、かつ、前記圧電体層の厚みは、前記中央の境を基点として上下の積層位置が同じものは同じ厚みを有しており、変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとし、前記中央の境からn層目(nは自然数)の前記電極層の厚みをtie(n)としたときに、前記最も厚い圧電体層の前記中央の境側の面を基点として、該基点からn層までの厚みが、tdmost×(√n)+Σie(n-1)であることを特徴とする。主要な形態の一つは、前記圧電体層の各層の厚みは、前記比率に対して±10%の誤差が許容されることを特徴とする。本発明の電子機器は、前記いずれかに記載の圧電発音体を利用したことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。 Still another piezoelectric sounding body is a piezoelectric sounding body in which a bimorph type piezoelectric driving element in which four or more piezoelectric layers that contribute to displacement are stacked is supported by a support plate, and the plurality of piezoelectric members An electrode layer is formed between the layers, and the same number of upper and lower piezoelectric layers are polarized in the opposite direction with respect to the center in the stacking direction, and the central portion in the stacking direction is formed of a shim plate. The thickness of the piezoelectric layer is gradually reduced toward the surface, and the thickness of the piezoelectric layer is the same when the upper and lower stacking positions are the same with respect to the central boundary. Among the contributing piezoelectric layers, when the thickness of the thickest piezoelectric layer is t dmost and the thickness of the electrode layer of the nth layer (n is a natural number) from the center boundary is t ie (n), Starting from the central boundary side surface of the thickest piezoelectric layer, the base Thickness from up to n layers, characterized in that it is a t dmost × (√n) + Σ ie (n-1). One of the main forms is characterized in that an error of ± 10% is allowed for the thickness of each layer of the piezoelectric layer with respect to the ratio. An electronic apparatus according to the present invention uses any one of the piezoelectric sounding bodies described above. The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明によれば、圧電体層を複数積層した圧電駆動素子を使用した圧電発音体において、変位量が最も少ない部分の圧電体層の厚みを最も厚くし、外側へ向けて順次圧電体層を薄く形成することとした。これにより、素子としての変位量を損なうことなく、容量を低減し、流れる電流値を低く抑えることができる。その結果、発熱による故障の発生を防止できるとともに、駆動回路に太い導線を用いる必要がなくなるため小型化も可能となる。   According to the present invention, in a piezoelectric sounding body using a piezoelectric driving element in which a plurality of piezoelectric layers are stacked, the thickness of the piezoelectric layer with the smallest amount of displacement is maximized, and the piezoelectric layers are sequentially formed outward. It was decided to form thinly. As a result, the capacitance can be reduced and the flowing current value can be kept low without impairing the amount of displacement as the element. As a result, it is possible to prevent the occurrence of a failure due to heat generation and to reduce the size because it is not necessary to use a thick conductor in the drive circuit.

本発明の実施例1を示す図であり、(A)は圧電駆動素子の積層構造を示す断面図,(B)及び(C)は圧電駆動素子が屈曲した状態を示す断面図,(D)及び(E)は圧電駆動素子を支持する枠の一例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Example 1 of this invention, (A) is sectional drawing which shows the laminated structure of a piezoelectric drive element, (B) and (C) are sectional drawings which show the state which the piezoelectric drive element bent, (D) And (E) are diagrams showing an example of a frame that supports the piezoelectric driving element. 本発明の4〜8層積層のバイモルフ型の圧電駆動素子の電極層の構成を示す断面図であり、(A-1)〜(A-3)は分極操作時の電極構成を示し、(B-1)〜(B-3)は駆動時の電極構成を示す。It is sectional drawing which shows the structure of the electrode layer of the 4-8 layer laminated bimorph type piezoelectric drive element of this invention, (A-1)-(A-3) shows the electrode structure at the time of polarization operation, (B -1) to (B-3) show electrode configurations during driving. 本発明の圧電駆動素子の内部電極パターンを示す平面図である。It is a top view which shows the internal electrode pattern of the piezoelectric drive element of this invention. 内部電極層の厚みを考慮した圧電駆動素子の厚みの定義を示す説明図である。It is explanatory drawing which shows the definition of the thickness of a piezoelectric drive element in consideration of the thickness of an internal electrode layer. 本発明の他の実施例を示す図である。It is a figure which shows the other Example of this invention.

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。図1(A)は圧電駆動素子の積層構造を示す断面図,(B)及び(C)は圧電駆動素子が屈曲した状態を示す断面図,(D)及び(E)は圧電駆動素子を支持する枠の一例を示す図である。図2は、本発明の4〜8層積層のバイモルフ型の圧電駆動素子の電極層の構成を示す断面図であり、(A-1)〜(A-3)は分極操作時の電極構成を示し、(B-1)〜(B-3)は駆動時の電極構成を示す。図3は、本発明の圧電駆動素子の内部電極パターンを示す平面図である。図4は、内部電極層の厚みを考慮した場合の圧電駆動素子の厚みの定義を示す説明図である。本実施例の圧電発音体10は、例えば、携帯電話やスマートフォンに代表される携帯通信端末のスピーカとして利用されるものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples. 1A is a cross-sectional view showing a laminated structure of piezoelectric drive elements, FIGS. 1B and 1C are cross-sectional views showing a state in which the piezoelectric drive element is bent, and FIGS. 1D and 1E support a piezoelectric drive element. It is a figure which shows an example of the frame to do. FIG. 2 is a cross-sectional view showing the configuration of the electrode layer of the 4- to 8-layer laminated bimorph type piezoelectric driving element of the present invention, and (A-1) to (A-3) show the electrode configuration during polarization operation. (B-1) to (B-3) show electrode configurations during driving. FIG. 3 is a plan view showing an internal electrode pattern of the piezoelectric driving element of the present invention. FIG. 4 is an explanatory diagram showing the definition of the thickness of the piezoelectric driving element when the thickness of the internal electrode layer is taken into consideration. The piezoelectric sounding body 10 of this embodiment is used as a speaker of a mobile communication terminal represented by a mobile phone or a smartphone, for example.

図1(A)及び(D)に示すように、本実施例の圧電発音体に用いられる圧電駆動素子10は、バイモルフ型であって、全体が略長方形である。前記圧電駆動素子10は、6層の圧電体層20,22,24,30,32,34と、これらの圧電体層の間に設けられた電極層40,42,44,52,54と、積層体表面に形成された電極層46,56により構成されている。本実施例は、厚み方向の中央部の電極層40を境に、上下に3層ずつの圧電体層が形成されている。圧電体層20,22,24により、上側の積層圧電体12が形成され、圧電体層30,32,34により、下側の積層圧電体14が形成されている。   As shown in FIGS. 1A and 1D, the piezoelectric driving element 10 used in the piezoelectric sounding body of the present embodiment is a bimorph type and is generally rectangular. The piezoelectric driving element 10 includes six piezoelectric layers 20, 22, 24, 30, 32, 34, and electrode layers 40, 42, 44, 52, 54 provided between the piezoelectric layers, It is comprised by the electrode layers 46 and 56 formed in the laminated body surface. In this embodiment, three piezoelectric layers are formed on the upper and lower sides with the electrode layer 40 at the center in the thickness direction as a boundary. The piezoelectric layer 20, 22, 24 forms the upper laminated piezoelectric material 12, and the piezoelectric material layers 30, 32, 34 form the lower laminated piezoelectric material 14.

本実施例では、圧電駆動素子10の変位が最も少ない部分(横方向への伸縮が最も少ない部分)の圧電体層20,30の厚みが最も厚く形成されている。そして、圧電体層20,22,24の順に厚みが薄くなり、圧電体層30,32,34の順に厚みが薄く形成されている。圧電体層20,30の厚みは同じであり、圧電体層22,32の厚みは同じであり、圧電体層24,34の厚みは同じである。すなわち、電極層40を対称面として上下対称な層構造及び厚みとなるように各圧電体層の厚みが設定されている。従って、本実施例のようにバイモルフ構造を採用する場合、圧電駆動素子を構成する圧電体層(変位に寄与する圧電体層)は、必ず4層以上の偶数層となる。なお、圧電体層同士の厚みの比率については、後に詳述する。   In the present embodiment, the piezoelectric layers 20 and 30 are formed to have the largest thickness at the portion where the displacement of the piezoelectric driving element 10 is the smallest (the portion where the lateral expansion and contraction is the smallest). The piezoelectric layers 20, 22, and 24 are thinned in the order, and the piezoelectric layers 30, 32, and 34 are thinned in the order. The piezoelectric layers 20 and 30 have the same thickness, the piezoelectric layers 22 and 32 have the same thickness, and the piezoelectric layers 24 and 34 have the same thickness. That is, the thickness of each piezoelectric body layer is set so that the electrode layer 40 has a symmetrical plane and the layer structure and thickness are symmetrical. Therefore, when the bimorph structure is employed as in the present embodiment, the piezoelectric layer (piezoelectric layer contributing to displacement) constituting the piezoelectric drive element is always an even number layer of four or more layers. The thickness ratio between the piezoelectric layers will be described in detail later.

前記圧電駆動素子10は、PZTなどの圧電体をシート成形し、電極を含むペーストをシートに印刷して積層・圧着後、所定の温度で焼成するという通常の手法を用いて作製することができる。素子の面方向の寸法に関しては特に規定はないが、通常の携帯機器に用いることを想定すると、直径20〜25mm程度の円形もしくは1辺が15〜20mm程度の長方形が好ましい。本実施例では、長方形としている。図1(A)の例では、下から圧電体層34,電極層54,圧電体層32,電極層52,圧電体層30,電極層40,圧電体層20,電極層42,圧電体層22,電極層44,圧電体層24の順に積層される。最外層の電極層46,56は、内部の電極層と同じくペーストを印刷して積層体と同時に焼成してもよいし、積層体の焼成後にペーストを塗布して焼き付けてもよい。あるいは、蒸着やスパッタ,メッキ等の低温プロセスで形成してもよい。   The piezoelectric drive element 10 can be manufactured by using a normal method in which a piezoelectric body such as PZT is formed into a sheet, a paste including electrodes is printed on the sheet, laminated and pressed, and then fired at a predetermined temperature. . There are no particular restrictions on the dimensions in the surface direction of the element, but assuming use in a normal portable device, a circle with a diameter of about 20 to 25 mm or a rectangle with a side of about 15 to 20 mm is preferable. In this embodiment, it is rectangular. In the example of FIG. 1A, the piezoelectric layer 34, the electrode layer 54, the piezoelectric layer 32, the electrode layer 52, the piezoelectric layer 30, the electrode layer 40, the piezoelectric layer 20, the electrode layer 42, and the piezoelectric layer from the bottom. 22, the electrode layer 44, and the piezoelectric layer 24 are laminated in this order. The outermost electrode layers 46 and 56 may be printed with a paste in the same manner as the internal electrode layers and fired at the same time as the laminate, or may be applied and baked after firing the laminate. Or you may form by low temperature processes, such as vapor deposition, a sputter | spatter, and plating.

次に、このようにして形成した積層体の圧電体層20〜24,30〜34に、電極層40〜46,52〜56を利用して分極用の電圧を印加し、所定の分極が施される。例えば、図2(A-2)に示す例では、電極層42と電極層46を正極用パターンとして側面電極62で接続し、電極層52と電極層56を負極用パターンとして側面電極64で接続する。また、電極層40,44,54はコモンパターンとして側面電極60で接続する。これら正極パターン,負極パターン,コモンパターンの一例が、図3(A)〜(C)に示されている。なお、前記側面電極60,62,64は、例えば、積層体の側面にペーストを塗布する方法や、蒸着,スパッタ,メッキ等の低温プロセスを用いる方法などにより形成される。あるいは、外部側面で接続せずに、圧電体シートにホールを開けてペースト印刷時に電極層同士を接続するスルーホールを用いる方法など、従来から使用されている手法での接続が可能である。   Next, a voltage for polarization is applied to the piezoelectric layers 20 to 24 and 30 to 34 of the laminated body thus formed by using the electrode layers 40 to 46 and 52 to 56 to perform predetermined polarization. Is done. For example, in the example shown in FIG. 2A-2, the electrode layer 42 and the electrode layer 46 are connected by the side electrode 62 as a positive electrode pattern, and the electrode layer 52 and the electrode layer 56 are connected by a side electrode 64 as a negative electrode pattern. To do. The electrode layers 40, 44 and 54 are connected by the side electrode 60 as a common pattern. Examples of these positive electrode pattern, negative electrode pattern, and common pattern are shown in FIGS. The side electrodes 60, 62, and 64 are formed by, for example, a method of applying a paste to the side surface of the laminated body or a method using a low temperature process such as vapor deposition, sputtering, or plating. Alternatively, it is possible to connect by a conventionally used method such as a method of using a through hole that opens a hole in a piezoelectric sheet and connects electrode layers during paste printing without connecting on the external side surface.

また、圧電駆動素子10を4層構造とする場合には、図2(A-1)に示すように、電極層42を正極パターンとし、電極層52を負極パターンとする。また、電極層40,44,54はコモンパターンとして、側面電極60で接続する。圧電駆動素子10を8層構造とする場合には、図2(A-3)に示すように、電極層42と電極層46を正極用パターンとして側面電極62で接続し、電極層52と電極層56を負極用パターンとして側面電極64で接続する。また、電極層40,44,48,54,58をコモンパターンとして、側面電極68で接続する。   When the piezoelectric driving element 10 has a four-layer structure, the electrode layer 42 has a positive electrode pattern and the electrode layer 52 has a negative electrode pattern, as shown in FIG. The electrode layers 40, 44, and 54 are connected by the side electrode 60 as a common pattern. When the piezoelectric driving element 10 has an eight-layer structure, as shown in FIG. 2 (A-3), the electrode layer 42 and the electrode layer 46 are connected by a side electrode 62 as a positive electrode pattern, and the electrode layer 52 and the electrode are connected. The layer 56 is connected by a side electrode 64 as a negative electrode pattern. Further, the electrode layers 40, 44, 48, 54, 58 are connected by the side electrode 68 as a common pattern.

積層体の焼成,電極の形成後に分極を行う。分極電圧は、材料の抗電界以上の電圧をかけるが、その際、最も厚い層厚に合わせた電圧を加える必要がある。また、分極時に高温にして電圧を下げても良い。分極時には、図2(A-1)〜(A-3)に示す通り、正極パターン,負極パターン,コモンパターンを用いて、正負の電圧と0Vとなるコモンの3極で分極を行う。この際、正負の電圧は同じである必要があり、また同時に加える必要がある。電圧が異なったり、同時に加えなかったりすると、素子が異常な変形を起こし、応力によるクラック発生の原因となる。分極終了後、図2(B-1)〜(B-3)に示すように、正負の電極を接続し、一つの電極とする。図2(B-1)に示す4層構造の例では、電極層42と52を側面電極66で接続する。図2(B-2)に示す6層構造と図2(B-3)に示す8層構造の例では、電極層42,46,52,56を側面電極50で接続する。   Polarization is performed after firing the laminate and forming the electrodes. As the polarization voltage, a voltage higher than the coercive electric field of the material is applied. At this time, it is necessary to apply a voltage in accordance with the thickest layer thickness. Further, the voltage may be lowered by increasing the temperature during polarization. At the time of polarization, as shown in FIGS. 2 (A-1) to (A-3), using a positive electrode pattern, a negative electrode pattern, and a common pattern, polarization is performed using three common electrodes of positive and negative voltages and 0V. At this time, the positive and negative voltages need to be the same and must be applied simultaneously. If the voltages are different or not applied at the same time, the element will be deformed abnormally, causing cracks due to stress. After the polarization is completed, as shown in FIGS. 2B-1 to 2B-3, positive and negative electrodes are connected to form one electrode. In the example of the four-layer structure shown in FIG. 2 (B-1), the electrode layers 42 and 52 are connected by the side electrode 66. In the example of the 6-layer structure shown in FIG. 2 (B-2) and the 8-layer structure shown in FIG. 2 (B-3), the electrode layers 42, 46, 52, and 56 are connected by the side electrode 50.

そして、これら接続した電極とコモン電極に信号を入力することで、圧電駆動素子10の上半分と下半分で逆方向に伸縮し、結果として屈曲変位となる。図1(A)の6層構造の例では、下側の積層圧電体14の圧電体層30,32,34の分極方向は、上側の積層圧電体12の圧電体層20,22,24の分極方向と逆となっている。一方、音声信号などの駆動電圧は、電極層42,46,52,56に印加され、他の電極層40,44,54はアースされている。このため、積層圧電体12の矢印FA方向の伸縮と、積層圧電体14の矢印FC方向の伸縮は互いに逆方向となる。すなわち、図1(B)に示すように積層圧電体12が矢印FA方向に伸びたときは、積層圧電体14は矢印FC方向に縮む。逆に、図1(C)に示すように積層圧電体12が矢印FA方向に縮んだときは積層圧電体14は矢印FC方向に伸びる。このため、全体として矢印FB方向に振動するようになる。   Then, by inputting a signal to the connected electrode and common electrode, the piezoelectric drive element 10 expands and contracts in the opposite direction in the upper half and the lower half, resulting in bending displacement. In the example of the six-layer structure in FIG. 1A, the polarization directions of the piezoelectric layers 30, 32, and 34 of the lower stacked piezoelectric body 14 are the same as those of the piezoelectric layers 20, 22, and 24 of the upper stacked piezoelectric body 12. It is opposite to the polarization direction. On the other hand, a driving voltage such as an audio signal is applied to the electrode layers 42, 46, 52, and 56, and the other electrode layers 40, 44, and 54 are grounded. For this reason, the expansion / contraction of the multilayer piezoelectric body 12 in the direction of the arrow FA and the expansion / contraction of the multilayer piezoelectric body 14 in the direction of the arrow FC are opposite to each other. That is, as shown in FIG. 1B, when the laminated piezoelectric body 12 extends in the direction of the arrow FA, the laminated piezoelectric body 14 contracts in the direction of the arrow FC. Conversely, as shown in FIG. 1C, when the laminated piezoelectric body 12 contracts in the direction of the arrow FA, the laminated piezoelectric body 14 extends in the direction of the arrow FC. For this reason, it vibrates in the direction of arrow FB as a whole.

前記圧電駆動素子10の全体の厚みは50〜200μmとする。これ以下の厚みでは十分な力が出ないため、空気や後述する支持板70の剛性に負けてしまい、十分に変位することができない。また、これ以上厚い場合は、圧電駆動素子10自体の剛性が高すぎるため、やはり十分に変位することができなくなる。図1(A)の例では、圧電体層は6層であるが、4層以上の偶数層であればよく、図2(A-1)及び(B-1)に示す4層構造としてもよいし、図2(A-3)及び(B-3)に示す8層構造としてもよい。いずれにしても、厚み方向の中心(本実施例の場合は電極層40)を境に、上下が対称となるように積層する。   The total thickness of the piezoelectric driving element 10 is 50 to 200 μm. If the thickness is less than this, a sufficient force is not generated, so that the air and the rigidity of the support plate 70 described later are lost, and the displacement cannot be sufficiently performed. If it is thicker than this, the rigidity of the piezoelectric drive element 10 itself is too high, so that it cannot be sufficiently displaced. In the example of FIG. 1 (A), there are six piezoelectric layers, but it may be an even number layer of four or more, and the four-layer structure shown in FIGS. 2 (A-1) and (B-1) is also possible. Alternatively, an eight-layer structure shown in FIGS. 2A-3 and B-3 may be employed. In any case, the layers are laminated so that the top and bottom are symmetrical with respect to the center in the thickness direction (the electrode layer 40 in this embodiment).

複数の圧電体層の厚みの比は、屈曲変位を起こすと考えた場合、曲率半径から計算される各層の必要な伸縮量から、全層数を2n(nは自然数)層として計算すると、以下の数式1で表すことができる。

Figure 2015046947
When the thickness ratio of the plurality of piezoelectric layers is considered to cause bending displacement, the total number of layers is calculated as 2n (n is a natural number) from the necessary expansion / contraction amount calculated from the radius of curvature. This can be expressed by Equation 1.
Figure 2015046947

前記数式1を用いると、圧電体層の積層数が、
4層(n=2)の場合は、圧電体の厚み比は、下層から順に、
√2-1:1:1:√2-1
となる。
6層(n=3)の場合は、
√3-√2:√2-1:1:1:√2-1:√3-√2
となり、
8層(n=4)の場合は、
2-√3:√3-√2:√2-1:1:1:√2-1:√3-√2:2-√3
となる。そして、各層の厚みは、上記比率に対して±10%の誤差までが許容される。このような理想的な厚み比率を有する各層の厚みを合計したときの全層厚は、変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとし、変位に寄与する圧電体層の層数を2nとしたときに、
2×tdmost×(√n)
の関係で示されることが見出されている。いいかえれば、変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとしたときに、該最も厚い圧電体層と中央の電極層との境界面を基点として、該基点からn層(nは自然数)までの厚みが、
dmost×(√n)
を満たすことになる。本実施例の圧電駆動素子はバイモルフ構造のため、素子全体としての圧電体層の厚みは、その2倍となり、上記のとおり、2×tdmost×(√n)となる。
Using Equation 1, the number of piezoelectric layers stacked is
In the case of 4 layers (n = 2), the thickness ratio of the piezoelectric body is, in order from the lower layer,
√2-1: 1: 1: √2-1
It becomes.
For 6 layers (n = 3)
√3-√2: √2-1: 1: 1: √2-1: √3-√2
And
For 8 layers (n = 4)
2-√3: √3-√2: √2-1: 1: 1: √2-1: √3-√2: 2-√3
It becomes. The thickness of each layer is allowed to have an error of ± 10% with respect to the above ratio. The total thickness when the thicknesses of the respective layers having such an ideal thickness ratio are totaled is the piezoelectric layer contributing to the displacement, where t dmost is the thickness of the thickest piezoelectric layer among the piezoelectric layers contributing to the displacement. When the number of body layers is 2n,
2 x t dmost x (√n)
It has been found that In other words, of the piezoelectric layers that contribute to displacement, when the thickness of the thickest piezoelectric layer is t dmost , the boundary surface between the thickest piezoelectric layer and the central electrode layer is used as a base point, and from this base point The thickness up to n layers (n is a natural number)
t dmost × (√n)
Will be satisfied. Since the piezoelectric driving element of the present embodiment has a bimorph structure, the thickness of the piezoelectric layer as the entire element is twice that, which is 2 × t dmost × (√n) as described above.

しかしながら、実際の積層体には、各層間に電極層を形成しなければならない。この電極はセラミックス(圧電体層)の焼結と同時に形成する必要があるため、セラミックスの焼結温度で溶融せず焼結のみを起こすような、銀,白金,パラジウムやその合金などを用いる。電極層は、圧電体層と異なり、電圧によって変形を起こすことはないため、上記の数式1は電極層の存在により修正を受ける。このように、電極層の存在により圧電駆動素子10の変位量は抑制を受けるため、電極層の厚みは可能な限り薄い方がよく、例えば、印刷法によれば1〜2μmとなる。また、層数が多くなると電極比率が増えるため、実質的な圧電体層の積層数は8層までである。また、2層では層厚に傾斜ないし差を設けられないため、最低層数は4層となる。   However, in an actual laminate, an electrode layer must be formed between each layer. Since this electrode needs to be formed simultaneously with the sintering of the ceramic (piezoelectric layer), silver, platinum, palladium, an alloy thereof, or the like that does not melt at the sintering temperature of the ceramic but only causes the sintering is used. Unlike the piezoelectric layer, the electrode layer is not deformed by a voltage, and thus the above Equation 1 is corrected by the presence of the electrode layer. As described above, since the displacement amount of the piezoelectric driving element 10 is suppressed due to the presence of the electrode layer, the thickness of the electrode layer is preferably as thin as possible, for example, 1 to 2 μm according to the printing method. Further, since the electrode ratio increases as the number of layers increases, the actual number of stacked piezoelectric layers is up to eight. In addition, since there is no inclination or difference between the two layers, the minimum number of layers is four.

ここで、前記電極層の厚みをtie,最も厚い圧電体層の厚みをtdmostとし、最も厚い圧電体層の厚みに対する電極層の厚みの比Aを、A=(tie/tdmost)と表すことで、全体の厚みが厚くなり、曲げ剛性が増加することを考慮にいれて前記数式1を修正することができるが、解は解析的に導くことはできない。しかし、電極材料のヤング率を50〜150GPaとし、圧電駆動素子10の全体厚みを50〜200μmとし、電極厚みを最大5μmとすると、近似的に計算ができる。圧電体層の積層数を4層とした場合の圧電体層32,30,20,22の厚みを以下の数式2の比率にすると、最適な特性が得られる。

Figure 2015046947
Here, the thickness of the electrode layer is t ie , the thickness of the thickest piezoelectric layer is t dmost, and the ratio A of the thickness of the electrode layer to the thickness of the thickest piezoelectric layer is A = (t ie / t dmost ) In this way, the above Equation 1 can be corrected in consideration of the increase in the overall thickness and the increase in bending rigidity, but the solution cannot be derived analytically. However, if the Young's modulus of the electrode material is 50 to 150 GPa, the total thickness of the piezoelectric driving element 10 is 50 to 200 μm, and the electrode thickness is 5 μm at maximum, the calculation can be made approximately. Optimum characteristics can be obtained when the thickness of the piezoelectric layers 32, 30, 20, 22 when the number of stacked piezoelectric layers is four is set to the ratio of Equation 2 below.
Figure 2015046947

同様に、圧電体層の積層数が6層の場合に最適な特性が得られる圧電体層34,32,30,20,22,24の厚み比率は、以下の数式3に示される。

Figure 2015046947
Similarly, the thickness ratio of the piezoelectric layers 34, 32, 30, 20, 22, and 24 that provides optimum characteristics when the number of stacked piezoelectric layers is 6 is expressed by the following Equation 3.
Figure 2015046947

更に、圧電体層の積層数が8の場合に最適な特性が得られる圧電体層36,34,32,30,20,22,24,26の厚み比率は、以下の数式4に示される。

Figure 2015046947
Furthermore, the thickness ratio of the piezoelectric layers 36, 34, 32, 30, 20, 22, 24, and 26 that provides the optimum characteristics when the number of stacked piezoelectric layers is 8 is shown in the following Equation 4.
Figure 2015046947

なお、誤差は各圧電体層について±10%までであれば、本発明における効果が発揮できる。ただし、本実施例はバイモルフ型であるので、外側の層の厚みは、内側の層の厚みよりも薄くなければいけない。その範囲をはずれると、素子容量が大きくなり、駆動時の電流値が高くなってしまい、所望の効果を得ることが出来ない。   If the error is up to ± 10% for each piezoelectric layer, the effect of the present invention can be exhibited. However, since the present embodiment is a bimorph type, the thickness of the outer layer must be smaller than the thickness of the inner layer. If it is out of the range, the element capacitance increases, the current value at the time of driving increases, and the desired effect cannot be obtained.

このように電極層の厚みも考慮した場合、変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとし、最も厚い圧電体層と中央の電極層の境界面を基点として、該基点からn層までの厚みを表すと、
dmost×(√n)+Σtie(n-1)
の関係で示されることが見いだされている。
When the thickness of the electrode layer is also taken into consideration in this way, among the piezoelectric layers contributing to displacement, the thickness of the thickest piezoelectric layer is t dmost, and the boundary surface between the thickest piezoelectric layer and the center electrode layer is the base point. , Expressing the thickness from the base point to the n layer,
t dmost × (√n) + Σt ie (n-1)
It has been found to be shown in the relationship.

図4を参照して具体的に説明する。図4には、圧電駆動素子10の上部の積層圧電体12側が示されている。変位に最も寄与するのは、中央の電極層40と接する圧電体層20である。この例において、基点(圧電体層20と電極層40の境界面)から1層目の圧電体層の厚みは、上記のtdmost×(√n)の式に当てはめると、tdmostである。次に、2層目(n=2)までの厚みは、tdmost×(√2)に電極層42の厚みtie(1)を加えて、tdmost×(√2)+tie(1)となる。更に、3層目(n=3)までの厚みは、2層目の電極層44の厚みを加えて、tdmost×(√3)+tie(1)+tie(2)となる。すなわち、n層の圧電体層の間には、(n-1)層の電極層が存在するので、その分の厚みを足していくことで、前記基点からn層までの厚みをtdmost×(√n)+Σtie(n-1)と表すことができる。 This will be specifically described with reference to FIG. FIG. 4 shows the multilayer piezoelectric body 12 side at the top of the piezoelectric driving element 10. The piezoelectric layer 20 in contact with the central electrode layer 40 contributes most to the displacement. In this example, base thickness (the piezoelectric layer 20 and the boundary surface of the electrode layer 40) from the first layer of the piezoelectric layer, when applying the above equation of t DMOST × (√n), a t DMOST. Next, the thickness up to the second layer (n = 2) is obtained by adding the thickness t ie (1) of the electrode layer 42 to t dmost × (√2) to obtain td most × (√2) + t ie (1) It becomes. Further, the thickness of up to the third layer (n = 3), in addition the thickness of the second layer of the electrode layer 44, t dmost × (√3) + t ie (1) + t becomes ie (2). That is, since there are (n-1) electrode layers between the n piezoelectric layers, the thickness from the base point to the n layer is increased by adding the corresponding thickness to t dmost × it can be expressed as (√n) + Σt ie (n -1).

前記圧電駆動素子10は、図1(D)に示すように、支持板70に貼り付ける。支持板70は可能な限り柔らかい材質のものを用いる。例えばゴムやウレタン等が好適である。支持板70の厚さは、圧電駆動素子10と同程度の50〜200μmとする。これ以下では素子を十分支えることが出来ず、振動時に素子にダメージを与える可能性があり、これ以上では、素子の振動を阻害して、音圧を下げてしまう。そして、前記圧電駆動素子10を貼り付けた支持板70を、金属やプラスチックなどの枠に貼り、端子板などへ電極を接続して圧電発音体を得る。この際、リード等を用いても良いし、加熱硬化する導電ペースト等を用いても構わない。   The piezoelectric drive element 10 is attached to a support plate 70 as shown in FIG. The support plate 70 is made of a material that is as soft as possible. For example, rubber or urethane is suitable. The thickness of the support plate 70 is 50 to 200 μm, which is the same as that of the piezoelectric drive element 10. Below this, the element cannot be supported sufficiently, and there is a possibility of damaging the element during vibration. Above this, the vibration of the element is hindered and the sound pressure is lowered. Then, the support plate 70 to which the piezoelectric driving element 10 is attached is attached to a metal or plastic frame, and electrodes are connected to a terminal plate or the like to obtain a piezoelectric sounding body. At this time, a lead or the like may be used, or a conductive paste or the like that is heat-cured may be used.

前記枠としては、図1(D)に示す枠80のような開口部82を有する単純な枠形状のほか、蓋のような形状のものでも構わない。ただし、蓋の上部分と素子及び振動板の間には、振動によって接触しないように十分な隙間を空ける必要がある。例えば、図1(E)に示す枠90は、上述した蓋タイプであって、素子の振動を阻害しない十分な空間92を有し、更に蓋部分の底面94には、複数の放音孔96が設けられている。このようにして得られた圧電発音体は、単純に同一厚みの圧電体を積層したものと比べ、音圧は変わらないにもかかわらず、流れる電流値は50〜60%低下しており、接続部での発熱を抑制できると共に、駆動回路の部品として小型で低コストの部品を用いることが可能となる。   The frame may have a shape like a lid in addition to a simple frame shape having an opening 82 like the frame 80 shown in FIG. However, it is necessary to leave a sufficient gap between the upper portion of the lid, the element, and the diaphragm so as not to contact by vibration. For example, the frame 90 shown in FIG. 1 (E) is the lid type described above, has a sufficient space 92 that does not hinder the vibration of the element, and a plurality of sound emitting holes 96 on the bottom surface 94 of the lid portion. Is provided. The piezoelectric sounding body obtained in this way has a current value that is 50% to 60% lower than that obtained by simply stacking piezoelectric bodies of the same thickness, although the sound pressure does not change. It is possible to suppress the heat generation at the portion and to use a small and low-cost component as a component of the drive circuit.

このような方法で作製したスピーカについて、音圧(800,1000,1500,2000Hzの平均音圧)と、駆動時の電流値を下記表1に示す。試験に用いる素子は、14×18mmの大きさとし、支持板70には100μm厚さのエラストマーを用い、図1(E)に示すような蓋形状で金属製の枠90に貼り付けてある。そして、層数と層構成を変えた実験例1〜4を作製し、試験を行った。また比較例1〜6として、層厚構成が本発明の範囲外にある素子を用いて、同じように作製したスピーカについても、同様の試験を行い、結果を表1に示した。

Figure 2015046947
表1の実験例1〜4,比較例1〜6の結果から分かる通り、本発明の範囲内であれば、十分流れる電流は小さいが、範囲外の素子では電流値が大きく、所望の効果を得ることが出来ないことが確認された。 Table 1 below shows the sound pressure (average sound pressure of 800, 1000, 1500, 2000 Hz) and the current value during driving of the speaker manufactured by such a method. The element used for the test has a size of 14 × 18 mm, and an elastomer having a thickness of 100 μm is used for the support plate 70 and is attached to a metal frame 90 with a lid shape as shown in FIG. And Experimental Examples 1-4 which changed the number of layers and layer structure were produced, and the test was done. Further, as Comparative Examples 1 to 6, a similar test was performed on speakers similarly produced using elements having a layer thickness configuration outside the scope of the present invention, and the results are shown in Table 1.
Figure 2015046947
As can be seen from the results of Experimental Examples 1 to 4 and Comparative Examples 1 to 6 in Table 1, the current flowing sufficiently is small within the range of the present invention, but the current value is large in the element outside the range, and the desired effect is obtained. It was confirmed that they could not be obtained.

このように、実施例1によれば、圧電体層を複数積層したバイモルフ型の圧電駆動素子10を使用した圧電発音体において、変位量が最も少ない中央部分の圧電体層の厚みを最も厚くする。そして、厚み方向中央を境にして、上下同数の積層数及び上下対称の層構造とし、かつ、中央から外側へ向けて圧電体層の厚みを薄くすることとした。このため、素子としての変位量を損なうことなく、容量を低減し、高周波信号入力時でも流れる電流値を低く抑えることができる。その結果、発熱による故障の発生を防止できるとともに、駆動回路に太い導線を用いる必要がなくなるため小型化も可能となる。   As described above, according to the first embodiment, in the piezoelectric sounding body using the bimorph type piezoelectric driving element 10 in which a plurality of piezoelectric layers are stacked, the thickness of the piezoelectric layer in the central portion with the smallest amount of displacement is maximized. . Then, with the center in the thickness direction as the boundary, the number of stacked layers is the same as the upper and lower layers, and the layer structure is vertically symmetrical, and the thickness of the piezoelectric layer is decreased from the center toward the outside. For this reason, the capacitance can be reduced without impairing the amount of displacement as an element, and the value of the current that flows even when a high-frequency signal is input can be kept low. As a result, it is possible to prevent the occurrence of a failure due to heat generation and to reduce the size because it is not necessary to use a thick conductor in the drive circuit.

<変形例1>・・・次に、図5(A)を参照して、本実施例の変形例1について説明する。図1(A)に示した圧電駆動素子10では、上側の積層圧電体12と下側の積層圧電体14が、電極層40を挟んで形成されているが、図5(A)に示す圧電駆動素子100では、積層圧電体12と積層圧電体14は、電極層以外の不活性層(分極しない層)102を挟んで対称に形成されている。このような場合にも、上述した実施例と同様の効果が得られる。   <Modification 1> Next, Modification 1 of the present embodiment will be described with reference to FIG. In the piezoelectric driving element 10 shown in FIG. 1 (A), an upper laminated piezoelectric body 12 and a lower laminated piezoelectric body 14 are formed with an electrode layer 40 interposed therebetween, but the piezoelectric shown in FIG. 5 (A). In the drive element 100, the laminated piezoelectric body 12 and the laminated piezoelectric body 14 are formed symmetrically with an inactive layer (non-polarized layer) 102 other than the electrode layer interposed therebetween. Even in such a case, the same effect as the above-described embodiment can be obtained.

<変形例2>・・・次に、図5(B)を参照して、本実施例の変形例2について説明する。図1(A)に示した圧電駆動素子10では、シム板を使用しないバイモルフ型にすることとしたが、図5(B)に示す圧電駆動素子110のように、金属板などのシム板112の上下に、積層圧電体12と積層圧電体14を貼り付ける構成としてもよい。この場合、シム板112を図1(D)又は図1(E)に示した枠80や90によって支持することで圧電発音体を構成でき、上述した実施例1と同様の効果が得られる。   <Modification 2> Next, Modification 2 of the present embodiment will be described with reference to FIG. The piezoelectric driving element 10 shown in FIG. 1A is a bimorph type that does not use a shim plate. However, like the piezoelectric driving element 110 shown in FIG. 5B, a shim plate 112 such as a metal plate is used. It is good also as a structure which affixes the laminated piezoelectric body 12 and the laminated piezoelectric body 14 on and under. In this case, the piezoelectric sounding body can be configured by supporting the shim plate 112 by the frames 80 and 90 shown in FIG. 1D or FIG. 1E, and the same effects as those of the first embodiment described above can be obtained.

次に、図5(C)を参照して本発明の実施例2を説明する。前記実施例1は、圧電駆動素子をバイモルフ型としたが、本発明はユニモルフ型にも適用可能である。図5(C)に示す圧電駆動素子120は、4層構造の積層圧電体12が金属材料からなる振動板122の一方の主面に貼り付けられた構成となっている。そして、これが前記枠80又は90に取り付けられることで圧電発音体を構成する。本実施例のようにユニモルフ型においては、変位が最も少ない圧電体層(横方向への伸縮が最も少ない部分),すなわち、振動板122側の圧電体層20の厚みが最も厚く、積層方向上方へいくにつれて、圧電体層22,24,26の順に厚みが薄くなっている。   Next, Embodiment 2 of the present invention will be described with reference to FIG. In the first embodiment, the piezoelectric driving element is a bimorph type, but the present invention can also be applied to a unimorph type. The piezoelectric driving element 120 shown in FIG. 5C has a configuration in which a laminated piezoelectric body 12 having a four-layer structure is attached to one main surface of a diaphragm 122 made of a metal material. And this is attached to the said frame 80 or 90, and a piezoelectric sounding body is comprised. In the unimorph type as in the present embodiment, the piezoelectric layer with the least displacement (the portion with the smallest expansion and contraction in the lateral direction), that is, the piezoelectric layer 20 on the vibration plate 122 side is the thickest, and the upper direction in the stacking direction. The thickness decreases in the order of the piezoelectric layers 22, 24, and 26 as it goes.

前記圧電体層は、2層以上であればよいが、例えば、積層数をn層(nは自然数)とした場合には、振動板122側から上層へ向けての圧電体層の厚み比が、下記数式5で示す比率になるようにすると理想的である。むろん、各圧電体層の比率は、前記実施例1と同様に、各々±10%まで許容される。なお、下記数式5を適用するためには、前記振動板122として、ヤング率50〜200GPaで、厚みが積層圧電体12の半分以下のものを使用する。

Figure 2015046947
更に、変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとし、変位に寄与する圧電体層の層数をnとしたときに、
全層厚が、
dmost×(√n)
となるように規定するとよい。 The number of piezoelectric layers may be two or more. For example, when the number of stacked layers is n (n is a natural number), the thickness ratio of the piezoelectric layers from the diaphragm 122 side to the upper layer is Ideally, the ratio is expressed by the following formula 5. Of course, the ratio of each piezoelectric layer is allowed to be ± 10% as in the first embodiment. In order to apply the following formula 5, a diaphragm having a Young's modulus of 50 to 200 GPa and a thickness less than half that of the laminated piezoelectric body 12 is used as the diaphragm 122.
Figure 2015046947
Furthermore, among the piezoelectric layers contributing to displacement, when the thickness of the thickest piezoelectric layer is t dmost and the number of piezoelectric layers contributing to the displacement is n,
The total thickness is
t dmost × (√n)
It is good to stipulate that

また、前記実施例1と同様に、最も厚い圧電体層の厚み(tdmost)に対する電極層の厚み(tie)の比Aを、A=(tie/tdmost)と定義することで、圧電体層間の電極層の存在による前記数式5の修正を行うことができる。例えば、電極材料のヤング率を50〜150GPaとし、圧電駆動素子120の全体厚みを50〜200μmとし、電極厚みを最大5μmとすると、近似的に計算ができる。圧電体層の積層数を2層とした場合の圧電体層20,22の厚みを以下の数式6の比率にすると、最適な特性が得られる。

Figure 2015046947
Further, as in Embodiment 1, the ratio A of the thickness of the thickest piezoelectric layer electrode layer to the thickness (t DMOST) of (t ie), by defining the A = (t ie / t dmost ), The above Equation 5 can be corrected due to the presence of the electrode layers between the piezoelectric layers. For example, when the Young's modulus of the electrode material is 50 to 150 GPa, the total thickness of the piezoelectric driving element 120 is 50 to 200 μm, and the electrode thickness is 5 μm at maximum, the calculation can be performed approximately. Optimum characteristics can be obtained when the thickness of the piezoelectric layers 20 and 22 when the number of stacked piezoelectric layers is two is set to the ratio of the following formula 6.
Figure 2015046947

同様に、圧電体層の積層数が3層の場合に最適な特性が得られる圧電体層20,22,24の厚み比率は、以下の数式7に示される。

Figure 2015046947
Similarly, the thickness ratio of the piezoelectric layers 20, 22, and 24 that provides optimum characteristics when the number of stacked piezoelectric layers is 3 is shown in Equation 7 below.
Figure 2015046947

更に、圧電体層の積層数が4の場合に最適な特性が得られる絶縁体層20,22,24,26の厚み比率は、以下の数式8に示される。

Figure 2015046947
Furthermore, the thickness ratio of the insulator layers 20, 22, 24, and 26 that provides optimum characteristics when the number of stacked piezoelectric layers is four is shown in the following Equation 8.
Figure 2015046947

なお、各々の圧電体層の厚み誤差は±10%までであれば、本発明における効果が発揮できる。ただし、本実施例はユニモルフ型であるので、外側の層の厚みは、振動板122側の圧電体層20の厚みよりも薄くなければいけない。その範囲をはずれると、素子容量が大きくなり、駆動時の電流値が高くなってしまい、所望の効果を得ることが出来ない。これらの点を満たすことができれは、本実施例のようにユニモルフ型を用いた場合であっても、上述した実施例1と同様の効果を得ることができる。なお、電極層の厚みを考慮した基点(本実施例の場合は、振動板122と圧電体層20の境界面)からn層目までの厚みは、上述した実施例1と同様に、tdmost×(√n)+Σtie(n-1)で表される。 If the thickness error of each piezoelectric layer is up to ± 10%, the effect of the present invention can be exhibited. However, since this embodiment is a unimorph type, the thickness of the outer layer must be smaller than the thickness of the piezoelectric layer 20 on the diaphragm 122 side. If it is out of the range, the element capacitance increases, the current value at the time of driving increases, and the desired effect cannot be obtained. If these points can be satisfied, even if a unimorph type is used as in the present embodiment, the same effect as in the first embodiment can be obtained. The thickness from the base point in consideration of the thickness of the electrode layer (the boundary surface between the diaphragm 122 and the piezoelectric layer 20 in this embodiment) to the nth layer is t dmost as in the first embodiment. X (√n) + Σt ie (n−1)

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のようなものも含まれる。
(1)前記実施例で示した圧電駆動素子の形状も一例であり、円形とするなど、必要に応じて適宜変更してよい。
(2)前記実施例で示した圧電駆動素子の面方向の寸法についても一例であり、必要に応じて適宜設計変更可能である。
(3)前記実施例で示した材料も一例であり、公知の各種の材料を使用してよい。
(4)前記実施例1で示した支持板70と枠80又は90による圧電駆動素子の支持機構も一例であり、同様の効果を奏する範囲内で適宜設計変更可能である。
(5)前記実施例1で示した圧電駆動素子の積層方法も一例であり、必要に応じて適宜変更してよい。図5(D)に示すように、4層構造のバイモルフ型であって、中央側の圧電体層20,30の厚さが、外側の圧電体層22,32の厚みのほぼ倍である場合、圧電体層22,32として用いる圧電体シートを2枚重ねて圧電体層20,30を形成するようにする。このようにシートの積層数を調整することで圧電体層の厚みを合わせることができれば、製造が容易となる。
(6)前記実施例では、携帯電話等に搭載するスピーカを例に挙げて説明したが、本発明は、携帯電話のレシーバなど、他の公知の各種の電子機器に利用する圧電発音体として適用可能である。
In addition, this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention. For example, the following are included.
(1) The shape of the piezoelectric driving element shown in the above embodiment is also an example, and may be appropriately changed as necessary, such as a circular shape.
(2) The dimension in the surface direction of the piezoelectric drive element shown in the above embodiment is also an example, and the design can be appropriately changed as necessary.
(3) The materials shown in the above embodiments are also examples, and various known materials may be used.
(4) The support mechanism of the piezoelectric drive element by the support plate 70 and the frame 80 or 90 shown in the first embodiment is also an example, and the design can be changed as appropriate within a range where the same effect can be obtained.
(5) The method for laminating the piezoelectric driving elements shown in the first embodiment is also an example, and may be changed as appropriate. As shown in FIG. 5D, when the bimorph type has a four-layer structure, the thickness of the piezoelectric layers 20 and 30 on the center side is approximately twice the thickness of the piezoelectric layers 22 and 32 on the outer side. The piezoelectric layers 20 and 30 are formed by stacking two piezoelectric sheets used as the piezoelectric layers 22 and 32. If the thickness of the piezoelectric layer can be adjusted by adjusting the number of laminated sheets as described above, the manufacturing becomes easy.
(6) In the above embodiment, the speaker mounted on a mobile phone or the like has been described as an example, but the present invention is applied as a piezoelectric sounding body used in various other known electronic devices such as a receiver of a mobile phone. Is possible.

本発明によれば、圧電体層を複数積層した圧電駆動素子を使用した圧電発音体において、変位量が最も少ない部分の圧電体層の厚みを最も厚くし、外側へ向けて順次圧電体層を薄く形成することとした。これにより、素子としての変位量を損なうことなく、容量を低減し、流れる電流値を低く抑え、故障の発生の防止や小型化が可能となるため、電子機器等に搭載する圧電発音体の用途に適用できる。特に、携帯電話やスマートフォンに代表される携帯型電子機器等への利用に好適である。   According to the present invention, in a piezoelectric sounding body using a piezoelectric driving element in which a plurality of piezoelectric layers are stacked, the thickness of the piezoelectric layer with the smallest amount of displacement is maximized, and the piezoelectric layers are sequentially formed outward. It was decided to form thinly. As a result, the capacity of the piezoelectric sounding body can be reduced without sacrificing the amount of displacement as an element, and the current value can be kept low, preventing the occurrence of failure and downsizing. Applicable to. In particular, it is suitable for use in portable electronic devices such as mobile phones and smartphones.

10:圧電駆動素子
12,14:積層圧電体
20〜26,30〜36:圧電体層
40〜46,52〜58:電極層
50,60〜68:側面電極
70:支持板
80,90:枠
82:開口部
92:空間
94:底面
96:放音孔
100:圧電駆動素子
102:不活性層
110:圧電駆動素子
112:シム板(支持板)
120:圧電駆動素子
122:振動板
DESCRIPTION OF SYMBOLS 10: Piezoelectric drive element 12, 14: Laminated piezoelectric material 20-26, 30-36: Piezoelectric layer 40-46, 52-58: Electrode layer 50, 60-68: Side electrode 70: Support plate 80, 90: Frame 82: Opening 92: Space 94: Bottom 96: Sound emitting hole 100: Piezoelectric drive element 102: Inactive layer 110: Piezoelectric drive element 112: Shim plate (support plate)
120: Piezoelectric drive element 122: Diaphragm

Claims (7)

変位に寄与する圧電体層が、4層以上かつ偶数層積層されたバイモルフ型の圧電駆動素子を支持板によって支持した圧電発音体であって、
前記複数の圧電体層の間に電極層が形成されており、
積層方向の中央を境に、上下同数の圧電体層が逆方向に分極され、
積層方向の中央部は分極しない層であり、
前記中央から積層方向上下へ向けて圧電体層の厚みが順次薄くなっており、かつ、
前記圧電体層の厚みは、前記中央の境を基点として上下の積層位置が同じものは同じ厚みを有するとともに、
変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとしたときに、前記最も厚い圧電体層の前記中央の境側の面を基点として、該基点からn層(nは自然数)までの厚みが、
dmost×(√n)
を満たすことを特徴とする圧電発音体。
A piezoelectric sounding body in which a piezoelectric layer that contributes to displacement is supported by a support plate with a bimorph type piezoelectric driving element in which four or more layers and even layers are laminated,
An electrode layer is formed between the plurality of piezoelectric layers,
With the center in the stacking direction as a boundary, the same number of piezoelectric layers are polarized in the opposite direction,
The central part in the stacking direction is a non-polarized layer,
The thickness of the piezoelectric layer is gradually reduced from the center upward and downward in the stacking direction, and
The thickness of the piezoelectric layer has the same thickness when the upper and lower lamination positions are the same from the central boundary,
Among the piezoelectric layers contributing to displacement, when the thickness of the thickest piezoelectric layer is t dmost , the nth layer (n Is a natural number)
t dmost × (√n)
A piezoelectric sounding body characterized by satisfying
変位に寄与する圧電体層が、4層以上かつ偶数層積層されたバイモルフ型の圧電駆動素子を支持板によって支持した圧電発音体であって、
前記複数の圧電体層の間に電極層が形成されており、
積層方向の中央を境に、上下同数の圧電体層が逆方向に分極され、
積層方向の中央部はシム板からなり、
前記中央から積層方向上下へ向けて圧電体層の厚みが順次薄くなっており、かつ、
前記圧電体層の厚みは、前記中央の境を基点として上下の積層位置が同じものは同じ厚みを有するとともに、
変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとしたときに、前記最も厚い圧電体層の前記中央の境側の面を基点として、該基点からn層(nは自然数)までの厚みが、
dmost×(√n)
を満たすことを特徴とする圧電発音体。
A piezoelectric sounding body in which a piezoelectric layer that contributes to displacement is supported by a support plate with a bimorph type piezoelectric driving element in which four or more layers and even layers are laminated,
An electrode layer is formed between the plurality of piezoelectric layers,
With the center in the stacking direction as a boundary, the same number of piezoelectric layers are polarized in the opposite direction,
The central part in the stacking direction consists of shim plates,
The thickness of the piezoelectric layer is gradually reduced from the center upward and downward in the stacking direction, and
The thickness of the piezoelectric layer has the same thickness when the upper and lower lamination positions are the same from the central boundary,
Among the piezoelectric layers contributing to displacement, when the thickness of the thickest piezoelectric layer is t dmost , the nth layer (n Is a natural number)
t dmost × (√n)
A piezoelectric sounding body characterized by satisfying
変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとし、変位に寄与する圧電体層の層数を2nとしたときに、
全層厚が、
2×tdmost×(√n)
であることを特徴とする請求項1又は2記載の圧電発音体。
Of the piezoelectric layers contributing to displacement, when the thickness of the thickest piezoelectric layer is t dmost and the number of piezoelectric layers contributing to displacement is 2n,
The total thickness is
2 x t dmost x (√n)
The piezoelectric sounding body according to claim 1 or 2, wherein
変位に寄与する圧電体層が、4層以上かつ偶数層積層されたバイモルフ型の圧電駆動素子を支持板によって支持した圧電発音体であって、
前記複数の圧電体層の間に電極層が形成されており、
積層方向の中央を境に、上下同数の圧電体層が逆方向に分極され、
積層方向の中央部は分極しない層であり、
前記中央から積層方向上下へ向けて圧電体層の厚みが順次薄くなっており、かつ、
前記圧電体層の厚みは、前記中央の境を基点として上下の積層位置が同じものは同じ厚みを有しており、
変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとし、前記中央の境からn層目(nは自然数)の前記電極層の厚みをtie(n)としたときに、
前記最も厚い圧電体層の前記中央の境側の面を基点として、該基点からn層までの厚みが、
dmost×(√n)+Σie(n-1)
であることを特徴とする圧電発音体。
A piezoelectric sounding body in which a piezoelectric layer that contributes to displacement is supported by a support plate with a bimorph type piezoelectric driving element in which four or more layers and even layers are laminated,
An electrode layer is formed between the plurality of piezoelectric layers,
With the center in the stacking direction as a boundary, the same number of piezoelectric layers are polarized in the opposite direction,
The central part in the stacking direction is a non-polarized layer,
The thickness of the piezoelectric layer is gradually reduced from the center upward and downward in the stacking direction, and
The thickness of the piezoelectric layer has the same thickness when the upper and lower lamination positions are the same from the central boundary,
Of the piezoelectric layers contributing to displacement, the thickness of the thickest piezoelectric layer is t dmost, and the thickness of the electrode layer of the nth layer (n is a natural number) from the central boundary is t ie (n) In addition,
Starting from the central boundary side surface of the thickest piezoelectric layer, the thickness from the base point to the n layer is as follows:
t dmost × (√n) + Σ ie (n−1)
A piezoelectric sounding body characterized by being.
変位に寄与する圧電体層が、4層以上かつ偶数層積層されたバイモルフ型の圧電駆動素子を支持板によって支持した圧電発音体であって、
前記複数の圧電体層の間に電極層が形成されており、
積層方向の中央を境に、上下同数の圧電体層が逆方向に分極され、
積層方向の中央部はシム板からなり、
前記中央から積層方向上下へ向けて圧電体層の厚みが順次薄くなっており、かつ、
前記圧電体層の厚みは、前記中央の境を基点として上下の積層位置が同じものは同じ厚みを有しており、
変位に寄与する圧電体層のうち、最も厚い圧電体層の厚みをtdmostとし、前記中央の境からn層目(nは自然数)の前記電極層の厚みをtie(n)としたときに、
前記最も厚い圧電体層の前記中央の境側の面を基点として、該基点からn層までの厚みが、
dmost×(√n)+Σie(n-1)
であることを特徴とする圧電発音体。
A piezoelectric sounding body in which a piezoelectric layer that contributes to displacement is supported by a support plate with a bimorph type piezoelectric driving element in which four or more layers and even layers are laminated,
An electrode layer is formed between the plurality of piezoelectric layers,
With the center in the stacking direction as a boundary, the same number of piezoelectric layers are polarized in the opposite direction,
The central part in the stacking direction consists of shim plates,
The thickness of the piezoelectric layer is gradually reduced from the center upward and downward in the stacking direction, and
The thickness of the piezoelectric layer has the same thickness when the upper and lower lamination positions are the same from the central boundary,
Of the piezoelectric layers contributing to displacement, the thickness of the thickest piezoelectric layer is t dmost, and the thickness of the electrode layer of the nth layer (n is a natural number) from the central boundary is t ie (n) In addition,
Starting from the central boundary side surface of the thickest piezoelectric layer, the thickness from the base point to the n layer is as follows:
t dmost × (√n) + Σ ie (n−1)
A piezoelectric sounding body characterized by being.
前記圧電体層の各層の厚みは、前記比率に対して±10%の誤差が許容されることを特徴とする請求項1〜5のいずれか一項に記載の圧電発音体。   The piezoelectric sounding body according to claim 1, wherein an error of ± 10% is allowed for the thickness of each layer of the piezoelectric body layer with respect to the ratio. 請求項1〜6のいずれか一項に記載の圧電発音体を利用したことを特徴とする電子機器。   An electronic apparatus using the piezoelectric sounding body according to any one of claims 1 to 6.
JP2014249302A 2011-12-20 2014-12-09 Piezoelectric sounding body and electronic device using the same Active JP5832000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249302A JP5832000B2 (en) 2011-12-20 2014-12-09 Piezoelectric sounding body and electronic device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011278536 2011-12-20
JP2011278536 2011-12-20
JP2014249302A JP5832000B2 (en) 2011-12-20 2014-12-09 Piezoelectric sounding body and electronic device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012270854A Division JP5665836B2 (en) 2011-12-20 2012-12-11 Piezoelectric sounding body and electronic device using the same

Publications (2)

Publication Number Publication Date
JP2015046947A true JP2015046947A (en) 2015-03-12
JP5832000B2 JP5832000B2 (en) 2015-12-16

Family

ID=52672041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249302A Active JP5832000B2 (en) 2011-12-20 2014-12-09 Piezoelectric sounding body and electronic device using the same

Country Status (1)

Country Link
JP (1) JP5832000B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131135A1 (en) * 2017-12-28 2019-07-04 Tdk株式会社 Piezoelectric element
KR20190127126A (en) * 2018-05-03 2019-11-13 엘지이노텍 주식회사 Piezoelectric device, piezoelectric actuator including the device, and piezoelectric module including the actuator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289342A (en) * 1996-04-19 1997-11-04 Sony Corp Multilayer piezoelectric actuator
JP2003259488A (en) * 2002-03-06 2003-09-12 Taiyo Yuden Co Ltd Sound output device and electronic equipment
JP2010517282A (en) * 2007-01-23 2010-05-20 エプコス アクチエンゲゼルシャフト Piezoelectric element
JP2011155126A (en) * 2010-01-27 2011-08-11 Kyocera Corp Piezoelectric laminated component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289342A (en) * 1996-04-19 1997-11-04 Sony Corp Multilayer piezoelectric actuator
JP2003259488A (en) * 2002-03-06 2003-09-12 Taiyo Yuden Co Ltd Sound output device and electronic equipment
JP2010517282A (en) * 2007-01-23 2010-05-20 エプコス アクチエンゲゼルシャフト Piezoelectric element
JP2011155126A (en) * 2010-01-27 2011-08-11 Kyocera Corp Piezoelectric laminated component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131135A1 (en) * 2017-12-28 2019-07-04 Tdk株式会社 Piezoelectric element
JP2019121664A (en) * 2017-12-28 2019-07-22 Tdk株式会社 Piezoelectric element
US11581479B2 (en) 2017-12-28 2023-02-14 Tdk Corporation Piezoelectric element
KR20190127126A (en) * 2018-05-03 2019-11-13 엘지이노텍 주식회사 Piezoelectric device, piezoelectric actuator including the device, and piezoelectric module including the actuator
KR102626340B1 (en) * 2018-05-03 2024-01-17 엘지이노텍 주식회사 Piezoelectric device, piezoelectric actuator including the device, and piezoelectric module including the actuator

Also Published As

Publication number Publication date
JP5832000B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5665836B2 (en) Piezoelectric sounding body and electronic device using the same
JP6395002B2 (en) Circuit board mounting structure of multilayer ceramic capacitor
US8148876B2 (en) Piezoelectric actuator and electronic apparatus
US6653762B2 (en) Piezoelectric type electric acoustic converter
US7446458B2 (en) Piezoelectric ceramic element and portable device
US20090096326A1 (en) Piezoelectric actuator, acoustic component, and electronic device
JP4662072B2 (en) Piezoelectric acoustic element, acoustic device, and portable terminal device
KR20190036265A (en) Composite electronic component and board for mounting the same
JP2013258279A (en) Packaging structure and packaging method
JP6263849B2 (en) Multilayer ceramic capacitor
JPWO2009078184A1 (en) Piezoelectric acoustic transducer
JP5694409B2 (en) Multilayer ceramic capacitor and multilayer ceramic capacitor mounting board
JP2014107537A (en) Multilayer ceramic capacitor, and circuit board mounting structure of the same
CN102291657B (en) Bicrystal piezoelectric ceramic loudspeaker
JP5832000B2 (en) Piezoelectric sounding body and electronic device using the same
JPWO2011129116A1 (en) Piezoelectric speaker
JP2011244379A (en) Piezoelectric sounder
KR20170015263A (en) Piezoelectric Speaker and Method of Manufacturing the Same
JP6787553B2 (en) Piezoelectric element
US20060028097A1 (en) Piezoelectric loudspeaker
JP2014060478A (en) Acoustic generator, acoustic generation device and electronic apparatus
KR101715767B1 (en) Piezoelectric element for Piezoelectric Speaker
US11107636B2 (en) Multilayer capacitor and board having the same mounted thereon
JP2019147122A (en) Vibration generator and electronic equipment
JP3967676B2 (en) Condenser microphone unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151023

R150 Certificate of patent or registration of utility model

Ref document number: 5832000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250