JPH09227234A - Crucible for vapor depositing metal nickel - Google Patents

Crucible for vapor depositing metal nickel

Info

Publication number
JPH09227234A
JPH09227234A JP8060184A JP6018496A JPH09227234A JP H09227234 A JPH09227234 A JP H09227234A JP 8060184 A JP8060184 A JP 8060184A JP 6018496 A JP6018496 A JP 6018496A JP H09227234 A JPH09227234 A JP H09227234A
Authority
JP
Japan
Prior art keywords
crucible
vapor deposition
powder
tib
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8060184A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
利幸 鈴木
Shigeki Niwa
茂樹 丹羽
Yutaka Okada
裕 岡田
Taiji Okiyama
泰治 沖山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP8060184A priority Critical patent/JPH09227234A/en
Publication of JPH09227234A publication Critical patent/JPH09227234A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a crucible used for forming a vapor-deposited film of metal Ni, etc., and having such superior characteristics as high corrosion resistance and high electric conductivity. SOLUTION: This crucible is made of composite ceramics contg. 80-95wt.% TiB2 , 2.5-17.5wt.% CrB and 2.5-17.5wt.% TiC and having 1×10<-5> -8×10<-5> Ω.cm specific resistance. The ceramics preferably has <=5% open pore volume and 5-15% closed pore volume. This crucible is produced by compacting prescribed starting materials constituting the ceramics in a crucible shape and sintering the resultant compact under atmospheric pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はNi(ニッケル)金
属蒸着用ルツボに関し、詳しくは電子産業及び光学産業
用に使われる高品位のNi金属単体またはNiを主成分
とするNi合金の蒸着膜を得る目的で、電子ビーム蒸着
装置、プラズマ蒸着装置等に用いられる高耐食性で、且
つ、高導電特性を併有するNi金属蒸着用ルツボに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crucible for vapor-depositing Ni (nickel) metal, and more particularly to a vapor-deposited film of a high-quality Ni metal simple substance or a Ni alloy containing Ni as a main component, which is used in the electronics and optical industries. The present invention relates to a crucible for vapor deposition of Ni metal, which is used for an electron beam vapor deposition apparatus, a plasma vapor deposition apparatus, and the like, and has high corrosion resistance and high conductivity.

【0002】[0002]

【従来の技術】電子産業及び光学産業の分野においては
各種の薄膜が多用されているが、形成される薄膜の性状
によって得られる製品の最終的特性が大きく影響される
ことから、現在、薄膜形成技術の開発が活発に行われて
いる。代表的な化学蒸着による薄膜形成方法として電子
ビーム蒸着法及びプラズマ蒸着法がある。電子ビーム蒸
着法は、真空中で蒸着材を電子ビ−ムにより加熱し蒸発
させて基板上に凝縮する方法である。また、プラズマ蒸
着法は、真空中で電場を加えて放電させてプラズマを形
成し、蒸着材からイオンやラジカルを発生させ生成物を
基板上に堆積させる方法である。これらの方法によりN
i金属単体またはNiを主成分とするNi合金の薄膜を
生成するためには、電子ビームまたはプラズマ照射によ
り原材料であるNi金属またはNi合金を加熱溶融させ
て蒸発させる必要があり、そのため溶融金属を保持する
蒸着用ルツボが用いられている。
2. Description of the Related Art Various thin films are widely used in the fields of electronic industry and optical industry. However, since the final characteristics of the product obtained are greatly affected by the properties of the thin film to be formed, thin film formation is currently underway. Technology is being actively developed. As a typical thin film forming method by chemical vapor deposition, there are an electron beam vapor deposition method and a plasma vapor deposition method. The electron beam evaporation method is a method in which an evaporation material is heated and evaporated by an electron beam in a vacuum and condensed on a substrate. The plasma vapor deposition method is a method in which an electric field is applied in a vacuum to cause discharge to form plasma, and ions or radicals are generated from a vapor deposition material to deposit a product on a substrate. N by these methods
In order to form a thin film of an i metal alone or a Ni alloy containing Ni as a main component, it is necessary to heat and melt the Ni metal or Ni alloy as a raw material by electron beam or plasma irradiation to evaporate the molten metal. A holding crucible for vapor deposition is used.

【0003】上記の電子ビームまたはプラズマ照射に用
いられる蒸着用ルツボは、導電性に優れることが要求さ
れる。非導電性や低導電性であると、電子ビームまたは
プラズマ照射によりルツボ内に保持される蒸着用溶融金
属が荷電し、円滑に蒸発できなくなるためである。ルツ
ボ内の溶融金属の帯電を防止するために、比抵抗は数百
μΩ・cm以下の材料を用いてルツボを作製するのが望
ましいとされており、Ni金属蒸着用ルツボ材には、一
般に、黒鉛、W(タングステン)、Mo(モリブデ
ン)、Ta(タンタル)等の高融点で、導電性の金属を
主成分とした金属材料が用いられている。しかし、これ
らの金属材料は、溶融Niに対する耐食性が低いため問
題となっている。例えば、黒鉛製ルツボを用いた場合
は、ルツボ内に溶解保持されるNi金属単体またはNi
を主成分とするNi合金(以下、単にNi金属等とす
る)中にルツボから炭素が大量に溶出し、Ni金属等中
に含まれるCr、Mo、Fe、Cu、Ti等不純物(以
下、単にCr等不純物とする)と反応して金属炭化物が
生成され、純度が低下するおそれがあり、一方、黒鉛ル
ツボ中には逆にNi金属等中に含まれるCr等不純物が
浸潤し組成が変化するため、昇温や冷却時にルツボが割
れることもあった。また、W、Mo、Ta等を主成分と
したルツボでも、Ni金属等中に含まれるCr等不純物
とルツボの構成材料W、Mo、Ta等とが反応して合金
を生成し易く、黒鉛製ルツボと同様に耐食性に問題があ
った。
The vapor deposition crucible used for the above-mentioned electron beam or plasma irradiation is required to have excellent conductivity. This is because if it is non-conductive or low-conductivity, the molten metal for vapor deposition held in the crucible is charged by the electron beam or plasma irradiation and cannot be evaporated smoothly. In order to prevent electrification of the molten metal in the crucible, it is said that it is desirable to manufacture the crucible using a material having a specific resistance of several hundreds μΩ · cm or less. Generally, for the crucible material for Ni metal vapor deposition, A metal material having a high melting point and a conductive metal such as graphite, W (tungsten), Mo (molybdenum), or Ta (tantalum) is used. However, these metal materials have a problem because they have low corrosion resistance to molten Ni. For example, when a graphite crucible is used, Ni metal alone or Ni which is melted and held in the crucible is used.
A large amount of carbon is eluted from the crucible into a Ni alloy containing Ni as a main component (hereinafter, simply referred to as Ni metal or the like), and impurities such as Cr, Mo, Fe, Cu, and Ti contained in the Ni metal or the like (hereinafter, simply There is a possibility that metal carbides may be generated by reacting with impurities such as Cr) to reduce the purity, while the graphite crucible conversely infiltrates impurities such as Cr contained in Ni metal, etc., and the composition changes. Therefore, the crucible may be cracked during heating or cooling. Even in a crucible containing W, Mo, Ta or the like as a main component, impurities such as Cr contained in Ni metal or the like and the constituent materials W, Mo, Ta or the like of the crucible easily react with each other to easily form an alloy, and the crucible is made of graphite. As with the crucible, there was a problem with corrosion resistance.

【0004】これら上記したような問題により、従来か
ら耐食性等を改善するためNi蒸着用ルツボの材質につ
いて種々検討され、提案されている。例えば、特開平4
−157181号公報では、黒鉛製ルツボに耐食性材料
であるTiB2 等の二ホウ化物でコーティングしたルツ
ボが提案されている。しかし、この二ホウ化物コーティ
ング黒鉛ルツボを用いて電子ビーム蒸着またはプラズマ
蒸着で蒸着試験を繰返し行うと、蒸着装置での昇温また
は冷却速度が非常に速いため、熱膨張差によりコーティ
ング層二ホウ化物が剥離するおそれがある。また、Al
23 、BN、Si34 や、特公昭57−3627号
公報で提案されるMgO等を主成分としたルツボは、上
記の黒鉛、W、MoまたはTa等の高融点金属と比較す
ると耐食性に優れるが、絶縁性であるためルツボ内の蒸
着金属及び蒸着装置をアース処理する必要があり大量生
産用としては実用的でない。また、Al23 やMgO
を主成分とするルツボは、耐熱衝撃性が低く、蒸着操作
時にルツボの割れが生じ易く問題となっていた。更にま
た、金属蒸着容器用の材料として、特公昭52−969
0号公報にはBN−TiB2 −TiNの三成分系材料の
製造方法が提案され、特公昭58−2260号公報には
BN−TiB2 −AlNを主成分とした材料及び製造方
法が提案されている。これらは、TiB2 やTiN等の
導電性材料と、BNやAlN等の絶縁性材料とを組合せ
て耐食性を改善している。しかし、BN−TiB2 −T
iN及びBN−TiB2 −AlNの三成分系材料は、比
抵抗が数千μΩ・cmのものが一般的であり、電子ビー
ム蒸着法またはプラズマ蒸着法で、Ni金属またはNi
合金を蒸着させる場合、帯電性し易く蒸着が安定しない
おそれがある。また、これらの三成分系材料は、上記の
ように導電性材料と絶縁性材料から形成されているた
め、比抵抗のばらつきが多く、電子ビームやプラズマ放
電が安定しない。そのため安定して蒸着できないことも
あり、また、局部加熱され易く、割れ易い問題もあっ
た。
Due to these problems as described above, various materials for the Ni vapor deposition crucible have been conventionally studied and proposed in order to improve the corrosion resistance and the like. For example, JP
Japanese Patent Publication No. 157181 proposes a crucible in which a graphite crucible is coated with a diboride such as TiB 2 which is a corrosion resistant material. However, when the vapor deposition test is repeatedly performed by electron beam vapor deposition or plasma vapor deposition using this diboride-coated graphite crucible, the heating or cooling rate in the vapor deposition apparatus is very fast, and therefore the coating layer diboride is caused by the difference in thermal expansion. May peel off. Also, Al
The crucible mainly composed of 2 O 3 , BN, Si 3 N 4 and MgO proposed in Japanese Patent Publication No. 57-3627 is compared with the above-mentioned high melting point metals such as graphite, W, Mo or Ta. Although it is excellent in corrosion resistance, it is not practical for mass production because it is necessary to ground the vapor-deposited metal in the crucible and the vapor-deposition apparatus because it is insulating. In addition, Al 2 O 3 and MgO
The crucible containing as a main component has a low thermal shock resistance, and the crucible is easily cracked during the vapor deposition operation, which has been a problem. Furthermore, as a material for a metal vapor deposition container, Japanese Examined Patent Publication No. 52-969.
The 0 JP manufacturing method of a three-component material BN-TiB 2 -TiN is proposed, the material and the manufacturing method mainly composed of BN-TiB 2 -AlN is proposed in JP-B-58-2260 ing. These improve corrosion resistance by combining a conductive material such as TiB 2 or TiN with an insulating material such as BN or AlN. However, BN-TiB 2 -T
The ternary material of iN and BN—TiB 2 —AlN generally has a specific resistance of several thousand μΩ · cm, and is made of Ni metal or Ni by electron beam evaporation method or plasma evaporation method.
When the alloy is vapor-deposited, the alloy is likely to be charged and the vapor deposition may not be stable. Further, since these three-component materials are formed of the conductive material and the insulating material as described above, the specific resistance varies so much that the electron beam and plasma discharge are not stable. Therefore, there is a problem that vapor deposition cannot be performed stably, and that local heating is likely to occur and cracking is likely to occur.

【0005】[0005]

【発明が解決しようとする課題】上記したように、金属
蒸着用のルツボについては材料面から種々検討がなされ
てきたが、耐食性と導電性の両方の特性を満足できるも
のはなく、いずれも工業的実用化のためには問題を有し
ている。また、上記の各種材料を用いてルツボを製造す
る場合は、一般にホットプレス法を用いて焼結を行わね
ばならないため、円筒形状等の単純形状のものしか作製
できず、焼結後にダイヤモンド砥石等を用いる焼結体加
工が必要となるため、コストが嵩むばかりか、得られる
蒸着用ルツボには加工時の残留応力及びマイクロクラッ
クが残存し易く、使用中ルツボが割れる原因にもなって
いた。一方、出願人は、特開平6−221768号公報
及び特開平1−278956号公報で、TiB2 を主成
分とする溶融金属用耐火物を提案した。発明者らは、こ
の耐火物、特に後者のTiB2 −金属ホウ化物−炭化チ
タンからなる溶融金属用耐火物をNi蒸着用ルツボに適
用するべく鋭意検討した。その結果、上記三成分の配合
比率を特定することにより、比抵抗を所定とすることが
でき、上記のNi蒸着用ルツボの問題点を解消し、工業
的実用性に富み、特に、耐食性及び導電性の双方を満足
するものが得られること、また、従来の材料とは異なり
ホットプレス焼結する必要がなく、常圧焼結法によりル
ツボ形状を形成することができるため、残存応力やマイ
クロクラックの問題も解消できることを見出し本発明を
完成した。
As described above, various studies have been made on the crucible for vapor deposition of metals from the viewpoint of the material, but none of them can satisfy both the corrosion resistance and the electrical conductivity. There is a problem for practical application. Further, when a crucible is manufactured using the above-mentioned various materials, since sintering generally needs to be performed using a hot pressing method, only a simple shape such as a cylindrical shape can be produced, and a diamond grindstone or the like after sintering. Since it is necessary to process the sintered body using the above method, not only the cost is increased, but also residual stress and microcracks during processing are likely to remain in the obtained vapor deposition crucible, which also causes the crucible to crack during use. On the other hand, the applicant proposed a refractory for molten metal containing TiB 2 as a main component in JP-A-6-221768 and JP-A-1-278956. The inventors diligently studied to apply this refractory, particularly the latter refractory for molten metal composed of TiB 2 -metal boride-titanium carbide to a crucible for vapor deposition of Ni. As a result, by specifying the blending ratio of the above three components, the specific resistance can be made to be a predetermined value, the problems of the above Ni vapor deposition crucible can be solved, and it is highly industrially practical, in particular, corrosion resistance and conductivity. It is possible to obtain a material that satisfies both properties, and unlike conventional materials, there is no need for hot press sintering, and since the crucible shape can be formed by the atmospheric pressure sintering method, residual stress and micro cracks can be formed. The present invention has been completed by finding that the problem of can be solved.

【0006】[0006]

【課題を解決するための手段】本発明によれば、二ホウ
化チタン(TiB2 )80〜95重量%、ホウ化クロム
(CrB)2.5〜17.5重量%、炭化チタン(Ti
C)2.5〜17.5重量%を含有してなり、且つ、比
抵抗が1〜8×10-5Ω・cmである複合セラミックス
により形成されることを特徴とするNi金属蒸着用ルツ
ボが提供される。本発明のNi蒸着用ルツボにおいて、
前記セラミックスが、開気孔率が5%以下で、且つ、閉
気孔率が5〜15%であることが好ましい。また、本発
明のルツボは、前記セラミックスを構成する所定の原材
料をルツボ形状に成形して常圧焼結して得ることができ
る。
According to the present invention, 80 to 95% by weight of titanium diboride (TiB 2 ), 2.5 to 17.5% by weight of chromium boride (CrB) and titanium carbide (Ti) are used.
C) A crucible for vapor deposition of Ni metal, characterized in that the crucible contains 2.5 to 17.5% by weight and is formed of a composite ceramic having a specific resistance of 1 to 8 × 10 −5 Ω · cm. Will be provided. In the crucible for vapor deposition of Ni of the present invention,
It is preferable that the ceramic has an open porosity of 5% or less and a closed porosity of 5 to 15%. Further, the crucible of the present invention can be obtained by forming a predetermined raw material constituting the ceramics into a crucible shape and sintering it under normal pressure.

【0007】本発明は上記のように構成され、Ni蒸着
用ルツボがTiB2 を主成分として、CrB及びTiC
を各所定量含有する複合セラミックスにより形成され、
各成分のTiB2 、CrB及びTiCが、Ni金属及び
Ni金属中の不純物のCr、Mo等とは非反応性である
ことに加え、主成分のTiB2 が高導電性であり、焼結
によりこれら三成分が所定比率で均一に共存することか
ら、従来の蒸着溶融金属用材料では得られなかった耐食
性及び導電性の双方を十分に具備することができ、ルツ
ボ内に安定してNi溶融液を保持し、且つ、均一に所定
の比抵抗を有し、電子ビーム及びプラズマ放電が安定
し、均一に蒸着処理することができる。また、ルツボを
構成する上記三成分含有の複合セラミックスが所定の開
気孔及び閉気孔を有することから、各成分の非反応性と
相俟って著しく耐食性に優れ、耐熱衝撃性にも優れルツ
ボの損傷や割れのおそれもなく、安定した蒸着処理を行
うことができる。
The present invention is constructed as described above, and the crucible for vapor deposition of Ni contains TiB 2 as a main component and CrB and TiC.
Is formed of a composite ceramic containing each predetermined amount of
TiB 2 , CrB and TiC of each component are non-reactive with Ni metal and impurities such as Cr and Mo in Ni metal, and TiB 2 of the main component has high conductivity, Since these three components coexist uniformly in a predetermined ratio, it is possible to sufficiently have both corrosion resistance and conductivity, which cannot be obtained by the conventional vapor deposition molten metal material, and to stably provide the Ni melt in the crucible. And has a predetermined specific resistance evenly, the electron beam and plasma discharge are stable, and a uniform vapor deposition process can be performed. Further, since the above three-component-containing composite ceramics constituting the crucible has predetermined open and closed pores, in combination with the non-reactivity of each component, the corrosion resistance is significantly excellent, and the thermal shock resistance is also excellent. A stable vapor deposition process can be performed without fear of damage or cracking.

【0008】[0008]

【発明の実施の形態】本発明のNi蒸着用ルツボを構成
する複合セラミックスは、TiB2 、CrB及びTiC
の三成分を含有し、TiB2 80〜95重量%、CrB
2.5〜17.5重量%、TiC2.5〜17.5重量
%の範囲に調整される。TiB2 の含有量が80重量%
以下であると、比抵抗が上昇し所定の比抵抗を維持でき
ず、また耐食性も低下するためである。一方、95重量
%以上であると、常圧焼結法では十分な特性、特にルツ
ボとして十分な強度を得られないためである。CrBの
含有量が、2.5重量%以下であるとCrBにより耐食
性が低下し、17.5重量%以上であると比抵抗が大き
くなり導電性が低下するためである。また、TiCの含
有量が、2.5重量%以下であるとTiCによる耐食
性、高融点の優れた特性が低下し、17.5重量%以上
であると比抵抗が大きくなり導電性が低下するためであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The composite ceramics constituting the Ni vapor deposition crucible of the present invention are TiB 2 , CrB and TiC.
Containing the following three components: TiB 2 80-95% by weight, CrB
It is adjusted in the range of 2.5 to 17.5 wt% and TiC 2.5 to 17.5 wt%. The content of TiB 2 is 80% by weight
This is because if it is below, the specific resistance increases, the predetermined specific resistance cannot be maintained, and the corrosion resistance also decreases. On the other hand, when the content is 95% by weight or more, sufficient properties, particularly sufficient strength as a crucible cannot be obtained by the atmospheric pressure sintering method. This is because if the CrB content is 2.5% by weight or less, the corrosion resistance decreases due to CrB, and if it is 17.5% by weight or more, the specific resistance increases and the conductivity decreases. Further, when the content of TiC is 2.5% by weight or less, excellent properties of corrosion resistance and high melting point due to TiC are deteriorated, and when it is 17.5% by weight or more, specific resistance is increased and conductivity is decreased. This is because.

【0009】本発明の複合セラミックスの各成分は、そ
れぞれNi金属と非反応性であり、且つ、Ni金属単体
またはNiを主成分とするNi合金(以下、単にNi金
属等とする。)中に含まれるCr等の不純物とも非反応
性であり、特に、TiB2 は上記不純物に対し全く不活
性である。このため、TiB2 を主成分とするセラミッ
クスで形成されるルツボは、耐食性に優れ、ルツボ中で
溶融保持されるNi金属等が汚染されることがなく、安
定的に蒸着処理され、所定の均質なNi金属等の蒸着膜
が形成される。また、上記複合セラミックスの三成分の
融点はそれぞれTiB2 が2790℃、CrBが210
0℃、TiCが3257℃であり、これら三成分から形
成される本発明のセラミックスは金属Niの融点145
5℃より高融点となり、Ni金属等の溶融液を保持する
ための十分な耐熱性を有する。更に、本発明のセラミッ
クスの主成分であるTiB2 は、室温比抵抗が9×10
-6Ω・cmであり著しく導電性に優れ、一方、CrB及
びTiCはそれぞれ4.6×10-5Ω・cm及び1×1
-4Ω・cmであり、TiB2 、CrB及びTiCで形
成される複合セラミックスは、TiB2 単独の場合より
導電性が低下する。しかし、従来技術のように絶縁材料
を用いた場合に比し、上記のように各成分とも導電性物
質であり、均質な複合セラミックスを形成するため、比
抵抗もルツボ全域においてほぼ1〜8×10-5Ω・cm
であり、導電性に優れ溶融Niの帯電を防止し、電子ビ
ーム、プラズマに放電性が安定し、Ni蒸着処理を安定
して行うことができる。
Each component of the composite ceramics of the present invention is non-reactive with Ni metal, and is contained in a Ni metal simple substance or a Ni alloy containing Ni as a main component (hereinafter, simply referred to as Ni metal or the like). It is also non-reactive with impurities such as Cr contained therein, and in particular, TiB 2 is completely inactive with respect to the above impurities. Therefore, the crucible formed of ceramics containing TiB 2 as a main component is excellent in corrosion resistance, is free from contamination of Ni metal or the like melted and held in the crucible, is stably vapor-deposited, and has a predetermined homogeneity. A vapor-deposited film such as a Ni metal is formed. The melting points of the three components of the above composite ceramics are 2790 ° C. for TiB 2 and 210 for CrB, respectively.
0 ° C., TiC is 3257 ° C., and the ceramic of the present invention formed from these three components has a melting point of metallic Ni of 145
It has a higher melting point than 5 ° C. and has sufficient heat resistance to hold a molten liquid such as Ni metal. Further, TiB 2 which is the main component of the ceramics of the present invention has a room temperature resistivity of 9 × 10 5.
-6 Ω · cm, which is remarkably excellent in conductivity, while CrB and TiC are 4.6 × 10 −5 Ω · cm and 1 × 1 respectively.
It is 0 −4 Ω · cm, and the composite ceramic formed of TiB 2 , CrB and TiC has lower conductivity than TiB 2 alone. However, as compared with the case where an insulating material is used as in the prior art, each component is a conductive substance as described above and forms a homogeneous composite ceramics, so that the specific resistance is about 1 to 8 × in the entire crucible. 10 -5 Ω · cm
Therefore, it is excellent in conductivity and can prevent electrification of molten Ni, has stable discharge property with respect to electron beam and plasma, and can perform Ni deposition treatment stably.

【0010】本発明の複合セラミックスは、前記特開平
1−278956号公報で提案された二ホウ化チタンセ
ラミックスと同様に形成することができ、主成分である
TiB2 の粉末と、Cr(クロム)粉末及びC(カーボ
ン)粉末とを所定に配合し焼結して得られる焼結体であ
り、焼結時にTiB2 とCr及びCが反応し、粒界にC
rB及びTiCが形成析出しTiB2 粒子を結合し緻密
化する。このため、本発明の複合セラミックスは、均質
で高強度となる。また、本発明の複合セラミックスは、
主成分のTiB2 粉末に所定量のCr粉末及びC粉末を
添加し、更に、最終的に、TiB2 が80〜95重量
%、CrBが2.5〜17.5重量%及びTiCが2.
5〜17.5重量%の範囲の組成比率となるように、C
rB粉末とTiC粉末をそれぞれの所要量添加し、焼結
することによっても得ることができる。従来、多成分か
らなる複合セラミックスで十分な機械強度の成形品を得
るためには、ホットプレス成形を行わなければならなか
った。しかし、本発明において、上記の複合セラミック
スにより形成されるNi蒸着用ルツボは、金型成形また
はCIP成形し、要すれば得られた成形体を加工し、そ
の後、常圧焼結してほぼ所望形状で、且つ、高強度の焼
結成型体を製造することができる。このため焼結体を加
工する必要がなく、従来のホットプレス焼結後の機械加
工によるマイクロクラックや残留応力等の影響を受ける
ことがない。従って、本発明のNi金属蒸着用ルツボは
性能的に優れるばかりでなく、製造コスト的にも工業上
実用性に富むものである。常圧焼結でルツボとして十分
な高強度を達成できるのは、上記の様に原料のCr粉末
及びC粉末が焼結時にTiB2 と反応し、焼結体が緻密
化されるためである。
The composite ceramics of the present invention can be formed in the same manner as the titanium diboride ceramics proposed in the above-mentioned Japanese Patent Application Laid-Open No. 1-278956. The main component is TiB 2 powder and Cr (chromium). It is a sintered body obtained by mixing powder and C (carbon) powder in a predetermined manner and sintering, and TiB 2 reacts with Cr and C at the time of sintering to form C at the grain boundary.
rB and TiC are formed and deposited to bond the TiB 2 particles and densify. Therefore, the composite ceramic of the present invention is homogeneous and has high strength. Further, the composite ceramic of the present invention,
A predetermined amount of Cr powder and C powder was added to the main component TiB 2 powder, and finally, TiB 2 was 80 to 95% by weight, CrB was 2.5 to 17.5% by weight, and TiC was 2.
C to obtain a composition ratio in the range of 5 to 17.5% by weight.
It can also be obtained by adding the required amounts of rB powder and TiC powder and sintering. Conventionally, in order to obtain a molded product with sufficient mechanical strength from a composite ceramic composed of multiple components, hot press molding had to be performed. However, in the present invention, the Ni vapor deposition crucible formed of the above-mentioned composite ceramics is subjected to mold molding or CIP molding, and if necessary, the obtained molded body is processed, and thereafter sintered under normal pressure to obtain a desired shape. A shaped and high-strength sintered molded body can be manufactured. Therefore, it is not necessary to process the sintered body, and there is no influence of microcracks, residual stress, etc. due to the mechanical processing after the conventional hot press sintering. Therefore, the Ni metal vapor deposition crucible of the present invention is not only excellent in performance but also industrially practical in terms of manufacturing cost. The reason why a sufficiently high strength can be achieved as a crucible by pressureless sintering is that the Cr powder and C powder as raw materials react with TiB 2 during sintering as described above, and the sintered body is densified.

【0011】本発明のNi蒸着用ルツボを形成する複合
セラミックスは、上記した構成成分による耐食性と導電
性の特性を具備すると同時に、更に、開気孔率が5%以
下、且つ、閉気孔率が5〜15%であるものが好まし
い。開気孔率を5%以下とすることにより、加熱冷却を
繰り返してもNi金属等が気孔内に殆ど浸潤しないた
め、本発明のルツボを構成する複合セラミックスと熱膨
張率大のNi金属等との熱膨張差により割れることがな
く、耐衝撃性に優れる。また、開気孔率が5%を超える
場合は、加熱冷却を繰り返すことにより、Ni金属等が
気孔内に徐々に浸潤し、複合セラミックスとNi金属等
との熱膨張差によりルツボが割れるおそれがある。一
方、閉気孔率は、本発明の複合セラミックスを調製する
ために用いる常圧焼結において、現時点で5%未満とす
ることは困難であり、また、5〜15%の閉気孔率であ
ればルツボとしての強度も十分であり、耐熱衝撃性にも
優れ、急激な温度上昇や降下においても損傷することな
いため、安定してNi蒸着処理することができる。閉気
孔率が15%を超える場合は、特に、強度が低下しルツ
ボとしての使用が困難となる。なお、本発明において、
開気孔とはセラミックスの空隙部分のうち外気に通じて
いる部分をいい、閉気孔とはセラミックスの空隙部分の
うち外気に通じていない部分をいう。
The composite ceramic forming the crucible for vapor deposition of Ni of the present invention has the characteristics of corrosion resistance and conductivity due to the above-mentioned constituents, and at the same time, has an open porosity of 5% or less and a closed porosity of 5 or less. It is preferably about 15%. By setting the open porosity to 5% or less, Ni metal or the like hardly infiltrates into the pores even if heating and cooling are repeated, so that the composite ceramics constituting the crucible of the present invention and the Ni metal or the like having a large coefficient of thermal expansion are formed. It does not crack due to the difference in thermal expansion and has excellent impact resistance. When the open porosity exceeds 5%, Ni metal or the like gradually infiltrates into the pores by repeating heating and cooling, and the crucible may crack due to the difference in thermal expansion between the composite ceramics and Ni metal or the like. . On the other hand, the closed porosity is difficult to be less than 5% at the present time in normal pressure sintering used for preparing the composite ceramic of the present invention, and if the closed porosity is 5 to 15%. The crucible has sufficient strength, is excellent in thermal shock resistance, and is not damaged even when the temperature rises or falls rapidly, so that the Ni vapor deposition treatment can be stably performed. When the closed porosity exceeds 15%, the strength becomes particularly low, and it becomes difficult to use it as a crucible. In the present invention,
The open pores refer to portions of the ceramic voids that communicate with the outside air, and the closed pores refer to portions of the ceramic voids that do not communicate with the outside air.

【0012】本発明の複合セラミックスの気孔率は、上
記した焼結時の緻密化を、原料粉末のTiB2 粉末、C
r粉末及びC粉末、また、必要に応じ添加するCrB粉
末及びTiC粉末の純度及び平均粒径や、焼結温度等を
制御することにより調節することができる。本発明の複
合セラミックスを調製するため、原料粉末のTiB2
末、Cr粉末、CrB粉末及びTiC粉末として、それ
ぞれ、純度98%以上で、平均粒径1〜15μm、好ま
しくは1〜12μm、最大粒径30μm、好ましくは2
5μmのものを用いることが好ましい。また、炭素粉末
としては、例えばカーボンブラックを用いることがで
き、純度99%以上であり、平均粒径10〜100n
m、好ましくは10〜50nm、最大粒径150nm、
好ましくは100nmのものを用いることが好ましい。
TiB2 粉末、Cr粉末、CrB粉末及びTiC粉末の
平均粒径を1〜15μmとするのは、それぞれ平均粒径
が1μm未満であると、TiB2 粒子、Cr粒子、Cr
B粉末及びTiC粉末の表面酸化及び凝集が著しくなり
焼結性が低下するためである。また、TiB2 粉末、C
rB粉末及びTiC粉末の平均粒径が15μmを超える
と、焼結の駆動力が小さくなり焼結性が低下するためで
ある。Cr粉末の平均粒径が15μmを超えると、多く
の亀裂を粒内に有したCrBの粗大粒子が焼結体内に生
成し、焼結体の強度を低下させるためである。更に、C
粉末の平均粒径を10〜100nmとするのは、平均粒
径が10nm未満であると炭素粒子の表面酸化及び凝集
が著しくなり焼結性が低下し、一方、平均粒径が100
nmを超えると焼結の駆動力が小さくなり焼結性が低下
するためである。上記の原料TiB2 粉末、Cr粉末、
CrB粉末及びTiC粉の最大粒径を30μmとするの
は、最大粒径が30μmを超えると焼結の駆動力が小さ
くなり焼結性が低下し、粗大粒子として焼結体内に残存
することとなり、結果として焼結体の強度を低下させる
ことになるためである。また、C粉末の最大粒径を15
0nmとするのは、焼結の駆動力が小さくなり焼結性が
低下し、粗大C粉末として焼結体内に残存することとな
り、結果として焼結体の強度を低下させることになるた
めである。
The porosity of the composite ceramics of the present invention is determined by the above-mentioned densification at the time of sintering as TiB 2 powder, C
It can be adjusted by controlling the purity and average particle size of the r powder and the C powder, and the CrB powder and the TiC powder that are added as necessary, and the sintering temperature. In order to prepare the composite ceramics of the present invention, TiB 2 powder, Cr powder, CrB powder and TiC powder as raw material powders each having a purity of 98% or more and an average particle size of 1 to 15 μm, preferably 1 to 12 μm, and a maximum particle size. Diameter 30 μm, preferably 2
It is preferable to use one having a thickness of 5 μm. Further, as the carbon powder, for example, carbon black can be used, the purity is 99% or more, and the average particle size is 10 to 100 n.
m, preferably 10 to 50 nm, maximum particle size 150 nm,
It is preferable to use one having a thickness of 100 nm.
TiB 2 powder, Cr powder, to the 1~15μm an average particle size of CrB powder and TiC powder, the average particle size, respectively is less than 1 [mu] m, TiB 2 particles, Cr particles, Cr
This is because the surface oxidation and aggregation of the B powder and the TiC powder become remarkable and the sinterability decreases. Also, TiB 2 powder, C
This is because if the average particle size of the rB powder and the TiC powder exceeds 15 μm, the driving force for sintering becomes small and the sinterability deteriorates. This is because if the average particle size of the Cr powder exceeds 15 μm, coarse particles of CrB having many cracks in the particles are generated in the sintered body, and the strength of the sintered body is reduced. Further, C
The average particle size of the powder is set to 10 to 100 nm. When the average particle size is less than 10 nm, the surface oxidation and aggregation of the carbon particles become remarkable and the sinterability decreases, while the average particle size is 100 nm.
This is because if the thickness exceeds nm, the driving force for sintering becomes small and the sinterability deteriorates. The above raw material TiB 2 powder, Cr powder,
The maximum particle size of CrB powder and TiC powder is set to 30 μm. When the maximum particle size exceeds 30 μm, the driving force for sintering becomes small and the sinterability decreases, and the particles remain in the sintered body as coarse particles. This is because, as a result, the strength of the sintered body is reduced. The maximum particle size of C powder is 15
The reason for setting the thickness to 0 nm is that the driving force for sintering becomes small, the sinterability decreases, and the coarse C powder remains in the sintered body, resulting in a decrease in the strength of the sintered body. .

【0013】上記のように平均粒径等を調整したTiB
2 、Cr及びC、必要に応じてCrB、TiCの原料粉
末を、目的とする焼結体の複合セラミックスの成分比率
となるように配合する。各原料粉末等を配合した混合粉
末を、要すればボールミル等により湿式粉砕後、必要に
応じて一般的に用いられるバインダーや分散剤を添加し
造粒する。その後、所望のルツボ形状に、通常、20〜
150MPaの圧力で金型成形またはCIP成形し、更
に要すれば加工した後、アルゴンガス等の不活性雰囲気
中または水素ガス等の非酸化性雰囲気中で常圧焼結す
る。焼結は1700〜2100℃、好ましくは1800
〜2000℃で行うことが好ましい。焼結温度が170
0℃未満では、気孔率が上記範囲から外れるためルツボ
の強度が低下する。また、2100℃を超えると、生成
したCrB及び必要に応じて添加されたCrBが熱分解
して所定の複合セラミックスが得られないためである。
なお、本発明のNi蒸着用ルツボは、Ni金属単体また
はNiを主成分とするNi合金を溶融し、蒸着させる目
的で形成されたルツボではあるが、蒸着装置中へ酸素や
窒素等の反応ガスを送り込み、Ni金属単体またはNi
を主成分としたNi合金を酸化物や窒化物等に変化させ
て蒸着させるルツボとしても利用することができる。ま
た、当然、Ni以外の成分を主成分とする金属の蒸着用
としても用いることができる。本発明のルツボを形成す
る複合セラミックスは、耐熱衝撃性に優れ、電子ビーム
蒸着やプラズマ蒸着時の急激な温度の昇降変化でのルツ
ボの割れを防止できるが、更に、この複合セラミックス
を電子ビーム蒸着装置等の銅製ハース内に蒸着用ルツボ
を設置する敷板として使用してルツボのライフを向上さ
せることもできる。
TiB having the average particle size adjusted as described above
2 , Cr and C and, if necessary, CrB and TiC raw material powders are mixed so as to have a component ratio of the composite ceramic of the target sintered body. If necessary, a mixed powder prepared by mixing the raw material powders and the like is wet pulverized by a ball mill or the like, and then a commonly used binder or dispersant is added as necessary for granulation. Then, the desired crucible shape, usually 20 to
After die molding or CIP molding at a pressure of 150 MPa and further processing if necessary, pressureless sintering is carried out in an inert atmosphere such as argon gas or in a non-oxidizing atmosphere such as hydrogen gas. Sintering is 1700-2100 ° C, preferably 1800
It is preferable to carry out at ˜2000 ° C. Sintering temperature is 170
When the temperature is lower than 0 ° C, the porosity is out of the above range, so that the crucible strength is lowered. Further, when the temperature exceeds 2100 ° C., the generated CrB and the CrB added as necessary are thermally decomposed and a predetermined composite ceramic cannot be obtained.
The Ni vapor deposition crucible of the present invention is a crucible formed for the purpose of melting and vapor depositing a Ni metal simple substance or a Ni alloy containing Ni as a main component, but a reaction gas such as oxygen or nitrogen in the vapor deposition apparatus. , Ni metal alone or Ni
It can also be used as a crucible for vapor-depositing a Ni alloy containing as a main component by changing it to an oxide or a nitride. Further, naturally, it can also be used for vapor deposition of a metal containing a component other than Ni as a main component. The composite ceramic forming the crucible of the present invention has excellent thermal shock resistance and can prevent the crucible from cracking due to a rapid change in temperature during electron beam vapor deposition or plasma vapor deposition. The life of the crucible can also be improved by using it as a floor plate for installing a vapor deposition crucible in a copper hearth of an apparatus or the like.

【0014】[0014]

【実施例】以下、本発明を実施例に基づき更に詳細に説
明する。但し、本発明は下記実施例により制限されるも
のでない。 (ルツボの調製) 実施例1〜2 TiB2 粉末(純度98%以上、平均粒径8.0μm、
最大粒径25μm)、Cr粉末(純度99%以上、平均
粒径6.0μm、最大粒径20μm)、炭素粉末(純度
99.5%以上、平均粒径30nm、最大粒径120n
m)、CrB粉末(純度98.5%以上、平均粒径6.
5μm、最大粒径20μm)及びTiC粉末(純度9
8.5%以上、平均粒径5.5μm、最大粒径18μ
m)を、下記反応式(1)で反応が進行するものとし、
得られる焼結体が表1に示したTiB2 、CrB及びT
iCの組成比率となるように、それぞれの配合量を算出
して配合して混合粉末を得た。なお、実施例1において
は上記TiB2 、Cr及びCの原料粉末のみを配合して
混合粉末を調製し、実施例2においては同様に上記Ti
2 、Cr及びCを混合し、更に、成分調整のために所
定量のCrB及びTiC粉末を添加した。 TiB2 +Cr+C(+CrB+TiC)→TiB2 +CrB+TiC (1) 混合粉末をボールミルを用いて湿式粉砕後、所定量のバ
インダ、分散剤を添加し、スプレードライヤを用いて造
粒した。この造粒粉を用いてルツボ成形用金型に充填
し、50MPaにて加圧成形した。次に、得られた成形
体を脱脂処理してバインダ、分散剤及び滑剤等を加熱除
去した後、アルゴンガス雰囲気中、無加圧状態で190
0℃で2時間保持し、TiB2 を主成分とする図1に示
した形状の外径(D)30mmφ、内径(d)24mm
φ、外底部曲率半径(R)7mm、内底部曲率半径
(r)5.5mmのNi金属蒸着用ルツボをそれぞれ3
個ずつ作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments. However, the present invention is not limited by the following examples. (Preparation of crucibles) Examples 1-2 TiB 2 powder (purity 98% or more, average particle size 8.0 μm,
Maximum particle size 25 μm), Cr powder (purity 99% or more, average particle size 6.0 μm, maximum particle size 20 μm), carbon powder (purity 99.5% or more, average particle size 30 nm, maximum particle size 120 n
m), CrB powder (purity 98.5% or more, average particle size 6.
5 μm, maximum particle size 20 μm) and TiC powder (purity 9
8.5% or more, average particle diameter 5.5 μm, maximum particle diameter 18 μ
m) is a reaction that proceeds according to the following reaction formula (1),
The obtained sintered body was TiB 2 , CrB and T shown in Table 1.
The respective blending amounts were calculated and blended to obtain a mixed powder so that the composition ratio of iC was obtained. In Example 1, only the raw material powders of TiB 2 , Cr and C were blended to prepare a mixed powder, and in Example 2, the same Ti powder was used.
B 2, were mixed Cr and C, further, was added a predetermined amount of CrB and TiC powders for component adjustment. TiB 2 + Cr + C (+ CrB + TiC) ➝TiB 2 + CrB + TiC (1) The mixed powder was wet pulverized using a ball mill, a binder and a dispersant in a predetermined amount were added, and the mixture was granulated using a spray dryer. The granulated powder was used to fill a crucible molding die and pressure-molded at 50 MPa. Next, the obtained molded product is degreased to remove the binder, the dispersant, the lubricant and the like by heating, and then 190 in a pressureless state in an argon gas atmosphere.
Hold at 0 ° C. for 2 hours, and have the shape shown in FIG. 1 containing TiB 2 as a main component, outer diameter (D) 30 mmφ, inner diameter (d) 24 mm
φ, outer bottom radius of curvature (R) 7 mm, inner bottom radius of curvature (r) 5.5 mm 3 crucibles for Ni metal deposition respectively
Each was produced.

【0015】比較例1 平均粒径18μm、最大粒径42μmのTiB2 粉末を
使用した以外は、実施例1と全く同様にして表1に示し
た成分組成の3個のルツボを作製した。
Comparative Example 1 Three crucibles having the component compositions shown in Table 1 were prepared in exactly the same manner as in Example 1 except that TiB 2 powder having an average particle size of 18 μm and a maximum particle size of 42 μm was used.

【0016】比較例2 平均粒径22μm、最大粒径45μmのCr粉末及び平
均粒径50nm、最大粒径200nmのC粉末使用した
以外は、比較例1と全く同様にして表1に示した成分組
成の3個のルツボを作製した。
Comparative Example 2 Components shown in Table 1 in the same manner as in Comparative Example 1 except that Cr powder having an average particle size of 22 μm and maximum particle size of 45 μm and C powder having an average particle size of 50 nm and maximum particle size of 200 nm were used. Three crucibles having the composition were prepared.

【0017】比較例3〜7 表1に示した成分組成となるように原料粉末を調整した
以外は、実施例2と全く同様にしてそれぞれルツボを3
個ずつ作製した。
Comparative Examples 3 to 7 Crucibles 3 were prepared in the same manner as in Example 2 except that the raw material powders were adjusted so as to have the composition shown in Table 1.
Each was produced.

【0018】(複合セラミックス製ルツボの特性)上記
の実施例及び比較例で得られた各組成のルツボ1個の一
部を粉砕し、粉末X線回折法により結晶相の同定を行っ
た結果、原料粉末のCr粉末とC粉末は認められず、T
iB2 、CrB及びTiCのみが同定された。また、I
CP(アルゴンプラズマ発光分光分析)法及び原子吸光
分析法により元素定量分析を行い、その結果を表1に示
した。更に、アルキメデス法により開気孔率を測定し、
オートピクノメータを用いて真比重を測定後、下記式
(2)により閉気孔率を算出し表1に示した。 閉気孔率(%)=100−かさ比重/真比重×100 (2) 得られたルツボの底部より、約直径20mmφ×3mm
形状の試料を作製し四探針法抵抗率計(三菱油化(株)
製、商品名:ロレスタAP)を用い、比抵抗Ω・cmを
測定した。その結果を表1に示した。
(Characteristics of Crucibles Made of Composite Ceramics) As a result of crushing a part of one crucible having each composition obtained in the above-mentioned Examples and Comparative Examples and identifying the crystal phase by powder X-ray diffraction method, Cr powder and C powder of raw material powder were not recognized, and T powder
Only iB 2 , CrB and TiC were identified. Also, I
Elemental quantitative analysis was carried out by the CP (Argon Plasma Emission Spectroscopy) method and the atomic absorption spectrometry, and the results are shown in Table 1. Furthermore, the open porosity is measured by the Archimedes method,
After measuring the true specific gravity using an auto pycnometer, the closed porosity was calculated by the following formula (2) and shown in Table 1. Closed porosity (%) = 100−bulk specific gravity / true specific gravity × 100 (2) About 20 mmφ × 3 mm in diameter from the bottom of the obtained crucible.
Four-probe method resistivity meter (Mitsubishi Yuka Co., Ltd.)
The specific resistance Ω · cm was measured by using a product, manufactured by Loresta AP. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】(Ni蒸着試験によるルツボ評価)また、
残りの各ルツボを、図3の模式的断面説明図に示したよ
うな電子ビ−ム蒸着装置の水冷銅製ハース内にそれぞれ
配置し、電圧10kV、出力18kWの条件でNi金属
(純度99.99%)をガラス基板上に蒸着する蒸着試
験を繰り返し実施した。蒸着試験後の各ルツボについ
て、下記の評価項目〜についてそれぞれ次のように
して測定した。それらの結果を表2に示した。 耐食性:ルツボ内面部とNiとの界面との反応につい
て、反射顕微鏡により反応生成物の有無、浸食量及び浸
潤量を確認した。 不純物量:蒸着終了後のルツボ内に残存したNi中の
不純物量を酸溶解後に、原子吸光分析法により測定し
た。 ライフ:上記の蒸着条件で繰り返し蒸着処理を行い、
ルツボの割れ、またはルツボ材料とNiとの反応により
同一条件にて蒸着できなくなった時点をライフエンドと
して、それまでの試験回数で示した。この場合、比較例
2で得られたルツボは2回の蒸着処理を行うことができ
たが、比抵抗が高く蒸着が安定しにくかった。 Ni蒸着膜厚分布:ライフエンド直前の蒸着時におけ
るガラス基板上のNi蒸着膜厚の分布を、超音波探傷装
置を用いて測定し、厚さのばらつきを%で示した。
(Crucible evaluation by Ni deposition test)
Each of the remaining crucibles was placed in a water-cooled copper hearth of an electron beam vapor deposition apparatus as shown in the schematic cross-sectional explanatory view of FIG. 3, and Ni metal (purity 99.99 was obtained under the conditions of a voltage of 10 kV and an output of 18 kW. %) Was repeatedly deposited on the glass substrate. With respect to each crucible after the vapor deposition test, the following evaluation items were measured as follows. The results are shown in Table 2. Corrosion resistance: Regarding the reaction between the inner surface of the crucible and the interface with Ni, the presence or absence of reaction products, the amount of erosion and the amount of infiltration were confirmed by a reflection microscope. Impurity amount: The amount of impurities in Ni remaining in the crucible after completion of vapor deposition was measured by atomic absorption spectrometry after acid dissolution. Life: Repeated vapor deposition process under the above vapor deposition conditions,
The life end is defined as the time when vapor deposition cannot be performed under the same conditions due to cracking of the crucible or reaction between the crucible material and Ni, and the number of tests up to that point is shown. In this case, the crucible obtained in Comparative Example 2 could be vapor-deposited twice, but the specific resistance was high and vapor deposition was difficult to stabilize. Ni vapor deposition film thickness distribution: The distribution of the Ni vapor deposition film thickness on the glass substrate immediately before the life end was measured using an ultrasonic flaw detector, and the thickness variation was shown in%.

【0021】(耐久性試験)また、上記実施例1で得ら
れた各ルツボを上記蒸着試験と同様の電子ビーム蒸着装
置のCu製ハース内に配置し、Ni金属をルツボ内に投
入しない以外は同一の条件で電子ビームを20秒間照射
し、照射後10分間そのままの状態で放置するという操
作をルツボが破損する(割れる)まで繰り返し行った。
その結果、8回までは繰り返し蒸着条件下に耐えた。
(Durability Test) Further, each crucible obtained in Example 1 was placed in a Cu hearth of an electron beam vapor deposition apparatus similar to that used in the vapor deposition test, and Ni metal was not placed in the crucible. The operation of irradiating the electron beam for 20 seconds under the same condition, and leaving it as it is for 10 minutes after the irradiation was repeated until the crucible was damaged (broken).
As a result, it withstood repeated vapor deposition conditions up to eight times.

【0022】比較例8〜9 図2に示した形状の外径25mmφ、内径20mmφ、
高さ25mm、底部厚さ5mmの上部開口円筒容器のル
ツボを、従来法と同様にMo及び黒鉛で作製した。上記
実施例1と同様に開気孔率、閉気孔率及び比抵抗を測定
し、表1に示した。また、実施例1と同様に各評価項目
について確認、測定し、その結果を表2に示した。
Comparative Examples 8 to 9 The outer diameter of the shape shown in FIG.
A crucible of an upper opening cylindrical container having a height of 25 mm and a bottom thickness of 5 mm was made of Mo and graphite as in the conventional method. The open porosity, the closed porosity and the specific resistance were measured in the same manner as in Example 1 and shown in Table 1. Further, each evaluation item was confirmed and measured in the same manner as in Example 1, and the results are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】蒸着試験後の実施例1、比較例8及び比較
例9のルツボをそれぞれ中央部付近で切断後、研磨・ラ
ップした。その断面を顕微鏡で拡大(×5)観察した拡
大断面図を、それぞれ第4図(a)、第4図(b)及び
第4図(c)に示した。この結果、第4図において、本
発明の実施例1のルツボは、殆ど侵食されることなくル
ツボ壁1は当初の形状を保持し、Ni金属2の浸潤もな
く、内表面にNiの沈着が観察される程度であることが
分かる。一方、Mo製ルツボ及び黒鉛製ルツボは、底部
が侵食されると同時に、ルツボ肉厚内部にNiが浸潤し
ていることも分かる。
After the vapor deposition test, the crucibles of Example 1, Comparative Example 8 and Comparative Example 9 were each cut in the vicinity of the center and then polished and lapped. The enlarged cross-sectional views obtained by observing the cross-section with a microscope (× 5) are shown in FIG. 4 (a), FIG. 4 (b) and FIG. 4 (c), respectively. As a result, in FIG. 4, the crucible of Example 1 of the present invention hardly erodes, the crucible wall 1 retains the original shape, the Ni metal 2 does not infiltrate, and the deposition of Ni on the inner surface does not occur. It can be seen that it is observed. On the other hand, in the Mo crucible and the graphite crucible, it can be seen that Ni is infiltrated into the thickness of the crucible at the same time as the bottom is eroded.

【0025】比較例10〜12 実施例1と同一の形状に、99%以上の高純度品で且つ
理論密度比98%以上のAl23 、99%以上の高純
度品で且つ理論密度比98%以上のMgO及び前記特公
昭58−2260号公報で提案されたBN−TiB2
AlN材(BN(窒化ホウ素)45重量%、TiB2
5重量%、AlN(窒化アルミニウム)10重量%にな
るようにホットプレス法を用いて作製)でそれぞれルツ
ボを作製し、上記実施例1のルツボの耐久性試験と同様
に耐久性について試験した。その結果を表2に示した。
なお、これら3種類のルツボとCu製ハース間はW製の
直径1mmφの細線を用いてアース処理した。
Comparative Examples 10 to 12 Al 2 O 3 having a high purity of 99% or more and a theoretical density ratio of 98% or more, and a high purity product of 99% or more and a theoretical density ratio in the same shape as in Example 1. 98% or more of MgO and BN-TiB 2 -proposed in Japanese Patent Publication No. 58-2260.
AlN material (BN (boron nitride) 45% by weight, TiB 2 4
Crucibles were prepared by a hot pressing method so as to have 5% by weight and 10% by weight of AlN (aluminum nitride), and were tested for durability in the same manner as the durability test of the crucible of Example 1 above. The results are shown in Table 2.
In addition, between these three types of crucibles and the Cu hearth, grounding was performed using a thin wire made of W and having a diameter of 1 mmφ.

【0026】上記実施例及び比較例から明らかなよう
に、本発明のTiB2 を主成分としたNi蒸着用ルツボ
は、導電性がよく、且つ耐熱衝撃性及び耐食性にも優
れ、Ni蒸着に用いた場合にばらつきのないNi蒸着膜
が得られることが分かる。また、耐久性も高く、電子ビ
ーム等の厳しい条件下においても繰り返し使用できるこ
とが分かる。一方、TiB2 系セラミックスであって
も、本発明の複合セラミックス組成と異なる場合には、
強度不足や、比抵抗が高くなり、ライフが短くなった
り、膜厚の分布が不均一または浸潤によりライフが低下
することが分かる。また、従来法によるルツボは得られ
るNi蒸着膜の均一性が低く、また、侵食され耐久性が
低いことが分かる。
As is clear from the above Examples and Comparative Examples, the crucible for vapor deposition of Ni containing TiB 2 as a main component of the present invention has good conductivity, excellent thermal shock resistance and corrosion resistance and is suitable for vapor deposition of Ni. It can be seen that the Ni vapor deposition film having no variation can be obtained in the case. It is also found that it has high durability and can be repeatedly used even under severe conditions such as electron beam. On the other hand, even if it is a TiB 2 -based ceramic, if it is different from the composite ceramic composition of the present invention,
It can be seen that the strength is insufficient, the specific resistance is increased and the life is shortened, and the life is shortened due to uneven film thickness distribution or infiltration. Further, it can be seen that in the crucible prepared by the conventional method, the Ni vapor deposition film obtained has low uniformity and is eroded and has low durability.

【0027】[0027]

【発明の効果】本発明のTiB2 を主成分とした複合セ
ラミックスにより形成されるNi蒸着用ルツボは、導電
性に優れているためルツボ内に溶融保持するNiまたは
Niを主成分とするNi合金が帯電することがなく、ま
た、溶融Ni金属等に対する耐食性に優れ、且つ高耐熱
衝撃性であり、安定したNi蒸着処理を行うことがで
き、形成されるNi蒸着膜も均一で良好なものとなる。
また、本発明のNi蒸着用ルツボは常圧焼結法で所望形
状に安価に製造でき、また、従来のものに比し、高寿命
化が可能であり、優れた蒸着膜も提供でき、工業的に極
めて有用である。
EFFECT OF THE INVENTION The crucible for vapor deposition of Ni formed of the composite ceramics containing TiB 2 as a main component of the present invention has excellent conductivity, and therefore Ni or Ni alloy containing Ni as a main component is melted and held in the crucible. Is not charged, has excellent corrosion resistance to molten Ni metal, etc., and has high thermal shock resistance, and can perform stable Ni vapor deposition treatment, and the formed Ni vapor deposition film is uniform and good. Become.
In addition, the Ni vapor deposition crucible of the present invention can be manufactured at a low cost in a desired shape by an atmospheric pressure sintering method, and has a longer life than conventional ones, and can provide an excellent vapor deposition film. Extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で使用したNi蒸着用ルツボの
断面説明図
FIG. 1 is an explanatory cross-sectional view of a Ni vapor deposition crucible used in an example of the present invention.

【図2】本発明の比較例で使用したルツボの断面説明図FIG. 2 is an explanatory sectional view of a crucible used in a comparative example of the present invention.

【図3】本発明の実施例で使用した電子ビ−ム蒸着装置
の水冷銅製ハース電子ビーム装置の模式的断面説明図
FIG. 3 is a schematic cross-sectional explanatory view of a water-cooled copper hearth electron beam apparatus of an electron beam vapor deposition apparatus used in an embodiment of the present invention.

【図4】本発明の実施例及び比較例のNi蒸着試験によ
るルツボ評価に用いた後の各ルツボの断面拡大図(×
5)であり、 (a)は本発明の複合セラミックス製ルツボ断面拡大図 (b)はMo製ルツボ断面の拡大図 (c)は黒鉛製ルツボ断面の拡大図
FIG. 4 is an enlarged cross-sectional view of each crucible after being used for crucible evaluation by Ni vapor deposition test in Examples and Comparative Examples of the present invention (×
5), (a) is an enlarged view of the cross section of the composite ceramic crucible of the present invention (b) is an enlarged view of the Mo cross section of the crucible (c) is an enlarged view of the cross section of the graphite crucible

【符号の説明】[Explanation of symbols]

1 ルツボ壁 2 Ni金属 1 Crucible wall 2 Ni metal

フロントページの続き (72)発明者 沖山 泰治 愛知県刈谷市小垣江南藤1番地 東芝セラ ミックス株式会社刈谷製造所内Front Page Continuation (72) Inventor Taiji Okiyama No. 1 Ogakie Nanto Fuji, Kariya City, Aichi Toshiba Cera Mix Co., Ltd. Kariya Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二ホウ化チタン(TiB2 )80〜95
重量%、ホウ化クロム(CrB)2.5〜17.5重量
%、炭化チタン(TiC)2.5〜17.5重量%を含
有してなり、且つ、比抵抗が1〜8×10-5Ω・cmで
ある複合セラミックスにより形成されることを特徴とす
るNi金属蒸着用ルツボ。
1. Titanium diboride (TiB 2 ) 80-95
% By weight, chromium boride (CrB) 2.5 to 17.5% by weight, titanium carbide (TiC) 2.5 to 17.5% by weight, and specific resistance is 1 to 8 × 10 −. A crucible for vapor deposition of Ni metal, which is formed of a composite ceramic having a resistance of 5 Ω · cm.
【請求項2】 前記セラミックスが、開気孔率が5%以
下で、且つ、閉気孔率が5〜15%である請求項1記載
のNi金属蒸着用ルツボ。
2. The crucible for vapor deposition of Ni metal according to claim 1, wherein the ceramic has an open porosity of 5% or less and a closed porosity of 5 to 15%.
【請求項3】 前記セラミックスを構成する所定の原材
料をルツボ形状に成形し、常圧焼結してなる請求項1ま
たは2記載のNi金属蒸着用ルツボ。
3. The crucible for vapor deposition of Ni metal according to claim 1, wherein a predetermined raw material forming the ceramics is formed into a crucible shape and is sintered under normal pressure.
JP8060184A 1996-02-22 1996-02-22 Crucible for vapor depositing metal nickel Pending JPH09227234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8060184A JPH09227234A (en) 1996-02-22 1996-02-22 Crucible for vapor depositing metal nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8060184A JPH09227234A (en) 1996-02-22 1996-02-22 Crucible for vapor depositing metal nickel

Publications (1)

Publication Number Publication Date
JPH09227234A true JPH09227234A (en) 1997-09-02

Family

ID=13134830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8060184A Pending JPH09227234A (en) 1996-02-22 1996-02-22 Crucible for vapor depositing metal nickel

Country Status (1)

Country Link
JP (1) JPH09227234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175479A (en) * 2007-01-19 2008-07-31 Ulvac Japan Ltd Silicon fusion vessel and fusion device using the same
JP2015040692A (en) * 2013-08-23 2015-03-02 日本タングステン株式会社 Molybdenum crucible for metal evaporation and manufacturing method and use method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175479A (en) * 2007-01-19 2008-07-31 Ulvac Japan Ltd Silicon fusion vessel and fusion device using the same
JP2015040692A (en) * 2013-08-23 2015-03-02 日本タングステン株式会社 Molybdenum crucible for metal evaporation and manufacturing method and use method thereof

Similar Documents

Publication Publication Date Title
US7157148B2 (en) Heat-resistant coated member
US20090121197A1 (en) Sintered Material, Sinterable Powder Mixture, Method for Producing Said Material and Use Thereof
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
JPH05295531A (en) Ti-w based sputtering target and its production
WO1999018258A1 (en) Electrode rod for spark deposition, process for the production thereof, and process for covering with superabrasive-containing layer
US6800182B2 (en) Sputtering target, process for its production and film forming method
CN113373364A (en) Particle-reinforced refractory high-entropy composite material and preparation method thereof
EP0155958A1 (en) Boride-alumina composite
JP5113469B2 (en) Manufacturing method of oxide powder coated with carbide powder
JP4383062B2 (en) Method for producing porous silicon carbide sintered body
JPH09227234A (en) Crucible for vapor depositing metal nickel
JP2007290875A (en) Titanium oxide-based sintered compact and its manufacturing method
Sun et al. Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders
JP4097972B2 (en) Target for physical vapor deposition and method for producing the same
CN115667182A (en) Cr-Si-C sintered compact
JP4860335B2 (en) Conductive corrosion-resistant member and manufacturing method thereof
JP6942788B2 (en) Paste composition, carbide sintered body and its manufacturing method, and refractory member
JPH0797603A (en) Ceramic matrix base material for diamond coating and production of base material for coating
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
CN115298149B (en) Cr-Si sintered compact, sputtering target, and method for producing thin film
JP7077474B2 (en) Sputtering target material and its manufacturing method
JPH08239277A (en) Cubic boron nitride composite ceramic tool and production thereof
JP4058758B2 (en) Surface-coated cemented carbide end mill with excellent heat-resistant plastic deformation in high-speed cutting
CN100439559C (en) Ceramic sputtering targets of tantalum-base compound and its use method and preparation method
JP2003226960A (en) MgO VAPOR DEPOSITION MATERIAL AND PRODUCTION METHOD THEREFOR