JP2015038445A - Power transmission line fall point orientation system - Google Patents

Power transmission line fall point orientation system Download PDF

Info

Publication number
JP2015038445A
JP2015038445A JP2013169844A JP2013169844A JP2015038445A JP 2015038445 A JP2015038445 A JP 2015038445A JP 2013169844 A JP2013169844 A JP 2013169844A JP 2013169844 A JP2013169844 A JP 2013169844A JP 2015038445 A JP2015038445 A JP 2015038445A
Authority
JP
Japan
Prior art keywords
surge
failure
point
fault
occurrence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013169844A
Other languages
Japanese (ja)
Other versions
JP6150391B2 (en
Inventor
和則 杉町
Kazunori Sugimachi
和則 杉町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP2013169844A priority Critical patent/JP6150391B2/en
Publication of JP2015038445A publication Critical patent/JP2015038445A/en
Application granted granted Critical
Publication of JP6150391B2 publication Critical patent/JP6150391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately locate a surge occurrence point having various magnitudes due to causes such as a lightning stroke, contact with a bird or a beast, and contact with a tree.SOLUTION: A plurality of key stations and slave stations are arranged on a power transmission line. Plural surge arrival point detection means 15 of the slave station detects a surge arrival point T1 close to a rising of a surge waveform and a surge arrival point T2 in which the influence of noise immediately before the generation of the surge is small. Fault information transmission means 16 transmits, to the key station, the time of the surge arrival points T1, T2, fault current information from fault current detection means 12 and fault voltage information from fault voltage detection means 13 as fault information. The key station selects slave stations used for orientation based on the fault information, and calculates a surge occurrence point from a time difference of the surge arrival points T1, T2 respectively at these slave stations so as to be displayed with a priority order given according to predetermined conditions. Further, a fault occurrence and a surge other than the fault occurrence are distinguished and displayed by a fault state flag from current voltage monitoring means 14.

Description

本発明は、送電線故障点標定システムに関し、特に、送電線に発生するサージに基づいて故障点を標定する送電線故障点標定システムに関する。   The present invention relates to a transmission line failure point locating system, and more particularly to a transmission line failure point locating system for locating a failure point based on a surge generated in a transmission line.

従来、送電線が地絡、短絡したとき、あるいは送電線に雷が直撃したときなどに発生するサージを、送電線の送電端と受信端に設けた親局および子局で受信し、サージ発生箇所を標定するサージ標定システムが知られている。   Conventionally, surges that occur when the transmission line is grounded, short-circuited, or when lightning strikes the transmission line directly are received by the master station and slave stations provided at the transmission and reception ends of the transmission line, generating a surge. There is known a surge locating system for locating locations.

図8は、従来のサージ標定システムの原理説明図である。この故障点標定システムでは、送電線1の末端に設けた親局2(電気所A)と子局3(電気所B)でサージ到達時刻を検出し、検出したサージ到達時刻の差を求め、下記(1)式を用いて親局2からサージ発生箇所までの距離L1を算出する。   FIG. 8 is a diagram illustrating the principle of a conventional surge orientation system. In this fault location system, the surge arrival time is detected at the master station 2 (electricity station A) and the slave station 3 (electricity station B) provided at the end of the transmission line 1, and the difference between the detected surge arrival times is obtained. The distance L1 from the master station 2 to the surge occurrence location is calculated using the following equation (1).

L1=(L+c・Δt)/2 ・・・(1)   L1 = (L + c · Δt) / 2 (1)

ここで、Lは、送電線1の両端に設置した親局2と子局3との間の距離、Δtは、親局2と子局3でのサージ到達時刻の差、cは、サージ伝搬速度である。   Where L is the distance between the master station 2 and the slave station 3 installed at both ends of the transmission line 1, Δt is the difference in surge arrival time between the master station 2 and the slave station 3, and c is the surge propagation Is speed.

送電線の受信端の子局に到達するサージの波形形状、波頭長、波高値などは、送電線の長さや分岐の有無、サージ発生要因、サージを取り込むセンサの特性などにより変動あるいは減衰する。そこで、本発明者らは、そのような場合でも、比較的簡単かつ精度よく故障点を標定できる送電線故障点標定システムを特許文献1で提案した。   The waveform shape, wavefront length, peak value, etc. of the surge reaching the slave station at the receiving end of the transmission line fluctuate or attenuate depending on the length of the transmission line, the presence or absence of branching, the cause of the surge, the characteristics of the sensor that takes in the surge, and the like. In view of this, the present inventors have proposed a transmission line fault location system that can determine fault points relatively easily and accurately even in such a case.

図9は、この送電線故障点標定システムの原理説明図である。この送電線故障点標定システムでは、送電線に配置された複数の子局43〜50で故障電流情報および故障電圧情報を検出し、親局42は、子局43〜50で検出された故障電流情報または故障電圧情報に従ってそれらをグループ分けし、各グループで最も早くサージを検出した子局を故障点標定のための最適な子局として選択し、選択した子局のサージ検出時刻の時刻差から故障点を標定する。図9の例では、グループ分けは、電流値200Aで位相0°の子局43,44のグループと電流値200Aで位相180°の子局45〜47のグループと電流値0Aの子局48〜50のグループとなる。   FIG. 9 is an explanatory diagram of the principle of this power transmission line fault location system. In this transmission line fault location system, fault current information and fault voltage information are detected by a plurality of slave stations 43 to 50 arranged on the transmission line, and the master station 42 detects fault current detected by the slave stations 43 to 50. Group them according to the information or fault voltage information, select the slave station that detected the earliest surge in each group as the optimum slave station for fault location, and use the time difference of the surge detection time of the selected slave station Locate the point of failure. In the example of FIG. 9, the grouping is performed by a group of slave stations 43 and 44 having a current value of 200A and a phase of 0 °, a group of slave stations 45 to 47 having a current value of 200A and a phase of 180 °, and a slave station of a current value of 0A. 50 groups.

特許文献2には、ノイズレベルが変動したりサージ波形の立ち上がりが緩やかであったりしても、サージ波形の立ち上がり点を正確に推定して故障点を標定する故障点標定システムが記載されている。この故障点標定システムでは、図10に示すように、サージ波形の変化が予め設定された起動条件を満たしたときを起動点としてサージ波形を記録し、これにより記録されたサージ波形に移動平均処理と差分データ絶対値処理によるフィルタリングを施してノイズ対策を行い、ノイズ対策後のサージ波形に対し、起動点よりも後の起動点に最も近い極大点(差分データ絶対値処理が施されたサージ波形ではその波形が波打っている箇所が極大値となる)をサージ波形のピーク点P1として検出し、ピーク点P1から波形を遡って起動点よりも前のノイズレベル最大値を下回る点P2を検出する。そして、ピーク点P1と点P2を通る直線のゼロクロス点をサージ波形の立ち上がり点とし、この立ち上がり点の時刻をサージ波形到達時刻とする。   Patent Document 2 describes a failure point locating system that accurately estimates a rising point of a surge waveform and locates a failure point even if the noise level fluctuates or the surge waveform rises slowly. . In this failure point locating system, as shown in FIG. 10, a surge waveform is recorded when a surge waveform change satisfies a preset activation condition, and a moving average process is performed on the recorded surge waveform. And filtering by differential data absolute value processing to take measures against noise, and for the surge waveform after noise suppression, the local maximum point closest to the starting point after the starting point (surge waveform with differential data absolute value processing applied) (The point where the waveform is undulating becomes the maximum value) is detected as the peak point P1 of the surge waveform, and the point P2 below the maximum noise level before the start point is detected going back from the peak point P1 to the waveform To do. Then, a zero cross point of a straight line passing through the peak points P1 and P2 is defined as a surge waveform rising point, and the time at the rising point is defined as a surge waveform arrival time.

特開2005−121434号公報JP 2005-121434 A 特開2011−196819号公報JP 2011-196819 A

送電線では線路長が長く、途中に分岐があることが多く、雷撃サージなどが送電線を伝搬する際、その高周波線分は、分岐により分波され、レベルが低下していく。このため、図8の従来のサージ標定システムでは、線路の両端でサージが確実に検出されるように、その検出閾値を下げる必要がある。しかし、検出閾値を下げると、誘導雷サージやサージ発生直前のノイズなどを頻繁に検出してしまうという課題がある。   The transmission line has a long line length and often has a branch in the middle. When a lightning strike or the like propagates through the transmission line, the high-frequency line segment is demultiplexed by the branch and the level is lowered. For this reason, in the conventional surge localization system of FIG. 8, it is necessary to lower the detection threshold value so that the surge can be reliably detected at both ends of the line. However, if the detection threshold is lowered, there is a problem that an induced lightning surge or noise immediately before the occurrence of a surge is frequently detected.

また、サージは、雷撃、鳥獣接触、樹木接触など様々な要因で発生し、その要因により、発生するサージ波形が異なる。特に雷撃により送電線を流れる電流(落雷電流)は大きく、サージ電圧も大きくなる。例えば、送電電圧66kV送電線の鉄塔の接地抵抗が10Ωであり、雷撃の場合の平均落雷電流を30KAとすると、鉄塔に落雷した場合は雷撃により300kVのサージ電圧が発生する。一方、鳥獣接触の場合には、送電電圧66kVの80%程度のサージ電圧しか発生せず、そのサージ電圧は、雷撃の場合の約1/5以下となる。また、雷撃は、自然現象であり、フィルタリングによるノイズ対策を施しても、フィルタリング性能を超えるような雷撃が発生した場合には、ノイズが大きくなって、精度よく故障点を標定できない。   In addition, surge occurs due to various factors such as lightning strike, bird contact, and tree contact, and the generated surge waveform varies depending on the factor. In particular, the current flowing through the transmission line due to a lightning strike (lightning current) is large, and the surge voltage is also large. For example, if the ground resistance of the steel tower of the transmission voltage 66kV transmission line is 10Ω and the average lightning current in the case of lightning strike is 30KA, a surge voltage of 300kV is generated by lightning strike when the lightning strikes on the steel tower. On the other hand, in the case of contact with birds and beasts, only a surge voltage of about 80% of the transmission voltage 66 kV is generated, and the surge voltage is about 1/5 or less than that of a lightning strike. Lightning strikes are a natural phenomenon, and even if noise countermeasures are taken by filtering, if a lightning strike that exceeds the filtering performance occurs, the noise becomes large and the failure point cannot be accurately determined.

特許文献1の送電線故障点標定システムでは、故障点に最も近い子局を選択するので、送電線を伝搬するサージの減衰あるいはレベルの低下には有効な対策であるが、サージ発生直前にノイズが発生すると、故障点標定の誤差が大きくなる。   In the transmission line fault location system of Patent Document 1, since the slave station closest to the failure point is selected, this is an effective measure for attenuation or reduction in the level of surge propagating through the transmission line. If this occurs, the error in fault location becomes large.

特許文献2の故障点標定システムでは、サージ波形の変化が予め設定された起動条件を満たしたときの起動点を基準にノイズ最大レベルやサージ波形ピーク点からサージ波形の立ち上がり点を求め、この立ち上がり点の時刻をサージ到達時刻とするので、ノイズの影響を小さくして故障点を標定できる。しかし、上記したように、サージ波形は、サージ発生要因により異なり、それらの全てのサージを精度よく検出するための起動条件の設定は困難である。すなわち、雷撃サージを検出するために、起動条件をノイズより高レベルに設定すると、鳥獣接触サージや樹木接触サージなどの低レベルのサージを検出できなくなり、逆に、鳥獣接触サージや樹木接触サージなどを検出するために、起動条件を低レベルに設定すると、雷撃サージとともに発生するノイズが起動条件を満たすことがあるので、故障点を精度よく標定できなくなる。   In the fault location system of Patent Document 2, the rising point of the surge waveform is obtained from the maximum noise level and surge waveform peak point based on the starting point when the change of the surge waveform satisfies a preset starting condition, and this rising point is obtained. Since the point time is the surge arrival time, the influence of noise can be reduced and the failure point can be determined. However, as described above, the surge waveform varies depending on the cause of the occurrence of the surge, and it is difficult to set the start condition for accurately detecting all the surges. That is, if the activation condition is set to a level higher than noise to detect lightning strike surges, low level surges such as bird and animal contact surges and tree contact surges cannot be detected. If the activation condition is set to a low level to detect the occurrence of noise, noise generated with a lightning strike surge may satisfy the activation condition, and the failure point cannot be accurately determined.

図11は、雷撃サージと鳥獣接触サージの波形例を示す。ここで、縦軸は、サージの大きさ(レベル)の目安を示す値であり、横軸は、msec単位の時間軸である。図11に示すように、雷撃サージのピーク値は、約5000であるのに対し、鳥獣接触サージのピーク値は、その1/10の約500である。   FIG. 11 shows a waveform example of a lightning strike surge and a wildlife contact surge. Here, the vertical axis is a value indicating a measure of the magnitude (level) of surge, and the horizontal axis is a time axis in msec units. As shown in FIG. 11, the peak value of the lightning strike surge is about 5000, whereas the peak value of the bird and animal contact surge is about 500, which is 1/10 of the peak value.

特許文献2の故障点標定システムの手法(図10)により、この双方のサージを検出するには、起動点を鳥獣接触サージのレベルより低レベルに設定する必要がある。例えば、起動条件をサージレベル300に設定した場合、鳥獣接触サージの到達時刻を正しく検出できる。しかし、この場合、雷撃サージでは、サージ発生前のノイズをサージとしてその到達時刻を検出してしまうので、そのサージの到達時刻を正しく検出できない。このため、故障点の標定の誤差が大きくなり、故障点を精度よく標定できない。また、起動条件を、雷撃サージ発生前のノイズの最大値より高レベル1000に設定した場合は、雷撃サージの到達時刻を正しく検出できる。しかし、この場合には、鳥獣接触サージを検出できなくなる。   In order to detect both of these surges using the technique of the fault location system of Patent Document 2 (FIG. 10), it is necessary to set the starting point to a level lower than the level of the bird and animal contact surge. For example, when the activation condition is set to the surge level 300, the arrival time of the bird and animal contact surge can be detected correctly. However, in this case, in the lightning strike surge, the arrival time is detected by using the noise before the surge as the surge, and therefore the arrival time of the surge cannot be detected correctly. For this reason, the error in locating the failure point increases, and the failure point cannot be accurately determined. In addition, when the activation condition is set to a level 1000 higher than the maximum value of noise before the occurrence of the lightning strike surge, the arrival time of the lightning strike surge can be detected correctly. However, in this case, it is impossible to detect a bird and animal contact surge.

本発明の目的は、送電線に分岐がある場合でも、雷撃や鳥獣接触や樹木接触などの要因による様々な大きさのサージの故障点を精度よく標定できる送電線故障点標定システムを提供することにある。   An object of the present invention is to provide a transmission line fault location system capable of accurately locating a fault point of various magnitude surges due to factors such as lightning strikes, bird contact, and tree contact even when there is a branch in the transmission line. It is in.

上記課題を解決するため、本発明は、送電線に配置されて該送電線の故障情報を親局に送信する複数の子局と、前記子局から送信された故障情報をもとに故障点を標定する親局を有する故障点標定システムにおいて、前記子局は、人工衛星からのGPS電波を受信してGPSが保有する現在時刻を取り出すGPS受信手段と、前記送電線に流れる故障電流を検出して故障電流情報を送出する故障電流検出手段と、前記送電線に発生する故障電圧を検出して故障電圧情報を送出する故障電圧検出手段と、故障電流情報と故障電圧情報の少なくとも一方により故障発生状態に応じた故障状態フラグを送出する電流電圧監視手段と、サージ検出手段を有し、サージが予め設定されたサージ検出閾値を超えた時、その時点の前後所定期間のサージ波形を記録し、記録されたサージ波形において、その最大ピーク値と所定の第1〜第n(nは2以上の整数)の比率とを乗算した値となる複数点のうち、サージ波形記録開始時点から最大ピーク時点の間にあり、最も早く発生した点を比率ごとに求め、それらの近傍のサージ波形上2点を通る直線のゼロクロス点を第1〜第nのサージ到達点としてそれらの時刻を前記GPS受信手段から取り出すことにより第1〜第nのサージ到達点時刻を検出するサージ到達点複数検出手段と、前記第1〜第nのサージ到達点時刻、前記故障電流情報および前記故障電圧情報を故障情報とし、該故障情報を故障状態フラグに応じて前記親局に送信するように構成され、あるいは該故障情報に故障状態フラグを含めて送信するように構成された故障情報送信手段を備え、前記親局は、前記複数の子局から送信される故障情報を受信し、該故障情報に基づいて標定に使用する子局を選択する故障情報受信手段と、前記故障情報受信手段により選択された子局における第1〜第nのサージ到達点時刻それぞれの時刻差により第1〜第nのサージ発生点を算出するサージ発生点複数算出処理手段と、前記故障情報送信手段から故障情報が故障フラグに応じて送信されるように構成されている場合には、所定条件により優先順位を付けて第1〜第nのサージ発生点を故障点として表示させ、前記故障情報送信手段から故障状態フラグを含む故障情報が送信されるように構成されている場合には、所定条件により優先順位を付けるとともに故障状態フラグに応じて故障発生とそれ以外のサージを区別して第1〜第nのサージ発生点を表示させるサージ発生点優先順位処理手段を備えた点に第1の特徴がある。   In order to solve the above-described problem, the present invention provides a plurality of slave stations arranged on a transmission line and transmitting failure information of the transmission line to a master station, and a failure point based on the failure information transmitted from the slave station. In the failure point locating system having a master station for locating the GPS, the slave station receives GPS radio waves from an artificial satellite and detects the current that the GPS has, and a fault current flowing in the transmission line A fault current detecting means for sending fault current information, a fault voltage detecting means for detecting fault voltage generated in the transmission line and sending fault voltage information, and a fault by at least one of fault current information and fault voltage information It has current voltage monitoring means that sends out a failure state flag according to the occurrence state and surge detection means, and when the surge exceeds a preset surge detection threshold, it records the surge waveform for a predetermined period before and after that point. ,Record Among the multiple points that are values obtained by multiplying the maximum peak value by a predetermined ratio of the first to nth (n is an integer equal to or greater than 2), The point that occurred at the earliest time is determined for each ratio, and the zero cross point of the straight line passing through two points on the surge waveform in the vicinity thereof is used as the first to nth surge arrival points, and those times are obtained from the GPS receiving means. A plurality of surge arrival point detection means for detecting the first to nth surge arrival point time by taking out, the first to nth surge arrival point time, the failure current information and the failure voltage information as failure information, The failure information is configured to be transmitted to the master station in accordance with a failure status flag, or includes failure information transmission means configured to transmit the failure information including a failure status flag. The plurality of slave stations Failure information receiving means for receiving failure information transmitted from the failure information and selecting a slave station to be used for orientation based on the failure information, and first to n-th surges in the slave stations selected by the failure information receiving means Surge occurrence point multiple calculation processing means for calculating the first to nth surge occurrence points according to the time difference of each arrival point time, and the failure information is transmitted from the failure information transmission means according to the failure flag. The first to n-th surge occurrence points are displayed as failure points, and failure information including a failure state flag is transmitted from the failure information transmission means. If there is a failure, a priority is given according to a predetermined condition, and the first to nth surge occurrence points are displayed by distinguishing between the occurrence of a failure and other surges according to the failure status flag. The first feature is that a position processing means is provided.

また、本発明は、前記サージ発生点優先順位処理手段が、サージ最大ピーク値の大きさが予め設定された(n-1)個の第1の優先順位決定値より大きいか否かを所定条件として第1〜第nのサージ発生点に優先順位を付ける点に第2の特徴がある。   Further, the present invention, the surge occurrence point priority processing means, a predetermined condition whether or not the magnitude of the surge maximum peak value is larger than a preset (n-1) first priority determination value As a second feature, priority is given to the first to nth surge occurrence points.

また、本発明は、第1の優先順位決定値と優先順位の少なくとも一方が可変である点に第3の特徴がある。   The present invention has a third feature in that at least one of the first priority order determination value and the priority order is variable.

また、本発明は、前記サージ発生点優先順位処理手段が、故障電流または故障電圧の波高値の大きさが予め設定された(n-1)個の第2の優先順位決定値より大きいか否か所定条件として第1〜第nのサージ発生点に優先順位を付ける点に第4の特徴がある。   Further, the present invention, the surge occurrence point priority processing means, whether or not the magnitude of the crest value of the fault current or fault voltage is greater than a preset (n-1) second priority determination value As a predetermined condition, the fourth feature is that priorities are assigned to the first to nth surge occurrence points.

また、本発明は、第2の優先順位決定値と優先順位の少なくとも一方が可変である点に第5の特徴がある。   The fifth feature of the present invention is that at least one of the second priority order determination value and the priority order is variable.

さらに、本発明は、前記サージ発生点優先順位処理手段が、第1〜第nのサージ発生点の少なくとも2つの距離差の絶対値が所定値を超えている場合、所定条件により第1〜第nのサージ発生点に優先順位を付けて表示させ、第1〜第nのサージ発生点の距離差の絶対値が所定値以下である場合には、優先順位の最も高いサージ発生点のみまたは第1〜第nのサージ発生点の平均点を表示させる点に第6の特徴がある。   Further, according to the present invention, when the surge occurrence point priority order processing means has an absolute value of a distance difference of at least two of the first to nth surge occurrence points exceeding a predetermined value, the first to first When priority is given to n surge occurrence points and the absolute value of the distance difference between the 1st to nth surge occurrence points is less than or equal to a predetermined value, only the surge occurrence point with the highest priority or the first A sixth feature is that the average point of the 1st to nth surge occurrence points is displayed.

本発明では、サージの最大ピーク値に所定の複数の比率を乗算して求められる複数の閾値を用いて、すなわち、サージの大きさと相対的な値をもつ複数の閾値を用いて複数のサージ到達点を検出するので、雷撃、鳥獣接触、樹木接触などの様々な要因により大きさが異なるサージが発生しても、その到達点を精度よく検出できる。   In the present invention, a plurality of surges are reached using a plurality of threshold values obtained by multiplying the maximum peak value of the surge by a predetermined plurality of ratios, that is, using a plurality of threshold values having relative values to the magnitude of the surge. Since the point is detected, even if a surge having a different magnitude occurs due to various factors such as lightning strike, contact with birds and animals, and tree contact, the arrival point can be detected with high accuracy.

また、サージ波形の立ち上がりに近い点やサージ発生直前のノイズの影響が小さくなる点などから複数のサージ到達点を検出し、それらのサージ到達点の時刻から複数のサージ発生点を算出して優先順位を付けて表示するので、ノイズの影響が小さい場合にはサージ波形の立ち上がりに近い点を優先させてサージ到達点とし、ノイズの影響が多い場合にはノイズの影響が小さくなる点を優先させてサージ到達点とすることにより、サージ発生点を精度よく標定できる。   In addition, multiple surge arrival points are detected from points close to the rise of the surge waveform and the effect of noise immediately before the occurrence of a surge, and multiple surge occurrence points are calculated from the time of those surge arrival points and given priority. Since the order is displayed, priority is given to the point near the rise of the surge waveform as the surge arrival point when the influence of noise is small, and priority is given to the point where the influence of noise is small when there is a lot of noise influence. By using the surge arrival point, the surge occurrence point can be accurately determined.

また、故障電流や故障電圧により故障発生を判断し、故障発生とそれ以外(例えば誘導雷など)のサージを区別することにより、故障発生でないサージの情報を親局に送信しないようでき、あるいは、親局で故障発生とそれ以外のサージを区別して表示できる。これにより、故障発生のサージに対しては早急な点検が可能になり、また、故障発生でないサージに対してはその発生状況履歴を蓄積してサージが多発している箇所の送電線の点検・予防保全が可能になる。さらに、故障状態フラグとサージ最大ピーク値との組合せで、故障発生とならない架空地線の雷撃点を標定でき、これにより架空地線の保守も可能となる。   In addition, by judging the occurrence of a failure based on the failure current and the failure voltage, and distinguishing between the occurrence of a failure and a surge other than that (for example, induced lightning, etc.), information on surges that do not cause a failure can be prevented from being sent to the master station, or The master station can display the failure occurrence and other surges separately. As a result, it is possible to promptly check for surges that cause failures, and for surges that do not cause failures, accumulate the occurrence status history and check the transmission lines where there are frequent surges. Preventive maintenance becomes possible. Furthermore, the combination of the failure state flag and the maximum surge peak value can determine the lightning strike point of an overhead ground wire that does not cause a failure, thereby enabling maintenance of the overhead ground wire.

また、サージ最大ピーク値の大きさに応じて第1〜第nのサージ発生点の優先順位を決定することにより、サージ最大ピーク値が大きくなるに従ってノイズも大きくなるようなサージ波形においてもサージ発生点を精度よく標定できる。
また、故障発生直後の故障電流や故障電圧の波高値の大きさに応じて第1〜第nのサージ発生点の優先順位を決定することにより、1線地絡か2線短絡か3線短絡かなどの故障の違いによりサージ発生直前ノイズが異なるようなサージ波形においてもサージ発生点を精度よく標定できる。
Also, by determining the priority order of the 1st to nth surge occurrence points according to the magnitude of the maximum surge peak value, surges are generated even in surge waveforms where noise increases as the maximum surge peak value increases. The point can be accurately positioned.
Also, by determining the priority order of the 1st to nth surge points according to the magnitude of the crest value of the fault current or fault voltage immediately after the fault occurs, the 1-wire ground fault, 2-wire short circuit, or 3-wire short circuit Even in surge waveforms where the noise immediately before the occurrence of a surge varies depending on the difference in failure, the surge occurrence point can be accurately determined.

さらに、サージ発生直前のノイズの影響が小さくて、複数のサージ発生点が同一点あるいは近い距離の点として算出される場合、距離差の絶対値が所定値以下のサージ発生点のうち、優先順位の最も高いサージ発生点のみ、距離差の絶対値が所定値以下のサージ発生点の平均点を採用することにより、複数のサージ発生点を効率的に絞り込むことができる。   Furthermore, when the influence of noise immediately before the occurrence of a surge is small, and multiple surge occurrence points are calculated as the same point or a short distance point, among the surge occurrence points where the absolute value of the distance difference is a predetermined value or less, the priority order By adopting the average point of the surge occurrence points whose absolute value of the distance difference is not more than a predetermined value only for the highest surge occurrence point, a plurality of surge occurrence points can be narrowed down efficiently.

本発明に係る送電線故障点標定システムの子局の構成例を示すブロック図である。It is a block diagram which shows the structural example of the subunit | mobile_unit of the power transmission line fault location system which concerns on this invention. 図1のサージ到達点複数検出手段における動作を示す説明図である。It is explanatory drawing which shows the operation | movement in the surge arrival point multiple detection means of FIG. 雷撃サージ発生直後に故障発生となった場合の波形図である。It is a wave form diagram when a failure occurs immediately after the occurrence of a lightning surge. 本発明に係る送電線故障点標定システムの親局の構成例を示すブロック図である。It is a block diagram which shows the structural example of the master station of the power transmission line fault location system which concerns on this invention. 本発明に係る故障点標定システムの動作の例を示す説明図である。It is explanatory drawing which shows the example of operation | movement of the fault location system which concerns on this invention. 本発明に係る故障点標定システムの動作の他の例を示す説明図である。It is explanatory drawing which shows the other example of operation | movement of the fault location system which concerns on this invention. 携帯通信の通信網を利用する故障点標定システムの構成およびその動作の例を示す説明図である。It is explanatory drawing which shows the example of a structure and its operation | movement of a fault location system using the communication network of a mobile communication. 従来のサージ標定システムの原理説明図である。It is principle explanatory drawing of the conventional surge orientation system. 先に提案した送電線故障点標定システムの原理説明図である。It is principle explanatory drawing of the transmission line fault location system proposed previously. 従来の故障点標定手法の説明図である。It is explanatory drawing of the conventional fault location method. 雷撃によるサージと鳥獣接触によるサージの波形例を示す波形図である。It is a wave form diagram which shows the example of a waveform of the surge by a lightning strike, and the surge by birds and beasts contact.

以下、図面を参照して本発明を説明する。本発明に係る送電線故障点標定システムは、送電線の本線あるいは分岐線の端部および線路途中に適当な間隔で配置された複数の子局と、少なくとも1つの親局を備える。   The present invention will be described below with reference to the drawings. The transmission line fault location system according to the present invention includes a plurality of slave stations arranged at appropriate intervals in the main line or branch line end of the transmission line and in the middle of the line, and at least one master station.

図1は、本発明に係る送電線故障点標定システムの子局の構成例を示すブロック図である。図1に示すように、子局は、GPS受信手段11、故障電流検出手段12、故障電圧検出手段13、電流電圧監視手段14、サージ到達点複数検出手段15および故障情報送信手段16を備える。   FIG. 1 is a block diagram showing a configuration example of a slave station of a transmission line fault location system according to the present invention. As shown in FIG. 1, the slave station includes GPS receiving means 11, fault current detecting means 12, fault voltage detecting means 13, current voltage monitoring means 14, surge arrival point multiple detecting means 15, and fault information transmitting means 16.

GPS受信手段11は、人工衛星(図示せず)からのGPS信号を受信するGPSアンテナ11aおよびGPS受信機11bを有する。GPS受信機11bは、人工衛星から送信される符号化情報を受信し、この符号化情報に同期した1秒ごとのリセット信号と現在時刻を生成する。また、GPS受信機11bは、リセット信号を故障情報送信手段16の制御用CPU16aに送出し、制御用CPU16aがリセット信号に基づいて計時した1秒未満のnsec単位での時刻を受ける。さらに、GPS受信機11bは、サージ到達点複数検出手段15からサージ到達点検出信号を受けると、その時の時刻を1msec未満表示の時刻としてサージ到達点複数検出手段15に送出する。   The GPS receiving means 11 has a GPS antenna 11a and a GPS receiver 11b for receiving GPS signals from an artificial satellite (not shown). The GPS receiver 11b receives the encoded information transmitted from the artificial satellite, and generates a reset signal and current time every 1 second synchronized with the encoded information. Further, the GPS receiver 11b sends a reset signal to the control CPU 16a of the failure information transmitting means 16, and receives a time in nsec units less than 1 second which the control CPU 16a measures based on the reset signal. Further, when receiving the surge arrival point detection signal from the surge arrival point multiple detection means 15, the GPS receiver 11b sends the time at that time to the surge arrival point detection means 15 as a time of less than 1 msec display.

故障電流検出手段12は、送電線に流れる電流を検出する電流センサ12a、電流センサ12aが検出した電流から商用周波数成分を取り出すフィルタ12b、フィルタ12bの出力信号をデジタル信号に変換するA/D変換器12cおよび故障電流検出部12dを有する。電流センサ12a、フィルタ12bおよびA/D変換器12cにより送電電流が取得され、故障電流検出部12dは、送電電流の変化分を故障電流として取り出して予め設定された故障認定レベルと比較し、故障電流が予め設定された故障認定レベルを超えた場合に故障電流に基づく故障発生信号を電流電圧監視手段14に送出する。電気故障を発生させるようなサージが送電線に発生した場合、故障電流は故障認定レベルを超えるので、サージ発生直後に故障電流検出部12dから故障発生信号が送出される。また、故障電流検出部12dは、故障電流の電流値、位相角などの故障電流情報を故障情報送信手段16に送出する。この故障電流情報は、故障情報送信手段16のメモリ16bに記憶される。   The fault current detection means 12 includes a current sensor 12a that detects a current flowing through the transmission line, a filter 12b that extracts a commercial frequency component from the current detected by the current sensor 12a, and an A / D conversion that converts the output signal of the filter 12b into a digital signal 12c and a fault current detector 12d. The transmission current is acquired by the current sensor 12a, the filter 12b, and the A / D converter 12c, and the fault current detection unit 12d extracts the change in the transmission current as a fault current and compares it with a preset fault certification level. When the current exceeds a preset failure certification level, a failure occurrence signal based on the failure current is sent to the current voltage monitoring means 14. When a surge that causes an electrical failure occurs in the transmission line, the failure current exceeds the failure certification level, and therefore a failure occurrence signal is sent from the failure current detection unit 12d immediately after the occurrence of the surge. Further, the fault current detecting unit 12d sends fault current information such as the current value and phase angle of the fault current to the fault information transmitting means 16. This fault current information is stored in the memory 16b of the fault information transmitting means 16.

故障電圧検出手段13は、送電線に発生する電圧を検出する電圧センサ13a、電圧センサ13aが検出した電圧から商用周波数成分を取り出すフィルタ13b、フィルタ13bの出力信号をデジタル信号に変換するA/D変換器13cおよび故障電圧検出部13dを有する。電圧センサ13a、フィルタ13bおよびA/D変換器13cにより送電電圧が取得され、故障電圧検出部13dは、送電電圧の変化分を故障電圧として取り出して予め設定された故障認定レベルと比較し、故障電圧が予め設定された故障認定レベルを超えた場合に故障電圧に基づく故障発生信号を電流電圧監視手段14に送出する。電気故障を発生させるようなサージが送電線に発生した場合、故障電圧は故障認定レベルを超えるので、サージ発生直後に故障電圧検出部13dから故障発生信号が送出される。また、故障電圧検出部13dは、故障電圧の電圧値、位相角などの故障電圧情報を故障情報送信手段16に送出する。この故障電圧情報も故障情報送信手段16のメモリ16bに記憶される。   The failure voltage detection means 13 is a voltage sensor 13a that detects a voltage generated in the transmission line, a filter 13b that extracts a commercial frequency component from the voltage detected by the voltage sensor 13a, and an A / D that converts the output signal of the filter 13b into a digital signal. It has a converter 13c and a fault voltage detector 13d. The transmission voltage is acquired by the voltage sensor 13a, the filter 13b, and the A / D converter 13c, and the failure voltage detector 13d extracts the change in the transmission voltage as a failure voltage and compares it with a preset failure certification level. When the voltage exceeds a preset failure certification level, a failure occurrence signal based on the failure voltage is sent to the current voltage monitoring means. When a surge that causes an electrical failure occurs in the transmission line, the failure voltage exceeds the failure certification level, and therefore a failure occurrence signal is sent from the failure voltage detection unit 13d immediately after the occurrence of the surge. Further, the fault voltage detection unit 13d sends fault voltage information such as the voltage value and phase angle of the fault voltage to the fault information transmission means 16. This failure voltage information is also stored in the memory 16b of the failure information transmitting means 16.

なお、各子局には、故障電流検出手段12と故障電圧検出手段13を複数備えることができる。また、故障電流検出手段12や故障電圧検出手段13における故障認定レベルを複数設け、故障状態の程度まで細かく電流電圧監視手段14に伝えるようにすることもできる。   Each slave station can include a plurality of fault current detection means 12 and fault voltage detection means 13. It is also possible to provide a plurality of failure recognition levels in the failure current detection means 12 and the failure voltage detection means 13 so as to convey the details to the current voltage monitoring means 14 to the extent of the failure state.

電流電圧監視手段14は、故障電流検出手段12および故障電圧検出手段13の少なくとも一方から故障発生信号を受けると故障状態フラグを変化させ、その故障状態フラグを、サージ到達点複数検出手段15を介して故障情報送出手段16に送出する。例えば、通常時の故障状態フラグを1ビットの「0」とすると、故障発生信号を受けたとき、故障状態フラグは「1」になり、「1」の故障状態フラグが送出される。なお、故障電流検出手段12や故障電圧検出手段13において故障認定レベルが複数設けられている場合にはそれに対応して複数ビットの故障状態フラグ、あるいは複数の故障フラグを設定すればよい。   The current / voltage monitoring unit 14 changes the failure state flag when receiving a failure occurrence signal from at least one of the failure current detection unit 12 and the failure voltage detection unit 13, and the failure state flag is passed through the surge arrival point multiple detection unit 15. To the failure information sending means 16. For example, assuming that the normal failure state flag is “0” of 1 bit, when a failure occurrence signal is received, the failure state flag becomes “1” and a failure state flag of “1” is transmitted. When a plurality of failure certification levels are provided in the failure current detection means 12 and the failure voltage detection means 13, a plurality of failure status flags or a plurality of failure flags may be set correspondingly.

サージ到達点複数検出手段15は、サージセンサ15a、フィルタ15b、サージ検出閾値部15c、コンパレータ15d、A/D変換器15eおよびサージ到達点複数検出部15fを有する。サージ到達点複数検出部15fは、サージ波形記憶部15f-1、ピーク検出部15f-2、比較設定部15f-3、第1および第2サージ到達点を算出するサージ到達点算出部15f-4を有する。   The surge arrival point multiple detection means 15 includes a surge sensor 15a, a filter 15b, a surge detection threshold unit 15c, a comparator 15d, an A / D converter 15e, and a surge arrival point multiple detection unit 15f. The surge arrival point multiple detection unit 15f includes a surge waveform storage unit 15f-1, a peak detection unit 15f-2, a comparison setting unit 15f-3, and a surge arrival point calculation unit 15f-4 that calculates the first and second surge arrival points. Have

サージセンサ15aは、送電線に発生したサージの波形を検出し、フィルタ15bは、サージセンサ15aが検出したサージ波形を電子回路が処理できる電圧に変換し、高周波成分を取り出す。サージ検出閾値部15cは、鳥獣接触などによる小レベルのサージも検出できるサージ検出閾値VTHを設定し、コンパレータ15dは、フィルタ15bの出力信号とサージ検出閾値部15cにより設定されたサージ検出閾値VTHを比較し、フィルタ15bの出力信号がサージ検出閾値VTHよりも大きくなったときに、その旨の出力をサージ到達点複数検出部15fのサージ波形記憶部15f-1に送出する。A/D変換器15eは、フィルタ15bの出力信号をデジタル信号に変換する。   The surge sensor 15a detects a surge waveform generated in the power transmission line, and the filter 15b converts the surge waveform detected by the surge sensor 15a into a voltage that can be processed by the electronic circuit, and extracts a high-frequency component. The surge detection threshold value unit 15c sets a surge detection threshold value VTH that can detect even a small level surge due to contact with birds and beasts, and the comparator 15d sets the output signal of the filter 15b and the surge detection threshold value VTH set by the surge detection threshold value unit 15c. In comparison, when the output signal of the filter 15b becomes larger than the surge detection threshold VTH, an output to that effect is sent to the surge waveform storage unit 15f-1 of the surge arrival point multiple detection unit 15f. The A / D converter 15e converts the output signal of the filter 15b into a digital signal.

サージ波形記憶部15f-1は、A/D変換器15eの出力信号を、予め設定された時間分だけ繰り返し上書き記録しており、コンパレータ15cの出力を受けると、サージのレベルがサージ検出閾値VTHとなった時点の前後の、予め設定された時間分のA/D変換器15eの出力信号を保持する。なお、サージのレベルがサージ検出閾値VTHとなった時点の前と後の記録時間は同じでなくてもよい。   The surge waveform storage unit 15f-1 repeatedly overwrites and records the output signal of the A / D converter 15e for a preset time.When the output of the comparator 15c is received, the surge level is set to the surge detection threshold VTH. The output signal of the A / D converter 15e for a preset time before and after the point of time is held. The recording time before and after the point when the surge level becomes the surge detection threshold VTH may not be the same.

ピーク検出部15f-2は、サージ波形記憶部15f-1に保持された信号(サージ波形(デジタル))の最大ピーク値を検出する。比較設定部15f-3は、ピーク検出部15f-2で検出された最大ピーク値に乗算する第1および第2の比率R1,R2を設定する。なお、第1および第2の比率R1,R2のうちの一方、例えば、比率R2は、サージ波形の最大ピーク値にその比率を乗算したときのレベルが、過去のサージ波形から経験上ノイズの影響が小さいレベルとなるように設定され、他方の比率R1は、サージ波形の最大ピーク値にその比率を乗算したときのレベルが、サージ波形の立ち上がり点に近い点のレベルとなるように設定される。   The peak detection unit 15f-2 detects the maximum peak value of the signal (surge waveform (digital)) held in the surge waveform storage unit 15f-1. The comparison setting unit 15f-3 sets first and second ratios R1 and R2 for multiplying the maximum peak value detected by the peak detection unit 15f-2. Note that one of the first and second ratios R1, R2, for example, the ratio R2 is the level when the maximum peak value of the surge waveform is multiplied by the ratio, and the influence of noise based on experience from the past surge waveform. Is set to a small level, and the other ratio R1 is set so that the level obtained by multiplying the maximum peak value of the surge waveform by the ratio is the level near the rising point of the surge waveform. .

サージ到達点算出部15f-4は、サージ波形が、その最大ピーク値に比率R1を乗算したレベルとなる複数点のうち、サージ波形記録開始点から最大ピーク値の点の間にあり、最も早く発生した点SP1の近傍の2点を通る直線がサージ波形のゼロレベルと交差するゼロクロス点を第1のサージ到達点PT1として算出し、また、サージ波形が、その最大ピーク値に比率R2を乗算したレベルとなる複数点のうち、サージ波形記録開始点から最大ピーク値の点の間にあり、最も早く発生した点SP2の近傍の2点を通る直線がサージ波形のゼロレベルと交差するゼロクロス点を第2のサージ到達点PT2として算出する。   The surge arrival point calculation unit 15f-4 is the earliest among the multiple points at which the surge waveform has a level obtained by multiplying the maximum peak value by the ratio R1, between the surge waveform recording start point and the maximum peak value point. The zero crossing point at which the straight line passing through two points near the point SP1 where it occurs intersects the zero level of the surge waveform is calculated as the first surge arrival point PT1, and the surge waveform multiplies its maximum peak value by the ratio R2. The zero crossing point where the straight line that passes between the two points near the point SP2 that occurred the first time between the surge waveform recording start point and the point at the maximum peak value intersects the zero level of the surge waveform. Is calculated as the second surge arrival point PT2.

サージ到達点複数検出手段15は、第1および第2のサージ到達点PT1,PT2の発生信号をGPS受信手段11に送出して、それらが発生した時刻T1,T2を受け、それらをサージ波形の最大ピーク値および電流電圧監視手段14から送出される故障状態フラグとともに故障情報送信手段16に送出する。第1および第2のサージ到達点PT1,PT2の発生時刻T1,T2は、フィルタ15bの出力信号がサージ検出閾値VTHよりも大きくなったときにその旨の出力をサージ波形記憶部15f-1に送出し、それが発生した時刻をGPS受信手段11から受け、その時刻を起点として上記ゼロレベル点までのサージ波形のサンプリング数から算出することもできる。なお、サージとサージ検出閾値VTHの比較は、サージ到達点複数検出部15f内で行ってもよい。   The surge arrival point multiple detection means 15 sends the generated signals of the first and second surge arrival points PT1 and PT2 to the GPS reception means 11, receives the times T1 and T2 at which they occurred, The fault value is sent to the fault information sending means 16 together with the maximum peak value and the fault status flag sent from the current voltage monitoring means 14. The occurrence times T1 and T2 of the first and second surge arrival points PT1 and PT2 are output to the surge waveform storage unit 15f-1 when the output signal of the filter 15b becomes larger than the surge detection threshold VTH. It can be calculated from the number of samplings of the surge waveform up to the zero level point starting from that time and receiving the time at which it occurred from the GPS receiving means 11. The comparison between the surge and the surge detection threshold value VTH may be performed in the surge arrival point multiple detection unit 15f.

故障情報送信手段16は、サージ到達点複数検出手段15から送出されるサージ到達点検出時刻T1,T2、サージ最大ピーク値および故障状態フラグ、故障電流検出手段12から送出される故障電流の電流値および位相、故障電圧検出手段13から送出される故障電圧の電圧値および位相などの故障情報を伝送制御するための制御用CPU16a、故障情報などのデータを一旦蓄積しておくメモリ16b、故障情報を架空地線(OPGW)内の光ファイバ17を通じて親局へ送信するための光モデム16cを有し、故障情報を親局に送信する。   The failure information transmission means 16 includes the surge arrival point detection times T1, T2 sent from the surge arrival point multiple detection means 15, the surge maximum peak value and the failure state flag, and the current value of the failure current sent from the failure current detection means 12. CPU 16a for controlling transmission of fault information such as voltage value and phase of fault voltage sent from phase and fault voltage detection means 13, memory 16b for temporarily storing data such as fault information, fault information An optical modem 16c for transmitting to the parent station through the optical fiber 17 in the overhead ground line (OPGW) is provided, and failure information is transmitted to the parent station.

親局の構成と動作については後で詳細に説明するが、親局では、サージ発生前にノイズがある場合には、ノイズの影響が小さいサージ到達点PT2の時刻から算出されるサージ発生点を優先させ、サージ発生前にノイズがない場合には、サージ波形の立ち上がりに近いサージ到達点PT1の時刻から算出されるサージ発生点を優先させる。   The structure and operation of the master station will be described in detail later. However, if there is noise before the surge occurs in the master station, the surge occurrence point calculated from the time of the surge arrival point PT2 where the influence of noise is small If there is no noise before the occurrence of a surge, priority is given to the surge occurrence point calculated from the time of the surge arrival point PT1 close to the rise of the surge waveform.

故障情報として、サージ波形、故障電流波形、故障電圧波形をメモリ16bに蓄積して親局へ伝送するようにしてもよい。また、光モデム16cを携帯電話や無線モデムや衛星通信用無線機などに変更し、それらの通信網を利用して故障情報を親局に伝送するようにしてもよい。   As failure information, a surge waveform, a failure current waveform, and a failure voltage waveform may be stored in the memory 16b and transmitted to the master station. Further, the optical modem 16c may be changed to a mobile phone, a wireless modem, a satellite communication radio, or the like, and failure information may be transmitted to the master station using the communication network.

次に、上記構成の子局におけるサージ検出の動作を説明する。図2は、サージ到達点複数検出手段15における動作を示す説明図である。   Next, the operation of surge detection in the slave station having the above configuration will be described. FIG. 2 is an explanatory view showing the operation in the surge arrival point plural detecting means 15.

サージ到達点複数検出手段15において、サージ波形のデジタル値がA/D変換器15eからサージ波形記憶部15f-1に送出される。サージ波形記憶部15f-1は、サージ波形を確実に記録できる一定時間、例えば10msec分のA/D変換器15eの出力を繰り返し上書き記録しており、フィルタ15bの出力信号がサージ検出閾値部15d設定されたサージ検出閾値VTHより大きくなったことがコンパレータ15cで検出されると、上書き記録を停止する。これにより、コンパレータ15cが出力を送出する時刻の前後、例えば、前後5msecのサージ波形がサージ波形記憶部15f-1に保持される。   In the surge arrival point multiple detection means 15, the digital value of the surge waveform is sent from the A / D converter 15e to the surge waveform storage unit 15f-1. The surge waveform storage unit 15f-1 repeatedly overwrites and records the output of the A / D converter 15e for a certain time, for example, 10 msec, in which the surge waveform can be reliably recorded, and the output signal of the filter 15b is the surge detection threshold unit 15d When the comparator 15c detects that the surge detection threshold value VTH has been set, the overwrite recording is stopped. Thereby, before and after the time when the comparator 15c sends out the output, for example, a surge waveform of 5 msec before and after is held in the surge waveform storage unit 15f-1.

ピーク検出部15f-2は、サージ波形記憶部15f-1に保持されたサージ波形の全期間を探査してその最大ピーク点を見つけ出し、最大ピーク点の値とその時刻をサージ到達点算出部15f-4に送出する。最大ピーク点の時刻は、波形記録開始点からのサージ波形のサンプリング数から算出できる。   The peak detection unit 15f-2 searches the entire period of the surge waveform held in the surge waveform storage unit 15f-1 to find the maximum peak point, and determines the maximum peak point value and the time thereof as the surge arrival point calculation unit 15f. Sent to -4. The time of the maximum peak point can be calculated from the number of surge waveform samplings from the waveform recording start point.

サージ到達点算出部15f-4では、比率設定部15f-3に予め設定された第1の比率R1(例えば10%)と第2の比率R2(例えば50%)を最大ピーク値に乗算した値となる点を、波形記録開始点から最大ピーク点まで探査し、波形記録開始点に最も近いそれぞれの点SP1,SP2を求める。   In the surge arrival point calculation unit 15f-4, a value obtained by multiplying the maximum peak value by the first ratio R1 (for example, 10%) and the second ratio R2 (for example, 50%) preset in the ratio setting unit 15f-3 Are searched from the waveform recording start point to the maximum peak point, and the points SP1 and SP2 closest to the waveform recording start point are obtained.

図2では、比率R1を、サージ波形の最大ピーク値にその比率を乗算したときのレベルがサージ波形の立ち上がりに近い点のレベルとなるように設定し、比率R2を、サージ波形の最大ピーク値にその比率を乗算したときのレベルが過去のサージ波形から経験上ノイズの影響が小さくなる点のレベルとなるように設定している。そして、点SP1,SP2の近傍の2点を通る直線がサージ波形のゼロレベルと交差するゼロクロス点をサージ到達点PT1,PT2として算出する。   In Fig. 2, the ratio R1 is set so that the level obtained by multiplying the maximum peak value of the surge waveform by the ratio is the level close to the rise of the surge waveform, and the ratio R2 is set to the maximum peak value of the surge waveform. Is set so that the influence of noise is reduced from experience in the past surge waveform. Then, the zero cross point where the straight line passing through the two points in the vicinity of the points SP1 and SP2 intersects the zero level of the surge waveform is calculated as the surge arrival points PT1 and PT2.

図3は、雷撃サージ発生直後に電気故障発生となった場合の波形図である。   FIG. 3 is a waveform diagram when an electrical failure occurs immediately after a lightning strike.

雷撃サージがサージ検出閾値VTHを超えると、サージ到達点複数検出手段15は、サージ到達点複数検出部15fからサージ到達点検出信号をGPS受信手段11に送出し、その時の時刻(サージ到達点時刻)T1,T2を受ける。そして、それらの時刻T1,T2とサージ最大ピーク値を故障情報送信手段16に送出する。   When the lightning strike surge exceeds the surge detection threshold VTH, the surge arrival point multiple detection means 15 sends the surge arrival point detection signal from the surge arrival point multiple detection unit 15f to the GPS reception means 11, and the time (surge arrival point time) ) Receive T1 and T2. Then, the times T1, T2 and the maximum surge peak value are sent to the failure information transmitting means 16.

故障電流検出手段12は、送電線に流れる電流を故障電流とし、故障電流の変化分が故障認定レベルを超えると、故障が発生したものとして故障発生信号を電流電圧監視手段14に送出する。また、故障電流検出手段12は、故障電流の電流値および位相角を故障情報送信手段16に送出する。   The fault current detection means 12 uses the current flowing through the transmission line as a fault current, and when the change in the fault current exceeds the fault certification level, sends a fault occurrence signal to the current voltage monitoring means 14 as a fault has occurred. Further, the fault current detection means 12 sends the current value and phase angle of the fault current to the fault information transmission means 16.

故障電圧検出手段13は、送電線に発生する電圧を故障電圧とし、故障電圧の変化分が故障認定レベルを超えると、故障が発生したものとして故障発生信号を電流電圧監視手段14に送出する。また、故障電圧検出手段13は、故障電圧の電流値および位相角を故障情報送信手段16に送出する。   The failure voltage detection means 13 uses the voltage generated in the transmission line as a failure voltage, and sends a failure occurrence signal to the current voltage monitoring means 14 that a failure has occurred when the change in the failure voltage exceeds the failure certification level. The failure voltage detection means 13 sends the current value and phase angle of the failure voltage to the failure information transmission means 16.

電流電圧監視手段14は、故障電流検出手段12および故障電圧検出手段13の少なくとも一方から故障発生信号を受けると、通常状態で「0」である故障状態フラグを「1」にしてサージ到達点複数検出手段15に送出する。   When the current / voltage monitoring means 14 receives a failure occurrence signal from at least one of the failure current detection means 12 and the failure voltage detection means 13, the failure state flag which is “0” in the normal state is set to “1” and a plurality of surge arrival points It is sent to the detection means 15.

故障情報送信手段16は、サージ到達点複数検出手段15から送出されるサージ到達点時刻T1,T2、サージ最大ピーク値および故障状態フラグ、故障電流検出手段12から送出される故障電流の電流値および位相角、故障電圧検出手段13から送出される故障電圧の電圧値および位相角をメモリ16Bに一時的に記憶し、故障情報として親局に送出する。故障情報に、サージ波形、故障電流波形、故障電圧波形を含ませてもよい。   The failure information transmission means 16 includes the surge arrival point times T1, T2 sent from the surge arrival point multiple detection means 15, the surge maximum peak value and the failure state flag, the current value of the failure current sent from the failure current detection means 12, and The voltage value and phase angle of the fault voltage sent from the phase angle and fault voltage detection means 13 are temporarily stored in the memory 16B and sent to the master station as fault information. The failure information may include a surge waveform, a failure current waveform, and a failure voltage waveform.

図4は、本発明に係る送電線故障点標定システムの親局の構成例を示すブロック図である。図4に示すように、親局は、故障情報受信手段21、サージ発生点複数算出処理手段22、サージ発生点優先順位処理手段23、故障点表示選択処理手段24、モニタ25および送電線データベース26を備える。故障情報受信手段21は、光モデム21a、データ形成処理部21bおよび子局選択処理部21cを有する。   FIG. 4 is a block diagram showing a configuration example of a master station of the transmission line fault location system according to the present invention. As shown in FIG. 4, the master station has a failure information receiving means 21, a surge occurrence point multiple calculation processing means 22, a surge occurrence point priority order processing means 23, a failure point display selection processing means 24, a monitor 25, and a power transmission line database 26. Is provided. The failure information receiving means 21 includes an optical modem 21a, a data formation processing unit 21b, and a slave station selection processing unit 21c.

送電線データベース26には、設置された送電線や子局の情報が予め蓄積されている。この情報は、例えば、子局番号、子局間の送電線の亘長、分岐鉄塔番号、分岐鉄塔と隣接する子局間の送電線の亘長などを含む。   In the transmission line database 26, information on installed transmission lines and slave stations is stored in advance. This information includes, for example, the slave station number, the length of the transmission line between the slave stations, the branch tower number, the length of the transmission line between the branch tower and the adjacent slave station.

親局は、パーソナルコンピュータに組込まれており、サージ発生点複数算出処理手段22、サージ発生点優先順位処理手段23、故障点表示選択処理手段24は、ハードウエアあるいはソフトウエアとして構成することができ、ソフトウエアとして構成された場合には、中央処理装置により各処理が呼び出されて実行される。   The master station is built in a personal computer, and the surge occurrence point multiple calculation processing means 22, surge occurrence point priority order processing means 23, and failure point display selection processing means 24 can be configured as hardware or software. When configured as software, each process is called and executed by the central processing unit.

次に、上記構成の親局における動作を説明する。故障情報受信手段21の光モデム21aは、架空地線内の光ファイバ17を介して各子局から送出されてくる故障情報を受信し、データ形成処理部21bは、その故障情報を変換して子局選択処理部21cに送出する。   Next, the operation in the master station having the above configuration will be described. The optical modem 21a of the failure information receiving means 21 receives the failure information transmitted from each slave station via the optical fiber 17 in the overhead ground wire, and the data formation processing unit 21b converts the failure information. The data is sent to the slave station selection processing unit 21c.

子局選択処理部21cは、故障情報に基づいてサージ発生点複数算出処理手段22で使用する子局を選択する。ここでは、例えば、故障電流の電流値と位相角に基づき子局をグループ分けし、各グループ内の子局からサージ発生点複数算出処理手段22で使用する子局を選択する。子局が2つにグループ分けされる場合には、各グループにおいて、サージ到達点時刻T1,T2の最も早い子局をそれぞれ選択すればよく、子局が3つ以上にグループ分けされる場合には、各グループにおいて、サージ到達点時刻T1,T2の最も早い子局をそれぞれ選択し、さらに、選択された子局のうちサージ到達点時刻T1,T2の早いものから2つあるいは3つをそれぞれ選択すればよい。選択された子局の子局番号がサージ発生点複数算出処理手段22に通知される。   The slave station selection processing unit 21c selects a slave station to be used by the surge occurrence point multiple calculation processing means 22 based on the failure information. Here, for example, the slave stations are grouped based on the current value and the phase angle of the fault current, and the slave stations used by the surge occurrence point multiple calculation processing means 22 are selected from the slave stations in each group. When the slave stations are grouped in two, it is only necessary to select the slave station with the earliest surge arrival time T1, T2 in each group, and when the slave stations are grouped into three or more. In each group, select the slave station with the earliest surge arrival time T1, T2, respectively, and then select two or three of the selected slave stations from the earliest surge arrival time T1, T2 respectively. Just choose. The surge station number calculation processing means 22 is notified of the slave station number of the selected slave station.

サージ発生点複数算出処理手段22は、第1サージ発生点算出処理手段22aと第2サージ発生点算出処理手段22bを備える。子局選択処理部21cがサージ到達点時刻T1,T2についてそれぞれ2つの子局を選択する場合、第1サージ発生点算出処理手段22aは、選択された2つの子局のサージ到達点時刻T1群を用いて上記(1)式により第1サージ発生点を算出し、第2サージ発生点算出処理手段22bは、サージ到達点時刻T2群を用いて上記(1)式により第2サージ発生点を算出する。この算出では、送電線データベース26に蓄積されている情報も用いる。また、子局選択処理部21cがサージ到達点時刻T1,T2についてそれぞれ3つの子局を選択する場合には、サージ到達点時刻T1群,T2群それぞれについて、3つの全ての組合せで上記(1)式によりサージ発生点を算出し、サージ発生点が近い2つのサージ発生点の平均点を第1サージ発生点としたり、サージ発生点が近い2つのサージ発生点のうち、サージ到達点時刻の差が小さい方を第1サージ発生点としたりすればよい。   The surge occurrence point multiple calculation processing means 22 includes first surge occurrence point calculation processing means 22a and second surge occurrence point calculation processing means 22b. When the slave station selection processing unit 21c selects two slave stations for surge arrival point times T1 and T2, the first surge occurrence point calculation processing means 22a uses the surge arrival point times T1 group of the two selected slave stations. The first surge occurrence point is calculated using the above equation (1), and the second surge occurrence point calculation processing means 22b uses the surge arrival time T2 group to determine the second surge occurrence point using the above equation (1). calculate. In this calculation, information stored in the transmission line database 26 is also used. Further, when the slave station selection processing unit 21c selects three slave stations for each of the surge arrival time points T1 and T2, the combination of all three for each of the surge arrival time points T1 and T2 (1 ) To calculate the surge occurrence point and use the average of the two surge occurrence points close to the surge occurrence point as the first surge occurrence point, or of the two surge occurrence points near the surge occurrence point. The smaller difference may be used as the first surge occurrence point.

サージ発生点優先順位処理手段23は、所定条件に従って第1サージ発生点と第2サージ発生点に優先順位を付ける。その所定条件の例を以下に示す。   The surge occurrence point priority order processing means 23 gives priority to the first surge occurrence point and the second surge occurrence point according to a predetermined condition. Examples of the predetermined conditions are shown below.

(1)所定条件1:サージ最大ピーク値の大きさが予め設定された閾値(第1優先順位決定値)より大きい場合、第2サージ発生点を第1候補とし、第1サージ発生点を第2候補とする。逆に、サージ最大ピーク値の大きさが第1優先順位決定値以下の場合には、第1サージ発生点を第1候補とし、第2サージ発生点を第2候補とする。所定条件1により優先順位を付ける場合には、子局から故障情報としてサージ最大ピーク値あるいはサージ波形も送信する。なお、第1優先順位決定値は、過去のデータにおけるサージ最大ピーク値とサージ発生直前のノイズ発生状況の関係から決定すればよい。また、第1優先順位決定値と優先順位の少なくとも一方を適宜変えられるようにしておいてもよい。   (1) Predetermined condition 1: When the magnitude of the maximum surge peak value is larger than a preset threshold value (first priority order decision value), the second surge occurrence point is set as the first candidate, and the first surge occurrence point is set as the first 2 candidates. Conversely, when the magnitude of the maximum surge peak value is equal to or less than the first priority order determination value, the first surge occurrence point is set as the first candidate, and the second surge occurrence point is set as the second candidate. When priorities are assigned according to the predetermined condition 1, the maximum surge peak value or surge waveform is also transmitted as failure information from the slave station. The first priority order determination value may be determined from the relationship between the maximum surge peak value in the past data and the noise generation status immediately before the occurrence of the surge. Further, at least one of the first priority order determination value and the priority order may be appropriately changed.

図11に示す雷撃サージの波形の例では、サージ発生直前のノイズが大きく、サージ最大ピーク値が5000であるので、第1優先順位決定値を5000より僅かに小さい値とすれば、ノイズの影響が小さい第2サージ発生点を第1候補として選択できる。   In the example of the lightning surge waveform shown in FIG. 11, since the noise immediately before the occurrence of the surge is large and the maximum peak value of the surge is 5000, if the first priority determination value is set to a value slightly smaller than 5000, the influence of the noise The second surge occurrence point with a small can be selected as the first candidate.

(2)所定条件2:故障電流または故障電圧の波高値の大きさが予め設定された閾値(第2優先順位決定値)より大きい場合、第2サージ発生点を第1候補とし、第1サージ発生点を第2候補とする。逆に、故障電流または故障電圧の波高値の大きさが第2優先順位決定値以下の場合には、第1サージ発生点を第1候補とし、第2サージ発生点を第2候補とする。所定条件2により優先順位を付ける場合には、子局から故障情報として故障電流または故障電圧の波形や波高値を送信する。なお、第2優先順位決定値は、過去のデータにおける故障電流または故障電圧の波高値とサージ発生直前のノイズ発生状況の関係から決定すればよい。また、1線地絡故障とそれ以外の故障(例えば、2線地絡故障など)では、1線地絡故障においてサージ発生直前のノイズが小さい傾向にあるので、第2優先順位決定値を1線地絡電流値または電圧値としてもよい。さらに、第2優先順位決定値と優先順位の少なくとも一方を適宜変えられるようにしておいてもよい。   (2) Predetermined condition 2: If the magnitude of the peak value of the fault current or fault voltage is greater than a preset threshold value (second priority order decision value), the second surge occurrence point is the first candidate and the first surge The point of occurrence is the second candidate. Conversely, if the magnitude of the peak value of the fault current or fault voltage is equal to or less than the second priority order determination value, the first surge occurrence point is set as the first candidate, and the second surge occurrence point is set as the second candidate. When priorities are given according to the predetermined condition 2, a fault current or fault voltage waveform or peak value is transmitted as fault information from the slave station. The second priority order determination value may be determined from the relationship between the peak value of the fault current or fault voltage in the past data and the noise generation status immediately before the occurrence of the surge. Also, in the 1-wire ground fault and other faults (for example, 2-wire ground fault, etc.), the noise immediately before the occurrence of a surge in a 1-wire ground fault tends to be small, so the second priority order decision value is set to 1. It may be a line ground fault current value or a voltage value. Furthermore, at least one of the second priority order determination value and the priority order may be changed as appropriate.

また、サージ発生点複数算出処理手段22により算出された第1サージ発生点と第2サージ発生点の距離差の絶対値が予め設定された距離(単一表示距離)以内の場合には、第1候補のサージ発生点のみ、あるいは第1および第2候補のサージ発生点の平均点を採用してもよい。これにより、サージ発生直前のノイズの影響が小さい場合に同一点あるいは近い距離の点として算出される複数のサージ発生点を効率的に絞り込むことができる。   If the absolute value of the distance difference between the first surge occurrence point and the second surge occurrence point calculated by the surge occurrence point multiple calculation processing means 22 is within a preset distance (single display distance), Only one candidate surge occurrence point or an average of the first and second candidate surge occurrence points may be employed. Thereby, when the influence of noise immediately before the occurrence of a surge is small, it is possible to efficiently narrow down a plurality of surge occurrence points calculated as the same point or a point at a close distance.

なお、所定条件1,2は単独でも組み合わせても用いることができ、組み合わせて用いる場合には、何れかの所定条件で第1サージ発生点が第1候補とされれば、それを優先させればよい。   Note that the predetermined conditions 1 and 2 can be used alone or in combination. When used in combination, if the first surge occurrence point is the first candidate under any of the predetermined conditions, it can be given priority. That's fine.

故障点表示選択処理手段24は、サージ発生点優先順位処理手段23から第1および第2候補のサージ発生点を受け取った場合、サージ発生点優先順位処理手段23で付された優先順位とともにサージ発生点を表示し、第1候補のサージ発生点のみを受け取った場合には、そのサージ発生点のみを表示する。   When the failure point display selection processing means 24 receives the first and second candidate surge occurrence points from the surge occurrence point priority order processing means 23, it generates a surge together with the priority assigned by the surge occurrence point priority order processing means 23. If a point is displayed and only the first candidate surge point is received, only that surge point is displayed.

また、故障点表示選択処理手段24は、全ての子局の故障状態フラグを調べ、1つの子局でも故障状態フラグが「1」であれば、サージ発生点を故障点としてモニタ25に表示し、ユーザに緊急点検を促す。しかし、全ての子局の故障状態フラグが「0」であれば、電気故障発生を伴わない誘導雷などによるサージ発生としてサージ発生点をモニタ25に表示し、故障発生以外の誘導雷などのサージを故障発生のサージと区別して表示する。   The failure point display selection processing means 24 checks the failure status flags of all the slave stations, and if the failure status flag is “1” even in one slave station, displays the surge occurrence point on the monitor 25 as the failure point. Urge the user to perform an emergency check. However, if the failure status flags of all the slave stations are “0”, the surge occurrence point is displayed on the monitor 25 as a surge caused by an induced lightning that does not cause an electrical failure, and a surge such as an induced lightning other than the occurrence of a failure is displayed. Is displayed separately from the surge that caused the failure.

親局では、サージ発生による故障情報を受けてサージ発生点を算出する度にサージ発生点や発生時刻を記録して履歴として残すこともできる。これにより、所定期間後に統計処理を行い、故障点や架空地線雷撃点やその他のサージ発生点の位置やサージレベルについてグラフ表示や数値表示を行わせることができ、故障発生以外の緊急を要しないサージについては、頻繁に発生する付近の点検を後日行うことができる。   The master station can record the surge occurrence point and the occurrence time each time it receives the failure information due to the occurrence of surge and calculates the surge occurrence point, and keeps it as a history. As a result, statistical processing can be performed after a predetermined period of time, and graphs and numerical values can be displayed for the location and surge level of failure points, overhead lightning strike points, and other surge occurrence points. For surges that do not occur, frequent inspections can be performed at a later date.

以下に、上記構成の子局および親局からなる故障点標定システムの動作を具体例で説明する。図5は、電気所A,Bに電源がある送電線1の例である。ここで、電気所Aに親局2が設置され、送電線1に適当な間隔で子局3〜7が設置され、親局2と子局3〜7は架空地線内の光ファイバで接続されているとする。   Hereinafter, the operation of the fault location system composed of the slave station and the master station having the above configuration will be described with a specific example. FIG. 5 is an example of the power transmission line 1 having power sources at the electric stations A and B. Here, the master station 2 is installed at the electric power station A, the slave stations 3 to 7 are installed at an appropriate interval on the transmission line 1, and the master station 2 and the slave stations 3 to 7 are connected by an optical fiber in the overhead ground wire. Suppose that

今、送電線1の点F1でサージが発生して故障が発生したとすると、サージは点F1から送電線1の各末端に伝播していく。故障電流Ig1,Ig2は電源がある電気所A,Bから点F1に向かって流れる。図5には、送電線1の各子局位置でのサージ最大ピーク値および故障電流の電流値と位相が示してある。また、上記のようにして子局3〜7で検出されるサージ到達時刻T1,T2も示してある。これらは、各子局3〜7が備えるサージ到達点複数検出手段15で検出される。子局3〜7は、上記のようにして生成した故障情報を架空地線内にある光ファイバを介して親局2(電気所A)に送信する。   Assuming that a surge occurs at a point F1 of the transmission line 1 and a failure occurs, the surge propagates from the point F1 to each end of the transmission line 1. The fault currents Ig1 and Ig2 flow from the electric stations A and B where the power source is located toward the point F1. FIG. 5 shows the maximum surge peak value and the current value and phase of the fault current at each slave station position of the transmission line 1. In addition, surge arrival times T1 and T2 detected by the slave stations 3 to 7 as described above are also shown. These are detected by the surge arrival point multiple detection means 15 included in each of the slave stations 3-7. The slave stations 3 to 7 transmit the failure information generated as described above to the master station 2 (electricity station A) through the optical fiber in the overhead ground wire.

親局2は、故障情報を受けると、故障電流の電流値と位相角に基づき所定の条件に従って子局3〜7をグループ分けする。このグループ分けは、子局選択処理部21c(図4)が行う。本例の場合、電流値200Aで位相角0°の子局3,4(Aグループ)、電流値200Aで位相角180°の子局5〜7(Bグループ)にグループ分けされる。   When the master station 2 receives the fault information, the master station 2 groups the slave stations 3 to 7 according to a predetermined condition based on the current value and phase angle of the fault current. This grouping is performed by the slave station selection processing unit 21c (FIG. 4). In this example, the slave stations 3 and 4 (A group) having a current value of 200A and a phase angle of 0 ° are grouped into slave stations 5 to 7 (B group) having a current value of 200A and a phase angle of 180 °.

そして、各グループA,B内でサージ到達点時刻T1群を比較し、その時刻順に並べ直し、各グループA,Bにおいてサージ到達点時刻の最も早い子局を選択する。ここでは、Aグループでは子局4、Bグループでは子局5が選択される。これにより選択された子局4,5の子局番号および該子局4,5におけるサージ到達時刻T1,T2群をサージ発生点複数算出処理手段22に送出する。   Then, the surge arrival point times T1 in the groups A and B are compared, rearranged in the order of the times, and the slave station with the earliest surge arrival point time in each group A and B is selected. Here, the slave station 4 is selected in the A group, and the slave station 5 is selected in the B group. As a result, the slave station numbers of the slave stations 4 and 5 selected and the surge arrival times T1 and T2 in the slave stations 4 and 5 are sent to the surge occurrence point multiple calculation processing means 22.

サージ発生点複数算出処理手段22では、子局選択処理部21cで選択された子局のサージ到達時刻T1群から上記(1)式により第1サージ発生点FP1を算出し、また、サージ到達時刻T2群から上記(1)式により第2サージ発生点FP2を算出する。図5の例では、第1および第2サージ発生点FP1,FP2(子局4からサージ発生点までの距離)、FP1とFP2の距離差の絶対値は、子局4,5のサージ到達時刻T1群とT2群から以下のように算出される。   In the surge occurrence point multiple calculation processing means 22, the first surge occurrence point FP1 is calculated by the above equation (1) from the surge arrival time T1 group of the slave station selected by the slave station selection processing unit 21c, and the surge arrival time The second surge occurrence point FP2 is calculated from the T2 group by the above equation (1). In the example of FIG. 5, the absolute values of the first and second surge occurrence points FP1 and FP2 (distance from the slave station 4 to the surge occurrence point) and the distance difference between FP1 and FP2 are the surge arrival times of the slave stations 4 and 5. It is calculated as follows from the T1 group and the T2 group.

FP1=(10+c(18.3μsec−15.0μsec))/2=5.495km
FP2=(10+c(20.0μsec−13.3μsec))/2=6.005km
|FP1−FP2|=0.510km
FP1 = (10 + c (18.3μsec-15.0μsec)) / 2 = 5.495km
FP2 = (10 + c (20.0μsec-13.3μsec)) / 2 = 6.005km
| FP1−FP2 | = 0.510km

サージ発生点優先順位処理手段23は、所定条件に従って第1サージ発生点FP1と第2サージ発生点FP2に優先順位を付ける。図5の例では、子局3〜7でのサージ最大ピーク値が5500であり、第1優先順位決定値を5000としている。この場合、サージ最大ピーク値5500は、第1優先順位決定値5000より大きいので、第2サージ発生点FP2が第1候補となり、第1サージ発生点FP1が第2候補となる。なお、第1サージ発生点FP1と第2サージ発生点FP2の距離差の絶対値が予め設定された距離(単一表示距離)、例えば300m以内の場合、第1候補のサージ発生点のみ、あるいは第1および第2候補のサージ発生点の平均点を採用するが、ここでは、第1サージ発生点FP1と第2サージ発生点FP2の距離差の絶対値は510m(>300m)であるので、第1候補のサージ発生点FP2(6.005km)と第2候補のサージ発生点FP1(5.495km)の2点が故障点表示選択手段24へ送出される。   The surge occurrence point priority order processing means 23 gives priority to the first surge occurrence point FP1 and the second surge occurrence point FP2 in accordance with a predetermined condition. In the example of FIG. 5, the maximum surge peak value in the slave stations 3 to 7 is 5500, and the first priority order determination value is 5000. In this case, since the maximum surge peak value 5500 is larger than the first priority order determination value 5000, the second surge occurrence point FP2 becomes the first candidate, and the first surge occurrence point FP1 becomes the second candidate. If the absolute value of the distance difference between the first surge occurrence point FP1 and the second surge occurrence point FP2 is a preset distance (single display distance), for example, within 300 m, only the first candidate surge occurrence point, or The average point of the first and second candidate surge occurrence points is adopted, but here the absolute value of the distance difference between the first surge occurrence point FP1 and the second surge occurrence point FP2 is 510 m (> 300 m), Two points, the first candidate surge occurrence point FP2 (6.005 km) and the second candidate surge occurrence point FP1 (5.495 km), are sent to the failure point display selection means 24.

故障点表示選択処理手段24では、故障情報受信手段21から送出された全子局の故障状態フラグを調べ、1つでも故障状態フラグが「1」であれば、サージ発生点複数算出処理手段22から送出されたサージ発生点を故障点とし、第1候補、第2候補の表示を付してモニタ25に表示し、ユーザに緊急点検を促す。図5の例では、故障電流が発生しており、故障状態フラグが「1」であるので、第1候補のサージ発生点FP2(6.005km)と第2候補のサージ発生点FP1(5.495km)の2点を故障点として表示する。   The failure point display selection processing means 24 checks the failure status flags of all the slave stations sent from the failure information receiving means 21, and if at least one failure status flag is “1”, the surge occurrence point multiple calculation processing means 22 The point of occurrence of the surge sent from is set as the failure point, the first candidate and the second candidate are displayed on the monitor 25, and the user is urged to perform an emergency check. In the example of FIG. 5, since a fault current has occurred and the fault status flag is “1”, the first candidate surge occurrence point FP2 (6.005 km) and the second candidate surge occurrence point FP1 (5.495 km) 2 points are displayed as failure points.

全ての子局の故障状態フラグが「0」である場合には、故障発生以外の緊急性を伴わないサージ発生として第1および第2候補のサージ発生点を表示する。なお、故障発生以外のサージのピーク値を予め定めた値(電撃判定レベル)と比較し、全子局のうちの1子局でもサージが電撃判定レベルを超えている場合には架空地線電撃点としてサージ発生点を表示させることもできる。   When the failure status flags of all the slave stations are “0”, the first and second candidate surge occurrence points are displayed as the occurrence of the surge without urgency other than the occurrence of the failure. Compare the peak value of the surge other than the occurrence of failure with a predetermined value (electric shock determination level), and if the surge exceeds the electric shock determination level even in one of the slave stations, the overhead ground wire electric shock A surge occurrence point can also be displayed as a point.

図6は、故障点標定システムの動作の他の例を示す説明図である。この例では、第1および第2サージ発生点FP1,FP2(子局4から、サージ発生点までの距離)、FP1とFP2の距離差の絶対値は、子局4,5のサージ到達時刻T1群とT2群から以下のように算出される。   FIG. 6 is an explanatory diagram showing another example of the operation of the fault location system. In this example, the absolute value of the difference between the first and second surge occurrence points FP1, FP2 (distance from the slave station 4 to the surge occurrence point) and the distance between FP1 and FP2 is the surge arrival time T1 of the slave stations 4, 5. It is calculated as follows from the group and the T2 group.

FP1=(10+c(19.2μsec−14.2μsec))/2=5.750km
FP2=(10+c(20.0μsec−13.3μsec))/2=6.005km
|FP1−FP2|=0.255km
FP1 = (10 + c (19.2μsec-14.2μsec)) / 2 = 5.750km
FP2 = (10 + c (20.0μsec-13.3μsec)) / 2 = 6.005km
| FP1−FP2 | = 0.255km

この場合も、サージ最大ピーク値5500は、第1優先順位決定値5000より大きいので、図5の例の場合と同様に、第2サージ発生点FP2が第1候補となり、第1サージ発生点FP1が第2候補となる。しかし、第1サージ発生点FP1と第2サージ発生点FP2の距離差の絶対値(255m)が単一表示距離300m以内であるので場合、第1候補のサージ発生点FP2(6.005km)、あるいは第1および第2候補のサージ発生点FP1,FP2の平均点(5.8775m)の1点のみが故障点表示選択手段24へ送出される。   Also in this case, since the maximum surge peak value 5500 is larger than the first priority determination value 5000, the second surge occurrence point FP2 becomes the first candidate and the first surge occurrence point FP1 as in the example of FIG. Becomes the second candidate. However, if the absolute value (255m) of the distance difference between the first surge point FP1 and the second surge point FP2 is within a single display distance of 300m, the first candidate surge point FP2 (6.005km), or Only one of the average points (5.8775 m) of the first and second candidate surge occurrence points FP1 and FP2 is sent to the failure point display selection means 24.

故障点表示選択処理手段24では、故障情報受信手段21から送出された全子局の故障状態フラグを調べ、1つでも故障状態フラグが「1」であれば、サージ発生点複数算出処理手段22から送出されたサージ発生点を故障点としてモニタ25に表示し、ユーザに緊急点検を促す。図6の例では、故障電流が発生しており、故障状態フラグが「1」であるので、第1候補のサージ発生点FP2(6.005km)、あるいは第1および第2候補のサージ発生点FP1,FP2の平均点(5.8775m)を故障点として表示する。   The failure point display selection processing means 24 checks the failure status flags of all the slave stations sent from the failure information receiving means 21, and if at least one failure status flag is “1”, the surge occurrence point multiple calculation processing means 22 Is displayed on the monitor 25 as a failure point to urge the user to perform an emergency inspection. In the example of FIG. 6, since a fault current has occurred and the fault status flag is “1”, the first candidate surge occurrence point FP2 (6.005 km) or the first and second candidate surge occurrence points FP1. Therefore, the average point (5.8775m) of FP2 is displayed as the failure point.

上記実施形態では、架空地線内の光ファイバ17を介して故障情報を送受信しているが、故障情報の送受信には、携帯パケット用通信網を利用できる。   In the above embodiment, failure information is transmitted / received via the optical fiber 17 in the overhead ground wire. However, a mobile packet communication network can be used to transmit / receive failure information.

図7は、電気所A,Bに電源があり、分岐がないような送電線1における故障点の標定を、携帯パケット用通信網を利用して行う故障点標定システムの構成およびその動作の例を示す。図7では、送電線1に適当な間隔で子局3〜7が設置されている。この場合、子局が図1と異なるのは、故障情報送信手段の光モデムの代わりに携帯パケット通信用の無線機を用いる点であり、親局が図4と異なるのは、故障情報受信手段において光モデムの代わりに携帯端末装置8を用いる点である。その他の構成は基本的に同じであるので、子局と親局の具体的構成の図示を省略し、以下では図1,図4と同じ参照符号を用いて説明する。   FIG. 7 shows an example of the configuration and operation of a fault location system that uses a mobile packet communication network to locate faults in the transmission line 1 where the power stations A and B have power supplies and do not have branches. Indicates. In FIG. 7, the slave stations 3 to 7 are installed in the power transmission line 1 at appropriate intervals. In this case, the slave station is different from that in FIG. 1 in that a radio for mobile packet communication is used instead of the optical modem of the failure information transmitting means, and the master station is different from that in FIG. However, the portable terminal device 8 is used instead of the optical modem. Since other configurations are basically the same, the specific configurations of the slave station and the master station are not shown, and will be described below using the same reference numerals as those in FIGS.

今、点F2で短絡故障が発生したとすると、サージは点F2から各末端に伝播していき、故障電流は電源がある電気所A,Bから点F2に向かって流れる。各子局3〜7は、サージおよび故障電流、故障電圧を検出し、携帯パケット通信網を経由して親局2に故障情報を送信する。   Assuming that a short-circuit failure has occurred at point F2, the surge propagates from the point F2 to each end, and the failure current flows from the electric stations A and B where the power supply is located toward the point F2. Each of the slave stations 3 to 7 detects a surge, a fault current, and a fault voltage, and transmits fault information to the master station 2 via the mobile packet communication network.

親局2側の携帯端末装置8は、子局3〜7から送信される故障情報を受信し、子局選択処理部21cは、電流値5500Aで位相角が0°の子局3〜5(Aグループ)、電流値3000Aで位相角が180°の子局6,7(Bグループ)にグループ分けする。そして、各グループA,B内でサージ到達点時刻T1群を比較し、その時刻順に並べ直し、各グループA,Bにおいてサージ到達点時刻の最も早い子局を選択する。ここでは、Aグループでは子局5、Bグループでは子局6が選択される。これにより選択された子局5,6の子局番号および該子局5,6におけるサージ到達時刻T1,T2群をサージ発生点複数算出処理手段22に送出する。   The mobile terminal device 8 on the master station 2 side receives the failure information transmitted from the slave stations 3 to 7, and the slave station selection processing unit 21c is a slave station 3 to 5 with a current value of 5500 A and a phase angle of 0 ° ( (Group A) and grouped into slave stations 6 and 7 (Group B) having a current value of 3000A and a phase angle of 180 °. Then, the surge arrival point times T1 in the groups A and B are compared, rearranged in the order of the times, and the slave station with the earliest surge arrival point time in each group A and B is selected. Here, the slave station 5 is selected in the A group, and the slave station 6 is selected in the B group. As a result, the slave station numbers of the slave stations 5 and 6 selected and the surge arrival times T1 and T2 in the slave stations 5 and 6 are sent to the surge occurrence point multiple calculation processing means 22.

サージ発生点複数算出処理手段22では、子局選択処理部21cで選択された子局5,6のサージ到達時刻T1群から上記(1)式により第1サージ発生点FP1を算出し、また、サージ到達時刻T2群から上記(1)式により第2サージ発生点FP2を算出し、それをサージ発生点優先順位処理手段23に送出する。   In the surge occurrence point multiple calculation processing means 22, the first surge occurrence point FP1 is calculated by the above equation (1) from the surge arrival time T1 group of the slave stations 5 and 6 selected by the slave station selection processing unit 21c, The second surge occurrence point FP2 is calculated from the surge arrival time T2 group by the above equation (1), and is sent to the surge occurrence point priority order processing means 23.

サージ発生点優先順位処理手段23は、所定条件に従って第1サージ発生点FP1と第2サージ発生点FP2に優先順位を付して故障点表示選択手段24へ送出する。図7に示す例において、第1優先順位決定値を200Aとすると、子局3〜7までの短絡電流最大値は5500Aであり、第1優先順位決定値200Aより大きいので、第2サージ発生点FP2が第1候補となり、第1サージ発生点FP1が第2候補となる。なお、第1サージ発生点FP1と第2サージ発生点FP2の距離差の絶対値が予め設定された距離(単一表示距離)、例えば300m以内の場合、サージ発生点優先順位処理手段23は、第1候補のサージ発生点のみ、あるいは第1および第2候補のサージ発生点の平均点を採用して故障点表示選択手段24へ送出する。   The surge occurrence point priority order processing means 23 gives priority to the first surge occurrence point FP1 and the second surge occurrence point FP2 according to a predetermined condition, and sends them to the failure point display selection means 24. In the example shown in FIG. 7, if the first priority order decision value is 200A, the short circuit current maximum value for the slave stations 3 to 7 is 5500A, which is larger than the first priority order decision value 200A. FP2 becomes the first candidate, and the first surge occurrence point FP1 becomes the second candidate. When the absolute value of the distance difference between the first surge occurrence point FP1 and the second surge occurrence point FP2 is a preset distance (single display distance), for example, within 300 m, the surge occurrence point priority order processing means 23 is: Only the first candidate surge occurrence point or the average of the first and second candidate surge occurrence points is adopted and sent to the failure point display selection means 24.

故障点表示選択処理手段24は、故障情報受信手段21から送出された全子局の故障状態フラグを調べ、故障状態フラグが1つでも「1」であれば、サージ発生点複数算出処理手段22から送出されたサージ発生点を故障点として第1候補、第2候補の優先順位を付してモニタ25に表示し、ユーザに緊急点検を促す。   The failure point display selection processing means 24 checks the failure status flags of all the slave stations sent from the failure information receiving means 21, and if any failure status flag is "1", the surge occurrence point multiple calculation processing means 22 The surge occurrence point sent out from is displayed as a failure point on the monitor 25 with priorities of the first candidate and the second candidate, and prompts the user for an emergency check.

以上、実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、サージ到達点およびサージ発生点を2つとしたが、サージ波形の最大ピーク値に乗算する比率を3つ以上として、3つ以上のサージ到達点およびサージ発生点を算出するようにしてもよい。この場合も、サージ最大ピーク値、故障電流または故障電圧の波高値などに応じた所定条件によりサージ発生点に優先順位を付ければよい。   Although the embodiment has been described above, the present invention is not limited to the above embodiment. For example, in the above embodiment, the surge arrival point and the surge occurrence point are two, but the ratio of multiplying the maximum peak value of the surge waveform is three or more, and three or more surge arrival points and surge occurrence points are calculated. You may do it. In this case as well, the surge occurrence points may be prioritized according to predetermined conditions according to the maximum surge peak value, the peak value of the fault current, or the fault voltage.

また、上記実施形態では、子局から故障状態フラグを含む故障情報を送信し、親局では、優先順位を付けるとともに故障状態フラグに応じて故障発生かそれ以外かの区別を付けてサージ発生点を表示するが、故障状態フラグが故障状態を示さない場合には子局から故障情報を送信しないようにし、親局では、故障状態となった場合だけの故障情報を受信し、サージ発生点を表示してもよい。この場合には誘導雷などのサージによる故障情報を親局に送信しないで済む。   In the above embodiment, the failure information including the failure status flag is transmitted from the slave station, and the master station assigns a priority order and distinguishes whether the failure has occurred or not according to the failure status flag. However, if the failure status flag does not indicate a failure status, the failure information is not transmitted from the slave station.The master station receives failure information only when a failure occurs and determines the surge occurrence point. It may be displayed. In this case, failure information due to surges such as induced lightning need not be transmitted to the master station.

衛星通信や携帯電話などの無線では通信費用が基本料金にパケット料金を加算した料金体系となっており,通信データの量や通信回数が増えると通信費用が増大する。子局において故障状態フラグを参照して送信すべき情報を選択可能にし、特に必要な情報のみを伝送するようにすることにより、通信費用の増大を抑制できる。例えば、故障が発生した場合のみ故障情報を伝送するようにすれば、故障は年間に数件しか発生しないためパケット料金は微々たるもととなり通信費用を大幅に軽減できる。   Wireless communication such as satellite communications and mobile phones has a fee structure in which packet charges are added to the basic charge, and the communication cost increases as the amount of communication data and the number of communication increases. By making it possible to select information to be transmitted with reference to the failure state flag in the slave station and transmitting only particularly necessary information, it is possible to suppress an increase in communication cost. For example, if failure information is transmitted only when a failure occurs, only a few failures occur annually, so that packet charges become insignificant and communication costs can be greatly reduced.

1,31・・・送電線、2,33,42・・・親局、3〜7,34,43〜50・・・子局、8・・・携帯端末装置、11・・・GPS受信手段、11a・・・GPSアンテナ11a、11b・・・GPS受信機、12・・・故障電流検出手段、12a・・・電流センサ、12b,13b,15b・・・フィルタ、12c,13c,15e・・・A/D変換器、12d・・・故障電流検出部、13・・・故障電圧検出手段、13a・・・電圧センサ、13d・・・故障電圧検出部、14・・・電流電圧監視手段、15・・・サージ到達点複数検出手段、15a・・・サージセンサ、15c・・・サージ検出閾値部、15d・・・コンパレータ、15f・・・サージ到達点複数検出部、16・・・故障情報送信手段、16a・・・制御用CPU、16b・・・メモリ、16c,21a・・・光モデム、21・・・故障情報受信手段、21b・・・データ形成処理部、21c・・・子局選択処理部、22・・・サージ発生点複数算出処理手段、23・・・サージ発生点優先順位処理手段、24・・・故障点表示選択処理手段、25・・・モニタ、26・・・送電線データベース、32,A〜D・・・電気所   1,31 ... Transmission line, 2,33,42 ... Master station, 3-7,34,43-50 ... Slave station, 8 ... Mobile terminal device, 11 ... GPS receiving means 11a ... GPS antenna 11a, 11b ... GPS receiver, 12 ... failure current detection means, 12a ... current sensor, 12b, 13b, 15b ... filter, 12c, 13c, 15e ... A / D converter, 12d: Fault current detection unit, 13: Fault voltage detection means, 13a: Voltage sensor, 13d: Fault voltage detection unit, 14 ... Current voltage monitoring means, 15: Multiple surge arrival point detection means, 15a: Surge sensor, 15c: Surge detection threshold, 15d: Comparator, 15f: Multiple surge arrival point detector, 16: Failure information Transmitting means, 16a ... control CPU, 16b ... memory, 16c, 21a ... optical modem, 21 ... failure information receiving means, 21b ... data formation processing unit, 21c ... child station Selection processing unit, 22 ... Surge generation point multiple calculation processing 23 ... Surge generation point priority order processing means 24 ... Failure point display selection processing means 25 ... Monitor 26 ... Transmission line database 32, A to D ... Electricity station

Claims (6)

送電線に配置されて該送電線の故障情報を親局に送信する複数の子局と、前記子局から送信された故障情報をもとに故障点を標定する親局を有する故障点標定システムにおいて、
前記子局は、
人工衛星からのGPS電波を受信してGPSが保有する現在時刻を取り出すGPS受信手段と、
前記送電線に流れる故障電流を検出して故障電流情報を送出する故障電流検出手段と、
前記送電線に発生する故障電圧を検出して故障電圧情報を送出する故障電圧検出手段と、
故障電流情報と故障電圧情報の少なくとも一方により故障発生状態に応じた故障状態フラグを送出する電流電圧監視手段と、
サージ検出手段を有し、サージが予め設定されたサージ検出閾値を超えた時、その時点の前後所定期間のサージ波形を記録し、記録されたサージ波形において、その最大ピーク値と所定の第1〜第n(nは2以上の整数)の比率とを乗算した値となる複数点のうち、サージ波形記録開始時点から最大ピーク時点の間にあり、最も早く発生した点を比率ごとに求め、それらの近傍のサージ波形上2点を通る直線のゼロクロス点を第1〜第nのサージ到達点としてそれらの時刻を前記GPS受信手段から取り出すことにより第1〜第nのサージ到達点時刻を検出するサージ到達点複数検出手段と、
前記第1〜第nのサージ到達点時刻、前記故障電流情報および前記故障電圧情報を故障情報とし、該故障情報を故障状態フラグに応じて前記親局に送信するように構成され、あるいは該故障情報に故障状態フラグを含めて送信するように構成された故障情報送信手段を備え、
前記親局は、
前記複数の子局から送信される故障情報を受信し、該故障情報に基づいて標定に使用する子局を選択する故障情報受信手段と、
前記故障情報受信手段により選択された子局における第1〜第nのサージ到達点時刻それぞれの時刻差により第1〜第nのサージ発生点を算出するサージ発生点複数算出処理手段と、
前記故障情報送信手段から故障フラグに応じて故障情報が送信されるように構成されている場合には、所定条件により優先順位を付けて第1〜第nのサージ発生点を故障点として表示させ、前記故障情報送信手段から故障状態フラグを含む故障情報が送信されるように構成されている場合には、所定条件により優先順位を付けるとともに故障状態フラグに応じて故障発生とそれ以外のサージを区別して第1〜第nのサージ発生点を表示させるサージ発生点優先順位処理手段を備えたことを特徴とする故障点標定システム。
A failure point locating system having a plurality of slave stations arranged on a transmission line and transmitting failure information of the transmission line to a parent station, and a parent station for locating a failure point based on the failure information transmitted from the slave station In
The slave station is
GPS receiving means for receiving GPS radio waves from an artificial satellite and extracting the current time held by GPS;
Fault current detection means for detecting fault current flowing in the transmission line and sending fault current information;
Fault voltage detection means for detecting fault voltage generated in the transmission line and sending fault voltage information;
Current voltage monitoring means for sending a failure state flag corresponding to a failure occurrence state based on at least one of failure current information and failure voltage information;
Having a surge detection means, and when the surge exceeds a preset surge detection threshold, a surge waveform is recorded for a predetermined period before and after that point, and in the recorded surge waveform, the maximum peak value and a predetermined first To the nth (n is an integer equal to or greater than 2) ratio, and among the multiple points, a point that is between the surge waveform recording start time and the maximum peak time point and that occurs first is determined for each ratio. The first to n-th surge arrival time is detected by taking the time from the GPS receiving means as the first to n-th surge arrival points as straight zero-cross points passing through two points on the nearby surge waveform. Means for detecting multiple surge arrival points;
The first to nth surge arrival time, the fault current information and the fault voltage information are set as fault information, and the fault information is transmitted to the master station according to a fault status flag, or the fault Comprising failure information transmitting means configured to transmit the information including a failure state flag,
The master station is
Fault information receiving means for receiving fault information transmitted from the plurality of slave stations and selecting a slave station to be used for orientation based on the fault information;
A plurality of surge occurrence point calculation processing means for calculating the first to nth surge occurrence points according to the time differences of the first to nth surge arrival point times in the slave stations selected by the failure information receiving means;
When the failure information is transmitted from the failure information transmission means according to the failure flag, the first to nth surge occurrence points are displayed as failure points with priorities assigned according to predetermined conditions. When failure information including a failure state flag is transmitted from the failure information transmission means, priorities are set according to predetermined conditions, and a failure occurrence and other surges are determined according to the failure state flag. A failure point locating system comprising surge occurrence point priority order processing means for distinguishing and displaying first to nth surge occurrence points.
前記サージ発生点優先順位処理手段は、サージ最大ピーク値の大きさが予め設定された(n―1)個の第1の優先順位決定値より大きいか否かを所定条件として第1〜第nのサージ発生点に優先順位を付けることを特徴とする請求項1に記載の故障点標定システム。   The surge occurrence point priority order processing means determines whether the magnitude of the surge maximum peak value is greater than (n−1) first priority order decision values set in advance as a predetermined condition. The failure point locating system according to claim 1, wherein priorities are assigned to the surge occurrence points. 第1の優先順位決定値と優先順位の少なくとも一方が可変であることを特徴とする請求項2に記載の故障点標定システム。   The fault location system according to claim 2, wherein at least one of the first priority order determination value and the priority order is variable. 前記サージ発生点優先順位処理手段は、故障電流または故障電圧の波高値の大きさが予め設定された(n−1)個の第2の優先順位決定値より大きいか否か所定条件として第1〜第nのサージ発生点に優先順位を付けることを特徴とする請求項1に記載の故障点標定システム。   The surge occurrence point priority order processing means determines whether the magnitude of the peak value of the fault current or fault voltage is larger than (n−1) second priority order decision values set in advance as a predetermined condition. The failure point locating system according to claim 1, wherein priorities are assigned to the n th surge occurrence points. 第2の優先順位決定値と優先順位の少なくとも一方が可変であることを特徴とする請求項4に記載の故障点標定システム。   5. The fault location system according to claim 4, wherein at least one of the second priority order determination value and the priority order is variable. 前記サージ発生点優先順位処理手段は、第1〜第nのサージ発生点の少なくとも2つの距離差の絶対値が所定値を超えている場合、所定条件により第1〜第nのサージ発生点に優先順位を付けて表示させ、第1〜第nのサージ発生点の距離差の絶対値が所定値以下である場合には、優先順位の最も高いサージ発生点のみまたは第1〜第nのサージ発生点の平均点を表示させることを特徴とする請求項1ないし5のいずれか1つに記載の故障点標定システム。   The surge occurrence point priority order processing means sets the first to nth surge occurrence points according to a predetermined condition when an absolute value of a difference between at least two distances of the first to nth surge occurrence points exceeds a predetermined value. If the absolute value of the distance difference between the first to nth surge occurrence points is less than or equal to a predetermined value, only the surge occurrence point with the highest priority or the first to nth surges are displayed. 6. The fault location system according to claim 1, wherein an average of the occurrence points is displayed.
JP2013169844A 2013-08-19 2013-08-19 Transmission line fault location system Active JP6150391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013169844A JP6150391B2 (en) 2013-08-19 2013-08-19 Transmission line fault location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013169844A JP6150391B2 (en) 2013-08-19 2013-08-19 Transmission line fault location system

Publications (2)

Publication Number Publication Date
JP2015038445A true JP2015038445A (en) 2015-02-26
JP6150391B2 JP6150391B2 (en) 2017-06-21

Family

ID=52631598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013169844A Active JP6150391B2 (en) 2013-08-19 2013-08-19 Transmission line fault location system

Country Status (1)

Country Link
JP (1) JP6150391B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646106A (en) * 2016-10-11 2017-05-10 河海大学 Power grid fault detection method based on change point detection technology
CN107478941A (en) * 2017-07-14 2017-12-15 国网上海市电力公司 Distribution network failure simulated annealing localization method based on Multipoint synchronous measurement data
CN110488159A (en) * 2019-09-19 2019-11-22 广东电网有限责任公司 A kind of application method of distribution O&M monitoring device
CN111766477A (en) * 2020-08-04 2020-10-13 国网江苏省电力有限公司扬州供电分公司 Method and device for rapidly detecting and identifying line faults of direct-current circuit-breaker-free power distribution network
CN113359211A (en) * 2021-06-15 2021-09-07 武汉英泰晟视智感科技有限公司 Bird damage monitoring method for whole-line power transmission line

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843142A (en) * 1971-10-04 1973-06-22
JPS60111975A (en) * 1983-11-24 1985-06-18 Fujitsu Ltd Surge origin correcting system
JPH07113837A (en) * 1993-10-19 1995-05-02 Tohoku Electric Power Co Inc Surge identifying/locating system for transmission line
JPH08184634A (en) * 1994-12-28 1996-07-16 Tohoku Electric Power Co Inc Surge location system for transmission line
JP2000258487A (en) * 1999-03-05 2000-09-22 Nippon Kouatsu Electric Co Slave station, surge detection time evaluation, failure point locating system, and failure point locating method
JP2005121434A (en) * 2003-10-15 2005-05-12 Nishimu Electronics Industries Co Ltd Transmission cable fault location system
US20130096854A1 (en) * 2011-10-12 2013-04-18 Schweitzer Engineering Laboratories, Inc. Fault Location Using Traveling Waves

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843142A (en) * 1971-10-04 1973-06-22
JPS60111975A (en) * 1983-11-24 1985-06-18 Fujitsu Ltd Surge origin correcting system
JPH07113837A (en) * 1993-10-19 1995-05-02 Tohoku Electric Power Co Inc Surge identifying/locating system for transmission line
JPH08184634A (en) * 1994-12-28 1996-07-16 Tohoku Electric Power Co Inc Surge location system for transmission line
JP2000258487A (en) * 1999-03-05 2000-09-22 Nippon Kouatsu Electric Co Slave station, surge detection time evaluation, failure point locating system, and failure point locating method
JP2005121434A (en) * 2003-10-15 2005-05-12 Nishimu Electronics Industries Co Ltd Transmission cable fault location system
US20130096854A1 (en) * 2011-10-12 2013-04-18 Schweitzer Engineering Laboratories, Inc. Fault Location Using Traveling Waves

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646106A (en) * 2016-10-11 2017-05-10 河海大学 Power grid fault detection method based on change point detection technology
CN107478941A (en) * 2017-07-14 2017-12-15 国网上海市电力公司 Distribution network failure simulated annealing localization method based on Multipoint synchronous measurement data
CN107478941B (en) * 2017-07-14 2019-08-06 国网上海市电力公司 Distribution network failure simulated annealing localization method based on Multipoint synchronous measurement data
CN110488159A (en) * 2019-09-19 2019-11-22 广东电网有限责任公司 A kind of application method of distribution O&M monitoring device
CN110488159B (en) * 2019-09-19 2024-03-22 广东电网有限责任公司 Application method of distribution network operation and maintenance monitoring equipment
CN111766477A (en) * 2020-08-04 2020-10-13 国网江苏省电力有限公司扬州供电分公司 Method and device for rapidly detecting and identifying line faults of direct-current circuit-breaker-free power distribution network
CN111766477B (en) * 2020-08-04 2022-06-28 国网江苏省电力有限公司扬州供电分公司 Method and device for rapidly detecting and identifying line faults of direct-current circuit-breaker-free power distribution network
CN113359211A (en) * 2021-06-15 2021-09-07 武汉英泰晟视智感科技有限公司 Bird damage monitoring method for whole-line power transmission line

Also Published As

Publication number Publication date
JP6150391B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP6150391B2 (en) Transmission line fault location system
JP4201189B2 (en) Transmission line fault location system
US10228409B2 (en) Fault location using traveling waves
JP5346472B2 (en) Method and system for passively detecting and locating wire harness defects
Tashakkori et al. Fault location on radial distribution networks via distributed synchronized traveling wave detectors
US10296838B2 (en) Apparatus and method for changing alarm information in accordance with weather
Nanayakkara et al. Fault location in extra long HVDC transmission lines using continuous wavelet transform
CN108732464B (en) Submarine observation network submarine cable fault on-line diagnosis and positioning method
US9841456B2 (en) Electric outage detection and localization
US10585133B2 (en) Electric power fault protection device using single-ended traveling wave fault location estimation
JP6129719B2 (en) Transmission line lightning fault location method and system
Parkey et al. Analyzing artifacts in the time domain waveform to locate wire faults
CN111512168B (en) System and method for analyzing fault data of a power transmission network
US20230321470A1 (en) Overhead power line fire prevention system
JP2019007812A (en) Distribution line fault point locating system
US11953534B2 (en) Detection of lightning and related control strategies in electric power systems
KR101099788B1 (en) Apparatus and method of determinating lightening induced flashover in transmission lines
EP3685175A2 (en) Secure traveling wave distance protection in an electric power delivery system
KR101770121B1 (en) System for monitoring wire network fault based on reflectometry and method therefor
von Meier et al. Diagnostic applications for micro-synchrophasor measurements
US11025090B2 (en) Determining location and disruption sequence of power outages
CN110703012B (en) Distributed fault diagnosis method for power transmission line
JP2007178389A (en) Method for identifying fault section on transmission line, transmission line managing system, and program
JPH0862277A (en) Apparatus for locating fault point of transmission line
AU2021102407A4 (en) Portable apparatus for underground cable fault detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170519

R150 Certificate of patent or registration of utility model

Ref document number: 6150391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250