JP2015044201A - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP2015044201A
JP2015044201A JP2014250927A JP2014250927A JP2015044201A JP 2015044201 A JP2015044201 A JP 2015044201A JP 2014250927 A JP2014250927 A JP 2014250927A JP 2014250927 A JP2014250927 A JP 2014250927A JP 2015044201 A JP2015044201 A JP 2015044201A
Authority
JP
Japan
Prior art keywords
water
reaction tank
raw water
reverse osmosis
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014250927A
Other languages
Japanese (ja)
Other versions
JP5865473B2 (en
Inventor
舞奈 星
Maina Hoshi
舞奈 星
洋平 高橋
Yohei Takahashi
洋平 高橋
祐司 塚本
Yuji Tsukamoto
祐司 塚本
大場 将純
Masazumi Oba
将純 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2014250927A priority Critical patent/JP5865473B2/en
Publication of JP2015044201A publication Critical patent/JP2015044201A/en
Application granted granted Critical
Publication of JP5865473B2 publication Critical patent/JP5865473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method highly purifying industrial waste water or the like, thus suppressing the propagation of bacteria, and also capable of obtaining more impurity-free reutilizable permeable water.SOLUTION: Provided is a water treatment method including: a reduction step of reducing sterilization effective components in raw water to obtain reduced water; an ion exchange step of removing anions included in the reduced water to obtain anion exchange treatment water; and a reverse osmosis membrane treatment step of treating the anion exchange treatment water with a reverse osmosis membrane to obtain permeable water.

Description

本発明は水処理方法および水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus.

工場排水等を高度に浄化し、不純物を含まない水を得る方法が、従来提案されている。
例えば、特許文献1には、過酢酸含有水を活性炭と接触させた後、アニオン交換樹脂と接触させることを特徴とする過酢酸含有水の処理方法が記載されており、このような処理方法によれば、過酢酸含有水から過酢酸を効率的に除去して、水の回収、有効利用を図ることができると記載されている。
例えば、特許文献2には、過酢酸含有排水の処理装置であって、内部に過酢酸還元用触媒が収容され、供給される過酢酸含有排水中の過酢酸を酢酸に分解する過酢酸分解部と、前記過酢酸分解部からの酢酸含有水が供給され、酢酸を生物処理により分解する生物処理部と、を含むことを特徴とする過酢酸含有排水の処理装置が記載されており、このような処理装置によれば安価でかつ簡便に、過酢酸の分解除去、さらには、過酢酸分解後に生じる酢酸の除去または分解を実施することができ、その結果、処理装置から排出される処理水は、工場用水や生活用水に再利用可能となり、水資源の有効活用を図ることが可能となると記載されている。
A method of highly purifying industrial waste water and the like to obtain water free of impurities has been proposed.
For example, Patent Document 1 describes a method for treating peracetic acid-containing water, wherein the peracetic acid-containing water is brought into contact with activated carbon and then contacted with an anion exchange resin. According to this document, it is described that peracetic acid can be efficiently removed from peracetic acid-containing water to achieve water recovery and effective use.
For example, Patent Document 2 discloses a peracetic acid-containing wastewater treatment apparatus that contains a peracetic acid reduction catalyst and decomposes peracetic acid in peracetic acid-containing wastewater to be supplied into acetic acid. And a biological treatment unit that is supplied with acetic acid-containing water from the peracetic acid decomposition unit and decomposes the acetic acid by biological treatment. With a simple treatment apparatus, it is possible to carry out decomposition and removal of peracetic acid, and further, removal or decomposition of acetic acid generated after the decomposition of peracetic acid. As a result, treated water discharged from the treatment apparatus is It is described that it can be reused for factory water and domestic water, and water resources can be used effectively.

特開2001−129564号公報JP 2001-129564 A 特開2001−170657号公報JP 2001-170657 A

しかしながら、特許文献1、2に記載の従来法では、得られる処理水に含まれる不純物濃度が十分に低いとはいえず、さらに処理装置内が細菌の温床となり易く、処理水中へ細菌が流出するなど、改善の余地があった。   However, in the conventional methods described in Patent Documents 1 and 2, it cannot be said that the concentration of impurities contained in the obtained treated water is sufficiently low, and the inside of the treatment apparatus tends to be a hotbed of bacteria, and the bacteria flow out into the treated water. There was room for improvement.

本発明は上記の課題を解決することを目的とする。すなわち、工場排水等を高度に浄化して、より不純物濃度が低く、細菌数の少ない透過水が得られる水処理方法および水処理装置を提供することを目的とする。   The present invention aims to solve the above-described problems. That is, an object of the present invention is to provide a water treatment method and a water treatment apparatus capable of highly purifying factory wastewater and the like to obtain permeate having a lower impurity concentration and a smaller number of bacteria.

本発明者は鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(8)である。
(1)原水中の殺菌有効成分を還元して還元水を得る還元工程と、
前記還元水に含まれる陰イオンを除去して、陰イオン交換処理水を得るイオン交換工程と、
前記陰イオン交換処理水を逆浸透膜によって処理して透過水を得る逆浸透膜処理工程と
を備える水処理方法。
(2)電荷を持たない有機化合物である無電荷有機物と結合してイオン体を形成するイオン体形成物質を、原水へ添加して添加水を得る添加工程と、
前記添加水を逆浸透膜によって処理して透過水を得る逆浸透膜処理工程と
を備える水処理方法。
(3)電荷を持たない有機化合物である無電荷有機物と結合してイオン体を形成するイオン体形成物質を、前記還元水および/または前記陰イオン交換処理水へ添加する添加工程をさらに備え、
前記逆浸透膜処理工程において、さらに前記無電荷有機物が除去された前記透過水が得られる、上記(1)に記載の水処理方法。
(4)前記還元工程が、
還元剤が内部に充填された第1反応槽および第2反応槽と、これらの槽の上端部を繋げる連通部とを備える還元装置を用い、
前記第1反応槽内へ前記原水を上向きに通水し、前記第1反応槽の上端部から流出した前記原水を、連通部を介して前記第2反応槽内に流入させ、前記第2反応槽内では前記原水を下向きに通水させて、前記第2反応槽の下部から排出させた前記還元水を得る処理[α]と、
前記第2反応槽内へ前記原水を上向きに通水し、前記第2反応槽の上端部から流出した前記原水を、連通部を介して前記第1反応槽内に流入させ、前記第1反応槽内では前記原水を下向きに通水させて、前記第1反応槽の下部から排出させた前記還元水を得る処理[β]と
の2つの処理を交互に行う、上記(1)または(3)に記載の水処理方法。
(5)前記原水中の殺菌有効成分を還元して還元水を排出する還元部と、
前記還元水を受け入れ、前記還元水に含まれる陰イオンを除去して、陰イオン交換処理水を排出するイオン交換部と、
前記陰イオン交換処理水を逆浸透膜によって処理して透過水を排出する逆浸透膜処理部と
を有する水処理装置。
(6)電荷を持たない有機化合物である無電荷有機物と結合してイオン体を形成するイオン体形成物質を、原水へ添加して添加水を得る添加手段と、
前記添加水を逆浸透膜によって処理して透過水を得る逆浸透膜処理部と
を有する水処理装置。
(7)電荷を持たない有機化合物である無電荷有機物と結合してイオン体を形成するイオン体形成物質を、前記還元水および/または前記陰イオン交換処理水へ添加する添加手段をさらに有し、
前記逆浸透膜処理部において、さらに前記無電荷有機物が除去された前記透過水が得られる、上記(5)に記載の水処理装置。
(8)前記還元部が、
還元剤が内部に充填された第1反応槽および第2反応槽と、これらの槽の上端部を繋げる連通部とを有する還元装置であって、
前記第1反応槽内へ前記原水を上向きに通水し、前記第1反応槽の上端部から流出した前記原水を、連通部を介して前記第2反応槽内に流入させ、前記第2反応槽内では前記原水を下向きに通水させて、前記第2反応槽の下部から排出させた前記還元水を得る処理[α]と、
前記第2反応槽内へ前記原水を上向きに通水し、前記第2反応槽の上端部から流出した前記原水を、連通部を介して前記第1反応槽内に流入させ、前記第1反応槽内では前記原水を下向きに通水させて、前記第1反応槽の下部から排出させた前記還元水を得る処理[β]と
の2つの処理を交互に行うことができるように構成されている、上記(5)または(7)に記載の水処理装置。
The inventor has intensively studied and completed the present invention.
The present invention includes the following (1) to (8).
(1) a reduction step of reducing the sterilizing active ingredient in the raw water to obtain reduced water;
An ion exchange step of removing anion contained in the reduced water to obtain anion exchange treated water;
A water treatment method comprising: a reverse osmosis membrane treatment step of obtaining permeated water by treating the anion exchange treated water with a reverse osmosis membrane.
(2) an addition step of adding an ionic body-forming substance that forms an ionic body by combining with an uncharged organic substance that is an organic compound having no charge to raw water to obtain added water;
A water treatment method comprising: a reverse osmosis membrane treatment step of obtaining permeated water by treating the added water with a reverse osmosis membrane.
(3) an addition step of adding an ionic body-forming substance that forms an ionic body by combining with an uncharged organic substance, which is an organic compound having no charge, to the reduced water and / or the anion exchange treated water;
The water treatment method according to (1), wherein in the reverse osmosis membrane treatment step, the permeated water from which the uncharged organic matter is further removed is obtained.
(4) The reduction step includes
Using a reducing device comprising a first reaction tank and a second reaction tank filled with a reducing agent, and a communicating part connecting the upper ends of these tanks,
The raw water is passed upwardly into the first reaction tank, and the raw water that has flowed out from the upper end of the first reaction tank is caused to flow into the second reaction tank through the communication part, and the second reaction is performed. In the tank, the raw water is passed downward to obtain the reduced water discharged from the lower part of the second reaction tank [α],
The raw water is allowed to flow upward into the second reaction tank, and the raw water that has flowed out from the upper end of the second reaction tank is caused to flow into the first reaction tank through the communication portion, so that the first reaction is performed. In the tank, the raw water is passed downward, and the two processes of the process [β] for obtaining the reduced water discharged from the lower part of the first reaction tank are alternately performed (1) or (3 ) Water treatment method.
(5) a reducing unit that reduces the sterilizing active ingredient in the raw water to discharge reduced water;
An ion exchange unit that receives the reduced water, removes anions contained in the reduced water, and discharges the anion exchange treated water;
A water treatment apparatus comprising: a reverse osmosis membrane treatment unit for treating the anion exchange treated water with a reverse osmosis membrane and discharging permeated water.
(6) an addition means for adding an ionic body-forming substance that forms an ionic body by combining with an uncharged organic substance that is an organic compound having no charge to obtain added water;
The water treatment apparatus which has a reverse osmosis membrane process part which processes the said addition water with a reverse osmosis membrane, and obtains permeated water.
(7) It further has an addition means for adding an ionic body-forming substance that forms an ionic body by combining with an uncharged organic substance that is an organic compound having no charge to the reduced water and / or the anion exchange treated water. ,
The water treatment device according to (5), wherein the reverse osmosis membrane treatment unit further obtains the permeated water from which the uncharged organic substances are removed.
(8) The reducing unit is
A reduction device having a first reaction tank and a second reaction tank filled with a reducing agent, and a communication part connecting the upper ends of these tanks,
The raw water is passed upwardly into the first reaction tank, and the raw water that has flowed out from the upper end of the first reaction tank is caused to flow into the second reaction tank through the communication part, and the second reaction is performed. In the tank, the raw water is passed downward to obtain the reduced water discharged from the lower part of the second reaction tank [α],
The raw water is allowed to flow upward into the second reaction tank, and the raw water that has flowed out from the upper end of the second reaction tank is caused to flow into the first reaction tank through the communication portion, so that the first reaction is performed. In the tank, the raw water is allowed to flow downward, and the two processes [beta] for obtaining the reduced water discharged from the lower part of the first reaction tank can be alternately performed. The water treatment device according to (5) or (7) above.

本発明によれば、工場排水等を高度に浄化して、より不純物濃度が低く、細菌数の少ない透過水が得られる水処理方法および水処理装置を提供することができる。   According to the present invention, it is possible to provide a water treatment method and a water treatment apparatus capable of highly purifying factory wastewater and the like and obtaining permeate having a lower impurity concentration and a smaller number of bacteria.

本発明の態様1の水処理方法を説明するための概略図である。It is the schematic for demonstrating the water treatment method of the aspect 1 of this invention. 本発明の態様2の水処理方法を説明するための概略図である。It is the schematic for demonstrating the water treatment method of the aspect 2 of this invention. 本発明の態様3の水処理方法を説明するための概略図である。It is the schematic for demonstrating the water treatment method of aspect 3 of this invention. 好ましい還元部を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating a preferable reduction | restoration part. 好ましい還元部を説明するための別の概略断面図である。It is another schematic sectional drawing for demonstrating a preferable reduction | restoration part.

本発明について、3つの態様を挙げて説明する。   The present invention will be described with reference to three embodiments.

<態様1>
本発明は、原水中の殺菌有効成分を還元して還元水を得る還元工程と、前記還元水に含まれる陰イオンを除去して、陰イオン交換処理水を得るイオン交換工程と、前記陰イオン交換処理水を逆浸透膜によって処理して透過水を得る逆浸透膜処理工程とを備える水処理方法である。
このような水処理方法を、以下では「態様1」ともいう。
<Aspect 1>
The present invention provides a reduction step for reducing sterilizing active ingredients in raw water to obtain reduced water, an ion exchange step for removing anions contained in the reduced water to obtain anion exchange treated water, and the anions. A water treatment method comprising a reverse osmosis membrane treatment step of obtaining permeated water by treating exchange-treated water with a reverse osmosis membrane.
Hereinafter, such a water treatment method is also referred to as “mode 1”.

態様1について図を用いて説明する。
図1は、態様1を実施することができる水処理装置の概念図である。
図1において水処理装置10は、原水13を受け入れ、原水13に含まれる殺菌有効成分を還元して還元水15を排出する還元部12と、還元水15を受け入れ、還元水15に含まれる陰イオンを除去して、陰イオン交換処理水17を排出するイオン交換部14と、陰イオン交換処理水17を逆浸透膜によって処理して透過水19を排出する逆浸透膜処理部16とを有する。
Aspect 1 will be described with reference to the drawings.
FIG. 1 is a conceptual diagram of a water treatment apparatus capable of implementing the first aspect.
In FIG. 1, a water treatment apparatus 10 receives raw water 13, reduces a sterilizing active component contained in the raw water 13 and discharges the reduced water 15, and accepts the reduced water 15 and the negative water contained in the reduced water 15. Ion exchange part 14 which removes ions and discharges anion exchange treated water 17 and reverse osmosis membrane treatment part 16 which treats anion exchange treated water 17 with a reverse osmosis membrane and discharges permeate 19 .

態様1では、無菌水をベースとして殺菌有効成分および陰イオン成分を含んだ原水13を処理することが好ましい。
例えば飲料工場では、製品液をペットボトルへ充填する前に、過酸化水素や過酢酸を主成分とする薬品(例えば、過酢酸を0.5質量%、酢酸を0.5質量%、過酸化水素を1質量%含むもの)をペットボトルの内面に噴霧して殺菌した後、高温で熱処理された無菌水によって内面を洗浄する操作が行われている。そして、このような操作によって、殺菌有効成分(過酸化水素、過酢酸等)および陰イオン成分(酢酸等)を含む排水が排出される。
このような排水(原水)について本発明における態様1の水処理方法によって処理することで、排水(原水)に含まれる殺菌有効成分および陰イオン成分の全てが除去された透過水を得ることができる。また、本発明における態様1の水処理方法では、細菌の増殖を抑制しながら水処理するので、逆浸透膜を透過させて得られる透過水において微生物の増加と、さらに細菌による逆浸透膜のファウリングを抑制することができ、その結果、この方法を利用する水処理装置の稼働率を高め、逆浸透膜の交換回数を減らして、操業コストを低減することもできる。
In the aspect 1, it is preferable to treat the raw water 13 containing the sterilizing active ingredient and the anionic ingredient on the basis of sterile water.
For example, in a beverage factory, before filling a plastic bottle with a product liquid, chemicals based on hydrogen peroxide or peracetic acid (for example, 0.5% by mass of peracetic acid, 0.5% by mass of acetic acid, peroxide) An operation of washing the inner surface with aseptic water heat-treated at high temperature is performed after spraying and sterilizing the inner surface of the PET bottle with 1% by mass of hydrogen). And by such operation, the waste_water | drain containing a disinfection active ingredient (hydrogen peroxide, peracetic acid, etc.) and an anion component (acetic acid etc.) is discharged | emitted.
By treating such waste water (raw water) by the water treatment method according to aspect 1 of the present invention, permeated water from which all of the sterilizing active ingredients and anion components contained in the waste water (raw water) are removed can be obtained. . In the water treatment method according to aspect 1 of the present invention, the water treatment is carried out while suppressing the growth of bacteria. Therefore, the increase in microorganisms in the permeated water obtained by permeating the reverse osmosis membrane, and the reverse osmosis membrane fouling caused by bacteria. The ring can be suppressed, and as a result, the operating rate of the water treatment apparatus using this method can be increased, the number of replacement of the reverse osmosis membrane can be reduced, and the operating cost can be reduced.

<態様2>
本発明は、電荷を持たない有機化合物である無電荷有機物と結合してイオン体を形成するイオン体形成物質を、原水へ添加して添加水を得る添加工程と、前記添加水を逆浸透膜によって処理して透過水を得る逆浸透膜処理工程とを備える水処理方法である。
このような水処理方法を、以下では「態様2」ともいう。
<Aspect 2>
The present invention includes an addition step of adding an ionic body-forming substance that forms an ionic body by combining with an uncharged organic substance that is an organic compound having no charge to raw water to obtain added water, and the added water is used as a reverse osmosis membrane. A reverse osmosis membrane treatment step for obtaining permeated water by treatment with a water treatment method.
Hereinafter, such a water treatment method is also referred to as “aspect 2”.

なお、態様2では、態様1および後述する態様3と同様のイオン交換部を備えていてもよい。この場合、態様2における前記イオン体形成物質は、イオン交換部によって処理する前の原水に添加してもよいし、イオン交換部によって処理した後の原水に添加してもよい。   In aspect 2, the same ion exchange part as in aspect 1 and aspect 3 described later may be provided. In this case, the ionic body-forming substance in the aspect 2 may be added to the raw water before being processed by the ion exchange part, or may be added to the raw water after being processed by the ion exchange part.

態様2について図を用いて説明する。
図2は、態様2を実施することができる水処理装置の概念図である。
図2において水処理装置20は、電荷を持たない有機化合物である無電荷有機物と結合してイオン体を形成するイオン体形成物質を、原水23へ添加して添加水26を得る添加手段18と、添加水26を逆浸透膜によって処理して透過水29を得る逆浸透膜処理部16とを有する。
Aspect 2 will be described with reference to the drawings.
FIG. 2 is a conceptual diagram of a water treatment apparatus that can implement the second embodiment.
In FIG. 2, the water treatment apparatus 20 includes an adding means 18 that adds an ionic body forming substance that forms an ionic body by combining with an uncharged organic substance that is an organic compound having no charge to the raw water 23 to obtain added water 26. The reverse osmosis membrane treatment unit 16 obtains the permeated water 29 by treating the added water 26 with a reverse osmosis membrane.

態様2では、無菌水をベースとして、電荷を持たない有機化合物である無電荷有機物(ホルムアルデヒド等)を含んだ原水23を処理することが好ましい。
例えば飲料工場では、製品液をペットボトルへ充填する前に、過酸化水素や過酢酸を主成分とする薬品(例えば、過酢酸を0.5質量%、酢酸を0.5質量%、過酸化水素を1質量%含むもの)をペットボトルの内面に噴霧して殺菌した後、高温で熱処理された無菌水によって内面を洗浄する操作が行われている。そして、このような操作によって、ホルムアルデヒドに代表される前記無電荷有機物を含む排水が排出される。
このような排水(原水)について本発明における態様2の水処理方法によって処理することで、排水(原水)に含まれるホルムアルデヒド等の無電荷有機物も除去された透過水を得ることができる。
In the aspect 2, it is preferable to treat the raw water 23 containing uncharged organic matter (formaldehyde or the like) which is an organic compound having no charge, based on sterile water.
For example, in a beverage factory, before filling a plastic bottle with a product liquid, chemicals based on hydrogen peroxide or peracetic acid (for example, 0.5% by mass of peracetic acid, 0.5% by mass of acetic acid, peroxide) An operation of washing the inner surface with aseptic water heat-treated at high temperature is performed after spraying and sterilizing the inner surface of the PET bottle with 1% by mass of hydrogen). And by such operation, the waste_water | drain containing the said uncharged organic substance represented by formaldehyde is discharged | emitted.
By treating such waste water (raw water) by the water treatment method of aspect 2 in the present invention, permeated water from which uncharged organic substances such as formaldehyde contained in the waste water (raw water) are also removed can be obtained.

<態様3>
本発明は、態様1が備える構成を全て備え、さらに、電荷を持たない無電荷有機物と結合してイオン体を形成するイオン体形成物質を、前記還元水および/または前記陰イオン交換処理水へ添加する添加工程を備え、前記逆浸透膜処理工程において前記無電荷有機物が除去された前記透過水が得られる水処理方法である。
このような水処理方法を、以下では「態様3」ともいう。
<Aspect 3>
The present invention includes all the configurations included in the aspect 1, and further converts an ionic body forming substance that forms an ionic body by combining with an uncharged organic substance having no charge into the reduced water and / or the anion exchange treated water. The water treatment method includes an addition step of adding, and the permeated water from which the non-charged organic matter is removed in the reverse osmosis membrane treatment step is obtained.
Hereinafter, such a water treatment method is also referred to as “aspect 3”.

態様3について図を用いて説明する。
図3は、態様3を実施することができる水処理装置の概念図である。
図3において水処理装置30は、原水33を受け入れ、原水33に含まれる殺菌有効成分を還元して還元水15を排出する還元部12と、還元水15を受け入れ、還元水15に含まれる陰イオンを除去して、陰イオン交換処理水17を排出するイオン交換部14と、電荷を持たない無電荷有機物と結合してイオン体を形成するイオン体形成物質を陰イオン交換処理水17へ添加する添加手段18と、陰イオン交換処理水17へ前記イオン体形成物質を添加して得られる添加水26を逆浸透膜によって処理して透過水39を排出する逆浸透膜処理部16とを有する。
ここで前記イオン体形成物質は陰イオン交換処理水17ではなく、還元水15へ添加してもよいし、還元水15と陰イオン交換処理水17との両方に添加してもよい。
Aspect 3 will be described with reference to the drawings.
FIG. 3 is a conceptual diagram of a water treatment apparatus that can implement the third embodiment.
In FIG. 3, the water treatment device 30 receives the raw water 33, reduces the sterilizing active component contained in the raw water 33 and discharges the reduced water 15, and receives the reduced water 15 and the negative water contained in the reduced water 15. An ion exchange part 14 that removes ions and discharges the anion exchange treated water 17 and an ion forming substance that forms an ionic body by combining with an uncharged organic substance having no charge are added to the anion exchange treated water 17 And a reverse osmosis membrane treatment unit 16 for treating the added water 26 obtained by adding the ion-forming substance to the anion exchange treated water 17 with a reverse osmosis membrane and discharging the permeated water 39. .
Here, the ion-forming substance may be added to the reduced water 15 instead of the anion exchange treated water 17, or may be added to both the reduced water 15 and the anion exchange treated water 17.

態様3では、無菌水をベースとして、殺菌有効成分および陰イオン成分を含み、さらにホルムアルデヒド等の無電荷有機物を含んだ原水33を処理することが好ましい。
例えば飲料工場では、製品液をペットボトルへ充填する前に、過酸化水素や過酢酸を主成分とする薬品(例えば、過酢酸を0.5質量%、酢酸を0.5質量%、過酸化水素を1質量%含むもの)をペットボトルの内面に噴霧して殺菌した後、高温で熱処理された無菌水によって内面を洗浄する操作が行われている。そして、このような操作によって、殺菌有効成分(過酸化水素、過酢酸等)および陰イオン成分(酢酸等)およびホルムアルデヒド等の無電荷有機物を含む排水が排出される。
このような排水(原水)について本発明における態様3の水処理方法によって処理することで、排水(原水)に含まれる殺菌有効成分および陰イオン成分を全て除去した透過水を得ることができる。また、本発明における態様3の水処理方法では細菌の増殖を抑制しながら水処理するので、逆浸透膜を透過させて得られる透過水において細菌の増加と、さらに細菌による逆浸透膜のファウリングを抑制することができ、その結果、この方法を利用する水処理装置の稼働率を高め、逆浸透膜の交換回数を減らして、操業コストを低減することもできる。
また、このような排水(原水)について本発明における態様3の水処理方法によって処理することで、排水(原水)に含まれる殺菌有効成分および陰イオン成分に加え、ホルムアルデヒド等の無電荷有機物も除去できるので、再度、無菌水として再利用した際に、水道水の飲適基準にも定められているホルムアルデヒド等が透過水中に濃縮することがないため、水処理装置の水回収率を高く設定でき、飲料工場における水処理コストを大幅に低減することができ、環境面の改善にも大幅に貢献できる。
In the aspect 3, it is preferable to treat the raw water 33 containing the sterilizing active ingredient and the anionic ingredient and further containing an uncharged organic substance such as formaldehyde on the basis of sterile water.
For example, in a beverage factory, before filling a plastic bottle with a product liquid, chemicals based on hydrogen peroxide or peracetic acid (for example, 0.5% by mass of peracetic acid, 0.5% by mass of acetic acid, peroxide) An operation of washing the inner surface with aseptic water heat-treated at high temperature is performed after spraying and sterilizing the inner surface of the PET bottle with 1% by mass of hydrogen). And by such operation, the waste_water | drain containing uncharged organic substances, such as a disinfection active ingredient (hydrogen peroxide, peracetic acid, etc.), an anion component (acetic acid, etc.), and formaldehyde, is discharged | emitted.
By treating such waste water (raw water) by the water treatment method of aspect 3 in the present invention, it is possible to obtain permeated water from which all sterilizing active ingredients and anion components contained in the waste water (raw water) have been removed. Further, in the water treatment method according to aspect 3 of the present invention, water treatment is performed while suppressing the growth of bacteria. Therefore, the increase in bacteria in the permeated water obtained by permeating the reverse osmosis membrane, and further fouling of the reverse osmosis membrane by bacteria. As a result, the operating rate of the water treatment device using this method can be increased, the number of replacement of the reverse osmosis membrane can be reduced, and the operating cost can be reduced.
Moreover, in addition to the sterilizing active ingredient and the anion component contained in the waste water (raw water), uncharged organic substances such as formaldehyde are also removed by treating such waste water (raw water) by the water treatment method of aspect 3 in the present invention. Therefore, when the water is reused again as sterile water, the water recovery rate of the water treatment device can be set high because formaldehyde, etc., which is also stipulated in the drinking water standards for tap water, does not concentrate in the permeated water. Water treatment costs at beverage factories can be greatly reduced, and environmental contributions can be greatly improved.

次に、態様1〜3を実施することができる各水処理装置が備える各部について説明する。   Next, each part with which each water treatment apparatus which can implement the aspects 1-3 is provided is demonstrated.

<還元部>
態様1の水処理装置10および態様3の水処理装置30において還元部12は、原水に含まれる殺菌有効成分(酸化剤)を還元して分解する還元能を備える部位であれば特に限定されない。例えば還元剤が内部に充填された反応槽が挙げられる。還元剤としては活性炭、鉄化合物、金属触媒(白金、パラジウム、マンガン等)が挙げられ、これらを担体に担持させた担持触媒を用いることもできる。このような還元剤が内部に充填された反応槽の内部を通過させることで、原水に含まれる殺菌有効成分(酸化剤)を還元して分解することができる。
<Reduction part>
In the water treatment device 10 of the aspect 1 and the water treatment device 30 of the aspect 3, the reducing unit 12 is not particularly limited as long as it has a reducing ability to reduce and decompose the sterilizing active ingredient (oxidant) contained in the raw water. For example, a reaction tank filled with a reducing agent can be mentioned. Examples of the reducing agent include activated carbon, iron compounds, and metal catalysts (platinum, palladium, manganese, etc.), and a supported catalyst in which these are supported on a carrier can also be used. By passing through the inside of the reaction tank filled with such a reducing agent, the sterilizing active ingredient (oxidizing agent) contained in the raw water can be reduced and decomposed.

還元部として還元剤が内部に充填された反応槽を用いる場合、線速度は10〜30m/hrとすることが好ましく、10〜20m/hrとすることがより好ましい。   When a reaction tank filled with a reducing agent is used as the reducing portion, the linear velocity is preferably 10 to 30 m / hr, and more preferably 10 to 20 m / hr.

例えば飲料工場から排出される、過酢酸、酢酸、過酸化水素を含む排水を原水として処理する場合、原水を還元部を通過させる等して、還元部によって還元処理することで、過酢酸は酢酸となり、過酸化水素は水と酸素とに分解される。この場合、還元部から排出された還元水には殺菌有効成分が含まれないため、還元部の下流側において細菌は繁殖し易い。   For example, when wastewater containing peracetic acid, acetic acid and hydrogen peroxide discharged from a beverage factory is treated as raw water, the peracetic acid is acetic acid by reducing the raw water through a reducing part such as by passing the raw water through the reducing part. Thus, hydrogen peroxide is decomposed into water and oxygen. In this case, since the sterilizing active ingredient is not included in the reducing water discharged from the reducing unit, bacteria are likely to propagate on the downstream side of the reducing unit.

本発明の水処理装置において、還元部は、還元剤が内部に充填された第1反応槽および第2反応槽と、これらの槽の上端部を繋げる連通部とを有する還元装置であって、前記第1反応槽内へ前記原水を上向きに通水し、前記第1反応槽の上端部から流出した前記原水を、連通部を介して前記第2反応槽内に流入させ、前記第2反応槽内では前記原水を下向きに通水させて、前記第2反応槽の下部から排出させた前記還元水を得る処理[α]と、前記第2反応槽内へ前記原水を上向きに通水し、前記第2反応槽の上端部から流出した前記原水を、連通部を介して前記第1反応槽内に流入させ、前記第1反応槽内では前記原水を下向きに通水させて、前記第1反応槽の下部から排出させた前記還元水を得る処理[β]との2つの処理を交互に行うことができるように構成されているものであることが好ましい。
このような還元装置について図4、図5を用いて詳細に説明する。
In the water treatment apparatus of the present invention, the reducing unit is a reducing device having a first reaction tank and a second reaction tank filled with a reducing agent, and a communication part connecting the upper ends of these tanks, The raw water is passed upwardly into the first reaction tank, and the raw water that has flowed out from the upper end of the first reaction tank is caused to flow into the second reaction tank through the communication part, and the second reaction is performed. In the tank, the raw water is passed downward to obtain the reduced water discharged from the lower part of the second reaction tank [α], and the raw water is passed upward into the second reaction tank. The raw water flowing out from the upper end of the second reaction tank is caused to flow into the first reaction tank through the communication part, and the raw water is allowed to flow downward in the first reaction tank. Two treatments with the treatment [β] for obtaining the reduced water discharged from the lower part of one reaction tank can be performed alternately. It is preferable that it is comprised so that it can do.
Such a reduction device will be described in detail with reference to FIGS.

図4は、本発明の水処理装置において好ましい態様の還元部であって、縦置きした有底の外筒41内に、縦方向に仕切板42を設置し、この仕切板42によって外筒41内は第1通水路43と第2通水路44とに区画されている。また、外筒41内における仕切板42の上方には空間47が存在している。
そして、第1通水路43の内部に還元剤50を充填して第1反応槽51とし、第2通水路44の内部に還元剤50を充填して第2反応槽52とする。また、空間47は、第1反応槽51と第2反応槽52との上端部を繋げる連通部の役割を果たす。空間47は密閉空間ではなく、系外と繋がっている穴等を備えることが好ましい。原水が第1反応槽51内を通過することにより発生するガスを系外に逃がすことができるからである。
また、第1反応槽51の底部および第2反応槽52の底部にそれぞれ管53、54が接続されている。
FIG. 4 shows a preferred embodiment of the reduction section in the water treatment apparatus of the present invention, in which a partition plate 42 is installed in a vertical direction in a bottomed outer cylinder 41 placed vertically, and the outer cylinder 41 is formed by the partition plate 42. The interior is divided into a first water passage 43 and a second water passage 44. A space 47 exists above the partition plate 42 in the outer cylinder 41.
Then, the reducing agent 50 is filled into the first water passage 43 to form a first reaction tank 51, and the reducing agent 50 is filled into the second water passage 44 to form a second reaction tank 52. The space 47 serves as a communication part that connects the upper ends of the first reaction tank 51 and the second reaction tank 52. The space 47 is preferably not a sealed space but a hole connected to the outside of the system. This is because the gas generated by the raw water passing through the first reaction tank 51 can escape from the system.
Pipes 53 and 54 are connected to the bottom of the first reaction tank 51 and the bottom of the second reaction tank 52, respectively.

このような還元装置40において、管53を通じて原水を底部から第1反応槽51内へ連続的に供給すると、原水は第1反応槽51内を上向きに流れ、第1反応槽51の上端部に達する。そして、上端部から原水は流出し、空間47を介して第2反応槽52内に流入する。さらに、第2反応槽52内では原水を下向きに流れ、第2反応槽52内を通過した後、第2反応槽52の下部の管54から排出される。   In such a reduction device 40, when raw water is continuously supplied from the bottom into the first reaction tank 51 through the pipe 53, the raw water flows upward in the first reaction tank 51 and reaches the upper end of the first reaction tank 51. Reach. And raw | natural water flows out from an upper end part, and flows in in the 2nd reaction tank 52 through the space 47. FIG. Further, the raw water flows downward in the second reaction tank 52, passes through the second reaction tank 52, and then is discharged from the pipe 54 below the second reaction tank 52.

このような前記第1反応槽内へ前記原水を上向きに通水し、前記第1反応槽の上端部から流出した前記原水を、連通部を介して前記第2反応槽内に流入させ、前記第2反応槽内では前記原水を下向きに通水させて、前記第2反応槽の下部から排出させた前記還元水を得る処理を「処理[α]」とする。   The raw water is passed upward into the first reaction tank, and the raw water that has flowed out from the upper end of the first reaction tank is caused to flow into the second reaction tank through the communication portion, The process of obtaining the reduced water discharged from the lower part of the second reaction tank by passing the raw water downward in the second reaction tank is referred to as “treatment [α]”.

このような処理[α]によれば、第1反応槽51内では上向き流によって還元剤が流動した状態となるため、還元剤と原水との接触が促進され、原水中の殺菌有効成分の還元を効率的に行うことができる。また、第1反応槽51を通水した後の原水は、殺菌有効成分の濃度が非常に低くなるので、第2反応槽52内でのガスの発生量が相対的に少ない。そのため、還元剤が緻密に充填された第2反応槽52へ下向きに流れることで、原水と還元剤とが密に接触し、第1反応槽51内で分解されなかった僅かに残留する殺菌有効成分をより完全に還元することができる。   According to such a treatment [α], the reducing agent flows in the first reaction tank 51 due to the upward flow, so that the contact between the reducing agent and the raw water is promoted, and the sterilizing active ingredient in the raw water is reduced. Can be performed efficiently. Moreover, since the raw | natural water after passing the 1st reaction tank 51 has the density | concentration of a disinfection active ingredient very low, the generation amount of the gas in the 2nd reaction tank 52 is relatively small. Therefore, the raw water and the reducing agent come into close contact with each other by flowing downward into the second reaction tank 52 that is densely filled with the reducing agent, and the sterilizing effect that remains slightly decomposed in the first reaction tank 51 The components can be reduced more completely.

また、図4に示した還元装置40は、図5に示すように、管54を通じて原水を底部から第2反応槽52内へ連続的に供給することができる。そうすると、原水は第2反応槽52内を上向きに流れ、第2反応槽52の上端部に達する。そして、上端部から原水は流出し、空間47を介して第1反応槽51内に流入する。さらに、第1反応槽51内では原水を下向きに流れ、第1反応槽51内を通過した後、第1反応槽51の下部の管53から排出される。   4 can continuously supply the raw water from the bottom into the second reaction tank 52 through the pipe 54, as shown in FIG. Then, the raw water flows upward in the second reaction tank 52 and reaches the upper end of the second reaction tank 52. And raw | natural water flows out from an upper end part, and flows in in the 1st reaction tank 51 through the space 47. FIG. Further, the raw water flows downward in the first reaction tank 51, passes through the first reaction tank 51, and then is discharged from the pipe 53 below the first reaction tank 51.

このような前記第2反応槽内へ前記原水を上向きに通水し、前記第2反応槽の上端部から流出した前記原水を、連通部を介して前記第1反応槽内に流入させ、前記第1反応槽内では前記原水を下向きに通水させて、前記第1反応槽の下部から排出させた前記還元水を得る処理を「処理[β]」とする。   The raw water is passed upward into the second reaction tank, and the raw water that has flowed out from the upper end of the second reaction tank is caused to flow into the first reaction tank through the communication portion, The process of obtaining the reduced water discharged from the lower part of the first reaction tank by passing the raw water downward in the first reaction tank is referred to as “treatment [β]”.

このような処理[β]を行うと、第2反応槽52内において細菌が増殖することを抑制することができる。
前述の処理[α]のみを長時間継続すると、第2反応槽52内において細菌が増殖する可能性がある。これは処理[α]において、第1反応槽51を上向きに通水することで原水中の殺菌有効成分の多くが還元され、分解されるため、第2反応槽52に流入した原水中には、殺菌有効成分がほとんど含まれないからである。
そこで、上記のような処理[α]と処理[β]とを交互に行うことで、第1反応槽51および第2反応槽52の内部における細菌の増殖を抑制することが好ましい。
When such treatment [β] is performed, it is possible to suppress the growth of bacteria in the second reaction tank 52.
If only the above-mentioned process [α] is continued for a long time, there is a possibility that bacteria grow in the second reaction tank 52. In the treatment [α], since most of the sterilizing active ingredients in the raw water are reduced and decomposed by passing the first reaction tank 51 upward, the raw water flowing into the second reaction tank 52 This is because the sterilizing active ingredient is hardly contained.
Therefore, it is preferable to suppress the growth of bacteria in the first reaction tank 51 and the second reaction tank 52 by alternately performing the process [α] and the process [β] as described above.

<イオン交換部>
態様1の水処理装置10および態様3の水処理装置30においてイオン交換部14は、還元水15に含まれる陰イオンを除去して、陰イオン交換処理水17を排出できる部位であれば特に限定されない。例えば陰イオン交換樹脂(アニオン交換樹脂)を好ましく適用することができる。イオン交換部として、その他には電気式脱塩装置を用いることもできる。
<Ion exchange part>
In the water treatment device 10 according to the aspect 1 and the water treatment device 30 according to the aspect 3, the ion exchange unit 14 is particularly limited as long as it can remove anions contained in the reduced water 15 and discharge the anion exchange treated water 17. Not. For example, an anion exchange resin (anion exchange resin) can be preferably applied. In addition, an electric desalination apparatus can be used as the ion exchange unit.

例えば飲料工場から排出される、無菌水をベースとした過酢酸、酢酸、過酸化水素を含む排水を原水として処理する場合、還元部から排出される還元水には、負電荷を帯びた酢酸イオン(CH3COO-)が含まれる。このような還元水を、例えばアニオン交換樹脂を用いて処理すると、無菌水に含まれる陽イオン(Na+等)とアニオン交換樹脂が陰イオンを交換したさいの水酸化物イオンから苛性ソーダを生成し、陰イオン交換処理水はアルカリ性(例えばpHが9〜11程度)を示すことで、逆浸透膜表面での細菌の増殖を抑制しながら水処理するので、逆浸透膜を透過させて得られる透過水において細菌の増加と、更に細菌による逆浸透膜のファウリングを抑制することができる。 For example, when wastewater containing peracetic acid, acetic acid, and hydrogen peroxide based on sterile water discharged from a beverage factory is treated as raw water, the reduced water discharged from the reducing section contains negatively charged acetate ions. (CH 3 COO ) is included. When such reduced water is treated with, for example, an anion exchange resin, caustic soda is generated from the cation (Na +, etc.) contained in sterile water and the hydroxide ion when the anion exchange resin exchanges anions. The anion-exchanged water is alkaline (for example, pH is about 9 to 11) and is water-treated while suppressing the growth of bacteria on the surface of the reverse osmosis membrane. Therefore, the permeation obtained by allowing the reverse osmosis membrane to permeate. It is possible to suppress the increase of bacteria in water and the fouling of reverse osmosis membranes by bacteria.

<添加手段>
態様2の水処理装置20および態様3の水処理装置30において添加手段18は、原水23またはイオン交換水17へ後述するイオン体形成物質を添加できる手段であれば特に限定されない。例えば、液状のイオン体形成物質の場合、これを配管が繋がっている従来公知の貯留槽に貯留し、ポンプを稼働させることで、貯留槽内から配管を通じてイオン体形成物質を排出し、原水23または陰イオン交換処理水17へ添加する態様のものが挙げられる。さらに、原水23または陰イオン交換処理水17をタンクに貯留し、そのタンクへイオン体形成物質を添加した後、タンク内を混合することが好ましい。粉状のイオン体形成物質を用いる場合であっても、これを従来公知のホッパーに貯留し、ホッパーの下部に設置された切り出し装置からイオン体形成物質を切り出し、原水23または陰イオン交換処理水17へ添加することができる。
<Adding means>
The addition means 18 in the water treatment apparatus 20 of aspect 2 and the water treatment apparatus 30 of aspect 3 is not particularly limited as long as it can add an ion-forming substance described later to the raw water 23 or the ion exchange water 17. For example, in the case of a liquid ion-forming substance, this is stored in a conventionally known storage tank connected to a pipe, and the pump is operated to discharge the ion-forming substance from the inside of the storage tank through the pipe. Or the thing of the aspect added to the anion exchange process water 17 is mentioned. Furthermore, it is preferable to store the raw water 23 or the anion exchange treated water 17 in a tank, add the ion-forming substance to the tank, and then mix the inside of the tank. Even when a powdery ionic body-forming substance is used, this is stored in a conventionally known hopper, and the ionic body-forming substance is cut out from a cutting device installed at the lower part of the hopper, and raw water 23 or anion exchange treated water is used. 17 can be added.

原水23または陰イオン交換処理水17に含まれる無電荷有機物は、電荷を持たずC原子数が3以下の有機化合物であることが好ましい。無電荷有機物はアルデヒド基、カルボキシル基または水酸基を有する有機化合物であることがより好ましく、アルデヒド基を有する有機化合物であることがさらに好ましい。
無電荷有機物として、具体的にはホルムアルデヒド、アセトアルデヒドが例示される。無電荷有機物はホルムアルデヒドであることが好ましい。
The uncharged organic substance contained in the raw water 23 or the anion exchange treated water 17 is preferably an organic compound having no charge and having 3 or less C atoms. The uncharged organic substance is more preferably an organic compound having an aldehyde group, a carboxyl group or a hydroxyl group, and further preferably an organic compound having an aldehyde group.
Specific examples of the uncharged organic substance include formaldehyde and acetaldehyde. The uncharged organic substance is preferably formaldehyde.

添加手段によって添加するイオン体形成物質は、上記のような無電荷有機物と結合してイオン体を形成する。
ここでイオン体とは、水溶液中で電荷を備える化合物を意味するものとする。
イオン体形成物質としては、無機塩を用いることが好ましく、亜硫酸ナトリウム、重亜硫酸ナトリウムまたは亜硫酸水素ナトリウムを用いることがより好ましく、亜硫酸ナトリウムを用いることがさらに好ましい。
The ionic body-forming substance added by the adding means forms an ionic body by combining with an uncharged organic substance as described above.
Here, an ionic body means a compound having a charge in an aqueous solution.
As the ion-forming substance, an inorganic salt is preferably used, sodium sulfite, sodium bisulfite or sodium bisulfite is more preferably used, and sodium sulfite is further preferably used.

例えば無電荷有機物がホルムアルデヒドであり、イオン体形成物質として亜硫酸ナトリウムを用いると、ホルムアルデヒドと亜硫酸ナトリウムとが結合して、CH2(OH)SO3 -を形成すると考えられる。このようなイオン体はイオン交換部や逆浸透処理部で容易に捕捉されるので原水(添加水26、還元水15または陰イオン交換処理水17)中から容易に分離し、除去することができる。 For example, when the uncharged organic substance is formaldehyde and sodium sulfite is used as the ion-forming substance, it is considered that formaldehyde and sodium sulfite are combined to form CH 2 (OH) SO 3 . Since such ionic bodies are easily captured by the ion exchange part or reverse osmosis treatment part, they can be easily separated and removed from the raw water (added water 26, reduced water 15 or anion exchange treated water 17). .

また、前述のように、イオン交換部から排出された陰イオン交換処理水はアルカリ性(例えばpHが9〜11程度のアルカリ性)を呈しているが、添加手段によってイオン体形成物質を添加しても、添加水26はアルカリ性を保持するので、陰イオン交換処理水と同様に細菌は繁殖し難い。   Further, as described above, the anion exchange treated water discharged from the ion exchange section is alkaline (for example, alkaline having a pH of about 9 to 11). Since the added water 26 retains alkalinity, bacteria are unlikely to propagate like the anion exchange treated water.

<逆浸透膜処理部>
態様1、態様2および態様3の水処理装置10、水処理装置20および水処理装置30において逆浸透膜処理部16は、陰イオン交換処理水17または添加水26を逆浸透膜によって処理することで、透過水19、29、39が得られる部位であれば特に限定されない。
逆浸透膜(RO膜)としては、例えば従来公知のものを用いることができる。
<Reverse osmosis membrane processing section>
In the water treatment device 10, the water treatment device 20, and the water treatment device 30 of the first, second, and third embodiments, the reverse osmosis membrane treatment unit 16 treats the anion exchange treated water 17 or the added water 26 with the reverse osmosis membrane. And if it is a site | part from which the permeated water 19, 29, 39 is obtained, it will not specifically limit.
As the reverse osmosis membrane (RO membrane), for example, a conventionally known membrane can be used.

例えば飲料工場で使用される無菌水の補給水には、Na+等の陽イオン成分が存するが、これは逆浸透膜によって分離し、除去できる。また、陰イオン交換処理水中に細菌が存在したとしても、逆浸透膜によって分離し、除去できる。また、添加手段を備える態様(態様2、態様3)の場合、無電荷有機物とイオン体形成物質とが結合してなるイオン体を逆浸透処理部で捕捉して、原水(添加水26、還元水15または陰イオン交換処理水17)中から容易に分離し、除去することができる。 For example, the sterilized water used in a beverage factory contains a cationic component such as Na + which can be separated and removed by a reverse osmosis membrane. Even if bacteria are present in the anion exchange treated water, they can be separated and removed by the reverse osmosis membrane. Moreover, in the case of the aspect (aspect 2 and aspect 3) provided with an addition means, the ionic body formed by combining the uncharged organic substance and the ionic body forming substance is captured by the reverse osmosis treatment unit, and the raw water (added water 26, reduced) It can be easily separated and removed from the water 15 or the anion exchange treated water 17).

<実験1>
図1に示した水処理装置10を用いて、原水を処理した。原水は純水に過酸化水素、過酢酸等を添加したものである。原水の組成を第1表に示す。
また、還元部としては活性炭(水ing社製、エバダイヤLG−10SC)を充填した反応槽を用い、空間速度(LV、線速度)を15m/hr、空塔速度(SV)を15/hrとして、反応槽内へ原水を通水した。
また、イオン交換部としては強塩基性アニオン交換樹脂(Dowex Marathon A)を搭載したアニオン塔を用い、空間速度(LV、線速度)を30m/hr、空塔速度(SV)を30/hrとして還元水を通水した。
また、逆浸透膜処理部においてRO膜は日東電工社製、ES20を用いた。また、通水圧力を0.7MPaとして処理した。
<Experiment 1>
Raw water was treated using the water treatment apparatus 10 shown in FIG. Raw water is obtained by adding hydrogen peroxide, peracetic acid or the like to pure water. The composition of raw water is shown in Table 1.
In addition, a reaction tank filled with activated carbon (Evadia LG-10SC, manufactured by Mizu-ing Co., Ltd.) is used as the reducing unit, the space velocity (LV, linear velocity) is 15 m / hr, and the superficial velocity (SV) is 15 / hr. The raw water was passed through the reaction tank.
In addition, an anion tower equipped with a strongly basic anion exchange resin (Dowex Marathon A) is used as the ion exchange part, the space velocity (LV, linear velocity) is 30 m / hr, and the superficial velocity (SV) is 30 / hr. Reduced water was passed through.
Further, in the reverse osmosis membrane treatment section, the RO membrane was ES20 manufactured by Nitto Denko Corporation. Moreover, the water flow pressure was processed as 0.7 MPa.

そして、還元水、陰イオン交換処理水、透過水の各々における過酢酸濃度(mg/L)、酢酸濃度(mg/L)、Na濃度(mg/L)、生菌数(CFU/mL)、pHを測定した。
測定結果を、第1表に示す。
And peracetic acid concentration (mg / L), acetic acid concentration (mg / L), Na concentration (mg / L), viable cell count (CFU / mL) in each of reduced water, anion exchange treated water and permeated water, The pH was measured.
The measurement results are shown in Table 1.

Figure 2015044201
Figure 2015044201

第1表に示すように細菌、殺菌有効成分、陰イオン成分および陽イオン成分が除去された透過水を得ることができた。また、全工程においてpHが中性の部位がないため、細菌の増殖を抑制しながら処理することができ、細菌による逆浸透膜のファウリングを抑制することができた。   As shown in Table 1, permeated water from which bacteria, sterilizing active ingredients, anionic components and cationic components were removed could be obtained. Moreover, since there was no site | part with neutral pH in all the processes, it was able to process, suppressing the proliferation of bacteria, and to suppress the fouling of the reverse osmosis membrane by bacteria.

<実験2>
図2に示した水処理装置20を用いて、原水を処理した。原水は純水にホルムアルデヒドを0.5mg/Lとなるように添加したものである。
そして、ホルムアルデヒドを添加した後、さらに亜硫酸ナトリウムを10ppmとなるように添加し、10分間撹拌して混合した後、RO膜を用いて処理した。RO膜はOSMONICS社製、AG2521TMを用い、RO回収率は90%とした。また、RO膜で処理する際の処理対象水の水温は35℃であった。
<Experiment 2>
Raw water was treated using the water treatment apparatus 20 shown in FIG. Raw water is obtained by adding formaldehyde to pure water at 0.5 mg / L.
After formaldehyde was added, sodium sulfite was further added to 10 ppm, and the mixture was stirred for 10 minutes and mixed, and then treated with an RO membrane. The RO membrane used was AG2521TM manufactured by OSMONICS, and the RO recovery rate was 90%. Moreover, the water temperature of the process target water at the time of processing by RO membrane was 35 degreeC.

そして、添加水および透過水の各々におけるホルムアルデヒドの濃度(mg/L)を測定した。
測定結果を、第2表に示す。
And the density | concentration (mg / L) of formaldehyde in each of addition water and permeated water was measured.
The measurement results are shown in Table 2.

Figure 2015044201
Figure 2015044201

第2表に示すようにホルムアルデヒドが除去された透過水を得ることができた。   As shown in Table 2, permeated water from which formaldehyde was removed could be obtained.

10、20、30 水処理装置
12 還元部
13、23、33 原水
14 イオン交換部
15 還元水
16 逆浸透処理部
17 陰イオン交換処理水
18 添加手段
19、29、39 透過水
26 添加水
40 還元装置
41 外筒
42 仕切板
43 第1通水路
44 第2通水路
47 空間
50 還元剤
51 第1反応槽
52 第2反応槽
53、54 管
10, 20, 30 Water treatment device 12 Reduction unit 13, 23, 33 Raw water 14 Ion exchange unit 15 Reduced water 16 Reverse osmosis treatment unit 17 Anion exchange treated water 18 Addition means 19, 29, 39 Permeated water 26 Added water 40 Reduction Device 41 Outer cylinder 42 Partition plate 43 First water passage 44 Second water passage 47 Space 50 Reducing agent 51 First reaction tank 52 Second reaction tank 53, 54 Pipe

Claims (4)

原水中の殺菌有効成分を還元して還元水を得る還元工程と、
前記還元水に含まれる陰イオンを除去して、陰イオン交換処理水を得るイオン交換工程と、
前記陰イオン交換処理水を逆浸透膜によって処理して透過水を得る逆浸透膜処理工程と、を備え、
前記還元工程が、
還元剤が内部に充填された第1反応槽および第2反応槽と、これらの槽の上端部を繋げる連通部とを備える還元装置を用い、
前記第1反応槽内へ前記原水を上向きに通水し、前記第1反応槽の上端部から流出した前記原水を、連通部を介して前記第2反応槽内に流入させ、前記第2反応槽内では前記原水を下向きに通水させて、前記第2反応槽の下部から排出させた前記還元水を得る処理[α]と、
前記第2反応槽内へ前記原水を上向きに通水し、前記第2反応槽の上端部から流出した前記原水を、連通部を介して前記第1反応槽内に流入させ、前記第1反応槽内では前記原水を下向きに通水させて、前記第1反応槽の下部から排出させた前記還元水を得る処理[β]と、の2つの処理を交互に行う、水処理方法。
A reduction step of reducing the bactericidal active ingredient in the raw water to obtain reduced water;
An ion exchange step of removing anion contained in the reduced water to obtain anion exchange treated water;
A reverse osmosis membrane treatment step of obtaining permeated water by treating the anion exchange treated water with a reverse osmosis membrane,
The reduction step comprises
Using a reducing device comprising a first reaction tank and a second reaction tank filled with a reducing agent, and a communicating part connecting the upper ends of these tanks,
The raw water is passed upwardly into the first reaction tank, and the raw water that has flowed out from the upper end of the first reaction tank is caused to flow into the second reaction tank through the communication part, and the second reaction is performed. In the tank, the raw water is passed downward to obtain the reduced water discharged from the lower part of the second reaction tank [α],
The raw water is allowed to flow upward into the second reaction tank, and the raw water that has flowed out from the upper end of the second reaction tank is caused to flow into the first reaction tank through the communication portion, so that the first reaction is performed. In the tank, the raw water is passed downward, and the process [β] for obtaining the reduced water discharged from the lower part of the first reaction tank is alternately performed.
電荷を持たない有機化合物である無電荷有機物と結合してイオン体を形成するイオン体形成物質を、前記還元水および/または前記陰イオン交換処理水へ添加する添加工程をさらに備え、
前記逆浸透膜処理工程において、さらに前記無電荷有機物が除去された前記透過水が得られる、請求項1に記載の水処理方法。
An addition step of adding an ionic body-forming substance that forms an ionic body by combining with an uncharged organic substance that is an organic compound having no charge to the reduced water and / or the anion exchange treated water;
The water treatment method according to claim 1, wherein in the reverse osmosis membrane treatment step, the permeated water from which the uncharged organic matter is further removed is obtained.
原水中の殺菌有効成分を還元して還元水を排出する還元部と、
前記還元水を受け入れ、前記還元水に含まれる陰イオンを除去して、陰イオン交換処理水を排出するイオン交換部と、
前記陰イオン交換処理水を逆浸透膜によって処理して透過水を排出する逆浸透膜処理部と、を有し、
前記還元部が、
還元剤が内部に充填された第1反応槽および第2反応槽と、これらの槽の上端部を繋げる連通部とを有する還元装置であって、
前記第1反応槽内へ前記原水を上向きに通水し、前記第1反応槽の上端部から流出した前記原水を、連通部を介して前記第2反応槽内に流入させ、前記第2反応槽内では前記原水を下向きに通水させて、前記第2反応槽の下部から排出させた前記還元水を得る処理[α]と、
前記第2反応槽内へ前記原水を上向きに通水し、前記第2反応槽の上端部から流出した前記原水を、連通部を介して前記第1反応槽内に流入させ、前記第1反応槽内では前記原水を下向きに通水させて、前記第1反応槽の下部から排出させた前記還元水を得る処理[β]と、の2つの処理を交互に行うことができるように構成されている、水処理装置。
A reducing part that reduces the sterilizing active ingredient in the raw water and discharges the reduced water;
An ion exchange unit that receives the reduced water, removes anions contained in the reduced water, and discharges the anion exchange treated water;
A reverse osmosis membrane treatment section for treating the anion exchange treated water with a reverse osmosis membrane and discharging permeated water,
The reducing part is
A reduction device having a first reaction tank and a second reaction tank filled with a reducing agent, and a communication part connecting the upper ends of these tanks,
The raw water is passed upwardly into the first reaction tank, and the raw water that has flowed out from the upper end of the first reaction tank is caused to flow into the second reaction tank through the communication part, and the second reaction is performed. In the tank, the raw water is passed downward to obtain the reduced water discharged from the lower part of the second reaction tank [α],
The raw water is allowed to flow upward into the second reaction tank, and the raw water that has flowed out from the upper end of the second reaction tank is caused to flow into the first reaction tank through the communication portion, so that the first reaction is performed. In the tank, the raw water is passed downward and the process [β] for obtaining the reduced water discharged from the lower part of the first reaction tank can be alternately performed. Water treatment equipment.
電荷を持たない有機化合物である無電荷有機物と結合してイオン体を形成するイオン体形成物質を、前記還元水および/または前記陰イオン交換処理水へ添加する添加手段をさらに有し、
前記逆浸透膜処理部において、さらに前記無電荷有機物が除去された前記透過水が得られる、請求項3に記載の水処理装置。
An addition means for adding an ionic body-forming substance that forms an ionic body by combining with an uncharged organic substance that is an organic compound having no charge to the reduced water and / or the anion exchange treated water;
The water treatment device according to claim 3, wherein the reverse osmosis membrane treatment unit further obtains the permeated water from which the uncharged organic substances are removed.
JP2014250927A 2014-12-11 2014-12-11 Water treatment method and water treatment apparatus Active JP5865473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250927A JP5865473B2 (en) 2014-12-11 2014-12-11 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250927A JP5865473B2 (en) 2014-12-11 2014-12-11 Water treatment method and water treatment apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012101992A Division JP5667122B2 (en) 2012-04-27 2012-04-27 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2015044201A true JP2015044201A (en) 2015-03-12
JP5865473B2 JP5865473B2 (en) 2016-02-17

Family

ID=52670207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250927A Active JP5865473B2 (en) 2014-12-11 2014-12-11 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5865473B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179457A (en) * 2015-03-25 2016-10-13 三浦工業株式会社 Water treatment method and system
CN108495822A (en) * 2016-02-18 2018-09-04 奥加诺株式会社 Using there is the anti-water treatment system and method for treating water for being impregnated with film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126898B2 (en) * 1971-05-18 1976-08-09
JPS60137403A (en) * 1983-12-23 1985-07-22 Sasakura Eng Co Ltd Liquid sealing device using formaldehyde solution
JPH0645696U (en) * 1992-11-25 1994-06-21 株式会社河上 Septic tank
JP2001145890A (en) * 1999-11-22 2001-05-29 Japan Organo Co Ltd Method and apparatus for treating waste water
JP2002307081A (en) * 2001-04-16 2002-10-22 Mitsui Chemicals Engineering Co Ltd Method of recovering container sterilization wastewater
JP2006297365A (en) * 2005-03-23 2006-11-02 Mitsubishi Materials Corp Heavy metal-containing water cleaning system and method
JP2011177708A (en) * 2011-03-29 2011-09-15 Nippon Rensui Co Ltd Apparatus for treating rinser waste water and method of sterilizing apparatus for treating rinser waste water
WO2013146852A1 (en) * 2012-03-29 2013-10-03 栗田工業株式会社 Method for membrane-treating formaldehyde-containing discharge water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126898B2 (en) * 1971-05-18 1976-08-09
JPS60137403A (en) * 1983-12-23 1985-07-22 Sasakura Eng Co Ltd Liquid sealing device using formaldehyde solution
JPH0645696U (en) * 1992-11-25 1994-06-21 株式会社河上 Septic tank
JP2001145890A (en) * 1999-11-22 2001-05-29 Japan Organo Co Ltd Method and apparatus for treating waste water
JP2002307081A (en) * 2001-04-16 2002-10-22 Mitsui Chemicals Engineering Co Ltd Method of recovering container sterilization wastewater
JP2006297365A (en) * 2005-03-23 2006-11-02 Mitsubishi Materials Corp Heavy metal-containing water cleaning system and method
JP2011177708A (en) * 2011-03-29 2011-09-15 Nippon Rensui Co Ltd Apparatus for treating rinser waste water and method of sterilizing apparatus for treating rinser waste water
WO2013146852A1 (en) * 2012-03-29 2013-10-03 栗田工業株式会社 Method for membrane-treating formaldehyde-containing discharge water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179457A (en) * 2015-03-25 2016-10-13 三浦工業株式会社 Water treatment method and system
CN108495822A (en) * 2016-02-18 2018-09-04 奥加诺株式会社 Using there is the anti-water treatment system and method for treating water for being impregnated with film

Also Published As

Publication number Publication date
JP5865473B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
Akhil et al. Occurrence and removal of antibiotics from industrial wastewater
US20180009691A1 (en) Method and apparatus for residential water recycling
JP5667122B2 (en) Water treatment method and water treatment apparatus
CN102138568B (en) Method and equipment for preparing isosmotic disinfection cleaning solution
CN102701528A (en) Deep treatment method for landfill leachate
JP2006289283A (en) Apparatus for treating waste water, apparatus and system for recovering waste water form rinser and method for treating waste water
KR20170141225A (en) Liquid handling systems and methods
KR101840896B1 (en) Ultrapure water production process
JPWO2019216326A1 (en) Filter cleaning method and seawater desalination method
JP5865473B2 (en) Water treatment method and water treatment apparatus
JP2013233489A (en) Water treatment method, and water treatment system
JP2014128802A (en) Water treatment method and water treatment system
JP5184425B2 (en) Aldehyde removal method, aldehyde removal device, container sterilization waste water recovery device, soft drink manufacturing device and drinking water manufacturing device
JP4974276B2 (en) Separation membrane modification method and apparatus, separation membrane modified by the method, and separation membrane operation method and apparatus
JP5829931B2 (en) Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
JP2014138939A (en) Water treatment method and water treatment apparatus
CN104163526B (en) A kind of pH that regulates strengthens the method for nitrosamine precursor in ion exchange removal water
JP2008259967A (en) Method and apparatus for modifying separation membrane, modified separation membrane and method and device for operating separation membrane
CN102076434A (en) Process for disinfecting a filtration works for pretreatment of saltwater, and installation for the implementation thereof
CN204508987U (en) Two matter water purifier
JP5982165B2 (en) Washing wastewater treatment apparatus and washing wastewater treatment method
TW202138307A (en) Water treatment method, water treatment device, and slime inhibitor for membrane
JP7094674B2 (en) Organic wastewater treatment method and treatment equipment
CN212740995U (en) Purified water system with sterilization apparatus
JP2014113591A (en) Water treatment method and water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151225

R150 Certificate of patent or registration of utility model

Ref document number: 5865473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250