JP2015045704A - Optical fiber - Google Patents

Optical fiber Download PDF

Info

Publication number
JP2015045704A
JP2015045704A JP2013175954A JP2013175954A JP2015045704A JP 2015045704 A JP2015045704 A JP 2015045704A JP 2013175954 A JP2013175954 A JP 2013175954A JP 2013175954 A JP2013175954 A JP 2013175954A JP 2015045704 A JP2015045704 A JP 2015045704A
Authority
JP
Japan
Prior art keywords
refractive index
core
optical fiber
cladding
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013175954A
Other languages
Japanese (ja)
Other versions
JP6095064B2 (en
Inventor
泰志 坂本
Yasushi Sakamoto
泰志 坂本
信智 半澤
Nobutomo Hanzawa
信智 半澤
松井 隆
Takashi Matsui
隆 松井
恭三 辻川
Kyozo Tsujikawa
恭三 辻川
晋聖 齊藤
Kunimasa Saito
晋聖 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Hokkaido University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Nippon Telegraph and Telephone Corp filed Critical Hokkaido University NUC
Priority to JP2013175954A priority Critical patent/JP6095064B2/en
Publication of JP2015045704A publication Critical patent/JP2015045704A/en
Application granted granted Critical
Publication of JP6095064B2 publication Critical patent/JP6095064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical fiber having small leakage loss.SOLUTION: An optical fiber comprises: a core part 11; a cladding part 12 surrounding the core part 11 and whose refractive index is smaller than a refractive index of the core part 11; and a covering part 13 surrounding an outer circumferential edge of the cladding part 12 and whose refractive index is larger than the refractive index of the cladding part 12 and smaller than an effective refractive index of a waveguide mode of the core part 11.

Description

本発明は、漏洩損失の小さい光ファイバに関する。   The present invention relates to an optical fiber with small leakage loss.

光損失低減のため、漏洩損失の小さい光ファイバが検討されている(例えば、非特許文献1〜2参照。)。   In order to reduce optical loss, optical fibers with low leakage loss have been studied (for example, see Non-Patent Documents 1 and 2).

また、伝送容量の拡大のために、複数の異なる波長の光を波長多重した光ファイバ通信システムでは、光ファイバ中で発生する非線形効果やファイバヒューズが問題となり、伝送の大容量化が制限されている。これらの制限を緩和するために、1本の光ファイバ中に複数のコアを有するマルチコアファイバが検討されている(例えば、非特許文献3〜7参照。)。   In addition, in order to expand transmission capacity, optical fiber communication systems in which multiple wavelengths of light are wavelength-multiplexed have problems with nonlinear effects and fiber fuses that occur in the optical fiber, limiting transmission capacity. Yes. In order to alleviate these restrictions, a multi-core fiber having a plurality of cores in one optical fiber has been studied (for example, see Non-Patent Documents 3 to 7).

Y. Katsuyama, M. Tokuda, N. Uchida, and M. Nakahara, “New method for measuring V−value of a single−mode optical fibre”,Electron. Lett., vol. 12, pp. 669−670, Dec. 1976.Y. Katsyuyama, M .; Tokuda, N.A. Uchida, and M.M. Nakahara, “New method for measuring V-value of a single-mode optical fiber”, Electron. Lett. , Vol. 12, pp. 669-670, Dec. 1976. 「導波光学」(12章)、左貝 潤一著、共立出版、2004年"Waveguide optics" (Chapter 12), Junichi Sakai, Kyoritsu Shuppan, 2004 H. Takara et al., “1.01−Pb/s (12 SDM/222 WDM/456 Gb/s)Crosstalk−managed Transmission with 91.4−b/s/Hz Aggregate Spectral Efficiency”, in ECOC2012, paper Th.3.C.1 (2012)H. Takara et al. , “1.01-Pb / s (12 SDM / 222 WDM / 456 Gb / s) Crosstalk-managed Transmission with 91.4-b / s / Hz Aggregate Spectral Efficiency”, in ECOC2012, h. 3. C. 1 (2012) J. Sakaguchi et al., “305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19−Core Fiber”, J. Lightwave Technol. vol.31, pp.554−562 (2013).J. et al. Sakaguchi et al. "305 Tb / s Space Division Multiplexed Transmission Using Homegeneous 19-Core Fiber", J., et al. Lightwave Technol. vol. 31, pp. 554-562 (2013). T. Hayashi et al., “Design and fabrication of ultra−low crosstalk and low−loss multi−core fiber”, Opt. Express vol.19, pp.16576−16592(2011).T. T. et al. Hayashi et al. "Design and fabrication of ultra-low cross and low-loss multi-core fiber", Opt. Express vol.19, pp. 16576-16592 (2011). K. Imamura et al., “Multi Core Fiber with Large Aeff of 140 μm2 and Low Crosstalk”, in ECOC2012, paper Mo.1.F.2K. Imamura et al. , “Multi Core Fiber with Large Aeff of 140 μm2 and Low Crosstalk”, in ECOC2012, paper Mo. 1. F. 2 T. Hayashi et al., “Uncoupled multi−core fiber enhancing signal−to−noise ratio”, Opt. Express vol.20, pp.B94−B103 (2012).T. T. et al. Hayashi et al. "Uncoupled multi-core fiber enhancing signal-to-noise ratio", Opt. Express vol. 20, pp. B94-B103 (2012).

漏洩損失を小さくするために、コア部の中心からクラッド部の外周端までのクラッド厚を厚くすると、クラッド部の外径が大きくなるという問題がある。クラッド部の外径が大きくなると、光ファイバの曲げに対する機械的信頼性が劣化してしまう。   If the cladding thickness from the center of the core part to the outer peripheral end of the cladding part is increased in order to reduce leakage loss, there is a problem that the outer diameter of the cladding part increases. When the outer diameter of the clad portion is increased, the mechanical reliability against bending of the optical fiber is deteriorated.

マルチコア光ファイバでも、漏洩損失を小さくするために、クラッド部の外周端に最も近い位置にあるコア部の中心からクラッド部の外周端までのクラッド厚を厚くすると、クラッド部の外径が大きくなるという問題がある。クラッド部の外径が大きくなると、クラッド部の断面の単位面積当たりに存在するコア部の数が低下し、空間利用効率が低下してしまう。また、光ファイバの曲げに対する機械的信頼性が劣化するだけでなく、マルチコア光ファイバ同士の接続の際、接続損失を一定以下とするために許容される角度ずれが小さくなってしまう。   Even in a multi-core optical fiber, in order to reduce leakage loss, increasing the cladding thickness from the center of the core closest to the outer periphery of the cladding to the outer periphery of the cladding increases the outer diameter of the cladding. There is a problem. When the outer diameter of the clad portion increases, the number of core portions existing per unit area of the cross section of the clad portion decreases, and space utilization efficiency decreases. Further, not only the mechanical reliability against bending of the optical fiber is deteriorated, but also when the multi-core optical fibers are connected to each other, an allowable angular deviation is reduced in order to keep the connection loss below a certain level.

そこで、前記課題を解決するために、本発明は、クラッド部の外径を大きくすることなく、漏洩損失の小さい光ファイバを提供することを目的とする。   Therefore, in order to solve the above-described problems, an object of the present invention is to provide an optical fiber having a small leakage loss without increasing the outer diameter of the cladding portion.

上記目的を達成するために、クラッド部の外周端を包囲する被覆部の屈折率を所定の範囲内の光ファイバとした。   In order to achieve the above object, the refractive index of the covering portion surrounding the outer peripheral end of the cladding portion is an optical fiber within a predetermined range.

具体的には、本発明は、
コア部と、
前記コア部を包囲し、屈折率が前記コア部の屈折率より小さいクラッド部と、
前記クラッド部の外周端を包囲し、屈折率が前記クラッドの屈折率より大きく、前記コア部の導波モードの実効屈折率より小さい被覆部と、
を備えることを特徴とする光ファイバ
である。
この構成によれば、クラッド部の外径を大きくすることなく、漏洩損失の小さい光ファイバを提供することが可能である。
Specifically, the present invention provides:
The core,
A cladding that surrounds the core and has a refractive index less than the refractive index of the core;
Surrounding the outer peripheral edge of the cladding part, a coating part having a refractive index larger than the refractive index of the cladding part and smaller than the effective refractive index of the waveguide mode of the core part;
An optical fiber comprising:
According to this configuration, it is possible to provide an optical fiber with a small leakage loss without increasing the outer diameter of the cladding portion.

また、本発明の光ファイバは、前記コア部の中心から前記クラッド部の外周端までのクラッド厚が35μm以下としてもよい。
この構成によれば、漏洩損失が小さく、クラッド厚の薄い光ファイバを提供することが可能である
In the optical fiber of the present invention, the cladding thickness from the center of the core part to the outer peripheral end of the cladding part may be 35 μm or less.
According to this configuration, it is possible to provide an optical fiber having a small leakage loss and a thin cladding thickness.

また、本発明の光ファイバは、前記コア部を複数有してもよい。
この構成によれば、クラッド部の外径を大きくすることなく、漏洩損失が小さいマルチコア光ファイバを提供することが可能である。
The optical fiber of the present invention may have a plurality of the core portions.
According to this configuration, it is possible to provide a multi-core optical fiber with a small leakage loss without increasing the outer diameter of the cladding portion.

また、本発明の光ファイバは、前記複数のコア部のうち、前記クラッド部の外周端に最も近い位置にあるコア部の中心から前記クラッド部の外周端までのクラッド厚が35μm以下としてもよい。
この構成によれば、漏洩損失が小さく、クラッド厚の薄いマルチコア光ファイバを提供することが可能である
The optical fiber of the present invention may have a cladding thickness of 35 μm or less from the center of the core portion closest to the outer peripheral end of the cladding portion to the outer peripheral end of the cladding portion among the plurality of core portions. .
According to this configuration, it is possible to provide a multi-core optical fiber having a small leakage loss and a thin cladding thickness.

本発明の光ファイバは、クラッド部の外径を大きくすることなく、漏洩損失を小さくすることができる。   The optical fiber of the present invention can reduce the leakage loss without increasing the outer diameter of the cladding.

本発明の光ファイバの断面構造を示す概略図である。It is the schematic which shows the cross-section of the optical fiber of this invention. 本発明のマルチコア光ファイバの断面構造を示す概略図である。It is the schematic which shows the cross-section of the multi-core optical fiber of this invention. 波長1550nmにおける被覆部の屈折率に対する漏洩損失の変化を示した図である。It is the figure which showed the change of the leakage loss with respect to the refractive index of the coating | coated part in wavelength 1550nm. Δcoat>Δneffの場合の転移点の変化に関する概念図である。It is a conceptual diagram regarding the change of the transition point in the case of (DELTA) coat> (DELTA) neff. Δcoat<Δneffの場合の転移点の変化に関する概念図である。It is a conceptual diagram regarding the change of the transition point in the case of (DELTA) coat <(DELTA) neff. 波長1625nmにおける被覆部の屈折率に対する漏洩損失の変化を示した図である。It is the figure which showed the change of the leakage loss with respect to the refractive index of the coating | coated part in wavelength 1625nm.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

本発明の光ファイバの断面構造を示す概略を図1に示す。図1において、コア部11の周囲にクラッド部12が配置され、クラッド部12の周囲が被覆部13で覆われている。コア部11、クラッド部12及び被覆部13の屈折率は、それぞれ、n、n及びnである。クラッド厚は、コア部11の中心からクラッド部12の外周端までの距離CTで定義される。 FIG. 1 schematically shows the cross-sectional structure of the optical fiber of the present invention. In FIG. 1, a cladding portion 12 is disposed around a core portion 11, and the periphery of the cladding portion 12 is covered with a covering portion 13. Refractive index of the core portion 11, the clad portion 12 and the covering portion 13, respectively, is n 1, n 2 and n 3. The clad thickness is defined by a distance CT from the center of the core part 11 to the outer peripheral end of the clad part 12.

また、本発明のマルチコア光ファイバの断面構造を示す概略を図2に示す。図2において、複数のコア部11の周囲にクラッド部12が配置され、クラッド部12の周囲が被覆部13で覆われている。コア部11、クラッド部12及び被覆部13の屈折率は、それぞれ、n、n及びnである。クラッド厚は、コア部11のうち、クラッド部12の外周端に最も近い位置にあるコア部11の中心からクラッド部12の外周端までの距離CTで定義される。 Moreover, the outline which shows the cross-section of the multi-core optical fiber of this invention is shown in FIG. In FIG. 2, a clad part 12 is disposed around a plurality of core parts 11, and the clad part 12 is covered with a covering part 13. Refractive index of the core portion 11, the clad portion 12 and the covering portion 13, respectively, is n 1, n 2 and n 3. The clad thickness is defined by a distance CT from the center of the core portion 11 located closest to the outer peripheral end of the clad portion 12 to the outer peripheral end of the clad portion 12 in the core portion 11.

以下の説明は、図1に示す光ファイバ及び図2に示すマルチコア光ファイバに共通する。   The following description is common to the optical fiber shown in FIG. 1 and the multi-core optical fiber shown in FIG.

ここで、コア部11のクラッド部12に対する比屈折率差Δcore及び被覆部13のクラッド部12に対する比屈折率差Δcoatは以下の式であらわされる。
Δcore=(n −n )/(2n ) (1)
Δcoat=(n −n )/(2n ) (2)
上記式(1)、式(2)において、n>nであり、被覆部13の屈折率を1.5程度にすれば、コア部11の比屈折率差は高くても1%程度であることから、n>n>nの関係を実現できる。
Here, the relative refractive index difference Δcore of the core portion 11 with respect to the cladding portion 12 and the relative refractive index difference Δcoat of the covering portion 13 with respect to the cladding portion 12 are expressed by the following equations.
Δ core = (n 1 2 −n 2 2 ) / (2n 1 2 ) (1)
Δ coat = (n 3 2 −n 2 2 ) / (2n 3 2 ) (2)
In the above formulas (1) and (2), if n 1 > n 2 and the refractive index of the covering portion 13 is about 1.5, the relative refractive index difference of the core portion 11 is at most about 1%. Therefore, the relationship of n 3 > n 1 > n 2 can be realized.

なお、n>nの条件は、コア部11及びクラッド部12の材料を純石英ガラス、またはゲルマニウム(Ge)やアルミニウム(Al)、リン(P)などの屈折率を増加させる不純物や、フッ素(F)、ボロン(B)などの屈折率を低減させる不純物を添加した石英ガラスを用いることで実現できる。 The condition of n 1 > n 2 is that the material of the core portion 11 and the cladding portion 12 is pure quartz glass, or impurities such as germanium (Ge), aluminum (Al), phosphorus (P), or the like that increase the refractive index, This can be realized by using quartz glass to which an impurity such as fluorine (F) or boron (B) is added to reduce the refractive index.

被覆部13の比屈折率差に対する漏洩損失の関係を計算したものを図3に示す。図3では、コア部11の中心からクラッド部12の外周端までの距離であるクラッド厚CTを20〜40μmの範囲で変化させている。波長については1550nmであり、コア部11の半径は4.5μm、Δcoreは0.35%、漏洩損失は光ファイバの曲げ半径140mmのときの損失としている。この光ファイバの構造においては、コア部11の導波モードの実効屈折率neffは、クラッド部12に対する導波モードの比屈折率差Δneffが0.169%となる値である。   FIG. 3 shows a calculation of the relationship between the leakage loss and the relative refractive index difference of the covering portion 13. In FIG. 3, the cladding thickness CT, which is the distance from the center of the core portion 11 to the outer peripheral end of the cladding portion 12, is changed in the range of 20 to 40 μm. The wavelength is 1550 nm, the radius of the core 11 is 4.5 μm, Δcore is 0.35%, and the leakage loss is the loss when the bending radius of the optical fiber is 140 mm. In this optical fiber structure, the effective refractive index neff of the waveguide mode of the core portion 11 is such that the relative refractive index difference Δneff of the waveguide mode with respect to the cladding portion 12 is 0.169%.

ここで、曲げ半径140mmとした理由は、非特許文献1に記載の通り遮断波長の測定に曲げ半径140mmが用いられており、光ケーブル敷設時に光ファイバが受ける曲げの実効的な半径が140mmとなるからである。   Here, the reason for setting the bending radius to 140 mm is that, as described in Non-Patent Document 1, the bending radius of 140 mm is used for measuring the cutoff wavelength, and the effective radius of bending that the optical fiber receives when laying the optical cable is 140 mm. Because.

図3に示す計算結果から、漏洩損失は被覆部13の屈折率が大きい領域ではほとんど変化せず、ある値を閾値として漏洩損失が下がる。このコア部11においては、導波モードの実効屈折率をneffとし、クラッド部12に対する導波モードの比屈折率差は次式で表される。
Δneff=(nneff −n )/(2nneff ) (3)
前述のように、比屈折率差Δneffが0.169%であったが、計算の結果、図3の閾値がこのΔneffに対応することがわかった。つまり、被覆部13の屈折率nがコア部11の導波モードの実効屈折率neffより大きい領域では漏洩損失は変化しないが、被覆部13の屈折率nが導波モードの実効屈折率neffより小さくなると漏洩損失が低減されることがわかった。
From the calculation results shown in FIG. 3, the leakage loss hardly changes in the region where the refractive index of the covering portion 13 is large, and the leakage loss decreases with a certain value as a threshold value. In the core portion 11, the effective refractive index of the waveguide mode is neff, and the relative refractive index difference of the waveguide mode with respect to the cladding portion 12 is expressed by the following equation.
Δ neff = (n neff 2 −n 2 2 ) / (2n neff 2 ) (3)
As described above, the relative refractive index difference Δneff was 0.169%. As a result of calculation, it was found that the threshold value in FIG. 3 corresponds to this Δneff. That is, the refractive index n 3 of the cover portion 13 is leakage loss in the effective refractive index neff larger area of the guided mode of the core portion 11 does not change, the effective refractive index refractive index n 3 is guided modes of the cover portion 13 It has been found that leakage loss is reduced when it is smaller than neff.

これは、図4に示すようにΔcoat>Δneffの場合、転移点r(被覆の屈折率がneffを上回る位置)はΔcoatに依存しないため、曲げ損失の値は、クラッド厚CTが一定であればΔcoatに依存しないが、図5に示すようにΔcoat<Δneffの場合、Δcoatが小さくなるほど転移点rは大きくなり、クラッド厚CTが一定であれば、Δcoatの値が小さいほど曲げ損失の値は小さくなるからである。非特許文献2に記載の通り、転移点を超えた位置の電界は振動特性を示し、放射成分となる。転移点がファイバ中心からクラッド部12の側に移動することで、転移点以降に存在する電界強度が小さくなり、放射する電界パワーの量が小さくなるためである。 As shown in FIG. 4, when Δcoat> Δneff, the transition point r c (the position where the refractive index of the coating exceeds neff) does not depend on Δcoat. Therefore, the bending loss value should be constant for the cladding thickness CT. If does not depend on Derutacoat, when the Δcoat <Δneff as shown in FIG. 5, as the transition point r c Δcoat decreases increases, if the cladding thickness CT is constant, the value of bending loss as the value of Derutacoat small This is because becomes smaller. As described in Non-Patent Document 2, an electric field at a position exceeding the transition point shows vibration characteristics and becomes a radiation component. This is because when the transition point moves from the center of the fiber to the clad portion 12 side, the electric field strength existing after the transition point decreases, and the amount of electric field power to be radiated decreases.

また、被覆部13の屈折率差nがクラッド部12の屈折率nより小さくなると、クラッド部12をコアとし、被覆部13をクラッドとした多数の伝搬モードが発生し、マルチモード化することから好ましくない。 When the refractive index difference n 3 of the covering portion 13 is smaller than the refractive index n 2 of the cladding portion 12, a large number of propagation modes are generated with the cladding portion 12 as a core and the covering portion 13 as a cladding. That is not preferable.

0%<Δcoat<Δneff、つまり屈折率で表現して、n2<3<neffとすることで、クラッド厚CTの減少に伴う漏洩損失の増加を抑圧することができ、従来の光ファイバよりクラッド厚CTを低減可能である。マルチコア光ファイバの場合は、小さな外径のクラッド部12に多数のコア部11を配置することができ、空間利用効率を向上させることができる。 By expressing 0% <Δcoat <Δneff, that is, refractive index, and n 2 < n 3 < neff, an increase in leakage loss due to a decrease in cladding thickness CT can be suppressed. The cladding thickness CT can be reduced. In the case of a multi-core optical fiber, a large number of core portions 11 can be arranged in the cladding portion 12 having a small outer diameter, and space utilization efficiency can be improved.

同様に、波長1625nmにおける被覆の比屈折率差に対する漏洩損失の関係を計算したものを図6に示す。波長以外の条件は、図3と同様である。この光ファイバの構造においては、コア部11の導波モードの実効屈折率neffは、クラッド部12に対する導波モードの比屈折率差Δneffが0.159%となる値である。一般的には、波長が長くなると漏洩損失が増加するため、1550nmの時の計算結果より漏洩損失が大きくなっているが、Δneffを境に漏洩損失が下がる傾向は同じである。   Similarly, FIG. 6 shows a calculation of the relationship of leakage loss to the relative refractive index difference of the coating at a wavelength of 1625 nm. Conditions other than the wavelength are the same as in FIG. In this optical fiber structure, the effective refractive index neff of the waveguide mode of the core portion 11 is such that the relative refractive index difference Δneff of the waveguide mode with respect to the cladding portion 12 is 0.159%. Generally, since the leakage loss increases as the wavelength becomes longer, the leakage loss is larger than the calculation result at 1550 nm, but the tendency of the leakage loss to decrease at Δneff is the same.

ITU−Tのファイバ勧告G.652において、光損失の上限が0.4dB/kmと規定されており、波長1625nmにおいて0.4dB/km以下であれば、一般的に用いられている1625nm以下の通信波長帯で漏洩損失を0.4dB/km以下とすることができる。被覆部13の屈折率を制限しない場合、つまりn>n>nの関係にある時にはCT>35μmとしなければならないが、被覆部13の屈折率を0%<Δcoat<Δneffとすることで、CT<35μmの領域においても漏洩損失を0.4dB/km以下とすることができる。 ITU-T Fiber Recommendation G. In 652, the upper limit of optical loss is defined as 0.4 dB / km, and if the wavelength is 16 dB nm or less at 0.4 dB / km, the leakage loss is reduced to 0 in the communication wavelength band of 1625 nm or less that is generally used. .4 dB / km or less. When the refractive index of the covering portion 13 is not limited, that is, when n 3 > n 1 > n 2 , CT> 35 μm is required, but the refractive index of the covering portion 13 should be 0% <Δcoat <Δneff. Thus, the leakage loss can be 0.4 dB / km or less even in the region of CT <35 μm.

本発明は、光通信システムの伝送媒体として適用することができるため、光通信システムに利用することができる。   Since the present invention can be applied as a transmission medium of an optical communication system, it can be used for an optical communication system.

11:コア部
12:クラッド部
13:被覆部
11: Core part 12: Cladding part 13: Covering part

Claims (4)

コア部と、
前記コア部を包囲し、屈折率が前記コア部の屈折率より小さいクラッド部と、
前記クラッド部の外周端を包囲し、屈折率が前記クラッドの屈折率より大きく、前記コア部の導波モードの実効屈折率より小さい被覆部と、
を備えることを特徴とする光ファイバ。
The core,
A cladding that surrounds the core and has a refractive index less than the refractive index of the core;
Surrounding the outer peripheral edge of the cladding part, a coating part having a refractive index larger than the refractive index of the cladding part and smaller than the effective refractive index of the waveguide mode of the core part;
An optical fiber comprising:
前記コア部の中心から前記クラッド部の外周端までのクラッド厚が35μm以下であることを特徴とする請求項1に記載の光ファイバ。   The optical fiber according to claim 1, wherein a clad thickness from the center of the core part to an outer peripheral end of the clad part is 35 μm or less. 前記コア部を複数有することを特徴とする請求項1に記載の光ファイバ。   The optical fiber according to claim 1, comprising a plurality of the core portions. 前記複数のコア部のうち、前記クラッド部の外周端に最も近い位置にあるコア部の中心から前記クラッド部の外周端までのクラッド厚が35μm以下であることを特徴とする請求項3に記載の光ファイバ。   4. The clad thickness from the center of the core portion closest to the outer peripheral end of the clad portion to the outer peripheral end of the clad portion among the plurality of core portions is 35 μm or less. Optical fiber.
JP2013175954A 2013-08-27 2013-08-27 Optical fiber Active JP6095064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175954A JP6095064B2 (en) 2013-08-27 2013-08-27 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175954A JP6095064B2 (en) 2013-08-27 2013-08-27 Optical fiber

Publications (2)

Publication Number Publication Date
JP2015045704A true JP2015045704A (en) 2015-03-12
JP6095064B2 JP6095064B2 (en) 2017-03-15

Family

ID=52671272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175954A Active JP6095064B2 (en) 2013-08-27 2013-08-27 Optical fiber

Country Status (1)

Country Link
JP (1) JP6095064B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157639A1 (en) * 2015-03-30 2016-10-06 住友電気工業株式会社 Optical fiber leakage loss measurement method
WO2019172079A1 (en) * 2018-03-08 2019-09-12 古河電気工業株式会社 Optical fiber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301701A (en) * 1989-05-17 1990-12-13 Hitachi Cable Ltd Curved optical waveguide
JP2001174661A (en) * 1999-12-16 2001-06-29 Mitsubishi Rayon Co Ltd Plastic multifilament type optical fiber, method for manufacturing the same and optical fiber cable
JP2004191748A (en) * 2002-12-12 2004-07-08 Mitsubishi Rayon Co Ltd Multi-filament type optical fiber made of plastic, optical fiber cable, and optical fiber cable with plug
JP2007179058A (en) * 2005-12-27 2007-07-12 Furukawa Electric North America Inc Optical fiber having parabolic profile with bend-compensated design
WO2012108467A1 (en) * 2011-02-09 2012-08-16 古河電気工業株式会社 Optical fiber and optical transmission system
WO2012124816A1 (en) * 2011-03-17 2012-09-20 古河電気工業株式会社 Optical fiber, light transmission system, and measurement method for optical fiber
JP2013088818A (en) * 2011-10-17 2013-05-13 Sehf-Korea Co Ltd Bend loss-minimized optical fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301701A (en) * 1989-05-17 1990-12-13 Hitachi Cable Ltd Curved optical waveguide
JP2001174661A (en) * 1999-12-16 2001-06-29 Mitsubishi Rayon Co Ltd Plastic multifilament type optical fiber, method for manufacturing the same and optical fiber cable
JP2004191748A (en) * 2002-12-12 2004-07-08 Mitsubishi Rayon Co Ltd Multi-filament type optical fiber made of plastic, optical fiber cable, and optical fiber cable with plug
JP2007179058A (en) * 2005-12-27 2007-07-12 Furukawa Electric North America Inc Optical fiber having parabolic profile with bend-compensated design
WO2012108467A1 (en) * 2011-02-09 2012-08-16 古河電気工業株式会社 Optical fiber and optical transmission system
WO2012124816A1 (en) * 2011-03-17 2012-09-20 古河電気工業株式会社 Optical fiber, light transmission system, and measurement method for optical fiber
JP2013088818A (en) * 2011-10-17 2013-05-13 Sehf-Korea Co Ltd Bend loss-minimized optical fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157639A1 (en) * 2015-03-30 2016-10-06 住友電気工業株式会社 Optical fiber leakage loss measurement method
JPWO2016157639A1 (en) * 2015-03-30 2018-01-25 住友電気工業株式会社 Optical fiber leakage loss measurement method
WO2019172079A1 (en) * 2018-03-08 2019-09-12 古河電気工業株式会社 Optical fiber
JP2019158941A (en) * 2018-03-08 2019-09-19 古河電気工業株式会社 Optical fiber
JP2021152684A (en) * 2018-03-08 2021-09-30 古河電気工業株式会社 Optical fiber
US11314017B2 (en) 2018-03-08 2022-04-26 Furukawa Electric Co., Ltd. Optical fiber
US11709313B2 (en) 2018-03-08 2023-07-25 Furukawa Electric Co., Ltd. Optical fiber
JP7371062B2 (en) 2018-03-08 2023-10-30 古河電気工業株式会社 optical fiber

Also Published As

Publication number Publication date
JP6095064B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6177994B2 (en) Multi-core fiber
CN107111053B (en) Multi-core optical fiber
US8737793B2 (en) Multi-core optical fiber and method of manufacturing the same
JP6156359B2 (en) Multi-core optical fiber
WO2011024808A1 (en) Multi-core fiber
JP6397898B2 (en) Low-mode optical fiber for space division multiplexing.
US20120134637A1 (en) Multi-core optical fiber and method of manufacturing the same
JP4851371B2 (en) Optical fiber and optical fiber transmission line
WO2014134103A1 (en) Low attenuation optical fibers with an f-graded index core
US20220214496A1 (en) Multi-core optical fiber and design method
JP2013167861A (en) Multi-core fiber
JP6611250B2 (en) Multi-core optical fiber and multi-core optical fiber design method
JP2006227173A (en) Multimode dispersion compensating fiber, mode dispersion compensating method, optical waveguide, optical transmission line, and optical communication system
JP6082875B2 (en) Low attenuation optical fiber with large effective area
US9400352B2 (en) Polarization-maintaining optical fiber
US10310176B2 (en) Multi-core fiber
US10267984B2 (en) Optical fiber
JP6095064B2 (en) Optical fiber
CN114127597A (en) Multi-core optical fiber and design method
JP5118107B2 (en) Hole structure optical fiber
Watanabe et al. High density and low cross talk design of heterogeneous multi-core fiber with air hole assisted double cladding
JP6048890B2 (en) Optical fiber
JP2015212757A (en) Multi-mode optical fiber and design method of multi-mode optical fiber
JP2006221052A (en) Multimode dispersion compensating fiber, method for compensating mode dispersion, optical waveguide, optical transmission line, and optical communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170208

R150 Certificate of patent or registration of utility model

Ref document number: 6095064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250