JP2015034740A - Oxidation-reduction current measuring electrode unit and oxidation-reduction current measuring apparatus - Google Patents

Oxidation-reduction current measuring electrode unit and oxidation-reduction current measuring apparatus Download PDF

Info

Publication number
JP2015034740A
JP2015034740A JP2013165531A JP2013165531A JP2015034740A JP 2015034740 A JP2015034740 A JP 2015034740A JP 2013165531 A JP2013165531 A JP 2013165531A JP 2013165531 A JP2013165531 A JP 2013165531A JP 2015034740 A JP2015034740 A JP 2015034740A
Authority
JP
Japan
Prior art keywords
electrode
detection electrode
oxidation
reduction current
shielding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013165531A
Other languages
Japanese (ja)
Other versions
JP6098427B2 (en
Inventor
丈夫 石井
Takeo Ishii
丈夫 石井
赤沢 真一
Shinichi Akazawa
真一 赤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2013165531A priority Critical patent/JP6098427B2/en
Publication of JP2015034740A publication Critical patent/JP2015034740A/en
Application granted granted Critical
Publication of JP6098427B2 publication Critical patent/JP6098427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To perform oxidation-reduction current measurement in a polarographic system or in a galvanic cell system without using a drive mechanism, accurately and stably.SOLUTION: An oxidation-reduction current measuring electrode unit comprises: a support chip 1 having a first surface 1a and a second surface 1b opposite to the first surface; a detection electrode 2 provided on the first surface 1a of the support chip 1 and immersed into a sample solution; a counter electrode 3 attached to the support chip 1 and immersed into the sample solution; and a shield 4 arranged so as to surround the detection electrode 2 and blocking the flow of the sample solution in contact with the detection electrode 2. The shield 4 is a cylindrical body having a peripheral surface across the first surface 1a to the second surface 1b of the support chip 1, and is opened on a lower end side and an upper end side.

Description

本発明は酸化還元電流測定用電極ユニット及び酸化還元電流測定装置に関する。さらに詳しくは、ポーラログラフ方式又はガルバニ電池方式の酸化還元電流(電解電流)計測が可能な酸化還元電流測定用電極ユニット及び酸化還元電流測定装置に関する。   The present invention relates to a redox current measuring electrode unit and a redox current measuring apparatus. More specifically, the present invention relates to a redox current measuring electrode unit and a redox current measuring device capable of measuring a redox current (electrolytic current) of a polarographic type or a galvanic cell type.

従来から、残留塩素、溶存オゾン,塩素要求量、二酸化塩素等の測定を目的として、ポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定装置が用いられている。
これらの測定方式で測定される酸化還元電流は、被還元物質が一定の厚さの拡散層と呼ばれる層の中において、濃度勾配による自然拡散によってのみ検知極表面に運ばれ、その表面で還元されるときに流れる拡散電流である。従来、被還元物質の濃度に応じた酸化還元電流(拡散電流)を得るために、安定な拡散層を形成することが行われていた。安定な拡散層が常に形成されていれば、試料液中の被還元物質はその濃度に応じて検知極に供給される。
Conventionally, a polarographic method or a galvanic cell type oxidation-reduction current measuring device has been used for the purpose of measuring residual chlorine, dissolved ozone, chlorine demand, chlorine dioxide, and the like.
The oxidation-reduction current measured by these measurement methods is transported to the surface of the detection electrode only by natural diffusion due to a concentration gradient in a layer called a diffusion layer having a constant thickness, and is reduced on the surface. This is the diffusion current that flows when Conventionally, a stable diffusion layer has been formed in order to obtain an oxidation-reduction current (diffusion current) according to the concentration of the substance to be reduced. If a stable diffusion layer is always formed, the substance to be reduced in the sample solution is supplied to the detection electrode according to its concentration.

安定な拡散層は、検知極に接する試料液を検知極表面に対して相対的に流動させることにより形成することができる。
検知極に接する試料液を検知極表面に対して相対的に流動させる方法としては、検知極を静止させたままで試料液を流す方法が挙げられる。しかし、試料液の流れのみから相対的な流動を得る場合、試料液流速によってポーラログラムが変化してしまう。そのため、正確な測定を安定して行うことが困難である。そこで、試料液に対して検知極を回転又は振動させることにより、検知極に接する試料液を検知極表面に対して相対的に流動させることが行われている。
The stable diffusion layer can be formed by causing the sample liquid in contact with the detection electrode to flow relative to the detection electrode surface.
Examples of a method for causing the sample liquid in contact with the detection electrode to flow relative to the surface of the detection electrode include a method for allowing the sample liquid to flow while the detection electrode is stationary. However, when the relative flow is obtained only from the flow of the sample solution, the polarogram changes depending on the sample solution flow rate. Therefore, it is difficult to stably perform accurate measurement. Therefore, the sample liquid that contacts the detection electrode is caused to flow relative to the surface of the detection electrode by rotating or vibrating the detection electrode with respect to the sample solution.

回転させて使用する検知極を回転電極、振動させて使用する電極を振動電極と称するが、これらは、試料液の通常の流速よりはるかに大きい線速度で回転、振動する。このため、試料液流速と無関係に安定な拡散層を形成することができ、試料液流速の変動による測定値への影響を受けにくい。
回転電極では、回転する検知極からリード線を切断せずに引き出すために、水銀接点を使用する方式、回転方向を交互に切り替えてリード線のねじれを防ぐ方式、検知極の支持体を回転させずにすりこぎ状に動かすことによって検知極を円運動させる方式(特許文献1)等が知られている。
振動電極としては、外部のバイブレータで検知極を振動させる方式(特許文献2)のものや、内蔵した電磁石を利用して振動させる方式(特許文献3)等が知られている。
The detection electrode used by rotating is called a rotating electrode, and the electrode used by vibrating is called a vibrating electrode. These electrodes rotate and vibrate at a linear velocity much higher than the normal flow rate of the sample liquid. For this reason, a stable diffusion layer can be formed regardless of the sample liquid flow rate, and the measurement value due to fluctuations in the sample liquid flow rate is not easily affected.
With rotating electrodes, a mercury contact is used to pull out the lead wire from the rotating sensing electrode without cutting it, a method that prevents the twisting of the lead wire by switching the rotation direction alternately, and the sensing electrode support is rotated. A method of moving the detection pole in a circular motion by moving it in a pestle shape (Patent Document 1) is known.
As a vibrating electrode, a method of vibrating a detection pole with an external vibrator (Patent Document 2), a method of vibrating using a built-in electromagnet (Patent Document 3), and the like are known.

実公平7−4566号公報No. 7-4566 実公昭62−41240号公報Japanese Utility Model Publication No. 62-41240 実公平6−765号公報No. 6-765

しかし、特許文献1〜3の方式では、検知極を回転または振動させる駆動機構が必要である。そのため、装置が大がかりになる問題があった。
本発明は、上記事情に鑑み、駆動機構を用いることなく、ポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定を、正確かつ安定して行うことが可能な酸化還元電流測定装置と当該装置に用いる酸化還元電流測定用電極ユニットを提供することを課題とする。
However, the methods of Patent Documents 1 to 3 require a drive mechanism that rotates or vibrates the detection pole. Therefore, there has been a problem that the apparatus becomes large.
In view of the above circumstances, the present invention provides an oxidation-reduction current measuring apparatus capable of accurately and stably performing oxidation-reduction current measurement of a polarographic system or a galvanic cell system without using a drive mechanism, and an oxidation used in the apparatus. It is an object of the present invention to provide an electrode unit for reducing current measurement.

上記の課題を達成するために、本発明は以下の構成を採用した。
[1]試料液に浸漬される検知極と、
検知極の近傍に配置され、試料液に浸漬される対極と、
検知極に試料液が接することを妨げない範囲で検知極を囲むように配置され、検知極に接する試料液の流動を抑制する遮蔽材を備えることを特徴とする酸化還元電流測定用電極ユニット。
[2]第一の面と第一の面の反対側の面である第二の面とを有する支持チップと、
支持チップの第一の面に設けられ、試料液に浸漬される検知極と、
支持チップに取りつけられ、試料液に浸漬される対極と、
検知極を囲むように配置され、検知極に接する試料液の流動を抑制する遮蔽材を備え、
遮蔽材は、支持チップの第一の面から第二の面に至る周面を有する筒状体であり、下端側と上端側には開口が設けられ、
試料液に浸漬された際、遮蔽材の上端側が試料液の液面より上側となるように構成されたことを特徴とする酸化還元電流測定用電極ユニット。
[3]遮蔽材によって囲まれる領域の水平面における断面積が、同じ面積の円の半径として表した際、1.5〜6mmである[1]または[2]に記載の酸化還元電流測定用電極ユニット。
[4]遮蔽材によって囲まれる領域の下端と検知極の距離が、1.5〜6mmである[1]〜[3]のいずれか一項に記載の酸化還元電流測定用電極ユニット。
[5][1]〜[4]のいずれか一項に記載の酸化還元電流測定用電極ユニットと、
前記検知極と対極との間に流れる酸化還元電流を測定する電流計とを具備することを特徴とする酸化還元電流測定装置。
[6]さらに、前記検知極と対極との間に、印加電圧を与える加電圧機構を具備する[5]に記載の酸化還元電流測定装置。
In order to achieve the above object, the present invention employs the following configuration.
[1] a detection electrode immersed in the sample solution;
A counter electrode disposed in the vicinity of the detection electrode and immersed in the sample solution;
An oxidation-reduction current measuring electrode unit comprising a shielding material arranged to surround the detection electrode within a range that does not prevent the sample solution from coming into contact with the detection electrode and suppressing flow of the sample solution in contact with the detection electrode.
[2] A support chip having a first surface and a second surface opposite to the first surface;
A detection electrode provided on the first surface of the support chip and immersed in the sample liquid;
A counter electrode attached to the support chip and immersed in the sample solution;
It is arranged so as to surround the detection electrode, and includes a shielding material that suppresses the flow of the sample liquid in contact with the detection electrode.
The shielding material is a cylindrical body having a peripheral surface extending from the first surface to the second surface of the support chip, and an opening is provided on the lower end side and the upper end side,
An electrode unit for measuring oxidation-reduction current, wherein the upper end side of the shielding material is located above the liquid surface of the sample liquid when immersed in the sample liquid.
[3] The oxidation-reduction current measuring electrode according to [1] or [2], wherein a cross-sectional area in a horizontal plane of a region surrounded by the shielding material is 1.5 to 6 mm when expressed as a radius of a circle having the same area. unit.
[4] The electrode unit for measuring redox current according to any one of [1] to [3], wherein the distance between the lower end of the region surrounded by the shielding material and the detection electrode is 1.5 to 6 mm.
[5] The oxidation-reduction current measurement electrode unit according to any one of [1] to [4];
An oxidation-reduction current measuring apparatus comprising: an ammeter that measures an oxidation-reduction current flowing between the detection electrode and the counter electrode.
[6] The oxidation-reduction current measuring apparatus according to [5], further comprising a voltage applying mechanism that applies an applied voltage between the detection electrode and the counter electrode.

本発明の酸化還元電流測定用電極ユニットおよび酸化還元電流測定用電極ユニットによれば、検知極を回転又は振動させる駆動機構を用いることなく、ポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定を、正確かつ安定して行うことができる。   According to the oxidation-reduction current measurement electrode unit and the oxidation-reduction current measurement electrode unit of the present invention, it is possible to accurately measure the oxidation-reduction current of the polarographic method or the galvanic cell method without using a drive mechanism that rotates or vibrates the detection electrode. And can be carried out stably.

本発明の一実施形態に係る酸化還元電流測定装置の概略構成図である。It is a schematic block diagram of the oxidation-reduction current measuring apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る酸化還元電流測定装置用電極ユニットの正面図である。It is a front view of the electrode unit for oxidation-reduction current measuring devices concerning one embodiment of the present invention. 図2のII−II断面図である。It is II-II sectional drawing of FIG. 本発明の他の実施形態に係る酸化還元電流測定装置用電極ユニットの正面図である。It is a front view of the electrode unit for oxidation-reduction current measuring devices concerning other embodiments of the present invention. 本発明の他の実施形態に係る酸化還元電流測定装置用電極ユニットの正面図である。It is a front view of the electrode unit for oxidation-reduction current measuring devices concerning other embodiments of the present invention. 印加電圧0Vにおける遊離残留塩素濃度と電流値の関係を示すグラフである。It is a graph which shows the relationship between the free residual chlorine concentration in the applied voltage of 0V, and an electric current value. 印加電圧−0.2Vにおける全残留塩素濃度と電流値の関係を示すグラフである。It is a graph which shows the relationship between the total residual chlorine concentration in applied voltage -0.2V, and an electric current value.

図1は、本発明の酸化還元電流測定装置の一例である。図1に示すように、本例の装置100は、酸化還元電流測定用の電極ユニット10と、試料液容器20と、加電圧機構30と、電流計40と、電極ユニット10、加電圧機構30、及び電流計40の間を直列に接続する配線50とから、概略構成されている。   FIG. 1 is an example of the oxidation-reduction current measuring apparatus of the present invention. As shown in FIG. 1, the apparatus 100 of this example includes an electrode unit 10 for measuring an oxidation-reduction current, a sample solution container 20, an applied voltage mechanism 30, an ammeter 40, an electrode unit 10, and an applied voltage mechanism 30. , And a wiring 50 that connects the ammeters 40 in series.

電極ユニット10は、図2、3に示すように、第一の面1aと第一の面1aの反対側の面である第二の面1bとを有する支持チップ1と、支持チップ1の第一の面1aに設けられ、試料液Sに浸漬される検知極2と、支持チップ1に取りつけられ、試料液に浸漬される対極3と、検知極2を囲むように配置され、検知極2に接する試料液Sの流動を抑制する遮蔽材4と、支持チップ1を保持する保持材5とから概略構成されている。   As shown in FIGS. 2 and 3, the electrode unit 10 includes a support chip 1 having a first surface 1a and a second surface 1b opposite to the first surface 1a. A detection electrode 2 provided on one surface 1a and immersed in the sample solution S, a counter electrode 3 attached to the support chip 1 and immersed in the sample solution, and arranged so as to surround the detection electrode 2, and the detection electrode 2 It consists of the shielding material 4 which suppresses the flow of the sample liquid S in contact with the substrate and the holding material 5 which holds the support chip 1.

本例の支持チップ1は略平板状で、かつ4つの周面を有する。この4つの周面の内1つが保持材5に固着されることにより、保持材5の下面側に垂下されるようになっている。また、4つの周面の残りの3つには、溝1cが形成されている。支持チップ1は、保持材5に垂下された状態で、試料液S中に、少なくともその下端側が浸漬されるようになっている。   The support chip 1 of this example is substantially flat and has four peripheral surfaces. One of the four peripheral surfaces is fixed to the holding material 5 so as to be suspended from the lower surface side of the holding material 5. Grooves 1c are formed in the remaining three of the four peripheral surfaces. At least the lower end side of the support chip 1 is immersed in the sample solution S in a state of being suspended from the holding material 5.

検知極2は、支持チップ1の第一の面1aの保持材5から離れた下端側の角部近傍に設けられている。対極3は、支持チップ1の溝1cに配置されている。支持チップ1内には、検知極2から支持チップ1の保持材5側に至る導線(図示を省略)と対極3から支持チップ1の保持材5側に至る導線(図示を省略)とが埋め込まれている。
保持材5には、支持チップ1の検知極2からの導線が露出する位置に対応して貫通孔5aが設けられ、対極3からの導線が露出する位置に対応して貫通孔5bが設けられている。そして、配線50は、保持材5に設けられた貫通孔5a、5bから電極ユニット10内に入り、支持チップ1内に埋め込まれた導線と接続されている。
検知極2としては、金電極、白金電極、グラッシーカーボン電極等を採用できる。対極としては、銀に塩化銀がメッキされた銀/塩化銀電極、銀電極、金電極、白金電極、グラッシーカーボン電極等を採用できる。
The detection pole 2 is provided in the vicinity of the corner on the lower end side away from the holding material 5 of the first surface 1 a of the support chip 1. The counter electrode 3 is disposed in the groove 1 c of the support chip 1. A conductive wire (not shown) from the detection electrode 2 to the holding material 5 side of the support chip 1 and a conductive wire (not shown) from the counter electrode 3 to the holding material 5 side of the support chip 1 are embedded in the support chip 1. It is.
The holding member 5 is provided with a through hole 5a corresponding to a position where the conductive wire from the detection electrode 2 of the support chip 1 is exposed, and is provided with a through hole 5b corresponding to a position where the conductive wire from the counter electrode 3 is exposed. ing. The wiring 50 enters the electrode unit 10 through the through holes 5 a and 5 b provided in the holding material 5, and is connected to a conductive wire embedded in the support chip 1.
As the detection electrode 2, a gold electrode, a platinum electrode, a glassy carbon electrode, or the like can be employed. As the counter electrode, a silver / silver chloride electrode in which silver chloride is plated on silver, a silver electrode, a gold electrode, a platinum electrode, a glassy carbon electrode, or the like can be used.

遮蔽材4は、検知極2を囲む領域(以下「遮蔽領域」という場合がある。)を構成することにより、遮蔽領域内の試料液Sの流動を抑制する部材である。遮蔽領域内の試料液Sの流動は、主として、以下の理由により抑制できる。
1)試料液Sが流動している遮蔽領域の外側と遮蔽領域とを物理的に遮断する。
2)遮蔽領域外との熱移動を遮断することにより、遮蔽領域外で温度変動が生じても、遮蔽領域内で温度勾配が原因の対流が発生することを防止する。
3)遮蔽材4の上端を、試料液Sの液面より上となるように配置することにより、遮蔽領域外の試料液Sの液面変動が遮蔽領域に及ぶことを防止する。
4)遮蔽領域を狭くすることにより、遮蔽領域内で温度変化、振動、液面変動等の試料液Sの流動要因が発生することを防止できる。
The shielding material 4 is a member that suppresses the flow of the sample liquid S in the shielding region by constituting a region surrounding the detection electrode 2 (hereinafter sometimes referred to as “shielding region”). The flow of the sample liquid S in the shielding region can be suppressed mainly for the following reason.
1) The outside of the shielding area where the sample liquid S is flowing is physically blocked from the shielding area.
2) By blocking the heat transfer from the outside of the shielding area, it is possible to prevent the occurrence of convection due to the temperature gradient in the shielding area even if the temperature fluctuates outside the shielding area.
3) By disposing the upper end of the shielding material 4 so as to be above the liquid level of the sample liquid S, the liquid level fluctuation of the sample liquid S outside the shielding area is prevented from reaching the shielding area.
4) By narrowing the shielding area, it is possible to prevent the flow factor of the sample liquid S, such as temperature change, vibration, and liquid level fluctuation, from occurring in the shielding area.

本例の遮蔽材4は、支持チップ1の第一の面1aから第二の面1bに至る周面を有する筒状体で、下端側全体が開口4aとされ、上端側全体が開口4bとされている。支持チップ1の下端側を試料液S中に浸漬した際、試料液Sは開口4aから遮蔽材4の内部に入り、遮蔽材4に囲まれた検知極2が試料液Sに浸漬されるようになっている。開口4bは、支持チップ1の下端側を試料液S中に浸漬した際に、試料液Sの液面より上側となるようにされており、試料液Sの液面の揺れが遮蔽材4に囲まれた領域内に及ぶことを防止できるようになっている。   The shielding member 4 of this example is a cylindrical body having a peripheral surface extending from the first surface 1a to the second surface 1b of the support chip 1, the entire lower end side being an opening 4a, and the entire upper end side being an opening 4b. Has been. When the lower end side of the support chip 1 is immersed in the sample liquid S, the sample liquid S enters the inside of the shielding material 4 from the opening 4a, and the detection electrode 2 surrounded by the shielding material 4 is immersed in the sample liquid S. It has become. When the lower end side of the support chip 1 is immersed in the sample liquid S, the opening 4b is arranged to be above the liquid surface of the sample liquid S, and the shaking of the liquid surface of the sample liquid S is applied to the shielding material 4. It is possible to prevent reaching the enclosed area.

対極3の検知極2に最も近接した部分は、遮蔽材4で囲まれる領域内に位置している。対極3の検知極2に最も近接した部分が、遮蔽材4で囲まれる領域外に位置する場合、検知極2と対極3との距離が大きくなりやすい。その場合、液抵抗(試料液Sを電流が通過する際の抵抗)が無視できなくなるおそれがある。特に、試薬を使用しない無試薬式の酸化還元電流測定装置の場合、液抵抗の影響が大きくなりやすいので、検知極2と対極3との距離が大きくなることは好ましくない。
したがって、対極3の検知極2に最も近接した部分は、遮蔽材4で囲まれる領域内に位置し、かつ、検知極2と短絡しない限度で、できるだけ近接して配置されることが好ましい。
The portion of the counter electrode 3 that is closest to the detection electrode 2 is located in a region surrounded by the shielding material 4. When the portion of the counter electrode 3 closest to the detection electrode 2 is located outside the region surrounded by the shielding material 4, the distance between the detection electrode 2 and the counter electrode 3 tends to increase. In that case, there is a possibility that the liquid resistance (resistance when the current passes through the sample liquid S) cannot be ignored. In particular, in the case of a reagentless type oxidation-reduction current measuring apparatus that does not use a reagent, the influence of the liquid resistance tends to increase, and therefore it is not preferable that the distance between the detection electrode 2 and the counter electrode 3 is increased.
Therefore, it is preferable that the portion of the counter electrode 3 that is closest to the detection electrode 2 is located within the region surrounded by the shielding material 4 and is disposed as close as possible to the extent that the detection electrode 2 is not short-circuited.

本例では、遮蔽材4の軸方向に垂直な断面の内側は半径rの円形である。半径rは、1.5〜6mmであることが好ましく、2〜4mmであることがより好ましく、2.5〜3mmであることがさらに好ましい。半径rが大きすぎると、遮蔽材4の内部に入った試料液Sが流動しやすくなり、検知極2に接する試料液Sの流動を抑制するという遮蔽材4の機能を達成しづらくなる。半径rが小さすぎると、遮蔽材4の内部に試料液Sが入りづらくなり、検知極2に試料液Sが接触することが困難になる。
なお、遮蔽材4内側の試料液Sに対する濡れ性等により、半径rの好ましい範囲は若干変動する。
また、遮蔽材4によって囲まれる領域の下端である開口4aと検知極2の距離d(開口4aと検知極2の開口4aに最も近接した部分との距離)は、1.5〜6mmであることが好ましく、2〜4mmであることがより好ましく、2.5〜3mmであることがさらに好ましい。距離dが小さすぎると、遮蔽材4の外側における試料液Sの流動の影響が検知極2に接する試料液Sに伝わりやすくなり、検知極2に接する試料液Sの流動を抑制するという遮蔽材4の機能を達成しづらくなる。距離dが大きすぎると、電極ユニット10が無用に大きくなるため好ましくない。
In this example, the inside of the cross section perpendicular to the axial direction of the shielding material 4 is a circle having a radius r. The radius r is preferably 1.5 to 6 mm, more preferably 2 to 4 mm, and even more preferably 2.5 to 3 mm. If the radius r is too large, the sample liquid S entering the shielding material 4 is likely to flow, and it is difficult to achieve the function of the shielding material 4 for suppressing the flow of the sample liquid S in contact with the detection electrode 2. If the radius r is too small, it is difficult for the sample liquid S to enter the shielding member 4, and it is difficult for the sample liquid S to contact the detection electrode 2.
Note that the preferred range of the radius r slightly varies depending on the wettability of the sample liquid S inside the shielding material 4 and the like.
The distance d between the opening 4a, which is the lower end of the region surrounded by the shielding material 4, and the detection electrode 2 (the distance between the opening 4a and the portion closest to the opening 4a of the detection electrode 2) is 1.5 to 6 mm. Is preferably 2 to 4 mm, and more preferably 2.5 to 3 mm. If the distance d is too small, the influence of the flow of the sample liquid S on the outside of the shielding material 4 is easily transmitted to the sample liquid S in contact with the detection electrode 2, and the shielding material that suppresses the flow of the sample liquid S in contact with the detection electrode 2. It becomes difficult to achieve function 4. If the distance d is too large, the electrode unit 10 becomes unnecessarily large, which is not preferable.

加電圧機構30は、検知極2と対極3との間に、1または複数の所定の電圧を付与する機能を有する。加電圧機構30は、検知極2と対極3との間にゼロmVを付与する機能、すなわち、何らの電圧を付与しない機能を併せて備えていてもよい。
なお、検知極2と対極3との間に、何らの電圧を付与しないガルバニ電池方式のみの酸化還元電流測定装置とする場合、加電圧機構30は不要である。
The applied voltage mechanism 30 has a function of applying one or more predetermined voltages between the detection electrode 2 and the counter electrode 3. The applied voltage mechanism 30 may be provided with a function of applying zero mV between the detection electrode 2 and the counter electrode 3, that is, a function of applying no voltage.
In addition, when it is set as the oxidation reduction current measuring apparatus of only a galvanic cell system which does not provide any voltage between the detection electrode 2 and the counter electrode 3, the applied voltage mechanism 30 is unnecessary.

本例の装置100では、酸化還元電流の測定により被還元物質が消費されることに伴い、拡散層が減少する。検知極2に接する試料液Sの流動が抑制されているため、酸化還元電流の測定開始から一定の時間内では、被還元物質の移動による拡散層の再生は無視できる程度である。そのため、酸化還元電流の測定開始後、一定の時間経過後に酸化還元電流の値を読み込むことにすれば、その時点での拡散層の厚みには再現性があり、被還元物質の濃度に応じた再現性のある電流値が得られることとなる。
すなわち、本発明の酸化還元電流測定装置は、検知極周辺の試料水の流れや振動を抑制することにより、酸化還元電流測定時の拡散層の厚みの再現性を確保し、被還元物質の濃度に応じた酸化還元電流(拡散電流)を得ることができる。
In the apparatus 100 of this example, the diffusion layer is reduced as the substance to be reduced is consumed by measuring the oxidation-reduction current. Since the flow of the sample liquid S in contact with the detection electrode 2 is suppressed, the regeneration of the diffusion layer due to the movement of the substance to be reduced is negligible within a certain time from the start of the measurement of the redox current. Therefore, if the value of the redox current is read after a certain time has elapsed after the start of measurement of the redox current, the thickness of the diffusion layer at that time is reproducible and depends on the concentration of the substance to be reduced. A reproducible current value is obtained.
That is, the oxidation-reduction current measuring device of the present invention ensures the reproducibility of the diffusion layer thickness during the oxidation-reduction current measurement by suppressing the flow and vibration of the sample water around the detection electrode, and the concentration of the substance to be reduced. An oxidation-reduction current (diffusion current) can be obtained.

本例の装置100では、酸化還元電流の測定開始後、2分以内に酸化還元電流の値を読み込むことが好ましく、20秒後から1分後に読み込むことがより好ましく、30秒後から1分後に読み込むことがさらに好ましい。
酸化還元電流の測定開始後とは、所定の印加電圧を印加した状態で検知極2と対極3を試料液に浸漬後の意味である。検知極2と対極3を試料液に浸漬した後に印加電圧を変化させた場合は、印加電圧を変化後の意味である。
読み込むまでの時間が長くなると、拡散層の被還元物質が大きく減少するので、被還元物質の移動による拡散層の再生が無視できなくなる。被還元物質の移動が拡散のみによれば2〜3分経過後には、拡散層の再生速度が一定し、測定による被還元物質の消費とのバランスが得られるはずである。しかし、遮蔽材4により囲まれた領域内といえども、試料液の流動を完全にゼロにすることはできないので、拡散層の再生速度と測定による被還元物質の消費とのバランスは成立しにくい。
そのため、読み込むまでの時間が長すぎると、拡散層の厚みは不安定となり、再現性も得にくくなる。また、濃度に対する電流変化量が相対的に小さくなり、検出感度が低下するので好ましくない。
一方、測定開始直後は、急激な電流変化(電流低下)が生じる。そのため、読み込むまでの時間が短すぎると、濃度に対する電流変化量は相対的に大きくなるが、再現性のある電流測定が困難となる。
In the apparatus 100 of this example, it is preferable to read the value of the redox current within 2 minutes after the start of the measurement of the redox current, more preferably after 1 minute from 20 seconds, and after 1 minute from 30 seconds. It is more preferable to read.
“After the start of measurement of the oxidation-reduction current” means that the detection electrode 2 and the counter electrode 3 are immersed in the sample liquid in a state where a predetermined applied voltage is applied. When the applied voltage is changed after the detection electrode 2 and the counter electrode 3 are immersed in the sample solution, this means that the applied voltage is changed.
If the time until reading becomes longer, the reducible substance in the diffusion layer is greatly reduced, and therefore the regeneration of the diffusion layer due to the movement of the reducible substance cannot be ignored. If the transfer of the substance to be reduced is only by diffusion, after a lapse of 2 to 3 minutes, the regeneration rate of the diffusion layer should be constant and a balance with the consumption of the substance to be reduced by measurement should be obtained. However, even within the region surrounded by the shielding material 4, the flow of the sample liquid cannot be made completely zero, so that it is difficult to establish a balance between the regeneration rate of the diffusion layer and the consumption of the substance to be reduced by measurement. .
Therefore, if the time until reading is too long, the thickness of the diffusion layer becomes unstable and it becomes difficult to obtain reproducibility. In addition, the amount of current change with respect to the concentration becomes relatively small, and the detection sensitivity is lowered, which is not preferable.
On the other hand, a rapid current change (current drop) occurs immediately after the start of measurement. Therefore, if the time until reading is too short, the amount of current change with respect to the concentration becomes relatively large, but it becomes difficult to measure current with reproducibility.

装置100における電極ユニット10は、図4の電極ユニット11、または図5の電極ユニット12に変更してもよい。図4、図5において、図1と共通の構成部材には、同一の符号を付して、その詳細な説明を省略する。
図4の電極ユニット11は、対極3が、検知極2と並んで支持チップ1の第一の面1aに設けられている点を除き、電極ユニット10と同様の構成である。図5の電極ユニット12は、支持チップ1の高さ方向(試料液Sに浸漬する際の高さ方向)略中央の両側に溝1d、1dが設けられ、対極3が、溝1d、1d部分を通って支持チップ1に巻き付けられている点を除き、電極ユニット10と同様の構成である。
The electrode unit 10 in the apparatus 100 may be changed to the electrode unit 11 in FIG. 4 or the electrode unit 12 in FIG. 4 and 5, the same reference numerals are given to the same components as those in FIG. 1, and detailed description thereof will be omitted.
The electrode unit 11 of FIG. 4 has the same configuration as the electrode unit 10 except that the counter electrode 3 is provided on the first surface 1 a of the support chip 1 along with the detection electrode 2. The electrode unit 12 in FIG. 5 is provided with grooves 1d and 1d on both sides of the center in the height direction of the support chip 1 (height direction when immersed in the sample solution S), and the counter electrode 3 is a portion of the grooves 1d and 1d. The configuration is the same as that of the electrode unit 10 except that the electrode unit 10 is wound around the support chip 1.

また、電極ユニット10における遮蔽材4の断面は円形に限られず、楕円や多角形でもよい。ただし、遮蔽材4によって囲まれる領域の断面積は、同じ面積の円の半径r’として表した際、1.5〜6mmであることが好ましく、2〜4mmであることがより好ましく、2.5〜3mmであることがさらに好ましい。半径r’が大きすぎると、遮蔽材4の内部に入った試料液Sが流動しやすくなり、検知極2に接する試料液Sの流動を抑制するという遮蔽材4の機能を達成しづらくなる。半径r’が小さすぎると、遮蔽材4の内部に試料液Sが入りづらくなり、検知極2に試料液Sが接触することが困難になる。
なお、遮蔽材4内側の試料液Sに対する濡れ性等により、半径r’の好ましい範囲は若干変動する。
Moreover, the cross section of the shielding member 4 in the electrode unit 10 is not limited to a circle, and may be an ellipse or a polygon. However, the cross-sectional area of the region surrounded by the shielding material 4 is preferably 1.5 to 6 mm, more preferably 2 to 4 mm when expressed as a radius r ′ of a circle having the same area. More preferably, it is 5 to 3 mm. If the radius r ′ is too large, the sample liquid S that has entered the shielding material 4 easily flows, and it is difficult to achieve the function of the shielding material 4 that suppresses the flow of the sample liquid S that contacts the detection electrode 2. If the radius r ′ is too small, it is difficult for the sample liquid S to enter the shielding member 4, and it is difficult for the sample liquid S to contact the detection electrode 2.
Note that the preferred range of the radius r ′ slightly varies depending on the wettability of the sample liquid S inside the shielding material 4 and the like.

また、検知極2を囲む遮蔽材4は、上端と下端が全面的に開放された筒状体に限定されず、遮蔽材4の内部に試料液Sが入ることを妨げず、かつ検知極2に接する試料液Sの流動を抑制できるものであればよい。
例えば、筒状体の上端側が上底で覆われ、上底又は上底近傍の周面に空気が流通可能な孔を開口したものであってもよい。また、筒状体の上端側、下端側の開口は、各々通液可能なメッシュで塞がれたものでもよい。
また、対極3は、支持チップ1に取りつけけられていなくても、検知極2との間の酸化還元電流を検知できる程度に、検知極2の近傍に配置されていればよい。また、液抵抗が問題とならない範囲であれば、対極3の検知極2に最も近接した部分は、遮蔽材4で囲まれる領域外にて配置されていてもよい。
Further, the shielding material 4 surrounding the detection electrode 2 is not limited to a cylindrical body whose upper and lower ends are fully open, and does not prevent the sample liquid S from entering the shielding material 4, and the detection electrode 2. Any material can be used as long as the flow of the sample solution S in contact with the substrate can be suppressed.
For example, the upper end side of the cylindrical body may be covered with the upper base, and a hole through which air can flow is opened on the peripheral surface near the upper base or the upper base. Further, the openings on the upper end side and the lower end side of the cylindrical body may be each closed with a mesh that can pass liquid.
Even if the counter electrode 3 is not attached to the support chip 1, the counter electrode 3 may be disposed in the vicinity of the detection electrode 2 to the extent that the oxidation-reduction current between the counter electrode 3 and the detection electrode 2 can be detected. Further, as long as the liquid resistance does not cause a problem, the portion of the counter electrode 3 that is closest to the detection electrode 2 may be disposed outside the region surrounded by the shielding material 4.

以下、本発明の効果を明らかにするための実施例を示す。なお、以下の実施例で用いた試薬は、以下のように調製した。
脱塩水:水道水を活性炭で処理して、脱塩水とした。
次亜塩素酸ナトリウム溶液:有効塩素濃度約12%の次亜塩素酸ナトリウム溶液をイオン交換水で有効塩素濃度約50mg/Lに希釈後、上水試験方法2011年版「30.3 ジエチル−p−フェニレンジアミンによる吸光光度法」の(14)標準塩素水に記載された「よう素滴定法」にて有効塩素濃度を求める。これを原液とし、使用時に脱塩水で希釈して各濃度の次亜塩素酸ナトリウム溶液とした。
ジクロロスルファミン酸溶液:スルファミン酸ナトリウムと、スルファミン酸ナトリウム1モルに対する有効塩素濃度が2モルとなるように、有効塩素濃度約12%の次亜塩素酸ナトリウム溶液をイオン交換水に溶解した。有効塩素濃度は上水試験方法2011年版「30.3 ジエチル−p−フェニレンジアミンによる吸光光度法」の(14)標準塩素水に記載された「よう素滴定法」にて確認した。これを原液とし、使用時に脱塩水で希釈して各濃度のジクロロスルファミン酸溶液とした。
モノクロロスルファミン酸溶液:スルファミン酸ナトリウムと、スルファミン酸ナトリウム1モルに対する有効塩素濃度が1モルとなるように、有効塩素濃度約12%の次亜塩素酸ナトリウム溶液をイオン交換水に溶解した。有効塩素濃度は上水試験方法2011年版「30.3 ジエチル−p−フェニレンジアミンによる吸光光度法」の(14)標準塩素水に記載された「よう素滴定法」にて確認した。これを原液とし、使用時に脱塩水で希釈して各濃度のモノクロロスルファミン酸溶液とした。
Examples for clarifying the effects of the present invention will be described below. The reagents used in the following examples were prepared as follows.
Demineralized water: Tap water was treated with activated carbon to obtain demineralized water.
Sodium hypochlorite solution: After diluting a sodium hypochlorite solution having an effective chlorine concentration of about 12% with ion-exchanged water to an effective chlorine concentration of about 50 mg / L, the water test method 2011 edition “30.3 Diethyl-p- The effective chlorine concentration is determined by “iodine titration method” described in (14) Standard chlorine water of “Absorption photometry with phenylenediamine”. This was used as a stock solution and diluted with demineralized water at the time of use to obtain sodium hypochlorite solutions of various concentrations.
Dichlorosulfamic acid solution: A sodium hypochlorite solution having an effective chlorine concentration of about 12% was dissolved in ion-exchanged water so that the effective chlorine concentration with respect to 1 mol of sodium sulfamate and sodium sulfamate was 2 mol. The effective chlorine concentration was confirmed by the “iodine titration method” described in (14) standard chlorine water of the water supply test method 2011 edition “30.3 Absorption photometric method with diethyl-p-phenylenediamine”. This was used as a stock solution and diluted with demineralized water at the time of use to prepare dichlorosulfamic acid solutions of various concentrations.
Monochlororosulfamate solution: A sodium hypochlorite solution having an effective chlorine concentration of about 12% was dissolved in ion-exchanged water so that the effective chlorine concentration with respect to 1 mol of sodium sulfamate and 1 mol of sodium sulfamate was 1 mol. The effective chlorine concentration was confirmed by the “iodine titration method” described in (14) standard chlorine water of the water supply test method 2011 edition “30.3 Absorption photometric method with diethyl-p-phenylenediamine”. This was used as a stock solution, and diluted with demineralized water at the time of use to obtain a monochlororosulmic acid solution of each concentration.

以下の実施例におけるDPD分析値は、上水試験方法 30.3に定められたDPD法に従い、以下の方法により求めた。
(a)DPD試薬の作製
N,N−ジエチル−フェニレンジアミン硫酸塩1.0gと無水硫酸ナトリウム24gを混合して、DPD(N,N−ジエチル−p−フェニレンジアミン)試薬を作製した。
(b)リン酸緩衝液(pH=6.5)の調製
0.2mol/Lリン酸二水素カリウム100mLに0.2mol/L水酸化ナトリウム溶液35.4mLを加え、これにtrans−1,2−シクロヘキサンジアミン四酢酸−水和物0.13gを溶解し、リン酸緩衝液(pH=6.5)を調製した。
(c)遊離残留塩素濃度の測定
リン酸緩衝液2.5mLを共栓付き容器50mLに採り、これにDPD試薬0.5gを加え、次いで試料液とイオン交換水を加えて全量を50mLとして、混和した。次に混和した溶液の約3mLを吸収セルに採り、光電分光光度計を用いて、混和してから10秒後における波長528nmにおける吸光度を測定し、予め作成した検量線から、遊離残留塩素濃度を求めた。
(d)全残留塩素濃度
上記(c)で得られた混和溶液50mLに、ヨウ化カリウム約0.5gを加えて溶解した。次にヨウ化カリウム添加後の溶液の約3mLを吸収セルに採り、光電分光光度計を用いて、ヨウ化カリウム添加後2分後における波長528nmにおける吸光度を測定し、予め作成した検量線から、全残留塩素濃度を求めた。
The DPD analysis values in the following examples were determined by the following method according to the DPD method defined in the water test method 30.3.
(A) Preparation of DPD reagent 1.0 g of N, N-diethyl-phenylenediamine sulfate and 24 g of anhydrous sodium sulfate were mixed to prepare a DPD (N, N-diethyl-p-phenylenediamine) reagent.
(B) Preparation of phosphate buffer solution (pH = 6.5) 35.4 mL of 0.2 mol / L sodium hydroxide solution was added to 100 mL of 0.2 mol / L potassium dihydrogen phosphate, and trans-1,2 was added thereto. -0.13 g of cyclohexanediaminetetraacetic acid hydrate was dissolved to prepare a phosphate buffer solution (pH = 6.5).
(C) Measurement of free residual chlorine concentration Take 2.5 mL of phosphate buffer in 50 mL of stoppered container, add 0.5 g of DPD reagent to this, then add sample solution and ion-exchanged water to make the total volume 50 mL. Mixed. Next, about 3 mL of the mixed solution is taken into an absorption cell, and the absorbance at a wavelength of 528 nm is measured 10 seconds after mixing using a photoelectric spectrophotometer. From the calibration curve prepared in advance, the free residual chlorine concentration is determined. Asked.
(D) Total residual chlorine concentration About 50 g of potassium iodide was added to and dissolved in 50 mL of the mixed solution obtained in the above (c). Next, about 3 mL of the solution after addition of potassium iodide was taken in an absorption cell, and the absorbance at a wavelength of 528 nm after 2 minutes after addition of potassium iodide was measured using a photoelectric spectrophotometer. From a calibration curve prepared in advance, The total residual chlorine concentration was determined.

図1〜3に示した酸化還元電流測定装置を用いて、種々の濃度の次亜塩素酸ナトリウム溶液、ジクロロスルファミン酸溶液、モノクロロスルファミン酸溶液について、印加電圧0mV、または印加電圧−200mVにおける酸化還元電流値を調べた。
検知極2としては直径1mmの金電極を用い、対極3としては直径0.6mmの銀線に塩化銀をメッキした銀/塩化銀線を用いた。検知極2と対極3の検知極2に最も近接した部分との距離は、2mmであった。また、遮蔽材4は、内側の断面の半径rが5mmである円形の筒状体とした。遮蔽材4によって囲まれる領域の下端である開口4aと検知極2の距離dは、4mmとした。また、酸化還元電流の値を読み込むタイミングは、酸化還元電流の測定開始から30秒後とした。
Using the oxidation-reduction current measuring apparatus shown in FIGS. 1 to 3, oxidation reduction at various applied concentrations of sodium hypochlorite solution, dichlorosulfamic acid solution, and monochlororosulphamic acid solution at an applied voltage of 0 mV or an applied voltage of −200 mV. The current value was examined.
The detection electrode 2 was a gold electrode having a diameter of 1 mm, and the counter electrode 3 was a silver / silver chloride wire obtained by plating a silver wire having a diameter of 0.6 mm with silver chloride. The distance between the detection electrode 2 and the portion of the counter electrode 3 closest to the detection electrode 2 was 2 mm. The shielding material 4 was a circular cylindrical body having an inner cross-sectional radius r of 5 mm. The distance d between the opening 4a, which is the lower end of the region surrounded by the shielding material 4, and the detection electrode 2 was 4 mm. The timing for reading the value of the redox current was 30 seconds after the start of the redox current measurement.

結果を図6、図7に示す。図6、図7において、「次亜塩素酸」は次亜塩素酸ナトリウム溶液を、「ジクロロ」はジクロロスルファミン酸溶液を、「モノクロロ」はモノクロロスルファミン酸溶液を、各々示す。
また、図6の横軸は遊離残留塩素濃度のDPD分析値であり、図7の横軸は全残留塩素濃度のDPD分析値である。
図6に示すように、印加電圧0mVにおける酸化還元電流は遊離残留塩素濃度(DPD分析値)と良好な相関関係にあることが分かった。また、図7に示すように、印加電圧−200mVにおける酸化還元電流値は、「モノクロロ」と「ジクロロ」の双方の濃度と相関することから、結合残留塩素に対応した酸化還元電流と遊離残留塩素濃度に対応した酸化還元電流とが加算された電流を得られることが分かった。
The results are shown in FIGS. 6 and 7, “hypochlorous acid” indicates a sodium hypochlorite solution, “dichloro” indicates a dichlorosulfamic acid solution, and “monochloro” indicates a monochlororosulmic acid solution.
Further, the horizontal axis of FIG. 6 is the DPD analysis value of the free residual chlorine concentration, and the horizontal axis of FIG. 7 is the DPD analysis value of the total residual chlorine concentration.
As shown in FIG. 6, it was found that the oxidation-reduction current at an applied voltage of 0 mV has a good correlation with the free residual chlorine concentration (DPD analysis value). Further, as shown in FIG. 7, since the redox current value at an applied voltage of −200 mV correlates with the concentrations of both “monochloro” and “dichloro”, the redox current corresponding to the combined residual chlorine and the free residual chlorine It was found that a current obtained by adding the redox current corresponding to the concentration can be obtained.

図6、図7に示すように、本発明の酸化還元電流測定装置によれば、被還元物質の濃度に応じた酸化還元電流(拡散電流)を、正確かつ安定して得られることが確認できた。本発明の酸化還元電流測定装置と酸化還元電流測定用電極ユニットは、振動や、回転などにより、検知極に接する試料液を検知極表面に対して相対的に流動させる必要がないため、装置の小型化が可能であり、また、メンテナンスも容易である。   As shown in FIG. 6 and FIG. 7, according to the oxidation-reduction current measuring apparatus of the present invention, it can be confirmed that the oxidation-reduction current (diffusion current) according to the concentration of the substance to be reduced can be obtained accurately and stably. It was. Since the oxidation-reduction current measuring device and the oxidation-reduction current measurement electrode unit of the present invention do not need to cause the sample liquid in contact with the detection electrode to flow relative to the detection electrode surface due to vibration, rotation, or the like, Miniaturization is possible and maintenance is easy.

本発明の酸化還元電流測定装置および酸化還元電流測定用電極ユニットは、ポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定により、残留塩素、溶存オゾン,塩素要求量、二酸化塩素等を簡便に求めることができる。   The oxidation-reduction current measuring device and the oxidation-reduction current measurement electrode unit of the present invention can easily obtain residual chlorine, dissolved ozone, chlorine demand, chlorine dioxide, etc. by measuring the oxidation-reduction current of a polarographic system or a galvanic cell system. it can.

1…支持チップ、2…検知極、3…対極、4…遮蔽材、5…保持材、
10〜12…電極ユニット、20…試料液容器、30…加電圧機構、40…電流計、
50…配線、
71…測定セル、72…検知極、74…対極、78…加電圧機構、79…電流計
DESCRIPTION OF SYMBOLS 1 ... Support chip, 2 ... Detection pole, 3 ... Counter electrode, 4 ... Shielding material, 5 ... Holding material,
10-12 ... Electrode unit, 20 ... Sample container, 30 ... Applied voltage mechanism, 40 ... Ammeter,
50 ... wiring,
71 ... Measurement cell, 72 ... Detection electrode, 74 ... Counter electrode, 78 ... Applied voltage mechanism, 79 ... Ammeter

Claims (6)

試料液に浸漬される検知極と、
検知極の近傍に配置され、試料液に浸漬される対極と、
検知極に試料液が接することを妨げない範囲で検知極を囲むように配置され、検知極に接する試料液の流動を抑制する遮蔽材を備えることを特徴とする酸化還元電流測定用電極ユニット。
A sensing electrode immersed in the sample solution;
A counter electrode disposed in the vicinity of the detection electrode and immersed in the sample solution;
An oxidation-reduction current measuring electrode unit comprising a shielding material arranged to surround the detection electrode within a range that does not prevent the sample solution from coming into contact with the detection electrode and suppressing flow of the sample solution in contact with the detection electrode.
第一の面と第一の面の反対側の面である第二の面とを有する支持チップと、
支持チップの第一の面に設けられ、試料液に浸漬される検知極と、
支持チップに取りつけられ、試料液に浸漬される対極と、
検知極を囲むように配置され、検知極に接する試料液の流動を抑制する遮蔽材を備え、
遮蔽材は、支持チップの第一の面から第二の面に至る周面を有する筒状体であり、下端側と上端側には開口が設けられ、
試料液に浸漬された際、遮蔽材の上端側が試料液の液面より上側となるように構成されたことを特徴とする酸化還元電流測定用電極ユニット。
A support tip having a first surface and a second surface opposite the first surface;
A detection electrode provided on the first surface of the support chip and immersed in the sample liquid;
A counter electrode attached to the support chip and immersed in the sample solution;
It is arranged so as to surround the detection electrode, and includes a shielding material that suppresses the flow of the sample liquid in contact with the detection electrode.
The shielding material is a cylindrical body having a peripheral surface extending from the first surface to the second surface of the support chip, and an opening is provided on the lower end side and the upper end side,
An electrode unit for measuring oxidation-reduction current, wherein the upper end side of the shielding material is located above the liquid surface of the sample liquid when immersed in the sample liquid.
遮蔽材によって囲まれる領域の水平面における断面積が、同じ面積の円の半径として表した際、1.5〜6mmである請求項1または2に記載の酸化還元電流測定用電極ユニット。   The electrode unit for measuring redox current according to claim 1 or 2, wherein a cross-sectional area in a horizontal plane of a region surrounded by the shielding material is 1.5 to 6 mm when expressed as a radius of a circle having the same area. 遮蔽材によって囲まれる領域の下端と検知極の距離が、1.5〜6mmである請求項1〜3のいずれか一項に記載の酸化還元電流測定用電極ユニット。   The electrode unit for redox current measurement according to any one of claims 1 to 3, wherein the distance between the lower end of the region surrounded by the shielding material and the detection electrode is 1.5 to 6 mm. 請求項1〜4のいずれか一項に記載の酸化還元電流測定用電極ユニットと、
前記検知極と対極との間に流れる酸化還元電流を測定する電流計とを具備することを特徴とする酸化還元電流測定装置。
The electrode unit for redox current measurement according to any one of claims 1 to 4,
An oxidation-reduction current measuring apparatus comprising: an ammeter that measures an oxidation-reduction current flowing between the detection electrode and the counter electrode.
さらに、前記検知極と対極との間に、印加電圧を与える加電圧機構を具備する請求項5に記載の酸化還元電流測定装置。   The oxidation-reduction current measuring apparatus according to claim 5, further comprising an applied voltage mechanism that applies an applied voltage between the detection electrode and the counter electrode.
JP2013165531A 2013-08-08 2013-08-08 Electrode unit for redox current measurement and redox current measuring device Active JP6098427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013165531A JP6098427B2 (en) 2013-08-08 2013-08-08 Electrode unit for redox current measurement and redox current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165531A JP6098427B2 (en) 2013-08-08 2013-08-08 Electrode unit for redox current measurement and redox current measuring device

Publications (2)

Publication Number Publication Date
JP2015034740A true JP2015034740A (en) 2015-02-19
JP6098427B2 JP6098427B2 (en) 2017-03-22

Family

ID=52543361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165531A Active JP6098427B2 (en) 2013-08-08 2013-08-08 Electrode unit for redox current measurement and redox current measuring device

Country Status (1)

Country Link
JP (1) JP6098427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034408A (en) * 2018-08-29 2020-03-05 株式会社 堀場アドバンスドテクノ Electrochemical measurement device and method for cleaning the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126782A (en) * 1991-11-05 1993-05-21 Agency Of Ind Science & Technol Electrode for measurement and manufacturing thereof
JP2003302375A (en) * 2002-04-08 2003-10-24 Ebara Corp Electrode system and method for evaluating electrochemical state of solution by using the same
JP2006010413A (en) * 2004-06-23 2006-01-12 Tanita Corp Polarographic concentration meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126782A (en) * 1991-11-05 1993-05-21 Agency Of Ind Science & Technol Electrode for measurement and manufacturing thereof
JP2003302375A (en) * 2002-04-08 2003-10-24 Ebara Corp Electrode system and method for evaluating electrochemical state of solution by using the same
JP2006010413A (en) * 2004-06-23 2006-01-12 Tanita Corp Polarographic concentration meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034408A (en) * 2018-08-29 2020-03-05 株式会社 堀場アドバンスドテクノ Electrochemical measurement device and method for cleaning the same
JP7227714B2 (en) 2018-08-29 2023-02-22 株式会社 堀場アドバンスドテクノ Electrochemical measurement device and its cleaning method

Also Published As

Publication number Publication date
JP6098427B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6304677B2 (en) Residual chlorine measuring device and residual chlorine measuring method
US9664636B2 (en) Chlorine detection with pulsed amperometric detection
US20130203171A1 (en) Analytical method and titration device
Yosypchuk et al. Preparation and properties of reference electrodes based on silver paste amalgam
JP5215390B2 (en) Electrochemical detection of silica species
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
JP2018124130A (en) Device and method for measuring residual chlorine
Selva et al. Non‐Invasive Salivary Electrochemical Quantification of Paraquat Poisoning Using Boron Doped Diamond Electrode
JP6098427B2 (en) Electrode unit for redox current measurement and redox current measuring device
Noyhouzer et al. A new electrochemical flow cell for the remote sensing of heavy metals
Kong et al. Sensitive determination of bromhexine hydrochloride based on its quenching effect on luminol/H2O2 electrochemiluminescence system
Novotný et al. Potentiometric determination of silver nanoparticles using silver amalgam electrodes
De Araujo et al. Amperometric detection of ranitidine using glassy carbon modified with ruthenium oxide hexacyanoferrate adapted in a flow injection system
Alarfaj et al. Flow‐injection chemiluminescence and electrogenerated chemiluminescence determination of escitalopram oxalate in tablet form
Brett et al. Square wave adsorptive stripping voltammetry of nickel and cobalt at wall‐jet electrodes in continuous flow
JP4869849B2 (en) Solution analysis method
JP5935037B2 (en) Polarographic residual chlorine sensor
JP2005345222A (en) Residual chlorine meter
JP6336757B2 (en) measuring device
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
CN108445056A (en) Electrolysis unit
Zhai et al. The data of an all-solid-state acupuncture needle based potentiometric microelectrode for in vivo monitoring of calcium ions in rat cerebrospinal fluid
JP2008241373A (en) Coulometric measuring method, device for coulometric measuring cell and coulometric type measuring cell set
JP7177341B2 (en) Reagentless residual chlorine measuring device and reagentless residual chlorine measuring method
JP4221504B2 (en) Chemical substance measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6098427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250