JP2015040692A - Molybdenum crucible for metal evaporation and manufacturing method and use method thereof - Google Patents

Molybdenum crucible for metal evaporation and manufacturing method and use method thereof Download PDF

Info

Publication number
JP2015040692A
JP2015040692A JP2013173851A JP2013173851A JP2015040692A JP 2015040692 A JP2015040692 A JP 2015040692A JP 2013173851 A JP2013173851 A JP 2013173851A JP 2013173851 A JP2013173851 A JP 2013173851A JP 2015040692 A JP2015040692 A JP 2015040692A
Authority
JP
Japan
Prior art keywords
molybdenum
metal
crucible
evaporation
metal evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013173851A
Other languages
Japanese (ja)
Inventor
英郎 辺野喜
Hidero Benoki
英郎 辺野喜
松尾 繁
Shigeru Matsuo
松尾  繁
啓 徳本
Hiroshi Tokumoto
啓 徳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2013173851A priority Critical patent/JP2015040692A/en
Publication of JP2015040692A publication Critical patent/JP2015040692A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a molybdenum crucible for metal evaporation hard to react with a molten metal at high temperature.SOLUTION: A molybdenum crucible for metal evaporation is subjected to carbonization in a state where the inner wall surface of a crucible substrate 1-a composed of molybdenum has at least approximate 800°C or more, and thus a surface layer becomes molybdenum carbide 1-b. Since the contact angles of the surface layer of the molybdenum carbide and many molten metals 5 is beyond 100 degrees at 1000°C and wettability relatively becomes worse, react with the molten metal can be suppressed.

Description

本発明は、溶融金属に対する耐食性に優れた表面層を有する金属蒸発用モリブデンるつぼに関する。あわせて、その製造方法と使用方法に関する。
The present invention relates to a metal evaporation molybdenum crucible having a surface layer excellent in corrosion resistance against molten metal. In addition, it relates to the manufacturing method and the usage method.

金属を蒸発させる目的で金属を高温に昇温すると、一定温度を超えると溶融状態になり、溶融した金属を保持するための凹部を有する容器が必要となる。高温保持容器は一般に、高温で溶融や変形をせず、溶融物である金属や合金と反応し難い材質が用いられる。
モリブデンは融点が2430℃と高く、かつ多くの溶融金属類に対する耐食性に優れていることから、例えば、特許文献1に記載されているように、金属蒸発用るつぼ材やサファイア単結晶製造用るつぼとして、従来から広く利用されている。
When the temperature of the metal is raised to a high temperature for the purpose of evaporating the metal, it becomes a molten state when a certain temperature is exceeded, and a container having a recess for holding the molten metal is required. The high temperature holding container is generally made of a material that does not melt or deform at a high temperature and does not easily react with a molten metal or alloy.
Molybdenum has a high melting point of 2430 ° C. and is excellent in corrosion resistance against many molten metals. For example, as described in Patent Document 1, as a crucible for metal evaporation or a crucible for producing a sapphire single crystal, Widely used in the past.

特許文献2にはセラミックスやガラスを溶融するため、気孔率が0.8〜8%のモリブデンるつぼとして適していることを開示している。気孔率をこの範囲とすることで、強度劣化を起こしにくく、かつ、耐熱応力性も保てるとの記載がある。
Patent Document 2 discloses that ceramics and glass are melted and therefore suitable as a molybdenum crucible having a porosity of 0.8 to 8%. There is a description that by setting the porosity within this range, the strength is hardly deteriorated and the heat stress resistance can be maintained.

特許文献3には溶解用のるつぼをモリブデン単体の材料ではなく、Laやその化合物を含むモリブデンとする技術が開示されている。このるつぼは変形量が小さく、従来のアルミニウム、シリコン、カリウムを添加したモリブデンのようにガス不純物となる成分を含んでおらず、また、これらの抜けた後の粒界の脆弱性が現れないと記載がある。そのために、金属や酸化物の溶解用のるつぼとして、特に1800℃以上での使用に優れていると記載がある。
Patent Document 3 discloses a technique in which a melting crucible is made of molybdenum containing La or a compound thereof instead of molybdenum alone. This crucible has a small amount of deformation, does not contain components that become gas impurities like molybdenum with conventional aluminum, silicon, and potassium added. There is a description. Therefore, there is a description that it is particularly excellent as a crucible for dissolving metals and oxides at 1800 ° C. or higher.

特許文献4にはモリブデンに1〜5重量%のタングステンを添加することにより、モリブデンの結晶粒子が粗大化しにくいるつぼが示されている。粒子の粗大化に伴うるつぼの脆弱化が起こりにくく、内容物の漏れ出しが起こりにくく、1800℃以上での高温使用に適している旨記載がある。例として、単結晶製造用るつぼが示されている。
Patent Document 4 discloses a crucible in which molybdenum crystal grains are hardly coarsened by adding 1 to 5% by weight of tungsten to molybdenum. There is a description that the crucible is not easily weakened due to the coarsening of the particles, and the content is hardly leaked out, which is suitable for high temperature use at 1800 ° C. or higher. As an example, a crucible for producing a single crystal is shown.

特開2003−060348号公報JP 2003-060348 A 特開昭53−070012号公報JP-A-53-070012 特開昭63−171847号公報JP-A-63-171847 特開平09−196570号公報JP 09-196570 A

本発明は上記問題点を解決するためになされたものであって、金属の蒸発に必要な高温状態で溶融金属と反応しにくい金属蒸発用モリブデンるつぼを提供することにある。
The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a molybdenum crucible for metal evaporation that hardly reacts with molten metal at a high temperature necessary for metal evaporation.

特許文献1から4に開示された技術は、いずれも高温で使用するモリブデンるつぼに関するものであり、金属やサファイアなどのセラミックスの溶融、蒸発用の容器に使用する。高温でのモリブデン材料の脆弱化に注目してそれを改良しており、特に引用文献1には、用途が金属蒸発用途の記載がある。
The techniques disclosed in Patent Documents 1 to 4 all relate to molybdenum crucibles used at high temperatures, and are used in containers for melting and evaporating ceramics such as metal and sapphire. It has been improved by focusing on the weakening of the molybdenum material at high temperature. In particular, the cited document 1 describes the use of metal evaporation.

しかしながら、いずれの文献にも、金属を溶融する際の金属溶湯とるつぼとの反応については記載されていない。これは、たとえモリブデンの粒界強度を上げたり、高温での粒子の粗大化を防いだりしたとしても、例えばアルミニウム、ニッケル、スカンジウムなどとの合金化は強度とは無関係に起こるために、これらの金属の溶融や蒸発用のるつぼとして用いることはできない。
However, none of the documents describes the reaction between the molten metal and the crucible when melting the metal. This is because even if the grain boundary strength of molybdenum is increased or the coarsening of particles at high temperatures is prevented, alloying with aluminum, nickel, scandium, etc. occurs independently of the strength. It cannot be used as a crucible for melting or evaporating metals.

モリブデンの融点は2620℃と金属中で高いほうであり、沸点についても4600℃以上と高い。また蒸気圧が2530℃において1×10−2(Pa)と低く、高温材料として優れた特性を有している。しかしながら通常、金属単体は特に高温で反応性が高く、2種以上の金属が高温で接すると多くは合金化し、また固溶する。金属蒸発用るつぼを金属製とすることは、るつぼと蒸発させる金属と合金化や固溶を起こし、るつぼの破損に繋がる場合がある。特に、金属を溶融させ、さらに一定の蒸発量を得るためには、通常、融点よりも高い温度が必要であり、蒸発効率を上げようとするほど高温での処理が必要となる。そのために、金属や合金を蒸発させる蒸発用るつぼを考慮する場合は、「金属と蒸発用るつぼとの反応」を主に検討する必要がある。
Molybdenum has a melting point of 2620 ° C., which is higher in the metal, and its boiling point is as high as 4600 ° C. or higher. Further, the vapor pressure is as low as 1 × 10 −2 (Pa) at 2530 ° C., and it has excellent characteristics as a high temperature material. However, usually, a single metal is highly reactive especially at a high temperature, and when two or more metals come into contact with each other at a high temperature, many of them are alloyed and dissolved. Making the metal evaporation crucible made of metal may cause alloying or solid solution with the crucible and the metal to be evaporated, leading to breakage of the crucible. In particular, in order to melt a metal and obtain a certain amount of evaporation, a temperature higher than the melting point is usually required, and a treatment at a higher temperature is required as the evaporation efficiency is increased. Therefore, when considering an evaporation crucible for evaporating a metal or an alloy, it is necessary to mainly examine “reaction between the metal and the evaporation crucible”.

本発明の金属蒸発用モリブデンるつぼは、モリブデンからなるるつぼ基材の少なくとも金属溶湯と接する箇所をおよそ800℃以上にて炭化処理することにより炭化モリブデン化させており、多くの金属や合金と殆ど反応しない。この炭化モリブデンは代表的にはMoCであるが、MoCなどのMoとCの比が異なる炭化モリブデンが一部または全部を占めていても構わない。炭化層以外は、変化なくモリブデンである。 The molybdenum crucible for metal evaporation of the present invention is converted to molybdenum carbide by carbonizing at least a portion of the crucible base made of molybdenum that is in contact with the molten metal at about 800 ° C. or more, and almost reacts with many metals and alloys. do not do. This molybdenum carbide is typically MoC, but molybdenum carbide having a different ratio of Mo and C, such as Mo 2 C, may occupy part or all of it. Except for the carbonized layer, it is molybdenum without change.

炭化モリブデン(MoC)の融点は2430℃程度であり、多くの金属の蒸気圧が十分高くなる温度(すなわち、使用温度)よりも高い。そのために、溶融はもちろん変形も小さい。   Molybdenum carbide (MoC) has a melting point of about 2430 ° C., which is higher than the temperature at which the vapor pressure of many metals becomes sufficiently high (that is, the use temperature). Therefore, not only melting but also deformation is small.

また炭化モリブデンの表面層と多くの溶融金属との接触角が1000℃において100°超と比較的濡れ性が低いことから、溶融金属との反応を抑制することができる。   Further, since the contact angle between the surface layer of molybdenum carbide and many molten metals exceeds 100 ° at 1000 ° C. and has relatively low wettability, the reaction with the molten metal can be suppressed.

対象となる蒸発させる金属としては、Ag(銀)、Al(アルミニウム)、Au(金)、Ba(バリウム)、Be(ベリリウム)、Ce(セリウム)、Co(コバルト)、Cr(クロム)、Cu(銅)、Fe(鉄)、Ge(ゲルマニウム)、In(インジウム)、La(ランタン)、Mn(マンガン)、Ni(ニッケル)、Pd(パラジウム)、Sc(スカンジウム)、Sn(スズ)、Ti(チタン)、U(ウラン)、Y(イットリウム)などが挙げられる。これらの金属は、融点が660〜1750℃程度であり、蒸気圧が10−2(torr)となる温度が高くとも1900℃であり、本発明のモリブデンるつぼはこれらの金属蒸発用るつぼとして十分に使用できる。また、蒸発する金属は、前述の金属単体に限らず、それらの合金でも使用できる。 Examples of metals to be evaporated include Ag (silver), Al (aluminum), Au (gold), Ba (barium), Be (beryllium), Ce (cerium), Co (cobalt), Cr (chromium), Cu (Copper), Fe (iron), Ge (germanium), In (indium), La (lanthanum), Mn (manganese), Ni (nickel), Pd (palladium), Sc (scandium), Sn (tin), Ti (Titanium), U (uranium), Y (yttrium) and the like. These metals have a melting point of about 660 to 1750 ° C., and the temperature at which the vapor pressure becomes 10 −2 (torr) is at most 1900 ° C. The molybdenum crucible of the present invention is sufficient as these metal evaporation crucibles. Can be used. Moreover, the metal which evaporates is not restricted to the above-mentioned metal simple substance, but can also use those alloys.

本発明の金属蒸発用モリブデンるつぼは、真空雰囲気を含む減圧雰囲気中、窒素雰囲気中、水素ガス雰囲気中、不活性ガス(希ガスやCOガスなど)雰囲気中などで使用できる。酸素含有雰囲気は、蒸発用るつぼ基材のモリブデン及びその表面層の炭化モリブデンを酸化させる恐れがあり、望ましくないばかりか、蒸発させる金属や合金成分と酸化物を生成する危険性が高い。雰囲気の圧力が低いほど、金属の蒸発速度は速くなり、生産性が向上することから、真空雰囲気を用いることが多い。 The metal evaporation molybdenum crucible of the present invention can be used in a reduced pressure atmosphere including a vacuum atmosphere, a nitrogen atmosphere, a hydrogen gas atmosphere, an inert gas (such as a rare gas or CO 2 gas) atmosphere, or the like. The oxygen-containing atmosphere may oxidize the molybdenum of the crucible base material for evaporation and the molybdenum carbide of the surface layer thereof, and is not desirable, and has a high risk of generating oxides and metal or alloy components to be evaporated. A vacuum atmosphere is often used because the lower the pressure of the atmosphere, the higher the evaporation rate of the metal and the higher the productivity.

蒸発用るつぼの基材に用いるモリブデンの熱伝導率は138(W/m・K)と金属の中でも比較的高く、また表面層の炭化モリブデンについても50〜70(W/m・K)(MoCの場合)と、セラミックスの中でも比較的熱伝導率が高い。また、炭化モリブデンは表面層のみであるため、熱伝導の阻害としては極めて小さい。そのために、金属蒸発用モリブデンるつぼを加熱してその熱を金属に伝導する形態の加熱方法であっても、るつぼと金属の温度が連動しやすい。よって、金属の温度制御が容易であり、温度的な追従が速いために生産性を高くできる。
Molybdenum used for the base material for the evaporation crucible has a thermal conductivity of 138 (W / m · K), which is relatively high among metals, and molybdenum carbide in the surface layer is also 50 to 70 (W / m · K) (MoC ) And relatively high thermal conductivity among ceramics. Moreover, since molybdenum carbide is only a surface layer, it is extremely small as an inhibition of heat conduction. Therefore, even if the heating method is such that the molybdenum crucible for metal evaporation is heated and the heat is conducted to the metal, the temperature of the crucible and the metal tends to work together. Therefore, the temperature control of the metal is easy and the temperature follow-up is fast, so that the productivity can be increased.

本発明においては、モリブデンるつぼの少なくとも金属溶湯と接する箇所を炭化処理することにより、溶融金属と極めて反応しにくい金属蒸発用モリブデンるつぼを提供する。
In the present invention, a molybdenum crucible for metal evaporation that hardly reacts with molten metal is provided by carbonizing at least a portion of the molybdenum crucible that is in contact with the molten metal.

本発明の一例として、るつぼ内壁面を炭化した金属蒸発用モリブデンるつぼを示す図である。It is a figure which shows the molybdenum crucible for metal evaporation which carbonized the crucible inner wall surface as an example of this invention. 本発明の他の例として、るつぼ表面全体を炭化した金属蒸発用モリブデンるつぼを示す図である。It is a figure which shows the molybdenum crucible for metal evaporation which carbonized the whole crucible surface as another example of this invention. 本発明の金属蒸発方法の一例を示す図である。It is a figure which shows an example of the metal evaporation method of this invention.

金属蒸発用モリブデンるつぼとして、その基材としてるつぼ形状の密度90%以上のモリブデン焼結体を用意する。成分については、モリブデン以外の低融点の金属成分(WなどMoよりも高融点の金属は除く)は極力含有しない方がよい。金属成分は単体または合金で存在している場合は、蒸発させ金属と共に蒸発して、金属の溶湯に混入の恐れがある。許容できる低融点金属は質量でおよそ1000ppm以下、特に0に近いほど蒸発用るつぼとして望ましい。一方遷移金属の炭化物、窒化物、炭窒化物は3質量%以下の範囲で含んでいてよい。これ以上になると熱伝導性に著しい影響を及ぼすために、望ましくない。   As a molybdenum crucible for metal evaporation, a crucible-shaped molybdenum sintered body having a density of 90% or more is prepared as a base material. As for the component, it is better not to contain a metal component having a low melting point other than molybdenum (excluding metals having a higher melting point than Mo such as W) as much as possible. When the metal component is present as a simple substance or an alloy, it may evaporate and evaporate together with the metal, and may be mixed into the molten metal. An acceptable low-melting-point metal is approximately 1000 ppm or less by mass, and in particular close to 0 is desirable as an evaporation crucible. On the other hand, transition metal carbides, nitrides, and carbonitrides may be contained within a range of 3 mass% or less. Above this, it is not desirable because it significantly affects the thermal conductivity.

以上に述べた金属蒸発用モリブデンるつぼの少なくとも溶湯と接する箇所に炭化モリブデン層を形成する。炭化方法としては、炭素源としてカーボンを含有する粉末をるつぼ周辺に置き非酸化雰囲気で800〜2500℃に加熱する、カーボン容器中にるつぼを投入し非酸化雰囲気で800〜2500℃に加熱する、カーボンを含有する液体をるつぼに塗布し非酸化雰囲気で800〜2500℃に加熱する、もしくは有機ガスを使用して非酸化雰囲気で800〜2500℃に加熱するなどのいずれを選択してもよく、少なくともるつぼの金属溶湯と接する箇所を炭化できれば、方法は問わない。   A molybdenum carbide layer is formed at least at a position in contact with the molten metal crucible for metal evaporation described above. As a carbonization method, a powder containing carbon as a carbon source is placed around a crucible and heated to 800 to 2500 ° C. in a non-oxidizing atmosphere. A crucible is placed in a carbon container and heated to 800 to 2500 ° C. in a non-oxidizing atmosphere. Either a liquid containing carbon is applied to the crucible and heated to 800-2500 ° C. in a non-oxidizing atmosphere, or heated to 800-2500 ° C. in a non-oxidizing atmosphere using an organic gas, etc. may be selected. The method is not limited as long as at least a portion of the crucible that contacts the molten metal can be carbonized.

炭化する箇所は溶湯と接する箇所のみでもよいが、るつぼの表面全体でもよい。この炭化層はMoCであっても、その他のMoとCの比が異なる炭化モリブデンの単体、それらの混合物であってもよい。炭化層厚みについては、少なくとも金属溶湯と接する部分には金属モリブデンが表面に露出しない程度とする必要がある。この厚さは0.1μm程度である。またるつぼ全体を炭化すると熱伝導率が低下し、体積変化により割れや剥離の原因となるために、最高500μm以下の炭化層厚みが好ましい。
The part to be carbonized may be only the part in contact with the molten metal, or the entire surface of the crucible. The carbonized layer may be MoC, or may be a simple substance of molybdenum carbide having a different ratio of Mo and C, or a mixture thereof. The thickness of the carbonized layer needs to be such that metal molybdenum is not exposed to the surface at least in a portion in contact with the molten metal. This thickness is about 0.1 μm. In addition, when the entire crucible is carbonized, the thermal conductivity is lowered, and cracking and peeling are caused by the volume change. Therefore, a carbonized layer thickness of 500 μm or less is preferable.

以上のようにして得られた、金属蒸発用モリブデンるつぼに、固体状態の金属を凹部に設置し、蒸発用炉に投入する。   In the molybdenum crucible for metal evaporation obtained as described above, the metal in the solid state is placed in the recess, and is put into the evaporation furnace.

次に、るつぼと金属のどちらか一方、または両方を加熱する。加熱の方法は公知の方法を用いればよいが、大きくは電子ビーム加熱のように直接金属や合金を加熱する方法と、るつぼを熱した熱の伝導により金属を加熱する方法に分けられる。本発明の金属蒸発用モリブデンるつぼはいずれの方法にも用いることができる。具体例としては、高周波誘導加熱、カーボンやモリブデンなどのヒーターによる加熱、電子ビーム加熱、レーザー加熱、マイクロ波加熱、るつぼへの通電加熱、アーク放電加熱などが挙げられる。   Next, one or both of the crucible and the metal are heated. A known method may be used as a heating method, but it can be roughly divided into a method of directly heating a metal or an alloy like electron beam heating and a method of heating a metal by conduction of heat by heating a crucible. The molybdenum crucible for metal evaporation of the present invention can be used in any method. Specific examples include high-frequency induction heating, heating with a heater such as carbon or molybdenum, electron beam heating, laser heating, microwave heating, energization heating to a crucible, arc discharge heating, and the like.

また、加熱の際の雰囲気は
(1)蒸発する金属と反応しない
(2)るつぼと反応しない
(3)蒸発量を一定以上に上げられる
という特性がいずれも必要となる。
In addition, the atmosphere during heating (1) does not react with the evaporating metal, (2) does not react with the crucible, and (3) the characteristics that the evaporation amount can be increased to a certain level or more are required.

最も適しているのは非酸化かつ減圧雰囲気である。蒸発量は温度と雰囲気に依存するために、減圧または真空雰囲気とすることが蒸発の効率は高い。また、希ガスなどの不活性ガスを一定量流すことにより、蒸発量を調整することも可能である。一方、酸素を含む雰囲気は、モリブデンを主成分とする金属蒸発用モリブデンるつぼと反応して酸化物を生成するために望ましくない。その他、窒素などのガスは、蒸発させる金属と反応性生物を作らない場合は使用して構わない。
Most suitable is a non-oxidizing and reduced pressure atmosphere. Since the evaporation amount depends on the temperature and the atmosphere, the evaporation efficiency is high when a reduced pressure or vacuum atmosphere is used. It is also possible to adjust the evaporation amount by flowing a certain amount of an inert gas such as a rare gas. On the other hand, an atmosphere containing oxygen is undesirable because it reacts with a metal evaporation molybdenum crucible containing molybdenum as a main component to produce an oxide. In addition, a gas such as nitrogen may be used if it does not produce a reactive organism with the metal to be evaporated.

(実施例1)
平均粒子径が3μm、純度が99.9%以上で金属不純物割合が500ppm以下のモリブデン粉末を蒸発用モリブデンるつぼの出発原料とした。
Example 1
Molybdenum powder having an average particle diameter of 3 μm, a purity of 99.9% or more and a metal impurity ratio of 500 ppm or less was used as a starting material for the molybdenum crucible for evaporation.

モリブデン粉末を100MPaにて金型成形し、円柱状のプレス体を得た。続いて得られたプレス体の一方の端面中心部にフライス盤にて止まり穴をあけた。   Molybdenum powder was molded at 100 MPa to obtain a cylindrical press body. Subsequently, a blind hole was drilled with a milling machine in the center of one end face of the obtained pressed body.

焼結炉に投入し、Hガスフロー中、最高温度2100℃にて180分保持の条件で焼結した。
The sample was put into a sintering furnace, and sintered in a H 2 gas flow at a maximum temperature of 2100 ° C. for 180 minutes.

得られた焼結体を、旋盤を使用して図1に示すようなテーパの付いた盃状に加工した後、金属溶湯と接する箇所を含むるつぼの内壁面全体にカーボンを分散した液体を塗布し、Hガスフロー中、1600℃にて加熱して、内壁面を5μmの厚さで炭化した金属蒸発用モリブデンるつぼを得た。この炭化層をX線回折法にて分析したところ、MoC相であった。
The obtained sintered body is processed into a tapered bowl shape as shown in FIG. 1 using a lathe, and then a liquid in which carbon is dispersed is applied to the entire inner wall surface of the crucible including the portion in contact with the molten metal. In an H 2 gas flow, heating was performed at 1600 ° C. to obtain a molybdenum crucible for metal evaporation whose inner wall surface was carbonized with a thickness of 5 μm. When this carbonized layer was analyzed by an X-ray diffraction method, it was a MoC phase.

図3に示すように、得られた蒸発用モリブデンるつぼを高周波誘導加熱式の蒸発用炉10にるつぼの広がった側を上にして設置した。この蒸発用炉は減圧及び真空雰囲気とするための真空ポンプ2を備えており、金属蒸発用モリブデンるつぼの上部には、蒸発した金属や合金によって被膜を形成する成膜対象3を備えている。高周波誘導はコイル4にて行なう。
As shown in FIG. 3, the obtained molybdenum crucible for evaporation was placed in a high-frequency induction heating type evaporation furnace 10 with the crucible side facing up. This evaporation furnace is provided with a vacuum pump 2 for reducing the pressure and a vacuum atmosphere, and a film formation target 3 for forming a film with evaporated metal or alloy is provided above the metal evaporation molybdenum crucible. High frequency induction is performed by the coil 4.

金属蒸発用モリブデンるつぼの止まり穴内に、ニッケル粉末を投入し、真空ポンプを稼動させた後に、高周波誘導加熱方式にて昇温した。   Nickel powder was put into the blind hole of the metal evaporation molybdenum crucible, the vacuum pump was operated, and then the temperature was raised by a high frequency induction heating method.

ニッケルの融点は1455℃程度であり、融点付近では十分に蒸気圧を上げることができる。溶融したニッケルは図1中の5である。図示しない温度センサーにより、溶融ニッケルの温度を測り、1600℃で定温保持となるように設定した。結果として成膜対象3にはニッケルの膜が十分な速度で形成でき、また、形成された膜からはニッケル以外の成分は検出されなかった。金属蒸発用モリブデンるつぼは繰り返しの使用でも、変形や反応などの不具合は少なく、長時間使用できた。

(実施例2)
実施例1と同様のモリブデン粉末を用いて、モリブデン粉末を100MPaにて金型成形し、焼結炉に投入し、Hガスフロー中、最高温度2100℃にて180分保持の条件で焼結した。得られた焼結体を鍛造し、図2に示すようなテーパの付いた盃状に加工した後、カーボン容器中に投入して、Hガスフロー中1400℃にて加熱して、表面全体が厚さ2μm炭化した蒸発用モリブデンるつぼを得た。この炭化層をX線回折法にて分析したところ、MoC相およびMoC相であった。
The melting point of nickel is about 1455 ° C., and the vapor pressure can be sufficiently increased near the melting point. The melted nickel is 5 in FIG. The temperature of the molten nickel was measured by a temperature sensor (not shown) and set so as to maintain a constant temperature at 1600 ° C. As a result, a nickel film could be formed at a sufficient rate on the film formation target 3, and no components other than nickel were detected from the formed film. The molybdenum crucible for metal evaporation can be used for a long time with few defects such as deformation and reaction even after repeated use.

(Example 2)
Using the same molybdenum powder as in Example 1, the molybdenum powder was molded at 100 MPa, put into a sintering furnace, and sintered in a H 2 gas flow at a maximum temperature of 2100 ° C. for 180 minutes. did. After forging the obtained sintered body and processing it into a tapered bowl shape as shown in FIG. 2, it was put into a carbon container and heated at 1400 ° C. in an H 2 gas flow, and the entire surface was A molybdenum crucible for evaporation having a thickness of 2 μm was obtained. When this carbonized layer was analyzed by an X-ray diffraction method, it was a MoC phase and a Mo 2 C phase.

蒸発用モリブデンるつぼの広がった側を上にして、その中にアルミニウム粉末を投入し、真空ポンプを稼動させた後に、高周波誘導加熱方式にて昇温した。   With the molybdenum crucible for evaporation spread upward, aluminum powder was charged therein, and after operating the vacuum pump, the temperature was raised by high frequency induction heating.

アルミニウムの融点は660℃であり、1300℃付近では蒸気圧を非常に大きくすることができる。溶融したアルミニウムは図2中の5である。図示しない温度センサーにより、溶融アルミニウムの温度を測り、1300℃で定温保持となるように設定した。結果として成膜対象3にはアルミニウムの膜が十分な速度で形成でき、また、形成された膜からはアルミニウム以外の成分は検出されなかった。   The melting point of aluminum is 660 ° C., and the vapor pressure can be extremely increased near 1300 ° C. The molten aluminum is 5 in FIG. The temperature of the molten aluminum was measured by a temperature sensor (not shown) and set to be kept at a constant temperature at 1300 ° C. As a result, an aluminum film could be formed at a sufficient rate on the film formation target 3, and no components other than aluminum were detected from the formed film.

実施例1と比較すると、全面が炭化しているために昇温、降温の反応はやや時間が掛かったが、炭化処理の製造はより簡易に行なえた。   Compared to Example 1, since the entire surface was carbonized, the reaction of raising and lowering took some time, but the carbonization treatment could be manufactured more easily.

金属蒸発用モリブデンるつぼは繰り返しの数10時間の使用でも、変形や反応などの不具合は起こりにくく、問題なく使用できた。

(実施例3)
実施例1と同様のモリブデン焼結体を用いて、CHガスフロー中、最高温度1800℃にて加熱して、表面層全体を150μm程度炭化した蒸発用モリブデンるつぼを得た。この炭化層をX線回折法にて分析したところ、MoC相であった。
Even when the metal evaporation molybdenum crucible was repeatedly used for several tens of hours, defects such as deformation and reaction hardly occurred, and it could be used without any problem.

Example 3
Using the same molybdenum sintered body as in Example 1, heating was performed at a maximum temperature of 1800 ° C. in a CH 4 gas flow to obtain a molybdenum crucible for evaporation whose entire surface layer was carbonized by about 150 μm. When this carbonized layer was analyzed by an X-ray diffraction method, it was a Mo 2 C phase.

金属蒸発用モリブデンるつぼ内に、スカンジウム粉末を投入し、真空ポンプを稼動させた後に、高周波誘導加熱方式にて昇温した。   Scandium powder was put into a molybdenum crucible for metal evaporation, and after operating the vacuum pump, the temperature was raised by a high frequency induction heating method.

スカンジウムの融点は1541℃であり、融点付近では十分に蒸気圧を上げることができる。溶融したスカンジウムは図2中の5である。図示しない温度センサーにより、溶融マンガンの温度を測り、1300℃で定温保持となるように設定した。結果として成膜対象3にはスカンジウムの膜が十分な速度で形成でき、また、形成された膜からはスカンジウム以外の成分は検出されなかった。   The melting point of scandium is 1541 ° C., and the vapor pressure can be sufficiently increased near the melting point. The melted scandium is 5 in FIG. The temperature of molten manganese was measured with a temperature sensor (not shown), and was set to maintain a constant temperature at 1300 ° C. As a result, a film of scandium could be formed at a sufficient rate on the film formation target 3, and components other than scandium were not detected from the formed film.

金属蒸発用モリブデンるつぼは繰り返しの使用でも、変形や反応などの不具合はなく、問題なく使用できた。

(比較例)
比較例として、炭化処理を行っていない上記と同一形状の金属蒸発用モリブデン製るつぼ内に、ニッケル粉末を投入し、実施例1と同一条件にて加熱及び成膜した。ニッケル粉末は溶融し、蒸発させることができたが、溶融と同時にニッケル溶湯とモリブデン製るつぼとが反応を開始し、金属間化合物を形成し、るつぼの一部に割れが発生して再使用が困難となった。実使用は不向きであると考えられる。
The molybdenum crucible for metal evaporation could be used without any problems, such as deformation and reaction, even after repeated use.

(Comparative example)
As a comparative example, nickel powder was put into a metal evaporation molybdenum crucible having the same shape as that described above, which was not carbonized, and heated and formed under the same conditions as in Example 1. The nickel powder could be melted and evaporated, but at the same time it melted, the nickel molten metal and the molybdenum crucible started to react, forming an intermetallic compound, and cracking occurred in a part of the crucible, which could be reused. It became difficult. Actual use is considered unsuitable.

1−a 金属蒸発用モリブデンるつぼ基材
1−b 炭化モリブデン層
2 真空ポンプ
3 成膜対象
4 発熱用コイル
5 金属
6 ガス供給部
10 蒸発用炉
DESCRIPTION OF SYMBOLS 1-a Molybdenum crucible base material for metal evaporation 1-b Molybdenum carbide layer 2 Vacuum pump 3 Film-forming object 4 Heating coil 5 Metal 6 Gas supply part 10 Evaporating furnace

Claims (7)

少なくとも金属溶湯と接する箇所に炭化モリブデン層を有する、金属蒸発用モリブデンるつぼ。   A molybdenum crucible for metal evaporation, having a molybdenum carbide layer at least in contact with the molten metal. 表面全体が炭化モリブデン層を有する、請求項1に記載の金属蒸発用モリブデンるつぼ。   The molybdenum crucible for metal evaporation according to claim 1, wherein the entire surface has a molybdenum carbide layer. 前記炭化モリブデン層の厚さが0.1〜500μmである請求項1または請求項2のいずれか1項に記載の金属蒸発用モリブデンるつぼ。   The molybdenum crucible for metal evaporation according to claim 1, wherein the molybdenum carbide layer has a thickness of 0.1 to 500 μm. 前記炭化モリブデンがMoC、MoCのいずれか1種または両方を含む請求項1から請求項3のいずれか1項に記載の金属蒸発用モリブデンるつぼ。 The molybdenum crucible for metal evaporation according to any one of claims 1 to 3, wherein the molybdenum carbide contains one or both of MoC and Mo 2 C. るつぼ形状のモリブデンの少なくとも金属溶湯と接する箇所を、800〜2500℃にて炭化処理して炭化モリブデン層を形成する、金属蒸発用モリブデンるつぼの製造方法。   A method for producing a molybdenum crucible for metal evaporation, wherein a molybdenum carbide layer is formed by carbonizing at least a portion of a crucible-shaped molybdenum in contact with a molten metal at 800 to 2500 ° C. 前記炭化処理の炭素源がカーボンを含んだ固体、粉末、液体及び有機ガスのいずれか1種または2種以上である、請求項5に記載の金属蒸発用モリブデンるつぼの製造方法。   6. The method for producing a molybdenum crucible for metal evaporation according to claim 5, wherein the carbon source for carbonization is one or more of solid, powder, liquid and organic gas containing carbon. 減圧または真空雰囲気中で、加熱装置にて金属蒸発用モリブデンるつぼと金属のどちらか一方、または両方を加熱し、金属の溶融物を600℃以上に保ち、前記溶融物から金属の蒸発物を発生させる、少なくとも金属溶湯と接する箇所に炭化モリブデン層を有する金属蒸発用モリブデンるつぼの使用方法。   Heat the metal evaporation molybdenum crucible and / or the metal with a heating device in a reduced pressure or vacuum atmosphere to maintain the metal melt at 600 ° C or higher, and generate the metal vapor from the melt. A method of using a molybdenum crucible for evaporating metal having a molybdenum carbide layer at least at a location in contact with the molten metal.
JP2013173851A 2013-08-23 2013-08-23 Molybdenum crucible for metal evaporation and manufacturing method and use method thereof Pending JP2015040692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013173851A JP2015040692A (en) 2013-08-23 2013-08-23 Molybdenum crucible for metal evaporation and manufacturing method and use method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013173851A JP2015040692A (en) 2013-08-23 2013-08-23 Molybdenum crucible for metal evaporation and manufacturing method and use method thereof

Publications (1)

Publication Number Publication Date
JP2015040692A true JP2015040692A (en) 2015-03-02

Family

ID=52694955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173851A Pending JP2015040692A (en) 2013-08-23 2013-08-23 Molybdenum crucible for metal evaporation and manufacturing method and use method thereof

Country Status (1)

Country Link
JP (1) JP2015040692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109306422A (en) * 2018-12-13 2019-02-05 株洲硬质合金集团有限公司 A kind of preparation method of molybdenum carbide-molybdenum composite material
CN109321870A (en) * 2018-12-13 2019-02-12 株洲硬质合金集团有限公司 A kind of compound molybdenum crucible and its preparation method and application
CN115111914A (en) * 2022-07-04 2022-09-27 泰州市万鑫钨钼制品有限公司 Molybdenum crucible convenient to clean

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118941A (en) * 1974-08-08 1976-02-14 Denki Kagaku Kogyo Kk KINZOKUJOHATSUYOYOKI
JPH0428870A (en) * 1990-05-25 1992-01-31 Toray Res Center:Kk Boat for evaporation and its production
JPH07300666A (en) * 1994-04-27 1995-11-14 Nissin Electric Co Ltd Production of molecular beam source for silicon evaporation and crucible used for the same
JPH09227234A (en) * 1996-02-22 1997-09-02 Toshiba Ceramics Co Ltd Crucible for vapor depositing metal nickel
JP2009115441A (en) * 2006-12-27 2009-05-28 General Electric Co <Ge> Article for use with highly reactive alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118941A (en) * 1974-08-08 1976-02-14 Denki Kagaku Kogyo Kk KINZOKUJOHATSUYOYOKI
JPH0428870A (en) * 1990-05-25 1992-01-31 Toray Res Center:Kk Boat for evaporation and its production
JPH07300666A (en) * 1994-04-27 1995-11-14 Nissin Electric Co Ltd Production of molecular beam source for silicon evaporation and crucible used for the same
JPH09227234A (en) * 1996-02-22 1997-09-02 Toshiba Ceramics Co Ltd Crucible for vapor depositing metal nickel
JP2009115441A (en) * 2006-12-27 2009-05-28 General Electric Co <Ge> Article for use with highly reactive alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109306422A (en) * 2018-12-13 2019-02-05 株洲硬质合金集团有限公司 A kind of preparation method of molybdenum carbide-molybdenum composite material
CN109321870A (en) * 2018-12-13 2019-02-12 株洲硬质合金集团有限公司 A kind of compound molybdenum crucible and its preparation method and application
CN115111914A (en) * 2022-07-04 2022-09-27 泰州市万鑫钨钼制品有限公司 Molybdenum crucible convenient to clean
CN115111914B (en) * 2022-07-04 2023-09-15 泰州市万鑫钨钼制品有限公司 Molybdenum crucible convenient to clean

Similar Documents

Publication Publication Date Title
EP1683883B1 (en) Molybdenum alloy
RU2402625C2 (en) Alloyed tungsten produced by chemical sedimentation from gas phase
JP5431535B2 (en) Method for producing ruthenium-tantalum alloy sintered compact target
TWI653355B (en) High-purity copper sputtering target and copper material for the same
JP5457018B2 (en) Platinum iridium alloy and method for producing the same
TWI588282B (en) A tungsten sintered sputtering target and a tungsten film forming using the target
JP4731347B2 (en) Method for producing composite copper fine powder
US7762448B2 (en) Process for producing a composite body
CN113373363B (en) Refractory high-entropy composite material and preparation method thereof
JP2005336617A5 (en)
JP2012203998A (en) Tungsten cathode material
TW201219590A (en) Sputtering target and/or coil and process for producing same
JP2015040692A (en) Molybdenum crucible for metal evaporation and manufacturing method and use method thereof
JP5881742B2 (en) Tungsten alloy and tungsten alloy parts, discharge lamp, transmitter tube and magnetron using the same
TWI810385B (en) Fire-proof metal part made with additive, process for production with additive and powder
JP2007113104A (en) Tungsten electrode material
WO2016031974A1 (en) Cu-Ga SPUTTERING TARGET AND PRODUCTION METHOD FOR Cu-Ga SPUTTERING TARGET
JP2014209045A (en) Tungsten crucible for metal evaporation, method of manufacturing the same, and method of using the same
CN109072413B (en) Metal evaporation material
JP5577454B2 (en) Method for producing tantalum (Ta) powder using eutectic alloy
JP5274603B2 (en) Composite copper fine powder
JP6118151B2 (en) Metal or alloy evaporation container and method of use
JP2004091241A (en) Tungsten carbide type super-hard material and manufacturing method thereof
JP2020076118A (en) W-Ti sputtering target
JP2001279362A (en) Molybdenum material and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120