JP2014209045A - Tungsten crucible for metal evaporation, method of manufacturing the same, and method of using the same - Google Patents

Tungsten crucible for metal evaporation, method of manufacturing the same, and method of using the same Download PDF

Info

Publication number
JP2014209045A
JP2014209045A JP2013173984A JP2013173984A JP2014209045A JP 2014209045 A JP2014209045 A JP 2014209045A JP 2013173984 A JP2013173984 A JP 2013173984A JP 2013173984 A JP2013173984 A JP 2013173984A JP 2014209045 A JP2014209045 A JP 2014209045A
Authority
JP
Japan
Prior art keywords
metal
crucible
tungsten
evaporation
tungsten carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013173984A
Other languages
Japanese (ja)
Inventor
康英 森
Yasuhide Mori
康英 森
敬章 田中
Takaaki Tanaka
敬章 田中
達也 毛利
Tatsuya Mori
達也 毛利
英郎 辺野喜
Hidero Benoki
英郎 辺野喜
松尾 繁
Shigeru Matsuo
松尾  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2013173984A priority Critical patent/JP2014209045A/en
Publication of JP2014209045A publication Critical patent/JP2014209045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles

Abstract

PROBLEM TO BE SOLVED: To provide a tungsten crucible for metal evaporation, which is hard to react with molten metal at high temperature.SOLUTION: At least an inner wall face, which contacts with molten metal, of a crucible base material (1-a) made of tungsten is carbonized at about 1000°C or more, and thereby the surface is formed in a tungsten carbide layer (1-b). The surface layer of tungsten carbide, as a contact angle with many molten metals (5) exceeds 100° at 1000°C, is relatively poor in wettability, is extremely low in the reactivity with metal and can suppress reaction with molten metal. When the thickness of the tungsten carbide layer is set at 0.1-500 μ, there is no fear that the thermal conduction is largely deteriorated and the layer peels off.

Description

本発明は、溶融金属に対する耐食性に優れた表面層を有する金属蒸発用タングステンるつぼに関する。あわせて、その製造方法と使用方法に関する。
The present invention relates to a metal evaporation tungsten crucible having a surface layer excellent in corrosion resistance against molten metal. In addition, it relates to the manufacturing method and the usage method.

金属を蒸発させる目的で金属を高温に昇温すると、一定温度を超えると金属が溶融状態になり、溶融した金属を保持するための凹部を有する容器が必要となる。高温保持容器は一般に、高温で溶融や変形をせず、溶融物である金属や合金と反応しにくい材質が用いられる。
タングステンは融点が3380℃と高く、かつ多くの溶融金属類に対する耐食性に優れていることから、例えば、特許文献1に記載されているように、金属蒸発用るつぼ材として、従来から広く利用されている。
When the temperature of the metal is raised to a high temperature for the purpose of evaporating the metal, when the temperature exceeds a certain temperature, the metal is in a molten state, and a container having a recess for holding the molten metal is required. The high temperature holding container is generally made of a material that does not melt or deform at a high temperature and does not easily react with a molten metal or alloy.
Tungsten has a high melting point of 3380 ° C. and is excellent in corrosion resistance against many molten metals. For example, as described in Patent Document 1, it has been widely used as a crucible material for metal evaporation. Yes.

しかしながら、このように高融点であり、耐食性に優れたタングステンるつぼでも、溶融金属と反応したり、あるいは合金化して、るつぼ自体が溶解したり侵食される場合がある。このような問題を解消するために、例えば特許文献2に示されているように、金属タングステンるつぼ基材の内壁面の表面層を電子ビーム照射し、溶融処理することで耐食性を向上したるつぼが提案されている。また特許文献3には、窒化硼素を主成分とするセラミックス製の「外るつぼ」と、等方性黒鉛製である「内るつぼ」とから構成される二層構造の蒸発用るつぼが提案されている。
However, even a tungsten crucible having such a high melting point and excellent corrosion resistance may react with the molten metal or be alloyed, and the crucible itself may be dissolved or eroded. In order to solve such a problem, as shown in Patent Document 2, for example, a crucible having improved corrosion resistance by irradiating the surface layer of the inner wall surface of the metal tungsten crucible base with an electron beam and subjecting it to a melting treatment. Proposed. Patent Document 3 proposes an evaporation crucible having a two-layer structure composed of an “outer crucible” made of ceramics mainly composed of boron nitride and an “inner crucible” made of isotropic graphite. Yes.

特開平03−191292号公報Japanese Patent Laid-Open No. 03-191292 特開平02−143089号公報Japanese Patent Laid-Open No. 02-143089 特開平02−242082号公報Japanese Patent Laid-Open No. 02-248202

以上のように、タングステンるつぼを改良してより高温にて使用する技術が開示されている。しかし、溶融対象が金属である場合は、例えば特許文献2に記載されている製法では、高温では溶融金属とるつぼとの化学反応を抑制することはできない。また、特許文献3に記載されている製法では、るつぼ材質的に強度が低く、高温で処理した場合、冷却時の熱膨張差により割れる場合があり、製造コストも高くつく。よって、特許文献に示された技術では、溶融金属とるつぼとの反応を抑えることが十分に成されていない。   As described above, a technique for improving the tungsten crucible and using it at a higher temperature has been disclosed. However, when the object to be melted is a metal, for example, the manufacturing method described in Patent Document 2 cannot suppress the chemical reaction between the molten metal and the crucible at a high temperature. Moreover, in the manufacturing method described in Patent Document 3, the strength of the crucible is low, and when it is processed at a high temperature, it may break due to a difference in thermal expansion during cooling, and the manufacturing cost is high. Therefore, the technique disclosed in the patent document does not sufficiently suppress the reaction with the molten metal crucible.

本発明は上記問題点を解決するためになされたものであって、金属の蒸発に必要な高温状態で溶融金属と反応しにくい金属蒸発用タングステンるつぼを提供することにある。このるつぼは、タングステン材料のために、使用できる温度を高温とすることができる。また、熱伝導率が十分高く、金属の蒸発を効率よく行なうことができる。   The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a metal evaporation tungsten crucible that hardly reacts with molten metal at a high temperature necessary for metal evaporation. This crucible can be used at a high temperature because of the tungsten material. Further, the thermal conductivity is sufficiently high, and the metal can be efficiently evaporated.

また、従来のタングステンるつぼの製造から、多くの費用や設備の追加を必要とせずに、目的を実現するるつぼを得る製造方法である。さらに、得られたるつぼを効率的に使用する使用方法を提案することである。
In addition, it is a manufacturing method for obtaining a crucible that achieves the object without requiring much cost and additional equipment from the manufacture of a conventional tungsten crucible. Furthermore, it is to propose a method of using the obtained crucible efficiently.

タングステンの融点は3380℃と金属中で最も高く、沸点についても5500℃以上と高い。また蒸気圧が2727℃において1×10−2Paと低く、高温で使用する材料として優れた特性を有している。しかしながら、金属単体は特に高温で反応性が高く、2種以上の金属が高温で接すると多くは合金化し、また固溶する。金属蒸発用るつぼ(以後、単に「るつぼ」とも表記する)が金属製であれば、るつぼ成分と溶融した金属とが合金化や固溶を起こし、るつぼを破損する場合がある。特に、金属を溶融させ、さらに一定の蒸発量を得るためには、通常、金属の融点やそれよりも高い温度が必要であり、蒸発効率を上げようとするほど高温での処理が必要となる。そのために、金属や合金を蒸発させる蒸発用るつぼを考慮する場合は、「金属と蒸発用るつぼとの反応」を主に検討する必要がある。 The melting point of tungsten is 3380 ° C., the highest among metals, and the boiling point is as high as 5500 ° C. or higher. Further, the vapor pressure is as low as 1 × 10 −2 Pa at 2727 ° C., and it has excellent characteristics as a material used at high temperatures. However, single metals are highly reactive especially at high temperatures, and when two or more metals come into contact with each other at high temperatures, many of them are alloyed and dissolved. If the metal evaporation crucible (hereinafter, also simply referred to as “crucible”) is made of metal, the crucible component and the molten metal may be alloyed or dissolved, and the crucible may be damaged. In particular, in order to melt a metal and obtain a certain amount of evaporation, usually, a melting point of the metal or a temperature higher than that is required, and a treatment at a higher temperature is required to increase the evaporation efficiency. . Therefore, when considering an evaporation crucible for evaporating a metal or an alloy, it is necessary to mainly examine “reaction between the metal and the evaporation crucible”.

本発明の金属蒸発用タングステンるつぼは、タングステン製のるつぼ基材の少なくとも金属溶湯(蒸発する金属)と接する箇所を、炭化処理することにより炭化タングステン化したものである。炭化タングステンは、およそ1000〜2000℃程度の温度でも、多くの金属や合金と殆ど反応しない。この炭化タングステンは、最もよく用いられるのはWCであるが、たとえばWCなどのWとCの比が異なる炭化タングステンが一部または全部を占めていても構わない。炭化層以外は、変化なくタングステンである。 The tungsten crucible for metal evaporation according to the present invention is obtained by carbonizing at least a portion of a tungsten crucible base that is in contact with a molten metal (evaporating metal). Tungsten carbide hardly reacts with many metals and alloys even at a temperature of about 1000 to 2000 ° C. This tungsten carbide is most commonly used as WC, but tungsten carbide having a different ratio of W and C, such as W 2 C, may occupy a part or all of it. Except for the carbonized layer, it is tungsten without change.

炭化タングステン(WC)の融点は2900℃程度であり、多くの金属の蒸気圧が十分高くなる温度(すなわち、使用温度)よりも著しく高い。そのために、使用温度では溶融はもちろん変形も殆ど起こらない。   The melting point of tungsten carbide (WC) is about 2900 ° C., which is significantly higher than the temperature at which the vapor pressure of many metals becomes sufficiently high (that is, the use temperature). For this reason, at the operating temperature, there is almost no deformation as well as melting.

また炭化タングステンの表面層と多くの溶融金属との接触角は、1000℃において100°超と比較的濡れ性が低く、溶融金属との反応は起こりにくい。
対象となる蒸発させる金属としては、Ag(銀)、Al(アルミニウム)、Au(金)、Ba(バリウム)、Be(ベリリウム)、Ce(セリウム)、Co(コバルト)、Cr(クロム)、Cu(銅)、Fe(鉄)、Ge(ゲルマニウム)、In(インジウム)、La(ランタン)、Mn(マンガン)、Ni(ニッケル)、Pd(パラジウム)、Sc(スカンジウム)、Sn(スズ)、Ti(チタン)、U(ウラン)、Y(イットリウム)などが挙げられる。これらの金属は、融点が660〜1750℃程度であり、蒸気圧が10−2(torr)となる温度が高くとも1900℃であり、本発明のタングステンるつぼはこれらの金属蒸発用るつぼとして十分に使用できる。また、蒸発する金属は、前述の金属単体に限らず、それらの相互の合金でも使用できる。
Further, the contact angle between the surface layer of tungsten carbide and many molten metals exceeds 100 ° at 1000 ° C. and has relatively low wettability, and reaction with molten metal hardly occurs.
Examples of metals to be evaporated include Ag (silver), Al (aluminum), Au (gold), Ba (barium), Be (beryllium), Ce (cerium), Co (cobalt), Cr (chromium), Cu (Copper), Fe (iron), Ge (germanium), In (indium), La (lanthanum), Mn (manganese), Ni (nickel), Pd (palladium), Sc (scandium), Sn (tin), Ti (Titanium), U (uranium), Y (yttrium) and the like. These metals have a melting point of about 660 to 1750 ° C. and a vapor pressure of 10 −2 (torr) at a high temperature of 1900 ° C., and the tungsten crucible of the present invention is sufficient as these metal evaporation crucibles. Can be used. Moreover, the metal to evaporate can be used not only the above-mentioned metal simple substance but also those mutual alloys.

本発明の金属蒸発用タングステンるつぼは、真空雰囲気を含む減圧雰囲気中、窒素雰囲気中、水素ガス雰囲気中、不活性ガス(希ガスやCOガスなど)雰囲気中などで使用できる。酸素含有雰囲気は、蒸発用るつぼ基材のタングステンおよびその表面層の炭化タングステンを酸化させる恐れがあり、また、蒸発させる金属や合金成分と酸化物を生成する危険が高いため望ましくない。雰囲気の圧力は低いほど、金属の蒸発速度は速くなり、生産性が向上することから、真空雰囲気を用いることが多い。 The tungsten crucible for metal evaporation of the present invention can be used in a reduced pressure atmosphere including a vacuum atmosphere, a nitrogen atmosphere, a hydrogen gas atmosphere, an inert gas (such as rare gas or CO 2 gas) atmosphere, and the like. An oxygen-containing atmosphere is not desirable because there is a risk of oxidizing tungsten in the crucible base material for evaporation and tungsten carbide in the surface layer, and there is a high risk of generating oxides and metal or alloy components to be evaporated. A vacuum atmosphere is often used because the lower the pressure of the atmosphere, the faster the metal evaporation rate and the higher the productivity.

蒸発用るつぼの基材に用いるタングステンの熱伝導率は167(W/m・K)と高く、また表面層の炭化タングステンについても60〜70(W/m・K)(WCの場合)と、セラミックスの中でも比較的熱伝導率が高い。また、炭化タングステンは表面層のみであるため、熱伝導の阻害は極めて小さい。そのために、金属蒸発用タングステンるつぼを加熱してその熱を金属に伝導する形態の加熱方法であっても、るつぼと金属の温度が連動しやすい。よって、金属の温度制御が容易であり、温度的な追従が速いために生産性を高くできる。   The thermal conductivity of tungsten used for the base material of the crucible for evaporation is as high as 167 (W / m · K), and the tungsten carbide of the surface layer is 60 to 70 (W / m · K) (in the case of WC), Among ceramics, it has a relatively high thermal conductivity. Moreover, since tungsten carbide is only a surface layer, the inhibition of heat conduction is extremely small. For this reason, even if the heating method is such that the tungsten crucible for metal evaporation is heated and the heat is conducted to the metal, the temperature of the crucible and the metal tends to work together. Therefore, the temperature control of the metal is easy and the temperature follow-up is fast, so that the productivity can be increased.

また、タングステンと炭化タングステンの熱膨張係数は差が小さく、基材と表面層は剥がれにくい。
Further, the difference in thermal expansion coefficient between tungsten and tungsten carbide is small, and the base material and the surface layer are difficult to peel off.

本発明においては、タングステンるつぼの少なくとも金属溶湯と接する箇所を炭化処理することにより、溶融金属と反応しにくい金属蒸発用タングステンるつぼを提供する。この結果、より多くの金属の材種に対して使用が可能となる。るつぼはタングステン材のために、融点が高く、使用できる温度を高温とすることが可能である。また、熱伝導率が十分高く、金属の蒸発を効率よく行なえる。   In the present invention, a tungsten crucible for metal evaporation that hardly reacts with molten metal is provided by subjecting at least a portion of the tungsten crucible in contact with the molten metal to carbonization. As a result, it can be used for more metal grades. Since the crucible is made of a tungsten material, it has a high melting point and can be used at a high temperature. In addition, the thermal conductivity is sufficiently high, and the metal can be efficiently evaporated.

製造面では、従来のタングステンるつぼの製造から、多くの費用や設備の追加を必要とせずに、目的を実現するるつぼを得ることが可能である。表面層の炭化タングステンは、タングステンと熱膨張係数が近く、十分に薄いために、炭化タングステン層が言っていいかの厚さであれば、両者の剥離が起こりにくいるつぼとすることができる。   In terms of manufacturing, it is possible to obtain a crucible that achieves the objective without the need for much expense and additional equipment from the production of a conventional tungsten crucible. Tungsten carbide in the surface layer has a thermal expansion coefficient close to that of tungsten and is sufficiently thin. Therefore, if the tungsten carbide layer has any thickness, it can be a crucible in which peeling of both is difficult to occur.

また、得られたるつぼを効率的に使用できるようになる。
Further, the obtained crucible can be used efficiently.

本発明の一例として、るつぼ内壁面を炭化した金属蒸発用タングステンるつぼを示す図である。It is a figure which shows the tungsten crucible for metal evaporation which carbonized the crucible inner wall surface as an example of this invention. 本発明の他の例として、るつぼ表面全体を炭化した金属蒸発用タングステンるつぼを示す図である。It is a figure which shows the tungsten crucible for metal evaporation which carbonized the whole crucible surface as another example of this invention. 本発明の金属蒸発方法の一例を示す図である。It is a figure which shows an example of the metal evaporation method of this invention.

金属蒸発用タングステンるつぼとして、るつぼ形状の密度90%以上のタングステン焼結体を用意する。成分については、タングステン以外の低融点の金属成分は極力含有しない方がよい。金属成分は単体または合金で存在している場合は、蒸発させようとする金属と共に蒸発して、金属の溶湯に混入の恐れがある。許容できる金属は質量で1000ppm以下、特に0に近いほど蒸発用るつぼとして望ましい。一方、タングステンを除く遷移金属の炭化物、窒化物、炭窒化物などは、高融点で化学反応しにくいために、3質量%以下の範囲で含んでいても使用上問題は起こらない。これ以上になると熱伝導性を下げたり、熱膨張差による割れが生じやすくなったりするために、望ましくない。   As a tungsten crucible for metal evaporation, a tungsten sintered body having a crucible-shaped density of 90% or more is prepared. As for the component, it is better not to contain a low melting point metal component other than tungsten as much as possible. When the metal component is present alone or in an alloy, it may evaporate together with the metal to be evaporated and may be mixed into the molten metal. Acceptable metals are 1000 ppm or less in mass, and the closer to 0, the more desirable as an evaporation crucible. On the other hand, transition metal carbides, nitrides, carbonitrides, etc., excluding tungsten, have a high melting point and are difficult to chemically react. If it exceeds this range, the thermal conductivity is lowered, or cracking due to a difference in thermal expansion tends to occur, which is not desirable.

以上に述べた金属蒸発用タングステンるつぼの少なくとも溶湯と接する箇所に炭化タングステン層を形成する。炭化方法としては、炭素源としてカーボンを含有する粉末をるつぼ周辺に置き非酸化雰囲気で1000〜2500℃程度に加熱する方法、非酸化雰囲気中で固形であるカーボン容器中にるつぼを投入して1000〜2500℃程度に加熱する方法、カーボンを含有する液体をるつぼに塗布した上で非酸化雰囲気中にて1000〜2500℃程度に加熱する方法、もしくは有機ガスを使用して非酸化雰囲気中で1000〜2500℃に加熱する方法などのいずれを選択してもよく、少なくともるつぼの金属溶湯と接する箇所を炭化できれば、方法は問わない。   A tungsten carbide layer is formed on at least a portion of the above-described metal evaporation tungsten crucible in contact with the molten metal. As a carbonization method, a powder containing carbon as a carbon source is placed around a crucible and heated to about 1000 to 2500 ° C. in a non-oxidizing atmosphere, and a crucible is put into a carbon container that is solid in a non-oxidizing atmosphere. A method of heating to about 2500 ° C., a method of heating a liquid containing carbon to a crucible and heating to about 1000 to 2500 ° C. in a non-oxidizing atmosphere, or 1000 in a non-oxidizing atmosphere using an organic gas Any method such as a method of heating to ˜2500 ° C. may be selected, and any method can be used as long as at least a portion of the crucible that contacts the molten metal can be carbonized.

以上のようにして得られた、金属蒸発用タングステンるつぼに、固体状態の金属を凹部に載置し、蒸発用炉に投入する。   In the tungsten crucible for metal evaporation obtained as described above, the metal in a solid state is placed in the recess and is put into an evaporation furnace.

次に、るつぼと金属のどちらか一方、または両方を加熱する。加熱の方法は公知の方法を用いればよいが、大きくは電子ビーム加熱のように直接金属や合金を加熱する方法と、るつぼを熱した熱の伝導により金属を加熱する方法に分けられる。本発明の金属蒸発用タングステンるつぼはいずれの方法にも用いることができる。具体例としては、高周波誘導加熱、カーボンやモリブデンなどのヒーターによる加熱、電子ビーム加熱、レーザー加熱、マイクロ波加熱、るつぼへの通電加熱、アーク放電加熱などが挙げられる。   Next, one or both of the crucible and the metal are heated. A known method may be used as a heating method, but it can be roughly divided into a method of directly heating a metal or an alloy like electron beam heating and a method of heating a metal by conduction of heat by heating a crucible. The tungsten crucible for metal evaporation of the present invention can be used in any method. Specific examples include high-frequency induction heating, heating with a heater such as carbon or molybdenum, electron beam heating, laser heating, microwave heating, energization heating to a crucible, arc discharge heating, and the like.

また、加熱の際の雰囲気は
(1)蒸発する金属と反応しない
(2)るつぼと反応しない
(3)蒸発量を一定以上に上げられる
という特性がいずれも必要となる。
In addition, the atmosphere during heating (1) does not react with the evaporating metal, (2) does not react with the crucible, and (3) the characteristics that the evaporation amount can be increased to a certain level or more are required.

最も適しているのは非酸化かつ減圧雰囲気である。蒸発量は温度と雰囲気に依存するために、減圧または真空雰囲気とすることが蒸発の効率は高い。また、希ガスなどの不活性ガスを一定量流すことにより、蒸発量を調整することも可能である。一方、酸素を含む雰囲気は、タングステンを主成分とするるつぼと反応して酸化物を生成するために望ましくない。その他、アルゴンのような希ガスや窒素などの反応性の低いガスは、蒸発させる金属と反応性生物を生成しない場合は使用して構わない。
Most suitable is a non-oxidizing and reduced pressure atmosphere. Since the evaporation amount depends on the temperature and the atmosphere, the evaporation efficiency is high when a reduced pressure or vacuum atmosphere is used. It is also possible to adjust the evaporation amount by flowing a certain amount of an inert gas such as a rare gas. On the other hand, an atmosphere containing oxygen is undesirable because it reacts with a crucible containing tungsten as a main component to generate an oxide. In addition, a rare gas such as argon or a low-reactivity gas such as nitrogen may be used when a metal to be evaporated and a reactive organism are not generated.

(実施例1)
平均粒子径が3μm、純度が99.9%以上で金属不純物割合が500ppm以下のタングステン粉末を蒸発用タングステンるつぼの出発原料とした。
Example 1
Tungsten powder having an average particle diameter of 3 μm, a purity of 99.9% or more and a metal impurity ratio of 500 ppm or less was used as a starting material for the tungsten crucible for evaporation.

タングステン粉末を100MPaにて金型成形し、円柱状のプレス体を得た。続いて得られたプレス体の一方の端面中心部にフライス盤にて止まり穴をあけた。   Tungsten powder was molded at 100 MPa to obtain a cylindrical press body. Subsequently, a blind hole was drilled with a milling machine in the center of one end face of the obtained pressed body.

プレス体を焼結炉に投入し、Hガスフロー中、最高温度2100℃にて180分保持の条件で焼結した。 The pressed body was put into a sintering furnace, and sintered in a H 2 gas flow at a maximum temperature of 2100 ° C. for 180 minutes.

得られた焼結体を、旋盤を使用して断面がU字型の形状に加工した後、金属溶湯と接する箇所を含むるつぼの内壁面全体にカーボンを分散した液体を塗布し、Hガスフロー中、1600℃にて熱処理して、内壁面が5μmの厚さで炭化した金属蒸発用タングステンるつぼを得た。この炭化層をX線回折法にて分析したところ、WC相及びWC相であった。また、炭化層以外の部分はWのままであった。 The obtained sintered body, after the cross section is shaped into a U-shape using the lathe, a liquid obtained by dispersing carbon throughout the inner wall surface of the crucible is coated, including a portion in contact with the molten metal, H 2 gas In the flow, heat treatment was performed at 1600 ° C. to obtain a tungsten crucible for metal evaporation whose inner wall surface was carbonized with a thickness of 5 μm. When the carbonized layer was analyzed by an X-ray diffraction method, it was a W 2 C phase and a WC phase. Further, the portion other than the carbonized layer remained as W.

図3に示すように、得られた蒸発用タングステンるつぼを高周波誘導加熱式の蒸発用炉10に止まり穴を上にして設置した。この蒸発用炉は減圧及び真空雰囲気とするための真空ポンプ2を備えており、金属蒸発用タングステンるつぼの上部には、蒸発した金属や合金によって被膜を形成する成膜対象3を備えている。高周波誘導はコイル4にて行なう。   As shown in FIG. 3, the obtained tungsten crucible for evaporation was placed in a high-frequency induction heating type evaporation furnace 10 with a blind hole facing upward. The evaporation furnace includes a vacuum pump 2 for reducing the pressure and a vacuum atmosphere, and an upper part of a metal evaporation tungsten crucible is provided with a film formation target 3 for forming a film with evaporated metal or alloy. High frequency induction is performed by the coil 4.

金属蒸発用タングステンるつぼの止まり穴内に、チタン粉末を投入し、真空ポンプを稼動させた後に、高周波誘導加熱方式にて昇温した。   Titanium powder was put into the blind hole of the metal evaporation tungsten crucible, the vacuum pump was operated, and then the temperature was raised by a high frequency induction heating method.

チタンの融点は1730℃程度であり、融点付近では十分に蒸気圧を上げることができる。溶融したチタンは図1中の5である。図示しない温度センサーにより、溶融チタンの温度を測り、1780℃で定温保持となるように設定した。結果として成膜対象3にはチタンの膜が十分な速度で形成でき、また、形成された膜からはチタン以外の成分は検出されなかった。本実施例の金属蒸発用タングステンるつぼは、繰り返しの使用でも変形や反応などの不具合はなく、問題なく使用できた。
The melting point of titanium is about 1730 ° C., and the vapor pressure can be sufficiently increased near the melting point. The melted titanium is 5 in FIG. The temperature of the molten titanium was measured by a temperature sensor (not shown) and set to be kept constant at 1780 ° C. As a result, a titanium film could be formed at a sufficient rate on the film formation target 3, and components other than titanium were not detected from the formed film. The tungsten crucible for metal evaporation of this example was free from problems such as deformation and reaction even after repeated use, and could be used without any problem.

(実施例2)
実施例1と同様のタングステン粉末を用いて、タングステン粉末を300MPaにて金型成形し、焼結炉に投入し、Hガスフロー中、最高温度2100℃にて180分保持の条件で焼結した。得られた焼結体を鍛造し、図2に示すようなテーパの付いた盃状に加工した後、カーボン容器中に投入して、Hガスフロー中1400℃にて加熱して、表面全体が厚さ20μm炭化した蒸発用タングステンるつぼを得た。この炭化層をX線回折法にて分析したところ、WC相であった。
(Example 2)
Using the same tungsten powder as in Example 1, the tungsten powder was molded at 300 MPa, put into a sintering furnace, and sintered in a H 2 gas flow at a maximum temperature of 2100 ° C. for 180 minutes. did. After forging the obtained sintered body and processing it into a tapered bowl shape as shown in FIG. 2, it was put into a carbon container and heated at 1400 ° C. in an H 2 gas flow, and the entire surface was A tungsten crucible for evaporation having a thickness of 20 μm was obtained. When the carbonized layer was analyzed by an X-ray diffraction method, it was a WC phase.

蒸発用タングステンるつぼの広いほうを上にして、凹部に銀粉末を投入し、真空ポンプを稼動させた後に、高周波誘導加熱方式にて昇温した。   With the wide side of the tungsten crucible for evaporation facing up, silver powder was put into the recess, and after operating the vacuum pump, the temperature was raised by high frequency induction heating.

銀の融点は961℃であり、1300℃付近では十分に蒸気圧を上げることができる。溶融した銀は図2中の5である。図示しない温度センサーにより、溶融銀の温度を測り、1300℃で定温保持となるように設定した。結果として成膜対象3には銀の膜が十分な速度で形成でき、また、形成された膜からは銀以外の成分は検出されなかった。   The melting point of silver is 961 ° C., and the vapor pressure can be sufficiently increased near 1300 ° C. The melted silver is 5 in FIG. The temperature of the molten silver was measured by a temperature sensor (not shown) and set to be kept at a constant temperature at 1300 ° C. As a result, a silver film could be formed at a sufficient rate on the film formation target 3, and no components other than silver were detected from the formed film.

実施例1と比較すると、全面が炭化しているために昇温、降温の温度追随はやや反応が遅かったが、炭化処理の製造は、より簡易に行なえた。
金属蒸発用タングステンるつぼは数十時間の繰り返しの使用でも、変形や反応などの不具合はなく、問題なく使用できた。
Compared with Example 1, since the entire surface was carbonized, the reaction of temperature rise and fall was somewhat slow, but the carbonization treatment could be produced more easily.
The tungsten crucible for metal evaporation could be used without any problems such as deformation and reaction even after repeated use for several tens of hours.

(実施例3)
実施例1と同様のタングステン焼結体を用いて、CHガスフロー中、最高温度2000℃にて加熱して、表面層全体を150μm炭化したるつぼを得た。この炭化層をX線回折法にて分析したところ、WC相であった。
Example 3
Using the same tungsten sintered body as in Example 1, the crucible was heated at a maximum temperature of 2000 ° C. in a CH 4 gas flow to carbonize the entire surface layer to 150 μm. When the carbonized layer was analyzed by an X-ray diffraction method, it was a W 2 C phase.

金属蒸発用タングステンるつぼの止まり穴内に、マンガン粉末を投入し、真空ポンプを稼動させた後に、高周波誘導加熱方式にて昇温した。   Manganese powder was put into the blind hole of the tungsten crucible for metal evaporation, and after operating the vacuum pump, the temperature was raised by a high frequency induction heating method.

マンガンの融点は1244℃であり、融点付近では十分に蒸気圧を上げることができる。溶融したマンガンは図2中の5である。図示しない温度センサーにより、溶融マンガンの温度を測り、1300℃で定温保持となるように設定した。結果として成膜対象3にはマンガンの膜が十分な速度で形成でき、また、形成された膜からはマンガン以外の成分は検出されなかった。
金属蒸発用タングステンるつぼは繰り返しの使用でも、変形や反応などの不具合はなく、問題なく使用できた。
The melting point of manganese is 1244 ° C., and the vapor pressure can be sufficiently increased near the melting point. Molten manganese is 5 in FIG. The temperature of molten manganese was measured with a temperature sensor (not shown), and was set to maintain a constant temperature at 1300 ° C. As a result, a manganese film could be formed at a sufficient rate on the film formation target 3, and no components other than manganese were detected from the formed film.
The tungsten crucible for metal evaporation was free from problems such as deformation and reaction even after repeated use and could be used without any problems.

(比較例)
比較例として、炭化処理を行っていない上記と同一形状の金属蒸発用タングステン製るつぼ内に、チタン粉末を投入し、実施例1と同一条件にて加熱及び成膜した。チタン粉末は溶融し、蒸発させることができたが、溶融と同時にチタン溶湯とタングステン製るつぼとが反応を開始し、金属間化合物を形成し、るつぼの一部に割れが発生して再使用が困難となった。実使用は不向きであると考える。
(Comparative example)
As a comparative example, titanium powder was placed in a metal evaporation tungsten crucible having the same shape as that described above, which was not carbonized, and was heated and formed under the same conditions as in Example 1. The titanium powder could be melted and evaporated, but simultaneously with melting, the titanium melt and the tungsten crucible started to react, forming an intermetallic compound, and cracking occurred in a part of the crucible, which could be reused. It became difficult. We think that real use is unsuitable.

1−a 金属蒸発用タングステンるつぼ基材
1−b 炭化タングステン層
2 真空ポンプ
3 成膜対象
4 発熱用コイル
5 金属
6 ガス供給部
10 蒸発用炉
1-a Tungsten crucible base material for metal evaporation 1-b Tungsten carbide layer 2 Vacuum pump 3 Film formation target 4 Heating coil 5 Metal 6 Gas supply unit 10 Evaporating furnace

Claims (7)

少なくとも金属溶湯と接する箇所が炭化タングステン層である、金属蒸発用タングステンるつぼ。   A tungsten crucible for metal evaporation, wherein at least a portion in contact with the molten metal is a tungsten carbide layer. 表面全体に炭化タングステン層を有する、請求項1に記載の金属蒸発用タングステンるつぼ。   The tungsten crucible for metal evaporation according to claim 1, which has a tungsten carbide layer on the entire surface. 前記炭化タングステン層の厚さが0.1〜500μmの範囲である請求項1または請求項2のいずれか1項に記載の金属蒸発用タングステンるつぼ。   The tungsten crucible for metal evaporation according to any one of claims 1 and 2, wherein a thickness of the tungsten carbide layer is in a range of 0.1 to 500 µm. 前記炭化タングステンがWC、WCのいずれか1種または両方を含む請求項1から請求項3のいずれか1項に記載の金属蒸発用タングステンるつぼ。 The tungsten crucible for metal evaporation according to any one of claims 1 to 3, wherein the tungsten carbide includes one or both of WC and W 2 C. タングステンるつぼの少なくとも金属溶湯と接する箇所を、1000〜2500℃にて炭化処理して炭化タングステン層とする、金属蒸発用タングステンるつぼの製造方法。   A method for producing a tungsten crucible for metal evaporation, wherein at least a portion of a tungsten crucible in contact with a molten metal is carbonized at 1000 to 2500 ° C. to form a tungsten carbide layer. 前記炭化処理の炭素源がカーボン成分を含んだ固形、粉末、液体または有機ガスのいずれか1種または2種以上である、請求項5に記載の金属蒸発用タングステンるつぼの製造方法。   6. The method for producing a tungsten crucible for metal evaporation according to claim 5, wherein the carbon source for carbonization is one or more of solid, powder, liquid or organic gas containing a carbon component. 減圧または真空雰囲気中で、加熱装置にて金属蒸発用タングステンるつぼと金属のどちらか一方、または両方を加熱し、金属の溶融物を600℃以上に保ち、前記溶融物から金属の蒸発物を発生させる、
少なくとも金属溶湯と接する箇所に炭化タングステン層を有する金属蒸発用タングステンるつぼの使用方法。
In a reduced pressure or vacuum atmosphere, either or both of the metal evaporation tungsten crucible and the metal are heated to maintain the metal melt at 600 ° C or higher, and the metal melt is generated from the melt. Let
A method for using a tungsten crucible for evaporating a metal having a tungsten carbide layer at least in contact with a molten metal.
JP2013173984A 2013-03-22 2013-08-23 Tungsten crucible for metal evaporation, method of manufacturing the same, and method of using the same Pending JP2014209045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013173984A JP2014209045A (en) 2013-03-22 2013-08-23 Tungsten crucible for metal evaporation, method of manufacturing the same, and method of using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013060162 2013-03-22
JP2013060162 2013-03-22
JP2013173984A JP2014209045A (en) 2013-03-22 2013-08-23 Tungsten crucible for metal evaporation, method of manufacturing the same, and method of using the same

Publications (1)

Publication Number Publication Date
JP2014209045A true JP2014209045A (en) 2014-11-06

Family

ID=51903368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173984A Pending JP2014209045A (en) 2013-03-22 2013-08-23 Tungsten crucible for metal evaporation, method of manufacturing the same, and method of using the same

Country Status (1)

Country Link
JP (1) JP2014209045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185354A (en) * 2013-03-22 2014-10-02 Nippon Tungsten Co Ltd Container for evaporating metal or alloy and method of using the same
CN109354021A (en) * 2018-12-13 2019-02-19 株洲硬质合金集团有限公司 A kind of preparation method of WC/W composite material
CN109609897A (en) * 2018-12-13 2019-04-12 株洲硬质合金集团有限公司 A kind of preparation method, tungsten crucible and its application of compound tungsten crucible

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815143U (en) * 1971-07-01 1973-02-20
JPS5118941A (en) * 1974-08-08 1976-02-14 Denki Kagaku Kogyo Kk KINZOKUJOHATSUYOYOKI
JPH03191292A (en) * 1989-12-18 1991-08-21 Hitachi Ltd Evaporator crucible
JPH0428870A (en) * 1990-05-25 1992-01-31 Toray Res Center:Kk Boat for evaporation and its production
JPH07300666A (en) * 1994-04-27 1995-11-14 Nissin Electric Co Ltd Production of molecular beam source for silicon evaporation and crucible used for the same
JP2009115441A (en) * 2006-12-27 2009-05-28 General Electric Co <Ge> Article for use with highly reactive alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815143U (en) * 1971-07-01 1973-02-20
JPS5118941A (en) * 1974-08-08 1976-02-14 Denki Kagaku Kogyo Kk KINZOKUJOHATSUYOYOKI
JPH03191292A (en) * 1989-12-18 1991-08-21 Hitachi Ltd Evaporator crucible
JPH0428870A (en) * 1990-05-25 1992-01-31 Toray Res Center:Kk Boat for evaporation and its production
JPH07300666A (en) * 1994-04-27 1995-11-14 Nissin Electric Co Ltd Production of molecular beam source for silicon evaporation and crucible used for the same
JP2009115441A (en) * 2006-12-27 2009-05-28 General Electric Co <Ge> Article for use with highly reactive alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185354A (en) * 2013-03-22 2014-10-02 Nippon Tungsten Co Ltd Container for evaporating metal or alloy and method of using the same
CN109354021A (en) * 2018-12-13 2019-02-19 株洲硬质合金集团有限公司 A kind of preparation method of WC/W composite material
CN109609897A (en) * 2018-12-13 2019-04-12 株洲硬质合金集团有限公司 A kind of preparation method, tungsten crucible and its application of compound tungsten crucible

Similar Documents

Publication Publication Date Title
JP4927102B2 (en) Target consisting of hard-to-sinter body of refractory metal alloy, refractory metal silicide, refractory metal carbide, refractory metal nitride or refractory metal boride, its manufacturing method, and sputtering target-backing plate assembly and its Production method
EP1683883B1 (en) Molybdenum alloy
RU2402625C2 (en) Alloyed tungsten produced by chemical sedimentation from gas phase
TWI439337B (en) Sintered body and sintered body
JP5457018B2 (en) Platinum iridium alloy and method for producing the same
TWI653355B (en) High-purity copper sputtering target and copper material for the same
CN111014869B (en) Vacuum welding method of molybdenum-based graphite
JP4558736B2 (en) Manufacturing method of composite member
JP4731347B2 (en) Method for producing composite copper fine powder
JP2005336617A5 (en)
Song et al. Wetting behavior and brazing of titanium‐coated SiC ceramics using Sn0. 3Ag0. 7Cu filler
TW201219590A (en) Sputtering target and/or coil and process for producing same
JP2014209045A (en) Tungsten crucible for metal evaporation, method of manufacturing the same, and method of using the same
JP2015040692A (en) Molybdenum crucible for metal evaporation and manufacturing method and use method thereof
KR20130033322A (en) Moti target material and method for manufacturing for the same
CN102597301A (en) Method of manufacturing titanium-containing sputtering target
Walser et al. Traditional and emerging applications of molybdenum metal and its alloys
CN109385566B (en) High-strength high-wear-resistance multi-principal-element alloy coating material for PVD (physical vapor deposition) and preparation method thereof
CN108884591B (en) Crucible pot
JPWO2006103930A1 (en) Method for producing aluminum nitride-containing material
WO2018141963A1 (en) Method for coating superhard particles and using the particles for fabricating a composite material
JP6118151B2 (en) Metal or alloy evaporation container and method of use
JP5274603B2 (en) Composite copper fine powder
US6598656B1 (en) Method for fabricating high-melting, wear-resistant ceramics and ceramic composites at low temperatures
KR102477415B1 (en) Multi-nano-phase separation-based high-entropy refractory metal-oxide composite and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120