JP2015033914A - Hybrid system, hybrid vehicle and power transmission method for hybrid system - Google Patents

Hybrid system, hybrid vehicle and power transmission method for hybrid system Download PDF

Info

Publication number
JP2015033914A
JP2015033914A JP2013165718A JP2013165718A JP2015033914A JP 2015033914 A JP2015033914 A JP 2015033914A JP 2013165718 A JP2013165718 A JP 2013165718A JP 2013165718 A JP2013165718 A JP 2013165718A JP 2015033914 A JP2015033914 A JP 2015033914A
Authority
JP
Japan
Prior art keywords
motor generator
crankshaft
hybrid system
internal combustion
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013165718A
Other languages
Japanese (ja)
Inventor
憲仁 岩田
Norihito Iwata
憲仁 岩田
充宏 阿曽
Mitsuhiro Aso
充宏 阿曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013165718A priority Critical patent/JP2015033914A/en
Priority to CN201480040056.8A priority patent/CN105378266A/en
Priority to PCT/JP2014/070640 priority patent/WO2015020059A1/en
Publication of JP2015033914A publication Critical patent/JP2015033914A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0888DC/DC converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid system that enables shortening of time to traveling start by reducing generation torque of a starter required at start of an internal combustion engine and at restart from idling stop, a hybrid vehicle and a power transmission method for the hybrid system.SOLUTION: In a hybrid system including an internal combustion engine 10 and a motor generator 21, the motor generator 21 is directly or indirectly connected to a crank shaft 15 of the internal combustion engine 10. During operation to stop the internal combustion engine 10, a hybrid control device 41 for controlling the motor generator 21 performs control by rotating the crank shaft 15 by driving force of the motor generator 21 so as to form a crank angle that causes smaller friction of the rotation of the crank shaft 15 compared to a crank angle when the crank shaft 15 is stopped.

Description

本発明は、ハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法に関し、より詳細には、内燃機関の始動時及びアイドリングストップの再始動時に必要とされるスタータの発生トルクを小さくできる、ハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法に関する。   The present invention relates to a hybrid system, a hybrid vehicle, and a power transmission method of the hybrid system, and more particularly, a hybrid system capable of reducing a generated torque of a starter required when starting an internal combustion engine and restarting an idling stop. The present invention relates to a hybrid vehicle and a power transmission method for a hybrid system.

内燃機関と電動発電機の両方を搭載するハイブリッド車両(HEV)では、内燃機関の出力により電動発電機を駆動して発電して、この発電した電力をバッテリに充電したり、このバッテリに充電した電力で電動発電機を駆動して内燃機関の出力をアシストしたりしている。この内燃機関で電動発電機を駆動する場合には、内燃機関の駆動力を電動発電機に伝達する必要がある。   In a hybrid vehicle (HEV) equipped with both an internal combustion engine and a motor generator, the motor generator is driven by the output of the internal combustion engine to generate power, and the generated power is charged into a battery or charged into this battery. The motor generator is driven by electric power to assist the output of the internal combustion engine. When driving a motor generator with this internal combustion engine, it is necessary to transmit the driving force of the internal combustion engine to the motor generator.

この動力伝達に関しては、いくつかの方法が提案されており、例えば、エンジン(内燃機関)と変速機との間に電動モータ(電動発電機)を設けて、この電動モータをエンジンの駆動軸(クランク軸)に連結したハイブリッド車両が提案されている(例えば、特許文献1参照)。   For this power transmission, several methods have been proposed. For example, an electric motor (motor generator) is provided between the engine (internal combustion engine) and the transmission, and the electric motor is connected to the engine drive shaft ( A hybrid vehicle connected to a crankshaft has been proposed (see, for example, Patent Document 1).

一方で、内燃機関の始動開始時には、スタータを用いてクランク軸を回転駆動して、気筒(シリンダ)内のピストンを燃料噴射可能な位置及び着火可能な回転速度まで加速・移動させている。   On the other hand, when starting the internal combustion engine, the crankshaft is rotationally driven using a starter, and the piston in the cylinder (cylinder) is accelerated and moved to a position where fuel can be injected and a rotational speed where ignition is possible.

しかしながら、この始動開始前のエンジンが停止する時は、燃料噴射を停止した後、クランク軸は慣性でピストンの移動を行いながら回転しているが内燃機関のフリクションにより停止する。この停止は、通常は、フリクションが最大となるクランク角の位置で停止する。   However, when the engine before starting is stopped, after stopping the fuel injection, the crankshaft rotates while moving the piston by inertia but stops due to the friction of the internal combustion engine. This stop is normally stopped at a crank angle position where the friction is maximum.

そのため、この停止後の始動時にはフリクションが最大のクランク角の位置にある状態からのクランキングとなり、始動時に必要とされるスタータの発生トルクが大きくなってしまい、始動時におけるエネルギーロスが大きいという問題がある。   Therefore, at the time of starting after this stop, the cranking starts from the state where the friction is at the maximum crank angle position, the torque generated by the starter required at the time of starting becomes large, and the energy loss at the time of starting is large. There is.

特開2013−75540号公報JP 2013-75540 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関の始動時及びアイドリングストップの再始動時に必要とされるスタータの発生トルクを小さくできる、ハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to provide a hybrid system, a hybrid vehicle, and a hybrid system, a hybrid vehicle, which can reduce the generated torque of a starter that is required when starting an internal combustion engine and restarting an idling stop. And a power transmission method for a hybrid system.

上記の目的を達成するための本発明のハイブリッドシステムは、内燃機関と電動発電機を有するハイブリッドシステムにおいて、前記内燃機関のクランク軸に直接又は間接に前記電動発電機を連結すると共に、前記電動発電機を制御するハイブリッド用制御装置が、前記内燃機関の停止操作時に、前記電動発電機の駆動力により前記クランク軸を回転して、前記クランク軸の停止したときのクランク角を前記クランク軸の回転のフリクションが最小になる位置又はその近傍の位置にする制御を行うように構成される。   In order to achieve the above object, a hybrid system of the present invention is a hybrid system having an internal combustion engine and a motor generator, wherein the motor generator is connected directly or indirectly to a crankshaft of the internal combustion engine, and the motor generator The hybrid control device that controls the engine rotates the crankshaft by the driving force of the motor generator during the stop operation of the internal combustion engine, and determines the crank angle when the crankshaft is stopped. It is configured to perform control so that the position where the friction is minimized or a position in the vicinity thereof.

この構成によれば、内燃機関の始動時及びアイドリングストップの再始動時に必要とされるスタータの発生トルクを小さくして、走行開始までの時間を短縮できる。従って、このハイブリッドシステムを搭載したハイブリッド車両の走行特性を改善できる。   According to this configuration, it is possible to reduce the generated torque of the starter required when starting the internal combustion engine and restarting the idling stop, thereby shortening the time until the start of traveling. Therefore, the traveling characteristics of a hybrid vehicle equipped with this hybrid system can be improved.

なお、この最小位置又はその近傍の位置とは、回転のフリクションが最小及び最小に近い範囲となるクランク角の位置で有り、例えば、燃料無噴射時の最大フリクションと最小フリクションのフリクション幅の例えば20%程度、好ましくは10%程度最小フリクションより大きい目標フリクションよりもフリクションが小さくなるような範囲である。   The minimum position or a position near the minimum position is a crank angle position where the rotational friction is in a range close to the minimum and minimum. For example, the maximum friction when no fuel is injected and the friction width of the minimum friction are, for example, 20 It is a range in which the friction becomes smaller than the target friction larger than the minimum friction by about%, preferably about 10%.

そして、上記の目的を達成するためのハイブリッド車両は、上記のハイブリッドシステムを搭載したことを特徴とすると、上記のハイブリッドシステムと同様の効果を奏することができる。   And if the hybrid vehicle for achieving said objective mounts said hybrid system, it can have an effect similar to said hybrid system.

そして、上記の目的を達成するためのハイブリッドシステムの動力伝達方法は、内燃機関と電動発電機を有するハイブリッドシステムの動力伝達方法において、前記内燃機関の停止操作時に、前記内燃機関のクランク軸に直接又は間接に連結された前記電動発電機の駆動力により前記クランク軸を回転して、前記クランク軸の停止したときのクランク角を前記クランク軸の回転のフリクションが最小になる位置又はその近傍の位置にすることを特徴とする方法である。   A hybrid system power transmission method for achieving the above-described object is a hybrid system power transmission method including an internal combustion engine and a motor generator, which is directly applied to a crankshaft of the internal combustion engine when the internal combustion engine is stopped. Alternatively, the crankshaft is rotated by the driving force of the motor generator that is indirectly connected, and the crank angle when the crankshaft is stopped is the position where the friction of rotation of the crankshaft is minimized or a position near it. It is the method characterized by making.

この方法によれば、内燃機関の始動時及びアイドリングストップの再始動時に必要とされるスタータの発生トルクを小さくして、走行開始までの時間を短縮できる。従って、このハイブリッドシステムを搭載したハイブリッド車両の走行特性を改善できる。   According to this method, it is possible to reduce the torque generated by the starter required at the time of starting the internal combustion engine and restarting the idling stop, thereby shortening the time until the start of traveling. Therefore, the traveling characteristics of a hybrid vehicle equipped with this hybrid system can be improved.

本発明のハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法によれば、内燃機関の始動時及びアイドリングストップの再始動時に必要とされるスタータの発生トルクを小さくして、走行開始までの時間を短縮でき、ハイブリッド車両の走行特性を改善できる。   According to the hybrid system, the hybrid vehicle, and the power transmission method of the hybrid system of the present invention, it is possible to reduce the starter generation torque required when starting the internal combustion engine and restarting the idling stop, And the running characteristics of the hybrid vehicle can be improved.

本発明の実施の形態のハイブリッドシステム及びハイブリッド車両の構成を示す図である。It is a figure showing composition of a hybrid system and a hybrid vehicle of an embodiment of the invention. クランク軸用断接装置を備えたハイブリッドシステム及びハイブリッド車両の構成を示す図である。It is a figure which shows the structure of the hybrid system provided with the connection / disconnection apparatus for crankshafts, and a hybrid vehicle.

以下、本発明に係る実施の形態のハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法について図面を参照しながら説明する。   Hereinafter, a hybrid system, a hybrid vehicle, and a power transmission method of the hybrid system according to embodiments of the present invention will be described with reference to the drawings.

図1の実施例の形態のハイブリッドシステム2は、エンジン(内燃機関)10と電動発電機(M/G)21を有するハイブリッドシステムである。なお、ここでは、このハイブリッドシステム2はハイブリッド車両(HEV:以下車両とする)1に搭載されるものとして説明するが、必ずしも、車両に搭載されるものに限定されない。   A hybrid system 2 in the form of the embodiment of FIG. 1 is a hybrid system having an engine (internal combustion engine) 10 and a motor generator (M / G) 21. Here, the hybrid system 2 is described as being mounted on a hybrid vehicle (HEV: hereinafter referred to as a vehicle) 1, but is not necessarily limited to that mounted on the vehicle.

図1に示すように、この実施の形態のハイブリッドシステム2のエンジン10は、エンジン本体(ENG)11と排気通路12とターボ過給器13と、排気通路12に設けられた排気ガス浄化装置(後処理装置)14を備えている。この排気ガス浄化装置14により、エンジン10から排出される排気ガス中のNOx(窒素酸化物)、PM(微粒子状物質)等を浄化処理している。この浄化処理された排気ガスは、マフラー(図示しない)等を経由して大気中に放出される。   As shown in FIG. 1, the engine 10 of the hybrid system 2 of this embodiment includes an engine body (ENG) 11, an exhaust passage 12, a turbocharger 13, and an exhaust gas purification device ( A post-processing device) 14. The exhaust gas purification device 14 purifies NOx (nitrogen oxide), PM (particulate matter), etc. in the exhaust gas discharged from the engine 10. The purified exhaust gas is released into the atmosphere via a muffler (not shown) or the like.

このエンジン10のクランク軸15に直接又は間接に電動発電機21を連結して構成する。図1の構成では、エンジン10のクランク軸15に間接に電動発電機21を連結している。つまり、エンジン10のクランク軸15に直結してCVT(無段変速機構:レシオ可変機構)16を設け、このCVT16に電動発電機21を連結する。つまり、エンジン10のクランク軸15にCVT16の第1プーリー(第1動力伝達部)16aを設けると共に、電動発電機21にCVT16の第2プーリー(第2動力伝達部)16bを設けて構成し、第1プーリー16aと第2プーリー16bを介してクランク軸15と電動発電機21との間の動力伝達を行うように構成する。この第1プーリー16aと第2プーリー16bとの間には無端状のベルト又はチェーン(動力伝達部材)16cが掛けられており、クランク軸15から第1プーリー16aと動力伝達部材16cと第2プーリー16bを経由して電動発電機21に、また逆に、電動発電機21から第2プーリー16bと動力伝達部材16cと第1プーリー16aを経由してクランク軸15に、動力が伝達される。   A motor generator 21 is connected to the crankshaft 15 of the engine 10 directly or indirectly. In the configuration of FIG. 1, a motor generator 21 is indirectly connected to the crankshaft 15 of the engine 10. That is, a CVT (continuously variable transmission mechanism: ratio variable mechanism) 16 is provided directly connected to the crankshaft 15 of the engine 10, and the motor generator 21 is connected to the CVT 16. That is, the first pulley (first power transmission unit) 16a of the CVT 16 is provided on the crankshaft 15 of the engine 10, and the second pulley (second power transmission unit) 16b of the CVT 16 is provided on the motor generator 21. The power transmission between the crankshaft 15 and the motor generator 21 is performed via the first pulley 16a and the second pulley 16b. An endless belt or chain (power transmission member) 16c is hung between the first pulley 16a and the second pulley 16b. From the crankshaft 15, the first pulley 16a, the power transmission member 16c, and the second pulley. Power is transmitted to the motor generator 21 via 16b, and conversely to the crankshaft 15 from the motor generator 21 via the second pulley 16b, the power transmission member 16c and the first pulley 16a.

このCVT16では、2個一組の第1プーリー16aと第2プーリー16bに動力伝達部材16cをかけ、個々のプーリー16a、16bの幅を変えることにより、プーリー16a、16bと動力伝達部材16cの接する位置を変えるようにしており、幅が拡げられて動力伝達部材16cの接する位置が内側に(軸に近く)なれば直径が小さくなり、逆に幅が狭められて動力伝達部材16cの接する位置が外側なれば(外周側に移動すれば)直径が大きくなるように構成されている。そして、電子制御による油圧又は電動機構(図示しない)で2個のプーリー16a、16bの幅の拡縮が互いに逆になるように変化させる制御を行うことにより、動力伝達部材16cをたるませることなく、変速を連続的に行うことができる。   In this CVT 16, the power transmission member 16c is applied to a pair of the first pulley 16a and the second pulley 16b, and the widths of the individual pulleys 16a and 16b are changed to contact the pulleys 16a and 16b with the power transmission member 16c. The position is changed, and if the width is expanded and the position where the power transmission member 16c contacts is inward (closer to the shaft), the diameter becomes smaller. Conversely, the position where the power transmission member 16c contacts with the power transmission member 16c is decreased. The diameter is increased if the outer side is moved (if the outer side is moved). And by performing control to change the expansion and contraction of the widths of the two pulleys 16a and 16b to be opposite to each other by a hydraulic or electric mechanism (not shown) by electronic control, the power transmission member 16c is not slackened. Shifting can be performed continuously.

このCVT16を、エンジン10において、クランク軸15の一方に変速機31が接続されており、クランク軸15の他方にCVT16が接続されているように構成すると、CVT16が、エンジン10に関して、変速機31とは反対側のクランク軸15に設けられていることになるので、これにより、エンジン10と変速機31の間にCVT16を設ける必要がなくなる。そのため、ハイブリッドシステムを考慮していない、既存のエンジンと変速機との組み合わせ(パワートレイン)に対しても、電動発電機を容易に設けることができ、ハイブリッドシステムを適用できるパワートレインの種類を拡大することが容易にできる。   When the CVT 16 is configured such that the transmission 31 is connected to one of the crankshafts 15 and the CVT 16 is connected to the other of the crankshafts 15 in the engine 10, the CVT 16 is connected to the transmission 31 with respect to the engine 10. Therefore, it is not necessary to provide the CVT 16 between the engine 10 and the transmission 31. For this reason, motor generators can be easily installed even for combinations of existing engines and transmissions (powertrains) that do not consider hybrid systems, and the types of powertrains to which hybrid systems can be applied are expanded. Can be easily done.

なお、この場合、従来技術では、エンジンに関して、変速機とは反対側には、クランク軸から駆動力を得ている冷却ファンや冷却水ポンプや潤滑油ポンプ等の補機が配置されているので、これらの補機は電動化して、クランク軸から直接駆動力を得ることなく、電動発電機で発電した電力で駆動されるようにすることが好ましい。これにより、補機類のレイアウトに関して自由性が増し、更には状況に応じて補機による負荷損失のないエンジン出力を駆動力に活用できるというメリットが生じる。   In this case, in the prior art, on the opposite side of the transmission with respect to the engine, an auxiliary machine such as a cooling fan, a cooling water pump, or a lubricating oil pump that obtains driving force from the crankshaft is arranged. These auxiliary machines are preferably electrified so as to be driven by the electric power generated by the motor generator without obtaining the driving force directly from the crankshaft. This increases the freedom with respect to the layout of the auxiliary machinery, and further has the advantage that the engine output without load loss due to the auxiliary machinery can be used as the driving force depending on the situation.

そして、電力システム20の一部である電動発電機21は、発電機として、エンジン10の駆動力を受けて発電をしたり、又は、車両1のブレーキ力等の回生力発生による回生発電をしたりすると共に、モータとして駆動して、その駆動力をエンジン10のクランク軸15に伝達して、エンジン10の駆動力(出力:トルク)をアシストしたりする。   The motor generator 21 that is a part of the power system 20 generates power by receiving the driving force of the engine 10 as a generator, or generates regenerative power by generating regenerative power such as the braking force of the vehicle 1. And driving as a motor, transmitting the driving force to the crankshaft 15 of the engine 10 to assist the driving force (output: torque) of the engine 10.

なお、発電して得た電力は、配線22を経由してインバータ(INV)23で変換して第1バッテリ(充電器:B1)24Aに充電される。また、電動発電機21を駆動するときは、第1バッテリ24Aに充電された電力をインバータ23で変換して電動発電機21に供給する。   The electric power generated by the power generation is converted by the inverter (INV) 23 via the wiring 22 and charged in the first battery (charger: B1) 24A. When driving the motor generator 21, the electric power charged in the first battery 24 </ b> A is converted by the inverter 23 and supplied to the motor generator 21.

図1の構成では、更に、DC−DCコンバータ(CON)25と第2バッテリ(B2)24Bを第1バッテリ24Aに直列に設けて、第1バッテリ24Aの、例えば、一般的な12Vや24V以上の高い電圧の電力を、DC−DCコンバータ25で、例えば、12Vに電圧降下させて、第2バッテリ24Bに充電して、この第2バッテリ24Bから補機の冷却ファン26A、冷却水ポンプ26B、潤滑油ポンプ26C等に電力を供給するように構成している。   In the configuration of FIG. 1, a DC-DC converter (CON) 25 and a second battery (B2) 24B are further provided in series with the first battery 24A. In the DC-DC converter 25, for example, the voltage is dropped to 12 V and charged to the second battery 24B, and the auxiliary battery cooling fan 26A, cooling water pump 26B, Electric power is supplied to the lubricating oil pump 26C and the like.

このハイブリッドシステム2を搭載したハイブリッド車両(以下車両)1においては、エンジン10の動力は、動力伝達システム30の変速機(トランスミッション)31に伝達され、さらに、変速機31より推進軸(プロペラシャフト)32を介して作動装置(デファレンシャルギア)33に伝達され、作動装置33より駆動軸(ドライブシャフト)34を介して車輪35に伝達される。これにより、エンジン10の動力が車輪35に伝達され、車両1が走行する。   In a hybrid vehicle (hereinafter referred to as a vehicle) 1 equipped with the hybrid system 2, the power of the engine 10 is transmitted to a transmission 31 of the power transmission system 30, and further, a propulsion shaft (propeller shaft) is transmitted from the transmission 31. It is transmitted to the operating device (differential gear) 33 through 32, and transmitted to the wheel 35 from the operating device 33 through the drive shaft (drive shaft) 34. Thereby, the motive power of the engine 10 is transmitted to the wheel 35 and the vehicle 1 travels.

一方、電動発電機21の動力に関しては、第1バッテリ24Aに充電された電力がインバータ23を介して電動発電機21に供給され、この電力により電動発電機21が駆動され動力を発生する。この電動発電機21の動力は、CVT16を介してクランク軸15に伝達されて、エンジン10の動力伝達経路を伝達して、車輪35に伝達される。   On the other hand, regarding the power of the motor generator 21, the power charged in the first battery 24A is supplied to the motor generator 21 via the inverter 23, and the motor generator 21 is driven by this power to generate power. The power of the motor generator 21 is transmitted to the crankshaft 15 via the CVT 16, transmitted through the power transmission path of the engine 10, and transmitted to the wheels 35.

これにより、電動発電機21の動力がエンジン10の動力と共に車輪35に伝達され、車両1が走行する。なお、回生時には、逆の経路で、車輪35の回生力、又はエンジン10の回生力が電動発電機21に伝達されて、電動発電機21で発電が可能となる。   Thereby, the power of the motor generator 21 is transmitted to the wheels 35 together with the power of the engine 10, and the vehicle 1 travels. During regeneration, the regenerative power of the wheels 35 or the regenerative power of the engine 10 is transmitted to the motor generator 21 through the reverse path, and the motor generator 21 can generate power.

また、ハイブリッドシステム用制御装置41が設けられ、エンジン10の回転数Neや負荷Q等の運転状態や電動発電機21の回転数Na等の運転状態や第1バッテリ24A,第2バッテリ24Bの充電量(SOC)の状態をモニターしながら、CVT16、電動発電機21、インバータ23、DC−DCコンバータ25等を制御する。このハイブリッドシステム用制御装置41は、通常は、エンジン10や車両1を制御する全体制御装置40に組み込まれて構成される。この全体制御装置40は、エンジン10の制御では、シリンダ内燃焼やターボ過給器13や排気ガス浄化装置14や補機の冷却ファン26A、冷却水ポンプ26B、潤滑油ポンプ26Cなどを制御している。   Also, a hybrid system control device 41 is provided, and the operating state such as the rotational speed Ne and the load Q of the engine 10, the operating state such as the rotational speed Na of the motor generator 21, and the charging of the first battery 24A and the second battery 24B. While monitoring the quantity (SOC) state, the CVT 16, the motor generator 21, the inverter 23, the DC-DC converter 25, and the like are controlled. The hybrid system control device 41 is normally configured to be incorporated in an overall control device 40 that controls the engine 10 and the vehicle 1. The overall control device 40 controls the combustion in the cylinder, the turbocharger 13, the exhaust gas purification device 14, the cooling fan 26A of the auxiliary machine, the cooling water pump 26B, the lubricating oil pump 26C and the like in the control of the engine 10. Yes.

また、図2に示すハイブリッドシステム2A、及びハイブリッド車両1Aのように、クランク軸15と電動発電機21との間にクランク軸用断接装置17を設けて構成すると、これにより、電動発電機21をモータとしても発電機としても使用しないときには、クランク軸用断接装置17を断状態にして、電動発電機21側のフリクションの影響なしにエンジン10を運転することができるのでより好ましい。特に、クランク軸15と第1プーリー16aとの間にクランク軸用断接装置17を設けて構成すると、電動発電機21側に加えてCVT16側のフリクションの影響なしにエンジン10を運転することができる。   Further, when the crankshaft connecting / disconnecting device 17 is provided between the crankshaft 15 and the motor generator 21 as in the hybrid system 2A and the hybrid vehicle 1A shown in FIG. Is not used as a motor or a generator, it is more preferable because the crankshaft connecting / disconnecting device 17 can be disconnected and the engine 10 can be operated without the influence of friction on the motor generator 21 side. In particular, if the crankshaft connecting / disconnecting device 17 is provided between the crankshaft 15 and the first pulley 16a, the engine 10 can be operated without the influence of friction on the CVT 16 side in addition to the motor generator 21 side. it can.

そして、本発明においては、電動発電機21を制御するハイブリッド用制御装置41は、エンジン10の停止操作時に、電動発電機21の駆動力によりクランク軸15を回転して、クランク軸15のクランク角θがクランク軸15の回転のフリクションTfが最小の位置θmin又はその近傍の位置(θ1〜θ2)になるように制御するように構成される。   In the present invention, the hybrid control device 41 that controls the motor generator 21 rotates the crankshaft 15 by the driving force of the motor generator 21 when the engine 10 is stopped. It is configured such that θ is controlled so that the friction Tf of rotation of the crankshaft 15 is the minimum position θmin or a position in the vicinity thereof (θ1 to θ2).

これにより、エンジン10が停止した時のクランク軸15が、フリクションTfが最大となるクランク角θmaxで停止して、次回の始動時又はアイドリングストップ等の再度始動時に必要なスタータ(図示しない)の発生トルクTsが大きくなることを回避して、これにより、エンジン10の始動時及びアイドリングストップ等の再始動時に必要とされるスタータの発生トルクTsを小さくして、走行開始までの時間を短縮する。   As a result, the crankshaft 15 when the engine 10 is stopped is stopped at the crank angle θmax at which the friction Tf is maximized, and a starter (not shown) necessary for the next start or the start again such as an idling stop is generated. By avoiding the torque Ts from increasing, the torque Ts generated by the starter required at the time of starting the engine 10 and at the time of restarting, such as idling stop, is reduced, thereby shortening the time until the start of traveling.

なお、この最小位置θmin又はその近傍の位置(θ1〜θ2)とは、クランク軸15の回転のフリクションTfが最小及び最小に近い範囲となるクランク角θの位置で有り、例えば、燃料無噴射時の最大フリクションTfmaxと最小フリクションTfminのフリクション幅ΔTf(=Tfmax−Tfmin)の例えば20%程度、好ましくは10%程度、最小フリクションTfminより大きい目標フリクションTfo(=Tfmin+0.2×ΔTf)よりもフリクションTfが小さくなるような目標範囲(θ1〜θmin〜θ2)である。   The minimum position θmin or a position in the vicinity thereof (θ1 to θ2) is a position of the crank angle θ in which the rotation friction Tf of the crankshaft 15 is within the minimum and minimum range, for example, when no fuel is injected. The friction width ΔTf (= Tfmax−Tfmin) of the maximum friction Tfmax and the minimum friction Tfmin is, for example, about 20%, preferably about 10%, and the friction Tf is larger than the target friction Tfo (= Tfmin + 0.2 × ΔTf) larger than the minimum friction Tfmin. Is the target range (θ1 to θmin to θ2) such that becomes smaller.

この制御は、通常エンジン10の制御のために備えられているクランク角センサ(図示しない)や別に備えるエンジン角度検出センサ(図示しない)により、エンジン10の停止直前のクランク角θを検出して、このクランク角θが予め実験等で設定した目標範囲(θ1〜θ2)内になるように電動発電機21の回転を制御する。   This control is performed by detecting the crank angle θ immediately before the stop of the engine 10 by a crank angle sensor (not shown) normally provided for controlling the engine 10 or an engine angle detection sensor (not shown) provided separately. The rotation of the motor generator 21 is controlled so that the crank angle θ is within a target range (θ1 to θ2) set in advance through experiments or the like.

このとき、CVT16を備えている場合には、第1プーリー16aの実働直径Daに対する第2プーリー16bの実働直径Dbの直径比Rd(=Db/Da)を変更することで、同じ電動発電機21の駆動力Tmと回転角度θmであっても、クランク軸15に伝達される駆動力Tcとクランク角(回転角度)θを変化させることができるので、CVT16の直径比Rdをこのクランク角θの停止位置の制御に最適な状態にしてから、クランク軸15の停止制御を行うことが好ましい。   At this time, when the CVT 16 is provided, the same motor generator 21 is obtained by changing the diameter ratio Rd (= Db / Da) of the working diameter Db of the second pulley 16b to the working diameter Da of the first pulley 16a. The driving force Tc and the crank angle (rotation angle) θ transmitted to the crankshaft 15 can be changed even when the driving force Tm and the rotation angle θm are equal to each other. It is preferable to perform stop control of the crankshaft 15 after achieving an optimal state for control of the stop position.

そして、この実施の形態におけるハイブリッドシステムの動力伝達方法は、エンジン10と電動発電機21を有するハイブリッドシステム2の動力伝達方法であり、エンジン10の停止操作時に、エンジン10のクランク軸15に直接又は間接に連結された電動発電機21の駆動力によりクランク軸15を回転して、クランク軸15のクランク角θがクランク軸15の回転のフリクションTfが最小の位置θmin又はその近傍の位置(θ1〜θ2)にすることを特徴とする方法である。   The power transmission method of the hybrid system in this embodiment is a power transmission method of the hybrid system 2 having the engine 10 and the motor generator 21, and directly or directly to the crankshaft 15 of the engine 10 when the engine 10 is stopped. The crankshaft 15 is rotated by the driving force of the indirectly connected motor generator 21, and the crank angle θ of the crankshaft 15 is a position θmin where the frictional Tf of the rotation of the crankshaft 15 is minimum or a position in the vicinity thereof (θ1 to θ1). θ2).

本発明の実施の形態のハイブリッドシステム2、2A、ハイブリッド車両1、1A及びハイブリッドシステムの動力伝達方法によれば、エンジン10の始動時及びアイドリングストップの再始動時に必要とされるスタータの発生トルクTsを小さくして、走行開始までの時間を短縮でき、ハイブリッド車両1、1Aの走行特性を改善できる。   According to the hybrid system 2, 2A, hybrid vehicle 1, 1A, and hybrid system power transmission method according to the embodiment of the present invention, the starter generation torque Ts required when the engine 10 is started and when the idling stop is restarted. Can be reduced to shorten the time until the start of traveling, and the traveling characteristics of the hybrid vehicles 1 and 1A can be improved.

1、1A 車両(ハイブリッド車両:HEV)
2、2A ハイブリッドシステム
10 エンジン(内燃機関)
11 エンジン本体
12 排気通路
13 ターボ過給器
14 排気ガス浄化装置
15 クランク軸
16 CVT(無段変速機構)
17 クランク軸用断接装置
20 電力システム
21 電動発電機(M/G)
22 配線
23 インバータ(INV)
24A 第1バッテリ(B1)
24B 第2バッテリ(B2)
25 DC−DCコンバータ(CON)
26A 冷却ファン(補機)
26B 冷却水ポンプ(補機)
26C 潤滑油ポンプ(補機)
30 動力伝達システム
31 変速機(トランスミッション)
32 推進軸(プロペラシャフト)
33 差動装置(デファレンシャルギア)
34 駆動軸(ドライブシャフト)
35 車輪
40 全体制御装置
41 ハイブリッドシステム用制御装置
Da 第1プーリーの実働直径
Db 第2プーリーの実働直径
Rd CVTの直径比
Tc クランク軸に伝達される駆動力
Tf クランク軸の回転のフリクション
Tfo 目標フリクション
Tfmax 最大フリクション
Tfmin 最小フリクション
Tm 電動発電機の駆動力(駆動トルク)
Ts スタータの発生トルク
θ クランク軸のクランク角
θm 電動発電機の回転角度
θmax クランク軸の回転のフリクションが最大の位置
θmin クランク軸の回転のフリクションが最小の位置
θ1〜θ2 最小位置の近傍の位置
ΔTf フリクション幅
1, 1A vehicle (hybrid vehicle: HEV)
2, 2A Hybrid system 10 Engine (Internal combustion engine)
DESCRIPTION OF SYMBOLS 11 Engine main body 12 Exhaust passage 13 Turbo supercharger 14 Exhaust gas purification apparatus 15 Crankshaft 16 CVT (continuously variable transmission mechanism)
17 Connecting / disconnecting device 20 for crankshaft Electric power system 21 Motor generator (M / G)
22 Wiring 23 Inverter (INV)
24A First battery (B1)
24B Second battery (B2)
25 DC-DC converter (CON)
26A Cooling fan (auxiliary machine)
26B Cooling water pump (auxiliary machine)
26C Lubricating oil pump (auxiliary machine)
30 Power transmission system 31 Transmission
32 Propeller shaft
33 Differential (differential gear)
34 Drive shaft
35 Wheel 40 Overall control device 41 Hybrid system control device Da Actual working diameter Db of the first pulley Rd Actual working diameter Rd of the second pulley Rd CVT diameter ratio Tc Driving force transmitted to the crankshaft Tf Crankshaft rotation friction Tfo Target friction Tfmax Maximum friction Tfmin Minimum friction Tm Motor generator drive force (drive torque)
Ts Generated torque of starter θ Crank angle of crankshaft θm Motor generator rotation angle θmax Position of maximum crankshaft friction θmin Position of minimum crankshaft rotation θ1-θ2 Position near minimum position ΔTf Friction width

Claims (3)

内燃機関と電動発電機を有するハイブリッドシステムにおいて、前記内燃機関のクランク軸に直接又は間接に前記電動発電機を連結すると共に、
前記電動発電機を制御するハイブリッド用制御装置が、前記内燃機関の停止操作時に、前記電動発電機の駆動力により前記クランク軸を回転して、前記クランク軸の停止したときのクランク角よりも前記クランク軸の回転のフリクションが小さいクランク角度にする制御を行うように構成されることを特徴とするハイブリッドシステム。
In a hybrid system having an internal combustion engine and a motor generator, the motor generator is connected directly or indirectly to the crankshaft of the internal combustion engine,
The hybrid control device that controls the motor generator rotates the crankshaft by the driving force of the motor generator during the stop operation of the internal combustion engine, and the crank angle when the crankshaft is stopped A hybrid system configured to perform control so that crankshaft rotation friction is a small crank angle.
請求項1に記載のハイブリッドシステムを搭載したことを特徴とするハイブリッド車両。   A hybrid vehicle equipped with the hybrid system according to claim 1. 内燃機関と電動発電機を有するハイブリッドシステムの動力伝達方法において、
前記内燃機関の停止操作時に、前記内燃機関のクランク軸に直接又は間接に連結された前記電動発電機の駆動力により前記クランク軸を回転して、前記クランク軸の停止したときのクランク角よりも前記クランク軸の回転のフリクションが小さいクランク角度にすることを特徴とするハイブリッドシステムの動力伝達方法。
In a power transmission method of a hybrid system having an internal combustion engine and a motor generator,
During the stop operation of the internal combustion engine, the crankshaft is rotated by the driving force of the motor generator directly or indirectly connected to the crankshaft of the internal combustion engine, and the crank angle when the crankshaft is stopped A power transmission method for a hybrid system, wherein the crankshaft has a small crank angle so that the friction of rotation of the crankshaft is small.
JP2013165718A 2013-08-09 2013-08-09 Hybrid system, hybrid vehicle and power transmission method for hybrid system Pending JP2015033914A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013165718A JP2015033914A (en) 2013-08-09 2013-08-09 Hybrid system, hybrid vehicle and power transmission method for hybrid system
CN201480040056.8A CN105378266A (en) 2013-08-09 2014-08-05 Hybrid system, hybrid vehicle, and power transmission method for hybrid system
PCT/JP2014/070640 WO2015020059A1 (en) 2013-08-09 2014-08-05 Hybrid system, hybrid vehicle, and power transmission method for hybrid system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165718A JP2015033914A (en) 2013-08-09 2013-08-09 Hybrid system, hybrid vehicle and power transmission method for hybrid system

Publications (1)

Publication Number Publication Date
JP2015033914A true JP2015033914A (en) 2015-02-19

Family

ID=52461390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165718A Pending JP2015033914A (en) 2013-08-09 2013-08-09 Hybrid system, hybrid vehicle and power transmission method for hybrid system

Country Status (3)

Country Link
JP (1) JP2015033914A (en)
CN (1) CN105378266A (en)
WO (1) WO2015020059A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086382A (en) * 2018-10-24 2020-05-01 丰田自动车株式会社 Hybrid electric vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7073870B2 (en) * 2018-04-11 2022-05-24 トヨタ自動車株式会社 Start control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283010A (en) * 1999-03-30 2000-10-10 Honda Motor Co Ltd Engine starter
JP2002295349A (en) * 2001-03-29 2002-10-09 Mitsuba Corp Vehicle driven by internal combustion engine
JP2004142590A (en) * 2002-10-24 2004-05-20 Toyota Motor Corp Power output unit, control method for the same, and hybrid vehicle
JP2004263566A (en) * 2003-01-27 2004-09-24 Toyota Motor Corp Stop control device of internal combustion engine
JP2010167921A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Power transmission device for vehicle
JP2013119301A (en) * 2011-12-07 2013-06-17 Daimler Ag Engine stop controller for hybrid electric vehicle
JP2013184651A (en) * 2012-03-09 2013-09-19 Daimler Ag Engine stop control device of hybrid vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062264B2 (en) * 2003-06-06 2008-03-19 アイシン・エィ・ダブリュ株式会社 Vehicle drive control device, vehicle drive control method, and program
JP2008014146A (en) * 2006-07-03 2008-01-24 Denso Corp Stop control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283010A (en) * 1999-03-30 2000-10-10 Honda Motor Co Ltd Engine starter
JP2002295349A (en) * 2001-03-29 2002-10-09 Mitsuba Corp Vehicle driven by internal combustion engine
JP2004142590A (en) * 2002-10-24 2004-05-20 Toyota Motor Corp Power output unit, control method for the same, and hybrid vehicle
JP2004263566A (en) * 2003-01-27 2004-09-24 Toyota Motor Corp Stop control device of internal combustion engine
JP2010167921A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Power transmission device for vehicle
JP2013119301A (en) * 2011-12-07 2013-06-17 Daimler Ag Engine stop controller for hybrid electric vehicle
JP2013184651A (en) * 2012-03-09 2013-09-19 Daimler Ag Engine stop control device of hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111086382A (en) * 2018-10-24 2020-05-01 丰田自动车株式会社 Hybrid electric vehicle

Also Published As

Publication number Publication date
WO2015020059A1 (en) 2015-02-12
CN105378266A (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP6390084B2 (en) Hybrid system, hybrid vehicle, and hybrid system control method
US9050974B2 (en) Drive system and method for controlling drive system
JP2002307956A (en) Driving device for vehicle
WO2015020096A1 (en) Hybrid system and method for controlling same
WO2015020097A1 (en) Hybrid system and method for controlling same
JP2015033971A (en) Hybrid system, hybrid vehicle, and power transmission method of hybrid system
WO2015020059A1 (en) Hybrid system, hybrid vehicle, and power transmission method for hybrid system
JP6197464B2 (en) Hybrid system and control method thereof
JP2012086685A (en) Control device of hybrid vehicle
WO2015041330A1 (en) Hybrid system and hybrid vehicle
WO2015020061A1 (en) Hybrid system, hybrid vehicle, and power transmission method for hybrid system
JP6281206B2 (en) Hybrid system, hybrid vehicle, and power transmission method of hybrid system
JP6264775B2 (en) Hybrid system and control method thereof
JP6197466B2 (en) Hybrid system, hybrid vehicle, and power transmission method of hybrid system
JP2017115761A (en) Engine starting time control system, hybrid vehicle and engine starting time control method
JP6244732B2 (en) Hybrid system and hybrid vehicle
WO2014054723A1 (en) Startup control device
WO2015041331A1 (en) Hybrid system and hybrid vehicle
JP2015033923A (en) Hybrid system and hybrid vehicle
JP2015030281A (en) Hybrid system and hybrid vehicle
JP6197465B2 (en) Hybrid system, hybrid vehicle, and power transmission method of hybrid system
JP2004176545A (en) Power output device, its control method, and vehicle
JP2017140939A (en) Operation control device for vehicle
JP6364720B2 (en) Hybrid system, hybrid vehicle, and abnormality diagnosis method for hybrid system
JP2015033965A (en) Hybrid system, hybrid vehicle, and power transmission method of hybrid system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106