JP2015039837A - Method for manufacturing transparent conductive laminate - Google Patents

Method for manufacturing transparent conductive laminate Download PDF

Info

Publication number
JP2015039837A
JP2015039837A JP2013172016A JP2013172016A JP2015039837A JP 2015039837 A JP2015039837 A JP 2015039837A JP 2013172016 A JP2013172016 A JP 2013172016A JP 2013172016 A JP2013172016 A JP 2013172016A JP 2015039837 A JP2015039837 A JP 2015039837A
Authority
JP
Japan
Prior art keywords
transparent conductive
laminate
film
conductive film
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013172016A
Other languages
Japanese (ja)
Inventor
城 柴田
Jo Shibata
城 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013172016A priority Critical patent/JP2015039837A/en
Publication of JP2015039837A publication Critical patent/JP2015039837A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive laminate excellent in flatness, in which an electrode pattern can be formed with high accuracy by post-processing on both surfaces of the laminate, and to provide a method for manufacturing the transparent conductive laminate.SOLUTION: The method for manufacturing a transparent conductive laminate 30 comprises: a step of laminating a first transparent conductive film 10 having at least a hard coat layer 2, 2' and a transparent conductive layer 3, 3' successively deposited on at least one surface of a transparent substrate film 1, 1' with a second transparent conductive film 20 having the similar constitution via an adhesive layer 4 in such a manner that faces of the above films where the transparent conductive layer 3, 3' is not deposited oppose to each other; and a step of heat treating the laminate. A difference in the maximum thermal shrinkage of the laminate is within 0.2% in an oblique direction at an angle of 45 degrees from a flow direction that coincides with flow directions of the first transparent conductive film 10 and of the second transparent conductive film 20 when these films are laminated.

Description

本発明は、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイに用いられる透明導電性積層体及びその製造方法に関する。   The present invention relates to a transparent conductive laminate used for flat panel displays such as liquid crystal displays and organic EL displays, and a method for producing the same.

液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の表示装置においては、フィルム基材上に表面を保護するためのハードコート層や透明導電層を設けたタッチパネル用の透明導電性積層体が用いられている。   In display devices such as liquid crystal displays, plasma displays, and organic EL displays, a transparent conductive laminate for a touch panel provided with a hard coat layer and a transparent conductive layer for protecting the surface on a film substrate is used. .

これらのタッチパネル用の透明導電性積層体は、一般的には透明なプラスチックフィルム基材上に、目的に応じた機能を供する機能性膜をロール・ツー・ロール加工(巻取り状のフィルム原反による連続した加工)で形成して製造される。   In these transparent conductive laminates for touch panels, a functional film that provides a function according to the purpose is generally roll-to-roll processed on a transparent plastic film substrate (rolled film raw film). Produced by continuous processing).

一般にプラスチックフィルム基材のロール・ツー・ロール加工では、巻取り張力に起因する反りやスリップの発生、さらには平滑な塗布面の貼り付きやブロッキングが起こり易く、生産性や品質に悪影響を及ぼすことが知られている。   In general, roll-to-roll processing of plastic film base material tends to cause warpage and slip due to winding tension, and sticking and blocking of a smooth coated surface, which adversely affects productivity and quality. It has been known.

また最近では2種以上のプラスチックフィルム基材を積層して、より高度で複数の機能を付与した光学用のフィルム積層体が開発されている。   Recently, an optical film laminate has been developed in which two or more types of plastic film base materials are laminated to provide a plurality of higher-level functions.

上記のような2種以上のプラスチックフィルム基材を積層することで、より高機能を付与した前記光学用フィルム積層体の製造においては、例えば、透明導電層のエッチングによるパターン形成等の後加工で、先の反りがより大きな問題となり、前記積層体の平坦性がより厳しく求められる。   In the production of the optical film laminate having higher functions by laminating two or more kinds of plastic film bases as described above, for example, by post-processing such as pattern formation by etching of the transparent conductive layer Further, the warp of the tip becomes a bigger problem, and the flatness of the laminate is required more strictly.

これらの問題に対して、例えば特許文献1の提案がされている。具体的には透明導電層を有したフィルム基材を2枚用いて、それぞれの前記透明導電層が外側に配置されるように積層し、その後電極をパターン形成するものである。この提案は電極形成には効果あるものの、反りに関しては何ら効果がなく、反りによるパターン精度の低下が依然して不安材料として残る。   For these problems, for example, a proposal in Patent Document 1 has been made. Specifically, two film base materials each having a transparent conductive layer are used and laminated such that each of the transparent conductive layers is disposed on the outside, and then electrodes are patterned. Although this proposal is effective for electrode formation, it has no effect on the warp, and a decrease in pattern accuracy due to the warp still remains as an anxiety material.

特開2009−070191号公報JP 2009-070191 A

本発明は、平坦性に優れ、且つ、後加工で表裏に精度よく電極パターンが形成できる透明導電性積層体及びその製造方法を提供するものである。   The present invention provides a transparent conductive laminate that is excellent in flatness and that can accurately form electrode patterns on both sides by post-processing, and a method for producing the same.

PETフィルムは二軸延伸法により製造され、製造幅が数メートルと広く、幅方向で均等に延伸されない場合がある。そのため、フィルムをガラス転移温度以上に加熱した場合に収縮が起こるが、その収縮の大きさが幅位置で均一でないことがある。フィルムを貼り合わせて、ガラス転移温度以上の温度をかける場合、貼り合わせるフィルムの同じ方向の熱収縮率の大きさに差があると、反りが発生する。フィルムの巻取り方向、幅方向の熱収縮率については、貼り合わせる前に熱処理により調整することが可能であるが、斜め方向については、2つの方向で異なる場合があり調整は困難である。   A PET film is manufactured by a biaxial stretching method, and its manufacturing width is as wide as several meters, and it may not be uniformly stretched in the width direction. Therefore, shrinkage occurs when the film is heated above the glass transition temperature, but the magnitude of the shrinkage may not be uniform at the width position. When a film is bonded and a temperature equal to or higher than the glass transition temperature is applied, warping occurs if there is a difference in the size of the heat shrinkage rate in the same direction of the bonded film. The heat shrinkage rate in the film winding direction and the width direction can be adjusted by heat treatment before bonding, but the oblique direction may be different in the two directions and is difficult to adjust.

上記の課題を解決するための手段として、請求項1に記載の発明は、透明基材フィルムの一方の面に少なくともハードコート層と透明導電層を順次積層してなる第一の透明導電性フィルムと、同様の構成からなる第二の透明導電性フィルムとを、透明導電層が積層されていない同士を対向させ、粘着層を介して貼り合わせる工程と、熱処理をする工程とからなる透明導電性積層体の製造方法において、
第一の透明導電性フィルムと第二の透明導電性フィルムとの貼り合せたときの方向が一致する流れ方向斜め45度に対する最大熱収縮率の差が0.2%以内であることを特徴とする透明導電性積層体の製造方法である。
As means for solving the above-mentioned problems, the invention according to claim 1 is a first transparent conductive film in which at least a hard coat layer and a transparent conductive layer are sequentially laminated on one surface of a transparent substrate film. And a second transparent conductive film having the same configuration, a transparent conductive layer comprising a step of pasting a transparent conductive layer opposite each other and bonding them through an adhesive layer, and a step of heat treatment In the method for manufacturing a laminate,
The difference between the maximum heat shrinkage ratios within 45% oblique to the flow direction oblique 45 degrees in which the directions when the first transparent conductive film and the second transparent conductive film are bonded is within 0.2%. This is a method for producing a transparent conductive laminate.

また、請求項2に記載の発明は、前記貼り合わせ工程がロール・ツー・ロール方式で行われることを特徴とする請求項1に記載の透明導電性積層体の製造方法である。   The invention described in claim 2 is the method for producing a transparent conductive laminate according to claim 1, wherein the bonding step is performed by a roll-to-roll method.

本発明の請求項1によれば、粘着層を介して、前記第一の透明導電性フィルムと前記第二の透明導電性フィルムとを、貼り合せたときの方向が一致する流れ方向斜め45度に対する最大熱収縮率の差を0.2%以内で貼り合わせることで、貼り合わせ後の熱処理により、流れ方向に対する左右斜め方向の反り発生を緩和することができる。   According to claim 1 of the present invention, through the adhesive layer, the first transparent conductive film and the second transparent conductive film are inclined at 45 degrees in the flow direction in which the directions when bonded are the same. By bonding the difference in the maximum heat shrinkage ratio with respect to within 0.2%, it is possible to mitigate the occurrence of warpage in the diagonal direction with respect to the flow direction by the heat treatment after bonding.

また、請求項2によれば、貼り合わせ工程をロール・ツー・ロール方式にて行うことにより、平坦性に優れた透明導電性積層体を連続して効率よく製造することができる。   Moreover, according to Claim 2, the transparent conductive laminated body excellent in flatness can be continuously manufactured efficiently by performing a bonding process by a roll-to-roll system.

本発明に係る透明導電性積層体の断面を示す模式図である。It is a schematic diagram which shows the cross section of the transparent conductive laminated body which concerns on this invention. 透明導電性積層体の熱収縮に係る斜め45度の方向を示す平面模式図である。It is a plane schematic diagram which shows the 45-degree direction which concerns on the thermal contraction of a transparent conductive laminated body.

以下、本発明を図に基づいて詳細に説明する。
図1(a)に示すように、本発明は透明基材フィルム1の一方の面に少なくともハードコート層2と透明導電層3を順次積層してなる第一の透明導電性フィルム10と、同様の構成からなる第二の透明導電性フィルム20とを、粘着層4を介してそれぞれの他方の面が流れ方向に対して対向するように貼り合わせてなる透明導電性積層体30であって、
第一の透明導電性フィルム10と第二の透明導電性フィルム20とを貼り合せたときの方向が一致する流れ方向斜め45度に対する最大熱収縮率の差が0.2%以内であることを特徴とする透明導電性積層体30である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1 (a), the present invention is similar to the first transparent conductive film 10 formed by sequentially laminating at least a hard coat layer 2 and a transparent conductive layer 3 on one surface of a transparent base film 1. A transparent conductive laminate 30 formed by bonding the second transparent conductive film 20 having the structure of the second transparent conductive film 20 through the adhesive layer 4 so that the other surfaces thereof face each other in the flow direction,
The difference in the maximum thermal shrinkage rate with respect to 45 degrees oblique in the flow direction in which the directions when the first transparent conductive film 10 and the second transparent conductive film 20 are bonded is within 0.2%. A transparent conductive laminate 30 is characterized.

また、本発明は図1(b)に示すような、透明基材フィルム1、1´の両面にハードコート層2、2´を形成してもよい。   In the present invention, hard coat layers 2 and 2 ′ may be formed on both surfaces of the transparent base film 1 and 1 ′ as shown in FIG.

図1(a)及び図1(b)の構成であっても、第一の透明導電性フィルム10と第二の透明導電性フィルム20との流れ方向斜め45度に対する最大熱収縮率の差が0.2%を超えると、修正することが極めて難しいとされている斜め方向の反りが生じる。   1 (a) and 1 (b), there is a difference in the maximum heat shrinkage rate with respect to 45 degrees oblique in the flow direction between the first transparent conductive film 10 and the second transparent conductive film 20. If it exceeds 0.2%, a warp in an oblique direction, which is considered extremely difficult to correct, occurs.

図2は、本発明に係る流れ方向に対する斜め45度での熱収縮率の測定位置D1とD2及び、反りを測定する四隅の角1、角2、角3、角4を示す。なお、D1は斜め左45度方向を示し、D2は斜め右45度方向を示す。これらは後述する実施例での測定位置である。   FIG. 2 shows the measurement positions D1 and D2 of the thermal contraction rate at 45 degrees oblique to the flow direction according to the present invention, and the corner 1, corner 2, corner 3, and corner 4 for measuring warpage. Note that D1 indicates a diagonal 45 ° direction and D2 indicates a diagonal 45 ° direction. These are measurement positions in the examples described later.

また、本発明に係る前記透明導電性積層体の斜め方向の熱収縮率とは、貼り合わせ前の
常温での前記透明導電性積層体の図2のD1及びD2に位置する2点間距離L、150℃、1時間保存後の同2点間距離L1とした時の、(L−L)/Lの百分率(%)で表したものである。なお、縦方向(流れ方向)、横方向(幅方向)の熱収縮率もそれぞれの方向での同様の測定にて行った。
In addition, the thermal contraction rate in the oblique direction of the transparent conductive laminate according to the present invention is the distance L between two points located at D1 and D2 in FIG. 2 of the transparent conductive laminate at room temperature before bonding. This is expressed as a percentage (%) of (L 0 -L 1 ) / L 0 when the distance L1 between the two points after storage at 0 , 150 ° C. for 1 hour is used. The heat shrinkage rate in the vertical direction (flow direction) and the horizontal direction (width direction) was also measured by the same measurement in each direction.

本発明に用いられる前記透明基材フィルム1、1´としては、熱可塑性樹脂、有機無機複合材など、本発明の加工工程に支障のない範囲の透明性、耐熱性、機械的強度を有するフィルム基材であれば利用できる。   As the transparent base film 1, 1 ′ used in the present invention, a film having transparency, heat resistance, and mechanical strength in a range that does not hinder the processing steps of the present invention, such as a thermoplastic resin and an organic-inorganic composite material. Any substrate can be used.

具体的には、ポリエチレン、ポリプロピレン、ポリエステル、ポリ塩化ビニル、セロハン、ポリアミド、ポリビニルアルコール系、ポリカーボネート、ポリアセテート、アキリル系、ポリスチレン、フッ素樹脂、トリアセチルセルロースなどのフィルムが挙げられる。   Specific examples include polyethylene, polypropylene, polyester, polyvinyl chloride, cellophane, polyamide, polyvinyl alcohol, polycarbonate, polyacetate, akyryl, polystyrene, fluororesin, and triacetyl cellulose.

また、ハードコート層2、2´としては、硬度は勿論のこと透明性、機械特性、耐熱性、耐薬品性等に優れることが要求され、具体的には架橋結合が可能である多官能のアクリレートを主成分とするモノマーやオリゴマーを架橋してなる電離放射線硬化性樹脂から形成されることが望ましい。   Further, the hard coat layers 2 and 2 'are required to have excellent transparency, mechanical properties, heat resistance, chemical resistance, etc. as well as hardness. Specifically, the hard coat layers 2 and 2' are polyfunctional which can be cross-linked. It is desirable to form from an ionizing radiation curable resin obtained by crosslinking monomers and oligomers mainly composed of acrylate.

前記多官能アクリレートとしては、例えばトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、ポリエステルアクリレート等が好ましい。これらは単独で用いてもよく、2種以上併用してもよい。また、これらのアクリレートの他にエポキシアクリレート、ウレタンアクリレート等のアクリレート系樹脂を併用することも可能である。   As the polyfunctional acrylate, for example, trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol hexaacrylate, polyester acrylate and the like are preferable. These may be used alone or in combination of two or more. In addition to these acrylates, acrylate resins such as epoxy acrylate and urethane acrylate may be used in combination.

前記電離放射線が紫外線の場合には、光重合開始剤が必要であり、例えばベンゾインやそのアルキルエーテル類、アセトフェノン類、ベンゾフェノン類などが利用できる。   When the ionizing radiation is ultraviolet light, a photopolymerization initiator is required. For example, benzoin, its alkyl ethers, acetophenones, benzophenones, etc. can be used.

また、前記電離放射線硬化性樹脂からなる組成物としては、その塗液の貯蔵安定性や塗工適性を付与するために、各種添加剤や溶剤を含むことができる。   The composition comprising the ionizing radiation curable resin can contain various additives and solvents in order to impart storage stability and coating suitability of the coating liquid.

本発明に係る透明導電層3、3´としては、例えば、インジウム・スズ複合酸化物(ITO)、スズ酸化物、銅、アルミニウム、ニッケル、クロムなどの材料が挙げられ、単独、二種以上の複合あるいは積層でもよい。また、これらの材料を用いて透明導電層を形成する方法としては、スパッタ法、真空蒸着法、イオンプレーティング法のPVD法、あるいはCVD法、塗工法及び印刷法等が利用できる。   Examples of the transparent conductive layers 3 and 3 ′ according to the present invention include materials such as indium / tin composite oxide (ITO), tin oxide, copper, aluminum, nickel, and chromium. It may be composite or laminated. Moreover, as a method of forming a transparent conductive layer using these materials, sputtering method, vacuum deposition method, PVD method of ion plating method, CVD method, coating method, printing method and the like can be used.

また、本発明に係る粘着層としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等が挙げられるが、この限りではない。厚みは10μm〜200μmが好ましい。厚みが10μm未満であると、密着性が十分に確保できないことや、僅かな厚みムラで色味のムラが目立ちやすくなる。また、200μmを超えると、透明性が劣り、外観に不具合が生じる他に、透明導電性積層体としての総厚が厚くなることや、コスト高、生産性が劣るといった問題が生じる。   Examples of the pressure-sensitive adhesive layer according to the present invention include, but are not limited to, an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive. The thickness is preferably 10 μm to 200 μm. If the thickness is less than 10 μm, sufficient adhesion cannot be ensured, and unevenness in color becomes conspicuous due to slight thickness unevenness. On the other hand, when the thickness exceeds 200 μm, the transparency is inferior and the appearance is inferior. In addition, the total thickness of the transparent conductive laminate is increased, the cost is high, and the productivity is inferior.

こうして第一の透明導電性フィルム10を貼り合せた第二の透明導電性フィルム20を熱処理することにより、反りを生じることなく透明導電層3、3´を結晶化することができる。そして結晶化した透明導電層3、3´をエッチングしてタッチパネル用の透明導電性積層体を製造することができる。   Thus, by heat-treating the second transparent conductive film 20 to which the first transparent conductive film 10 is bonded, the transparent conductive layers 3 and 3 ′ can be crystallized without causing warpage. And the transparent conductive laminated body for touch panels can be manufactured by etching crystallized transparent conductive layers 3 and 3 '.

以下、本発明を実施例により具体的に説明する。なお、実施例では図1(b)に示すような、透明基材フィルムの両面にハードコート層を形成した構造からなる透明導電性積層体を作製した。   Hereinafter, the present invention will be specifically described by way of examples. In the examples, a transparent conductive laminate having a structure in which hard coat layers were formed on both surfaces of a transparent base film as shown in FIG.

(透明導電性フィルムAの作製)
厚さが125μmのポリエチレンテレフタレート(PET)フィルムの両面に、紫外線硬化型アクリル系樹脂を含むハードコート層形成用組成物(DIC社製:ユニディツクV−9500)を、紫外線硬化後の膜厚が3μmとなるように塗布し、その後紫外線照射して硬化させてハードコート層を形成した。
(Preparation of transparent conductive film A)
A composition for forming a hard coat layer (DIC: Unidic V-9500) containing an ultraviolet curable acrylic resin on both sides of a polyethylene terephthalate (PET) film having a thickness of 125 μm and a film thickness after UV curing of 3 μm. Then, it was cured by irradiating with ultraviolet rays to form a hard coat layer.

次に、上記ハードコート層の一方の面に、ITOをスパッタリングにより膜厚30nmの透明導電層を形成して透明導電性フィルムAを作製した。   Next, a transparent conductive layer having a thickness of 30 nm was formed on one surface of the hard coat layer by sputtering ITO to produce a transparent conductive film A.

(透明導電性フィルムBの作製)
前記ハードコート層の形成条件(巻取り張力、乾燥温度、硬化条件)を一部変更した以外は、透明導電性フィルムAと同様にして透明導電性フィルムBを作製した。
(Preparation of transparent conductive film B)
A transparent conductive film B was prepared in the same manner as the transparent conductive film A, except that the hard coat layer formation conditions (winding tension, drying temperature, curing conditions) were partially changed.

上記で作製した透明導電性フィルムA及びBの熱収縮率は、縦方向、横方向、及び図2に示す、左斜め45度の方向D1、右斜め45度の方向D2の位置で測定した。結果を以下の表1に示す。   The thermal shrinkage rates of the transparent conductive films A and B produced above were measured in the vertical direction, the horizontal direction, and the positions of the direction D1 at 45 degrees to the left and the direction D2 at 45 degrees to the right as shown in FIG. The results are shown in Table 1 below.

Figure 2015039837
Figure 2015039837

<実施例1>
前記透明導電性フィルムAと前記透明導電性フィルムBとを、それぞれの流れ方向が互いに一致するように、膜厚25μmのアクリル系粘着剤を介して、ロール・ツー・ロール方式で加圧して貼り合わせて透明導電性積層体を作製した。なお、両フィルムA、Bは、いずれも、透明導電層が積層されていない面同士が対向するように貼り合せた。
<Example 1>
The transparent conductive film A and the transparent conductive film B are pressed and pasted in a roll-to-roll manner through an acrylic adhesive having a film thickness of 25 μm so that the respective flow directions coincide with each other. In addition, a transparent conductive laminate was produced. In addition, both films A and B were bonded together so that the surfaces on which the transparent conductive layer was not laminated faced each other.

<実施例2>
前記透明導電性フィルムBと前記透明導電性フィルムBとを貼り合せた以外は、実施例1と同様にして透明導電性積層体を作製した。
<Example 2>
A transparent conductive laminate was produced in the same manner as in Example 1 except that the transparent conductive film B and the transparent conductive film B were bonded together.

<比較例1>
前記透明導電性フィルムAと前記透明導電性フィルムAとを貼り合せた以外は、実施例1と同様にして透明導電性積層体を作製した。
<Comparative Example 1>
A transparent conductive laminate was prepared in the same manner as in Example 1 except that the transparent conductive film A and the transparent conductive film A were bonded together.

<評価>
実施例1、2及び比較例1で得られたそれぞれの透明導電性積層体を30cm角にカットし、その後、150℃で1時間放置した後、1時間室温で冷却してから反りを測定した。
<Evaluation>
Each of the transparent conductive laminates obtained in Examples 1 and 2 and Comparative Example 1 was cut into 30 cm square, then left at 150 ° C. for 1 hour, then cooled at room temperature for 1 hour and then warped was measured. .

上記反りは平面に置いたときの平面からの4角(図2に示す、角1、角2、角3、角4)の高さを反りの高さとして計測した。なお、上に凸状となるような曲率を持つ角の場合には、裏返して置き、平面からの高さを測定して、その値をマイナスと表示した。結果を以下の表2に示す。   The warpage was measured by measuring the height of four corners (corner 1, corner 2, corner 3, corner 4 shown in FIG. 2) from the plane when placed on a plane. In addition, in the case of a corner having a curvature that is convex upward, the corner is turned over, the height from the plane is measured, and the value is displayed as minus. The results are shown in Table 2 below.

Figure 2015039837
Figure 2015039837

<比較結果>
実施例1に用いた透明基材フィルムA、Bの組合せは、斜め45度方向の最大熱収縮率の差が0.07%であり、その4角の反りの絶対値は0〜2mmと極めて良好であった。また、実施例2に用いた透明基材フィルムB同士の組合せは、斜め45度方向の最大熱収縮率の差が0.17%であり、その4角の反りの絶対値は3〜5mmと良好であった。
<Comparison result>
The combination of the transparent base films A and B used in Example 1 is 0.07% in the difference in the maximum heat shrinkage in the oblique 45 degree direction, and the absolute value of the warpage of the four corners is extremely 0-2 mm. It was good. Moreover, the combination of the transparent base material films B used in Example 2 has a difference in the maximum heat shrinkage rate in the oblique 45 degree direction of 0.17%, and the absolute value of the four-angle warpage is 3 to 5 mm. It was good.

一方、比較例1に用いた透明基材フィルムA同士の組合せは、斜め45度方向の最大熱収縮率の差が0.22%であり、その4角の反りの絶対値は5〜8mmと実用では問題となる値を示した。   On the other hand, the combination of the transparent base films A used in Comparative Example 1 has a difference in the maximum heat shrinkage in the oblique 45 degree direction of 0.22%, and the absolute value of the four-angle warpage is 5 to 8 mm. In practical use, the values are problematic.

本発明は平坦性に優れた透明導電性積層体を提供することができ、例えば透明導電層のパターニング等の要求に応じた後加工が容易であり、各種ディスプレイ用のタッチパネルや太陽電池の透明電極に利用することができる。   The present invention can provide a transparent conductive laminate excellent in flatness, for example, easy post-processing according to requirements such as patterning of a transparent conductive layer, and a transparent electrode for various display touch panels and solar cells. Can be used.

1、1´・・・透明基材フィルム
2、2´・・・ハードコート層
3、3´・・・透明導電層
4・・・・・・粘着層
10・・・・・第一の透明導電性フィルム
20・・・・・第二の透明導電性フィルム
30・・・・・透明導電性積層体
D1・・・・・斜め左45度方向
D2・・・・・斜め右45度方向
DESCRIPTION OF SYMBOLS 1, 1 '... Transparent base film 2, 2' ... Hard-coat layer 3, 3 '... Transparent conductive layer 4 ... Adhesive layer 10 ... First transparent Conductive film 20 ... second transparent conductive film 30 ... transparent conductive laminate D1 ... diagonal left 45 degrees direction D2 ... diagonal right 45 degrees direction

Claims (2)

透明基材フィルムの一方の面に少なくともハードコート層と透明導電層を順次積層してなる第一の透明導電性フィルムと、同様の構成からなる第二の透明導電性フィルムとを、透明導電層が積層されていない同士を対向させ、粘着層を介して貼り合わせる工程と、熱処理をする工程とからなる透明導電性積層体の製造方法において、
第一の透明導電性フィルムと第二の透明導電性フィルムとの貼り合せたときの方向が一致する流れ方向斜め45度に対する最大熱収縮率の差が0.2%以内であることを特徴とする透明導電性積層体の製造方法。
A transparent conductive layer includes a first transparent conductive film formed by sequentially laminating at least a hard coat layer and a transparent conductive layer on one surface of a transparent base film, and a second transparent conductive film having the same configuration. In the method for producing a transparent conductive laminate comprising the steps of facing each other that are not laminated, and pasting together via an adhesive layer, and a step of heat treatment,
The difference between the maximum heat shrinkage ratios within 45% oblique to the flow direction oblique 45 degrees in which the directions when the first transparent conductive film and the second transparent conductive film are bonded is within 0.2%. A method for producing a transparent conductive laminate.
前記貼り合わせ工程がロール・ツー・ロール方式で行われることを特徴とする請求項1に記載の透明導電性積層体の製造方法。   2. The method for producing a transparent conductive laminate according to claim 1, wherein the bonding step is performed by a roll-to-roll method.
JP2013172016A 2013-08-22 2013-08-22 Method for manufacturing transparent conductive laminate Pending JP2015039837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172016A JP2015039837A (en) 2013-08-22 2013-08-22 Method for manufacturing transparent conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172016A JP2015039837A (en) 2013-08-22 2013-08-22 Method for manufacturing transparent conductive laminate

Publications (1)

Publication Number Publication Date
JP2015039837A true JP2015039837A (en) 2015-03-02

Family

ID=52694270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172016A Pending JP2015039837A (en) 2013-08-22 2013-08-22 Method for manufacturing transparent conductive laminate

Country Status (1)

Country Link
JP (1) JP2015039837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068300A1 (en) * 2021-10-22 2023-04-27 日東電工株式会社 Method for producing multilayer body, and multilayer body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068300A1 (en) * 2021-10-22 2023-04-27 日東電工株式会社 Method for producing multilayer body, and multilayer body

Similar Documents

Publication Publication Date Title
JP2015030157A (en) Manufacturing method of transparent conductive laminate
WO2016088809A1 (en) Transparent conductive film laminate and use therefor
TWI533332B (en) Transparent conductive film and its use
WO2016104204A1 (en) Transparent conductive film, transparent conductive film laminate, and touch panel
TW201335954A (en) Structure of wet-coating transparent conductive film and the application thereof
TW201322281A (en) Transparent conductive film
JP5245366B2 (en) Polarizing plate and manufacturing method thereof
JP5399196B2 (en) Gas barrier film and manufacturing method thereof
TW201832937A (en) Composite film and organic electroluminescence device
KR20110120120A (en) Preparation method for film substrate coated with transparent conductive materials on both sides
JP5652079B2 (en) Transparent conductive laminate and method for producing the same
JP2015146244A (en) Transparent conductive film and manufacturing method thereof
JP2019512742A (en) Method of manufacturing flexible display device
JP2015191635A (en) Laminate for forming transparent conductive film, transparent conductive film, touch panel, method for selecting second substrate with adhesive layer, method for manufacturing laminate for forming transparent conductive film, and method for manufacturing transparent conductive film
JP2015191347A (en) Transparent conductive film laminate and method for manufacturing touch panel
KR20110125975A (en) Capacitive touch panel using film substrate coated with transparent conductive materials on both sides
TWI727867B (en) Polarizing plate with optical compensation layer and organic EL panel using it
CN105739743B (en) Laminated film, transparent conductive film, and touch panel
JP2015039837A (en) Method for manufacturing transparent conductive laminate
JP6712335B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2007269957A (en) Gas-barrier film, method for producing the same, and image display element using the same
JP2019204121A5 (en)
TW201608288A (en) Mirror plate and mirror display
TWI699281B (en) Manufacturing method of optical laminate
KR102298165B1 (en) Embedded transparent electrode substrate and method for manufacturing thereof