WO2015020061A1 - Hybrid system, hybrid vehicle, and power transmission method for hybrid system - Google Patents

Hybrid system, hybrid vehicle, and power transmission method for hybrid system Download PDF

Info

Publication number
WO2015020061A1
WO2015020061A1 PCT/JP2014/070642 JP2014070642W WO2015020061A1 WO 2015020061 A1 WO2015020061 A1 WO 2015020061A1 JP 2014070642 W JP2014070642 W JP 2014070642W WO 2015020061 A1 WO2015020061 A1 WO 2015020061A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
crankshaft
combustion engine
motor generator
hybrid system
Prior art date
Application number
PCT/JP2014/070642
Other languages
French (fr)
Japanese (ja)
Inventor
充宏 阿曽
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201480040061.9A priority Critical patent/CN105392681A/en
Publication of WO2015020061A1 publication Critical patent/WO2015020061A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid system, a hybrid vehicle, and a power transmission method of the hybrid system, and more particularly, a hybrid system and a hybrid capable of shortening the start time of the internal combustion engine when starting the internal combustion engine and restarting the idling stop.
  • the present invention relates to a power transmission method for a vehicle and a hybrid system.
  • the motor generator In a hybrid vehicle (HEV) equipped with both an internal combustion engine and a motor generator, the motor generator is driven by the output of the internal combustion engine to generate power, and the generated power is charged into a battery or charged into this battery.
  • the motor generator is driven by electric power to assist the output of the internal combustion engine.
  • an electric motor is provided between an engine (internal combustion engine) and a transmission.
  • a (motor generator) is provided and the electric motor is connected to an engine drive shaft (crankshaft).
  • crankshaft is rotationally driven using a starter, and the piston in the cylinder (cylinder) is moved to a position where fuel can be injected and a position where ignition is possible.
  • crankshaft rotates while moving the piston due to inertia, but stops due to the friction of the internal combustion engine. This stop is normally stopped at a crank angle position where the friction is maximum.
  • the present invention has been made in view of the above, and an object of the present invention is to reduce the start time of the internal combustion engine when starting the internal combustion engine and restarting the idling stop, and to provide a hybrid vehicle equipped with a hybrid system.
  • an object of the present invention is to reduce the start time of the internal combustion engine when starting the internal combustion engine and restarting the idling stop, and to provide a hybrid vehicle equipped with a hybrid system.
  • a hybrid system of the present invention is a hybrid system having an internal combustion engine and a motor generator, and is provided with a continuously variable transmission mechanism directly connected to the crankshaft of the internal combustion engine.
  • a hybrid control device that connects the motor generator and controls the motor generator and the continuously variable transmission mechanism is configured to reduce the rotation speed of the continuously variable transmission mechanism relative to the rotational speed of the internal combustion engine when the internal combustion engine is stopped. Stop control to reduce the rotation speed ratio, which is the ratio of the rotation speed of the motor generator, to increase the load applied to the crankshaft so that the crank angle when the crankshaft is stopped is within a preset stop range. Configured to do.
  • This pre-installed stop range is such that when starting the internal combustion engine by starting or restarting, the position of the piston in the cylinder starts from the compression stroke where the fuel can be injected immediately. It is a range, and can be set in advance from the relationship between the crank angle and each stroke of the piston.
  • the fuel injection timing in the internal combustion engine can be immediately entered, and the internal combustion engine can be operated by fuel combustion until the start of the start. You can save time.
  • the hybrid control device is configured to be able to perform the stop control when a charge amount of a battery that charges power generated by the motor generator is larger than a preset charge amount. Then, the following effects can be achieved.
  • a hybrid system power transmission method for achieving the above object is a hybrid system power transmission method including an internal combustion engine and a motor generator, and is connected directly to a crankshaft of the internal combustion engine via a continuously variable transmission mechanism. Power transmission between the crankshaft and the motor generator, and at the time of stop operation of the internal combustion engine, the ratio of the rotational speed of the motor generator to the rotational speed of the internal combustion engine of the continuously variable transmission mechanism. This is a method characterized in that a certain rotation speed ratio is reduced to increase the load applied to the crankshaft so that the crank angle when the crankshaft is stopped is within a preset stop range.
  • the fuel injection timing in the internal combustion engine can be immediately entered, and the internal combustion engine can be operated by fuel combustion until the start of the start. You can save time.
  • the hybrid system, hybrid vehicle, and hybrid system power transmission method of the present invention when the internal combustion engine is started and when the idling stop is restarted, the timing of fuel injection in the internal combustion engine can be entered immediately, and the internal combustion engine It is possible to shorten the time until the start of the engine that can be operated by fuel combustion. Therefore, a hybrid vehicle equipped with this hybrid system can quickly shift to the running state, and the running characteristics can be improved.
  • FIG. 1 is a diagram showing a configuration of a hybrid system and a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of a hybrid system and a hybrid vehicle including a crankshaft connecting / disconnecting device.
  • the hybrid system 2 of this embodiment is a hybrid system having an engine (internal combustion engine) 10 and a motor generator (M / G) 21.
  • the hybrid system 2 is described as being mounted on a hybrid vehicle (HEV: hereinafter referred to as a vehicle) 1, but is not necessarily limited to that mounted on the vehicle.
  • HEV hybrid vehicle
  • the engine 10 of the hybrid system 2 includes an engine body (ENG) 11, an exhaust passage 12, a turbocharger 13, and an exhaust gas purification device (post-treatment device) provided in the exhaust passage 12. 14 is provided.
  • the exhaust gas purification device 14 purifies NOx (nitrogen oxide), PM (particulate matter), etc. in the exhaust gas discharged from the engine 10.
  • the purified exhaust gas is released into the atmosphere via a muffler (not shown) or the like.
  • a CVT (continuously variable transmission mechanism: ratio variable mechanism) 16 is provided directly connected to the crankshaft 15 of the engine 10, and the motor generator 21 is connected to the CVT 16. That is, the first pulley (first power transmission unit) 16a of the CVT 16 is provided on the crankshaft 15 of the engine 10, and the second pulley (second power transmission unit) 16b of the CVT 16 is provided on the motor generator 21. The power transmission between the crankshaft 15 and the motor generator 21 is performed via the first pulley 16a and the second pulley 16b.
  • a belt or chain (power transmission member) 16c is hung between the first pulley 16a and the second pulley 16b, and the crankshaft 15 passes through the first pulley 16a, the power transmission member 16c, and the second pulley 16b. Then, the power is transmitted to the motor generator 21, and conversely, the power is transmitted from the motor generator 21 to the crankshaft 15 via the second pulley 16b, the power transmission member 16c, and the first pulley 16a.
  • the power transmission member 16c is applied to a pair of the first pulley 16a and the second pulley 16b, and the widths of the individual pulleys 16a and 16b are changed so that the pulleys 16a and 16b and the power transmission member 16c come into contact with each other.
  • the position is changed, and if the width is expanded and the position where the power transmission member 16c contacts is inward (closer to the shaft), the diameter becomes smaller.
  • the position where the power transmission member 16c contacts with the power transmission member 16c is decreased. The diameter is increased if the outer side is moved (if the outer side is moved).
  • the power transmission member 16c is not slackened. Shifting can be performed continuously.
  • the CVT 16 When the CVT 16 is configured such that the transmission 31 is connected to one of the crankshafts 15 and the CVT 16 is connected to the other of the crankshafts 15 in the engine 10, the CVT 16 is connected to the transmission 31 with respect to the engine 10. Therefore, it is not necessary to provide the CVT 16 between the engine 10 and the transmission 31. For this reason, motor generators can be easily installed even for combinations of existing engines and transmissions (powertrains) that do not consider hybrid systems, and the types of powertrains to which hybrid systems can be applied are expanded. Can be easily done.
  • an auxiliary machine such as a cooling fan, a cooling water pump, or a lubricating oil pump that obtains driving force from the crankshaft is arranged.
  • These auxiliary machines are preferably electrified so as to be driven by the electric power generated by the motor generator without obtaining the driving force directly from the crankshaft. This increases the freedom with respect to the layout of the auxiliary machinery, and further has the advantage that the engine output without load loss due to the auxiliary machinery can be used as the driving force depending on the situation.
  • the motor generator 21 that is a part of the power system 20 generates power by receiving the driving force of the engine 10 as a generator, or generates regenerative power by generating regenerative power such as the braking force of the vehicle 1. And driving as a motor, transmitting the driving force to the crankshaft 15 of the engine 10 to assist the driving force (output: torque) of the engine 10.
  • the electric power obtained by power generation is converted by the inverter (INV) 23 via the wiring 22 and charged in the first battery (charger: B1) 24A.
  • the electric power charged in the first battery 24 ⁇ / b> A is converted by the inverter 23 and supplied to the motor generator 21.
  • a DC-DC converter (CON) 25 and a second battery (B2) 24B are further provided in series with the first battery 24A.
  • the DC-DC converter 25 drops the voltage to 12 V and charges the second battery 24B, and the auxiliary battery cooling fan 26A, cooling water pump 26B, Electric power is supplied to the lubricating oil pump 26C and the like.
  • a hybrid vehicle hereinafter referred to as a vehicle 1 equipped with the hybrid system 2
  • the power of the engine 10 is transmitted to a transmission 31 of the power transmission system 30, and further, a propulsion shaft (propeller shaft) is transmitted from the transmission 31. It is transmitted to the operating device (differential gear) 33 through 32, and transmitted to the wheel 35 from the operating device 33 through the drive shaft (drive shaft) 34. Thereby, the motive power of the engine 10 is transmitted to the wheel 35 and the vehicle 1 travels.
  • the transmission path from the engine 10 to the wheel 35 may be different depending on the mounting method of the engine 10.
  • the power charged in the first battery 24A is supplied to the motor generator 21 via the inverter 23, and the motor generator 21 is driven by this power to generate power.
  • the power of the motor generator 21 is transmitted to the crankshaft 15 via the CVT 16, transmitted through the power transmission path of the engine 10, and transmitted to the wheels 35.
  • the power of the motor generator 21 is transmitted to the wheels 35 together with the power of the engine 10, and the vehicle 1 travels.
  • the regenerative power of the wheels 35 or the regenerative power of the engine 10 is transmitted to the motor generator 21 through the reverse path, and the motor generator 21 can generate power.
  • a hybrid system control device 41 is provided, and the operating state such as the rotational speed Ne and the load Q of the engine 10, the operating state such as the rotational speed Na of the motor generator 21, and the charging of the first battery 24A and the second battery 24B. While monitoring the quantity (SOC) state, the CVT 16, the motor generator 21, the inverter 23, the DC-DC converter 25 and the like are controlled.
  • the hybrid system control device 41 is normally configured to be incorporated in an overall control device 40 that controls the engine 10 and the vehicle 1.
  • the overall control device 40 controls the combustion in the cylinder, the turbocharger 13, the exhaust gas purification device 14, the cooling fan 26A of the auxiliary machine, the cooling water pump 26B, the lubricating oil pump 26C and the like in the control of the engine 10. Yes.
  • crankshaft connecting / disconnecting device 17 when the crankshaft connecting / disconnecting device 17 is provided between the crankshaft 15 and the motor generator 21 as in the hybrid system 2A and the hybrid vehicle 1A shown in FIG. Is not used as a motor or a generator, it is more preferable because the crankshaft connecting / disconnecting device 17 can be disconnected and the engine 10 can be operated without the influence of friction on the motor generator 21 side.
  • the crankshaft connecting / disconnecting device 17 is provided between the crankshaft 15 and the first pulley 16a, the engine 10 can be operated without the influence of friction on the CVT 16 side in addition to the motor generator 21 side. it can.
  • the hybrid control device 41 that controls the motor generator 21 and the CVT 16 has a ratio of the rotational speed Na of the motor generator 21 to the rotational speed Ne of the engine 10 of the CVT 16 when the engine 10 is stopped.
  • a certain rotation speed ratio Rn Na / Ne is decreased to increase the friction applied to the crankshaft 15, and the crank angle ⁇ when the crankshaft 15 is stopped is stopped within a preset stop range ( ⁇ 1 to ⁇ 2). It is configured to perform angle control.
  • This pre-set stop range ( ⁇ 1 to ⁇ 2) is a compression stroke in which the position of the piston in the cylinder (cylinder) is a position where fuel can be injected immediately when the operation of the engine 10 is started by starting or restarting. Is a range that can be set in advance from the relationship between the crank angle ⁇ and each stroke of the piston.
  • the rotational speed ratio Rn Na / of the CVT 16
  • the driving force Tea on the engine 10 side for generating the driving force Ta is increased, and the load (friction) applied to the crankshaft 15 can be increased, whereby the stop position of the crankshaft 15 can be controlled.
  • the rotational speed ratio Rn of the CVT 16 is reduced to increase the load applied to the crankshaft 15, and the crank angle ⁇ when the crankshaft 15 is stopped is set in a predetermined stop range ( ⁇ 1 ⁇ can be within ⁇ 2).
  • the fuel injection timing in the engine 10 can be immediately entered, and the time required for starting the engine 10 that can be operated by fuel combustion can be reduced. it can.
  • This control is performed by detecting the crank angle ⁇ immediately before the stop of the engine 10 by a crank angle sensor (not shown) normally provided for controlling the engine 10 or an engine angle detection sensor (not shown) provided separately.
  • the rotation speed ratio Rn of the CVT 16 is controlled so that the crank angle ⁇ is within a preset stop range ( ⁇ 1 to ⁇ 2).
  • the pulley ratio Rd may be controlled in place of the rotation speed ratio Rn, but is substantially the same.
  • the power transmission method of the hybrid system in this embodiment is a power transmission method of the hybrid systems 2 and 2A having the engine 10 and the motor generator 21, and is directly connected to the crankshaft 15 of the engine 10 via the CVT 16.
  • the hybrid control device 41 can perform the stop control when the charge amount of the batteries 24A and 24B for charging the electric power generated by the motor generator 21 is larger than the preset charge amount, Such effects can be achieved.
  • the fuel injection timing in the engine 10 is determined when the engine 10 is started and when the idling stop is restarted. It is possible to enter immediately, and the time until the start of the engine 10 that can be operated by fuel combustion can be shortened. Therefore, the hybrid vehicles 1 and 1A equipped with the hybrid systems 2 and 2A can quickly shift to the traveling state, and the traveling characteristics can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

 A direct coupling is established with a crankshaft (15) of an internal combustion engine (10) to transmit power between the crankshaft (15) and an electric power generator (21) via a continuously variable transmission (16); a rotational speed ratio (Rn) (=Na/Ne), which is the ratio of the rotational speed (Na) of the electric power generator (21) relative to the rotational speed (Ne) of the internal combustion engine (10) of the continuously variable transmission (16), is reduced when the internal combustion engine (10) is stopped, increasing the load exerted on the crankshaft (15); and the crank angle (θ) when the crankshaft (15) has stopped is brought within a preset stop range (θ1-θ2). The startup time of the internal combustion engine (10) is thereby shortened when the internal combustion engine (10) is started up or restarted after an idling stop, and a hybrid vehicle (1, 1A) equipped with a hybrid system (2, 2A) can be quickly transitioned to a traveling state.

Description

ハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法Hybrid system, hybrid vehicle, and power transmission method of hybrid system
 本発明は、ハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法に関し、より詳細には、内燃機関の始動時及びアイドリングストップの再始動時における内燃機関の始動時間を短縮できる、ハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法に関する。 The present invention relates to a hybrid system, a hybrid vehicle, and a power transmission method of the hybrid system, and more particularly, a hybrid system and a hybrid capable of shortening the start time of the internal combustion engine when starting the internal combustion engine and restarting the idling stop. The present invention relates to a power transmission method for a vehicle and a hybrid system.
 内燃機関と電動発電機の両方を搭載するハイブリッド車両(HEV)では、内燃機関の出力により電動発電機を駆動して発電して、この発電した電力をバッテリに充電したり、このバッテリに充電した電力で電動発電機を駆動して内燃機関の出力をアシストしたりしている。この内燃機関で電動発電機を駆動する場合には、内燃機関の駆動力を電動発電機に伝達する必要がある。 In a hybrid vehicle (HEV) equipped with both an internal combustion engine and a motor generator, the motor generator is driven by the output of the internal combustion engine to generate power, and the generated power is charged into a battery or charged into this battery. The motor generator is driven by electric power to assist the output of the internal combustion engine. When driving a motor generator with this internal combustion engine, it is necessary to transmit the driving force of the internal combustion engine to the motor generator.
 この動力伝達に関しては、いくつかの方法が提案されており、例えば、日本出願の特開2013-75540号公報に記載されているように、エンジン(内燃機関)と変速機との間に電動モータ(電動発電機)を設けて、この電動モータをエンジンの駆動軸(クランク軸)に連結したハイブリッド車両が提案されている。 Several methods have been proposed for this power transmission. For example, as described in Japanese Patent Application Laid-Open No. 2013-75540, an electric motor is provided between an engine (internal combustion engine) and a transmission. There has been proposed a hybrid vehicle in which a (motor generator) is provided and the electric motor is connected to an engine drive shaft (crankshaft).
 一方で、内燃機関の始動開始時には、スタータを用いてクランク軸を回転駆動して、気筒(シリンダ)内のピストンを燃料噴射可能な位置及び着火可能な位置まで移動させている。 On the other hand, when starting the internal combustion engine, the crankshaft is rotationally driven using a starter, and the piston in the cylinder (cylinder) is moved to a position where fuel can be injected and a position where ignition is possible.
 しかしながら、この始動開始前のエンジン停止時においては、燃料噴射を停止した後、クランク軸は慣性でピストンの移動を行いながら回転しているが内燃機関のフリクションにより停止する。この停止は、通常は、フリクションが最大となるクランク角の位置で停止する。 However, when the engine is stopped before the start of starting, after stopping the fuel injection, the crankshaft rotates while moving the piston due to inertia, but stops due to the friction of the internal combustion engine. This stop is normally stopped at a crank angle position where the friction is maximum.
 そのため、この停止後の始動時にはフリクションが最大のクランク角の位置にある状態からのクランキングとなり、即座に燃料噴射をできるタイミングとはならないので、内燃機関が燃料噴射による運転を開始するまでの時間が長くなるという問題がある。 Therefore, at the time of starting after this stop, the cranking is started from the state where the friction is at the maximum crank angle, and it is not the timing at which fuel injection can be performed immediately, so the time until the internal combustion engine starts operation by fuel injection There is a problem that becomes longer.
日本出願の特開2013-75540号公報Japanese Patent Application No. 2013-75540
 本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関の始動時及びアイドリングストップの再始動時における内燃機関の始動時間を短縮でき、ハイブリッドシステムを搭載したハイブリッド車両を迅速に走行状態に移行することができる、ハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法を提供することである。 The present invention has been made in view of the above, and an object of the present invention is to reduce the start time of the internal combustion engine when starting the internal combustion engine and restarting the idling stop, and to provide a hybrid vehicle equipped with a hybrid system. To provide a hybrid system, a hybrid vehicle, and a power transmission method of the hybrid system that can quickly shift to a running state.
 上記の目的を達成するための本発明のハイブリッドシステムは、内燃機関と電動発電機を有するハイブリッドシステムにおいて、前記内燃機関のクランク軸に直結して無段変速機構を設け、該無段変速機構に前記電動発電機を連結すると共に、前記電動発電機と前記無段変速機構を制御するハイブリッド用制御装置が、前記内燃機関の停止操作時に、前記無段変速機構の前記内燃機関の回転数に対する前記電動発電機の回転数の比である回転数比を小さくして前記クランク軸に加わる負荷を大きくして、前記クランク軸が停止したときのクランク角を予め設定した停止範囲内にする停止制御を行うように構成される。 In order to achieve the above object, a hybrid system of the present invention is a hybrid system having an internal combustion engine and a motor generator, and is provided with a continuously variable transmission mechanism directly connected to the crankshaft of the internal combustion engine. A hybrid control device that connects the motor generator and controls the motor generator and the continuously variable transmission mechanism is configured to reduce the rotation speed of the continuously variable transmission mechanism relative to the rotational speed of the internal combustion engine when the internal combustion engine is stopped. Stop control to reduce the rotation speed ratio, which is the ratio of the rotation speed of the motor generator, to increase the load applied to the crankshaft so that the crank angle when the crankshaft is stopped is within a preset stop range. Configured to do.
 この予め設置した停止範囲とは、始動又は再始動で内燃機関の運転を開始するときに、気筒内のピストンの位置が即座に燃料噴射が可能な位置になる圧縮行程から始まる位置になるような範囲であり、クランク角とピストンの各行程との関係から予め設定することができる。 This pre-installed stop range is such that when starting the internal combustion engine by starting or restarting, the position of the piston in the cylinder starts from the compression stroke where the fuel can be injected immediately. It is a range, and can be set in advance from the relationship between the crank angle and each stroke of the piston.
 この構成によれば、内燃機関の始動時及びアイドリングストップの再始動時に、内燃機関における燃料噴射のタイミングに即座に入ることができて、内燃機関の燃料燃焼による運転が可能となる始動開始までの時間を短縮できる。 According to this configuration, when the internal combustion engine is started and when the idling stop is restarted, the fuel injection timing in the internal combustion engine can be immediately entered, and the internal combustion engine can be operated by fuel combustion until the start of the start. You can save time.
 上記のハイブリッドシステムにおいて、前記ハイブリッド用制御装置が、前記停止制御を、前記電動発電機が発電する電力を充電するバッテリの充電量があらかじめ設定した充電量よりも大きい場合に行なえるように構成されると、次のような効果を奏することができる。 In the hybrid system, the hybrid control device is configured to be able to perform the stop control when a charge amount of a battery that charges power generated by the motor generator is larger than a preset charge amount. Then, the following effects can be achieved.
 従来技術においては、バッテリの充電量が多いと、それ以上バッテリに充電することができないため、電動発電機で発電してエンジン負荷を大きくすることができなくなるが、この構成では、敢えて発電効率が悪い状況、即ち、内燃機関の回転数に対する発電機の回転数の比である回転数比が小さい状況を作ることで、バッテリへの充電量となる電動発電機の発電量が小さくても内燃機関に負荷をかけることが可能となり、バッテリ充電量の上限ぎりぎりまで内燃機関にかける負荷を上げることが可能となる。 In the prior art, if the amount of charge of the battery is large, the battery cannot be charged any more, so it is impossible to generate power with the motor generator and increase the engine load. By creating a bad situation, that is, a situation where the ratio of the number of revolutions of the generator to the number of revolutions of the internal combustion engine is small, the internal combustion engine even if the power generation amount of the motor generator that is charged to the battery is small It is possible to increase the load applied to the internal combustion engine up to the limit of the battery charge amount.
 そして、上記の目的を達成するためのハイブリッド車両は、上記のハイブリッドシステムを搭載したことを特徴とすると、上記のハイブリッドシステムと同様の効果を奏することができる。 And if the hybrid vehicle for achieving the above object is equipped with the above-mentioned hybrid system, the same effect as the above-described hybrid system can be obtained.
 そして、上記の目的を達成するためのハイブリッドシステムの動力伝達方法は、内燃機関と電動発電機を有するハイブリッドシステムの動力伝達方法において、前記内燃機関のクランク軸に直結して無段変速機構を介して前記クランク軸と前記電動発電機との間の動力伝達を行うと共に、前記内燃機関の停止操作時に、前記無段変速機構の前記内燃機関の回転数に対する前記電動発電機の回転数の比である回転数比を小さくして前記クランク軸に加わる負荷を大きくして、前記クランク軸が停止したときのクランク角を予め設定した停止範囲内にすることを特徴とする方法である。 A hybrid system power transmission method for achieving the above object is a hybrid system power transmission method including an internal combustion engine and a motor generator, and is connected directly to a crankshaft of the internal combustion engine via a continuously variable transmission mechanism. Power transmission between the crankshaft and the motor generator, and at the time of stop operation of the internal combustion engine, the ratio of the rotational speed of the motor generator to the rotational speed of the internal combustion engine of the continuously variable transmission mechanism This is a method characterized in that a certain rotation speed ratio is reduced to increase the load applied to the crankshaft so that the crank angle when the crankshaft is stopped is within a preset stop range.
 この方法によれば、内燃機関の始動時及びアイドリングストップの再始動時に、内燃機関における燃料噴射のタイミングに即座に入ることができて、内燃機関の燃料燃焼による運転が可能となる始動開始までの時間を短縮できる。 According to this method, when the internal combustion engine is started and when the idling stop is restarted, the fuel injection timing in the internal combustion engine can be immediately entered, and the internal combustion engine can be operated by fuel combustion until the start of the start. You can save time.
 本発明のハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法によれば、内燃機関の始動時及びアイドリングストップの再始動時に、内燃機関における燃料噴射のタイミングに即座に入ることができて、内燃機関の燃料燃焼による運転が可能となる始動開始までの時間を短縮できる。従って、このハイブリッドシステムを搭載したハイブリッド車両は迅速に走行状態に移行できるようになり、走行特性を改善できる。 According to the hybrid system, hybrid vehicle, and hybrid system power transmission method of the present invention, when the internal combustion engine is started and when the idling stop is restarted, the timing of fuel injection in the internal combustion engine can be entered immediately, and the internal combustion engine It is possible to shorten the time until the start of the engine that can be operated by fuel combustion. Therefore, a hybrid vehicle equipped with this hybrid system can quickly shift to the running state, and the running characteristics can be improved.
図1は、本発明の実施の形態のハイブリッドシステム及びハイブリッド車両の構成を示す図である。FIG. 1 is a diagram showing a configuration of a hybrid system and a hybrid vehicle according to an embodiment of the present invention. 図2は、クランク軸用断接装置を備えたハイブリッドシステム及びハイブリッド車両の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a hybrid system and a hybrid vehicle including a crankshaft connecting / disconnecting device.
 以下、本発明に係る実施の形態のハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの動力伝達方法について図面を参照しながら説明する。 Hereinafter, a hybrid system, a hybrid vehicle, and a power transmission method of the hybrid system according to embodiments of the present invention will be described with reference to the drawings.
 図1に示すように、この実施の形態のハイブリッドシステム2は、エンジン(内燃機関)10と電動発電機(M/G)21を有するハイブリッドシステムである。なお、ここでは、このハイブリッドシステム2はハイブリッド車両(HEV:以下車両とする)1に搭載されるものとして説明するが、必ずしも、車両に搭載されるものに限定されない。 As shown in FIG. 1, the hybrid system 2 of this embodiment is a hybrid system having an engine (internal combustion engine) 10 and a motor generator (M / G) 21. Here, the hybrid system 2 is described as being mounted on a hybrid vehicle (HEV: hereinafter referred to as a vehicle) 1, but is not necessarily limited to that mounted on the vehicle.
 図1の実施例の形態のハイブリッドシステム2のエンジン10は、エンジン本体(ENG)11と排気通路12とターボ過給器13と、排気通路12に設けられた排気ガス浄化装置(後処理装置)14を備えている。この排気ガス浄化装置14により、エンジン10から排出される排気ガス中のNOx(窒素酸化物)、PM(微粒子状物質)等を浄化処理している。この浄化処理された排気ガスは、マフラー(図示しない)等を経由して大気中に放出される。 The engine 10 of the hybrid system 2 according to the embodiment of FIG. 1 includes an engine body (ENG) 11, an exhaust passage 12, a turbocharger 13, and an exhaust gas purification device (post-treatment device) provided in the exhaust passage 12. 14 is provided. The exhaust gas purification device 14 purifies NOx (nitrogen oxide), PM (particulate matter), etc. in the exhaust gas discharged from the engine 10. The purified exhaust gas is released into the atmosphere via a muffler (not shown) or the like.
 また、エンジン10のクランク軸15に直結してCVT(無段変速機構:レシオ可変機構)16を設け、このCVT16に電動発電機21を連結する。つまり、エンジン10のクランク軸15にCVT16の第1プーリー(第1動力伝達部)16aを設けると共に、電動発電機21にCVT16の第2プーリー(第2動力伝達部)16bを設けて構成し、第1プーリー16aと第2プーリー16bを介してクランク軸15と電動発電機21との間の動力伝達を行うように構成する。この第1プーリー16aと第2プーリー16bとの間にはベルト又はチェーン(動力伝達部材)16cが掛けられており、クランク軸15から第1プーリー16aと動力伝達部材16cと第2プーリー16bを経由して電動発電機21に、また逆に、電動発電機21から第2プーリー16bと動力伝達部材16cと第1プーリー16aを経由してクランク軸15に、動力が伝達される。 Further, a CVT (continuously variable transmission mechanism: ratio variable mechanism) 16 is provided directly connected to the crankshaft 15 of the engine 10, and the motor generator 21 is connected to the CVT 16. That is, the first pulley (first power transmission unit) 16a of the CVT 16 is provided on the crankshaft 15 of the engine 10, and the second pulley (second power transmission unit) 16b of the CVT 16 is provided on the motor generator 21. The power transmission between the crankshaft 15 and the motor generator 21 is performed via the first pulley 16a and the second pulley 16b. A belt or chain (power transmission member) 16c is hung between the first pulley 16a and the second pulley 16b, and the crankshaft 15 passes through the first pulley 16a, the power transmission member 16c, and the second pulley 16b. Then, the power is transmitted to the motor generator 21, and conversely, the power is transmitted from the motor generator 21 to the crankshaft 15 via the second pulley 16b, the power transmission member 16c, and the first pulley 16a.
 このCVT16では、2個一組の第1プーリー16aと第2プーリー16bに動力伝達部材16cをかけ、個々のプーリー16a、16bの幅を変えることにより、プーリー16a、16bと動力伝達部材16cの接する位置を変えるようにしており、幅が拡げられて動力伝達部材16cの接する位置が内側に(軸に近く)なれば直径が小さくなり、逆に幅が狭められて動力伝達部材16cの接する位置が外側なれば(外周側に移動すれば)直径が大きくなるように構成されている。そして、電子制御による油圧又は電動機構(図示しない)で2個のプーリー16a、16bの幅の拡縮が互いに逆になるように変化させる制御を行うことにより、動力伝達部材16cをたるませることなく、変速を連続的に行うことができる。 In this CVT 16, the power transmission member 16c is applied to a pair of the first pulley 16a and the second pulley 16b, and the widths of the individual pulleys 16a and 16b are changed so that the pulleys 16a and 16b and the power transmission member 16c come into contact with each other. The position is changed, and if the width is expanded and the position where the power transmission member 16c contacts is inward (closer to the shaft), the diameter becomes smaller. Conversely, the position where the power transmission member 16c contacts with the power transmission member 16c is decreased. The diameter is increased if the outer side is moved (if the outer side is moved). And by performing control to change the expansion and contraction of the widths of the two pulleys 16a and 16b to be opposite to each other by a hydraulic or electric mechanism (not shown) by electronic control, the power transmission member 16c is not slackened. Shifting can be performed continuously.
 このCVT16を、エンジン10において、クランク軸15の一方に変速機31が接続されており、クランク軸15の他方にCVT16が接続されているように構成すると、CVT16が、エンジン10に関して、変速機31とは反対側のクランク軸15に設けられていることになるので、これにより、エンジン10と変速機31の間にCVT16を設ける必要がなくなる。そのため、ハイブリッドシステムを考慮していない、既存のエンジンと変速機との組み合わせ(パワートレイン)に対しても、電動発電機を容易に設けることができ、ハイブリッドシステムを適用できるパワートレインの種類を拡大することが容易にできる。 When the CVT 16 is configured such that the transmission 31 is connected to one of the crankshafts 15 and the CVT 16 is connected to the other of the crankshafts 15 in the engine 10, the CVT 16 is connected to the transmission 31 with respect to the engine 10. Therefore, it is not necessary to provide the CVT 16 between the engine 10 and the transmission 31. For this reason, motor generators can be easily installed even for combinations of existing engines and transmissions (powertrains) that do not consider hybrid systems, and the types of powertrains to which hybrid systems can be applied are expanded. Can be easily done.
 なお、この場合、従来技術では、エンジンに関して、変速機とは反対側には、クランク軸から駆動力を得ている冷却ファンや冷却水ポンプや潤滑油ポンプ等の補機が配置されているので、これらの補機は電動化して、クランク軸から直接駆動力を得ることなく、電動発電機で発電した電力で駆動されるようにすることが好ましい。これにより、補機類のレイアウトに関して自由性が増し、更には状況に応じて補機による負荷損失のないエンジン出力を駆動力に活用できるというメリットが生じる。 In this case, in the prior art, on the opposite side of the transmission with respect to the engine, an auxiliary machine such as a cooling fan, a cooling water pump, or a lubricating oil pump that obtains driving force from the crankshaft is arranged. These auxiliary machines are preferably electrified so as to be driven by the electric power generated by the motor generator without obtaining the driving force directly from the crankshaft. This increases the freedom with respect to the layout of the auxiliary machinery, and further has the advantage that the engine output without load loss due to the auxiliary machinery can be used as the driving force depending on the situation.
 そして、電力システム20の一部である電動発電機21は、発電機として、エンジン10の駆動力を受けて発電をしたり、又は、車両1のブレーキ力等の回生力発生による回生発電をしたりすると共に、モータとして駆動して、その駆動力をエンジン10のクランク軸15に伝達して、エンジン10の駆動力(出力:トルク)をアシストしたりする。 The motor generator 21 that is a part of the power system 20 generates power by receiving the driving force of the engine 10 as a generator, or generates regenerative power by generating regenerative power such as the braking force of the vehicle 1. And driving as a motor, transmitting the driving force to the crankshaft 15 of the engine 10 to assist the driving force (output: torque) of the engine 10.
 なお、発電して得た電力は、配線22を経由してインバータ(INV)23で変換して第1バッテリ(充電器:B1)24Aに充電される。また、電動発電機21を駆動するときは、第1バッテリ24Aに充電された電力をインバータ23で変換して電動発電機21に供給する。 In addition, the electric power obtained by power generation is converted by the inverter (INV) 23 via the wiring 22 and charged in the first battery (charger: B1) 24A. When driving the motor generator 21, the electric power charged in the first battery 24 </ b> A is converted by the inverter 23 and supplied to the motor generator 21.
 図1の構成では、更に、DC-DCコンバータ(CON)25と第2バッテリ(B2)24Bを第1バッテリ24Aに直列に設けて、第1バッテリ24Aの、例えば、一般的な12Vや24V以上の高い電圧の電力を、DC-DCコンバータ25で、例えば、12Vに電圧降下させて、第2バッテリ24Bに充電して、この第2バッテリ24Bから補機の冷却ファン26A、冷却水ポンプ26B、潤滑油ポンプ26C等に電力を供給するように構成している。 In the configuration shown in FIG. 1, a DC-DC converter (CON) 25 and a second battery (B2) 24B are further provided in series with the first battery 24A. In the DC-DC converter 25, for example, the DC-DC converter 25 drops the voltage to 12 V and charges the second battery 24B, and the auxiliary battery cooling fan 26A, cooling water pump 26B, Electric power is supplied to the lubricating oil pump 26C and the like.
 このハイブリッドシステム2を搭載したハイブリッド車両(以下車両)1においては、エンジン10の動力は、動力伝達システム30の変速機(トランスミッション)31に伝達され、さらに、変速機31より推進軸(プロペラシャフト)32を介して作動装置(デファレンシャルギア)33に伝達され、作動装置33より駆動軸(ドライブシャフト)34を介して車輪35に伝達される。これにより、エンジン10の動力が車輪35に伝達され、車両1が走行する。 In a hybrid vehicle (hereinafter referred to as a vehicle) 1 equipped with the hybrid system 2, the power of the engine 10 is transmitted to a transmission 31 of the power transmission system 30, and further, a propulsion shaft (propeller shaft) is transmitted from the transmission 31. It is transmitted to the operating device (differential gear) 33 through 32, and transmitted to the wheel 35 from the operating device 33 through the drive shaft (drive shaft) 34. Thereby, the motive power of the engine 10 is transmitted to the wheel 35 and the vehicle 1 travels.
 尚、エンジン10の搭載方式によっては、エンジン10から車輪35までの伝達経路は異なってもよい。 Note that the transmission path from the engine 10 to the wheel 35 may be different depending on the mounting method of the engine 10.
 一方、電動発電機21の動力に関しては、第1バッテリ24Aに充電された電力がインバータ23を介して電動発電機21に供給され、この電力により電動発電機21が駆動され動力を発生する。この電動発電機21の動力は、CVT16を介してクランク軸15に伝達されて、エンジン10の動力伝達経路を伝達して、車輪35に伝達される。 On the other hand, regarding the power of the motor generator 21, the power charged in the first battery 24A is supplied to the motor generator 21 via the inverter 23, and the motor generator 21 is driven by this power to generate power. The power of the motor generator 21 is transmitted to the crankshaft 15 via the CVT 16, transmitted through the power transmission path of the engine 10, and transmitted to the wheels 35.
 これにより、電動発電機21の動力がエンジン10の動力と共に車輪35に伝達され、車両1が走行する。なお、回生時には、逆の経路で、車輪35の回生力、又はエンジン10の回生力が電動発電機21に伝達されて、電動発電機21で発電が可能となる。 Thereby, the power of the motor generator 21 is transmitted to the wheels 35 together with the power of the engine 10, and the vehicle 1 travels. During regeneration, the regenerative power of the wheels 35 or the regenerative power of the engine 10 is transmitted to the motor generator 21 through the reverse path, and the motor generator 21 can generate power.
 また、ハイブリッドシステム用制御装置41が設けられ、エンジン10の回転数Neや負荷Q等の運転状態や電動発電機21の回転数Na等の運転状態や第1バッテリ24A,第2バッテリ24Bの充電量(SOC)の状態をモニターしながら、CVT16、電動発電機21、インバータ23、DC-DCコンバータ25等を制御する。このハイブリッドシステム用制御装置41は、通常は、エンジン10や車両1を制御する全体制御装置40に組み込まれて構成される。この全体制御装置40は、エンジン10の制御では、シリンダ内燃焼やターボ過給器13や排気ガス浄化装置14や補機の冷却ファン26A、冷却水ポンプ26B、潤滑油ポンプ26Cなどを制御している。 Also, a hybrid system control device 41 is provided, and the operating state such as the rotational speed Ne and the load Q of the engine 10, the operating state such as the rotational speed Na of the motor generator 21, and the charging of the first battery 24A and the second battery 24B. While monitoring the quantity (SOC) state, the CVT 16, the motor generator 21, the inverter 23, the DC-DC converter 25 and the like are controlled. The hybrid system control device 41 is normally configured to be incorporated in an overall control device 40 that controls the engine 10 and the vehicle 1. The overall control device 40 controls the combustion in the cylinder, the turbocharger 13, the exhaust gas purification device 14, the cooling fan 26A of the auxiliary machine, the cooling water pump 26B, the lubricating oil pump 26C and the like in the control of the engine 10. Yes.
 また、図2に示すハイブリッドシステム2A、及びハイブリッド車両1Aのように、クランク軸15と電動発電機21との間にクランク軸用断接装置17を設けて構成すると、これにより、電動発電機21をモータとしても発電機としても使用しないときには、クランク軸用断接装置17を断状態にして、電動発電機21側のフリクションの影響なしにエンジン10を運転することができるのでより好ましい。特に、クランク軸15と第1プーリー16aとの間にクランク軸用断接装置17を設けて構成すると、電動発電機21側に加えてCVT16側のフリクションの影響なしにエンジン10を運転することができる。 Further, when the crankshaft connecting / disconnecting device 17 is provided between the crankshaft 15 and the motor generator 21 as in the hybrid system 2A and the hybrid vehicle 1A shown in FIG. Is not used as a motor or a generator, it is more preferable because the crankshaft connecting / disconnecting device 17 can be disconnected and the engine 10 can be operated without the influence of friction on the motor generator 21 side. In particular, if the crankshaft connecting / disconnecting device 17 is provided between the crankshaft 15 and the first pulley 16a, the engine 10 can be operated without the influence of friction on the CVT 16 side in addition to the motor generator 21 side. it can.
 そして、本発明においては、電動発電機21とCVT16を制御するハイブリッド用制御装置41は、エンジン10の停止操作時に、CVT16のエンジン10の回転数Neに対する電動発電機21の回転数Naの比である回転数比Rn=Na/Neを小さくしてクランク軸15に加わるフリクションを大きくして、クランク軸15が停止したときのクランク角θを予め設定した停止範囲(θ1~θ2)内にする停止角制御を行うように構成される。 In the present invention, the hybrid control device 41 that controls the motor generator 21 and the CVT 16 has a ratio of the rotational speed Na of the motor generator 21 to the rotational speed Ne of the engine 10 of the CVT 16 when the engine 10 is stopped. A certain rotation speed ratio Rn = Na / Ne is decreased to increase the friction applied to the crankshaft 15, and the crank angle θ when the crankshaft 15 is stopped is stopped within a preset stop range (θ1 to θ2). It is configured to perform angle control.
 この予め設置した停止範囲(θ1~θ2)は、始動又は再始動でエンジン10の運転を開始するときに、気筒(シリンダ)内のピストンの位置が即座に燃料噴射が可能な位置になる圧縮行程から始まる位置になるような範囲であり、クランク角θとピストンの各行程との関係から予め設定することができる範囲である。 This pre-set stop range (θ1 to θ2) is a compression stroke in which the position of the piston in the cylinder (cylinder) is a position where fuel can be injected immediately when the operation of the engine 10 is started by starting or restarting. Is a range that can be set in advance from the relationship between the crank angle θ and each stroke of the piston.
 つまり、エンジン10の駆動力により電動発電機21を駆動して発電している場合に、電動発電機21の回転数Naと駆動力Taが同じあっても、CVT16の回転数比Rn=Na/Neを小さくすると、CVT16の第1プーリー16aの実働直径Deに対する第2プーリー16bの実働直径Daとの比であるプーリー比(直径比)Rd=Da/Deが大きくなり、電動発電機21側の駆動力Taを発生させるためのエンジン10側の駆動力Teaが大きくなり、クランク軸15に加わる負荷(フリクション)を大きくすることができ、これにより、クランク軸15の停止位置を制御できる。 That is, when the motor generator 21 is driven by the driving force of the engine 10 to generate power, even if the rotational speed Na of the motor generator 21 and the driving force Ta are the same, the rotational speed ratio Rn = Na / of the CVT 16 When Ne is reduced, the pulley ratio (diameter ratio) Rd = Da / De, which is the ratio of the actual working diameter Da of the second pulley 16b to the actual working diameter De of the first pulley 16a of the CVT 16, increases. The driving force Tea on the engine 10 side for generating the driving force Ta is increased, and the load (friction) applied to the crankshaft 15 can be increased, whereby the stop position of the crankshaft 15 can be controlled.
 従って、エンジン10の停止操作時に、CVT16の回転数比Rnを小さくしてクランク軸15に加わる負荷を大きくして、クランク軸15が停止したときのクランク角θを予め設定した停止範囲(θ1~θ2)内にすることができる。 Accordingly, when the engine 10 is stopped, the rotational speed ratio Rn of the CVT 16 is reduced to increase the load applied to the crankshaft 15, and the crank angle θ when the crankshaft 15 is stopped is set in a predetermined stop range (θ1˜ can be within θ2).
 その結果、エンジン10の始動時及びアイドリングストップの再始動時に、エンジン10における燃料噴射のタイミングに即座に入ることができて、エンジン10の燃料燃焼による運転が可能となる始動開始までの時間を短縮できる。 As a result, when the engine 10 is started and when the idling stop is restarted, the fuel injection timing in the engine 10 can be immediately entered, and the time required for starting the engine 10 that can be operated by fuel combustion can be reduced. it can.
 この制御は、通常エンジン10の制御のために備えられているクランク角センサ(図示しない)や別に備えるエンジン角度検出センサ(図示しない)により、エンジン10の停止直前のクランク角θを検出して、このクランク角θが予め設定した停止範囲(θ1~θ2)内になるようにCVT16の回転数比Rnを制御する。なお、回転数比Rnの替わりにプーリー比Rdを制御してもよいが、実質的には同じである。 This control is performed by detecting the crank angle θ immediately before the stop of the engine 10 by a crank angle sensor (not shown) normally provided for controlling the engine 10 or an engine angle detection sensor (not shown) provided separately. The rotation speed ratio Rn of the CVT 16 is controlled so that the crank angle θ is within a preset stop range (θ1 to θ2). The pulley ratio Rd may be controlled in place of the rotation speed ratio Rn, but is substantially the same.
 そして、この実施の形態におけるハイブリッドシステムの動力伝達方法は、エンジン10と電動発電機21を有するハイブリッドシステム2,2Aの動力伝達方法であり、エンジン10のクランク軸15に直結してCVT16を介してクランク軸15と電動発電機21との間の動力伝達を行うと共に、エンジン10の停止操作時に、CVT16のエンジン10の回転数Neに対する電動発電機21の回転数Naの比である回転数比Rn(=Na/Ne)を小さくしてクランク軸15に加わる負荷を大きくして、クランク軸15が停止したときのクランク角θを予め設定した停止範囲(θ1~θ2)内にすることを特徴とする方法である。 The power transmission method of the hybrid system in this embodiment is a power transmission method of the hybrid systems 2 and 2A having the engine 10 and the motor generator 21, and is directly connected to the crankshaft 15 of the engine 10 via the CVT 16. The power transmission between the crankshaft 15 and the motor generator 21 is performed, and the rotation speed ratio Rn, which is the ratio of the rotation speed Na of the motor generator 21 to the rotation speed Ne of the engine 10 of the CVT 16 when the engine 10 is stopped. (= Na / Ne) is decreased to increase the load applied to the crankshaft 15 so that the crank angle θ when the crankshaft 15 is stopped is within a preset stop range (θ1 to θ2). It is a method to do.
 また、ハイブリッド用制御装置41が、停止制御を、電動発電機21が発電する電力を充電するバッテリ24A、24Bの充電量があらかじめ設定した充電量よりも大きい場合に行なえるようにすると、次のような効果を奏することができる。 Further, when the hybrid control device 41 can perform the stop control when the charge amount of the batteries 24A and 24B for charging the electric power generated by the motor generator 21 is larger than the preset charge amount, Such effects can be achieved.
 従来技術においては、バッテリ24A、24Bの充電量が多いと、それ以上バッテリ24A、24Bに充電することができないため、電動発電機21で発電してエンジン10の負荷を大きくすることができなくなるが、この構成では、敢えて、発電効率が悪い状況、即ち、エンジン10の回転数Neに対する発電機の回転数Naの比である回転数比Rn(=Na/Ne)が小さい状況を作ることで、バッテリ24A、24Bへの充電量となる電動発電機21の発電量が小さくてもエンジン10に負荷をかけることが可能となり、バッテリ充電量の上限ぎりぎりまでエンジン10にかける負荷を上げることが可能となる。 In the prior art, if the amount of charge of the batteries 24A, 24B is large, the batteries 24A, 24B cannot be charged any more, so that the motor generator 21 cannot generate power and increase the load on the engine 10. In this configuration, by deliberately creating a situation where the power generation efficiency is poor, that is, a situation where the rotational speed ratio Rn (= Na / Ne) which is the ratio of the rotational speed Na of the generator to the rotational speed Ne of the engine 10 is small, It is possible to apply a load to the engine 10 even if the power generation amount of the motor generator 21 that is the charge amount to the batteries 24A and 24B is small, and it is possible to increase the load applied to the engine 10 to the limit of the battery charge amount. Become.
 本発明の実施の形態のハイブリッドシステム2、2A、ハイブリッド車両1、1A及びハイブリッドシステムの動力伝達方法によれば、エンジン10の始動時及びアイドリングストップの再始動時に、エンジン10における燃料噴射のタイミングに即座に入ることができて、エンジン10の燃料燃焼による運転が可能となる始動開始までの時間を短縮できる。従って、このハイブリッドシステム2、2Aを搭載したハイブリッド車両1、1Aは迅速に走行状態に移行できるようになり、走行特性を改善できる。 According to the hybrid system 2, 2A, the hybrid vehicle 1, 1A, and the hybrid system power transmission method according to the embodiment of the present invention, the fuel injection timing in the engine 10 is determined when the engine 10 is started and when the idling stop is restarted. It is possible to enter immediately, and the time until the start of the engine 10 that can be operated by fuel combustion can be shortened. Therefore, the hybrid vehicles 1 and 1A equipped with the hybrid systems 2 and 2A can quickly shift to the traveling state, and the traveling characteristics can be improved.
1、1A 車両(ハイブリッド車両:HEV)
2、2A ハイブリッドシステム
10 エンジン(内燃機関)
11 エンジン本体
12 排気通路
13 ターボ過給器
14 排気ガス浄化装置
15 クランク軸
16 CVT(無段変速機構)
17 クランク軸用断接装置
20 電力システム
21 電動発電機(M/G)
22 配線
23 インバータ(INV)
24A 第1バッテリ(B1)
24B 第2バッテリ(B2)
25 DC-DCコンバータ(CON)
26A 冷却ファン(補機)
26B 冷却水ポンプ(補機)
26C 潤滑油ポンプ(補機)
30 動力伝達システム
31 変速機(トランスミッション)
32 推進軸(プロペラシャフト)
33 差動装置(デファレンシャルギア)
34 駆動軸(ドライブシャフト)
35 車輪
40 全体制御装置
41 ハイブリッドシステム用制御装置
Da 第2プーリーの実働直径
De 第1プーリーの実働直径
Na 電動発電機の回転数
Ne エンジンの回転数
Rd CVTの直径比
Rn CVTの回転数比
Ta 電動発電機の駆動力(駆動トルク)
Tea クランク軸に伝達される電動発電機側の駆動力(負荷)
θ クランク軸のクランク角
θ1~θ2 停止範囲
1, 1A vehicle (hybrid vehicle: HEV)
2, 2A Hybrid system 10 Engine (Internal combustion engine)
DESCRIPTION OF SYMBOLS 11 Engine main body 12 Exhaust passage 13 Turbo supercharger 14 Exhaust gas purification apparatus 15 Crankshaft 16 CVT (continuously variable transmission mechanism)
17 Connecting / disconnecting device 20 for crankshaft Electric power system 21 Motor generator (M / G)
22 Wiring 23 Inverter (INV)
24A First battery (B1)
24B Second battery (B2)
25 DC-DC converter (CON)
26A Cooling fan (auxiliary machine)
26B Cooling water pump (auxiliary machine)
26C Lubricating oil pump (auxiliary machine)
30 Power transmission system 31 Transmission
32 Propeller shaft
33 Differential (differential gear)
34 Drive shaft
35 Wheel 40 Overall control device 41 Hybrid system control device Da Second pulley actual working diameter De First pulley actual working diameter Na Motor generator rotational speed Ne Engine rotational speed Rd CVT diameter ratio Rn CVT rotational speed ratio Ta Motor generator drive force (drive torque)
Tea Driving force (load) on the motor generator side transmitted to the crankshaft
θ Crankshaft crank angle θ1 to θ2 Stopping range

Claims (4)

  1.  内燃機関と電動発電機を有するハイブリッドシステムにおいて、
     前記内燃機関のクランク軸に直結して無段変速機構を設け、該無段変速機構に前記電動発電機を連結すると共に、
     前記電動発電機と前記無段変速機構を制御するハイブリッド用制御装置が、前記内燃機関の停止操作時に、前記無段変速機構の前記内燃機関の回転数に対する前記電動発電機の回転数の比である回転数比を小さくして前記クランク軸に加わる負荷を大きくして、前記クランク軸が停止したときのクランク角を予め設定した停止範囲内にする停止制御を行うことを特徴とするハイブリッドシステム。
    In a hybrid system having an internal combustion engine and a motor generator,
    Providing a continuously variable transmission mechanism directly connected to the crankshaft of the internal combustion engine, and connecting the motor generator to the continuously variable transmission mechanism;
    The hybrid control device that controls the motor generator and the continuously variable transmission mechanism has a ratio of the rotational speed of the motor generator to the rotational speed of the internal combustion engine of the continuously variable transmission mechanism when the internal combustion engine is stopped. A hybrid system characterized by performing a stop control to reduce a certain rotation speed ratio to increase a load applied to the crankshaft so that a crank angle when the crankshaft is stopped is within a preset stop range.
  2.  前記ハイブリッド用制御装置が、前記停止制御を、前記電動発電機が発電する電力を充電するバッテリの充電量があらかじめ設定した充電量よりも大きい場合に行なえるように構成されることを特徴とする請求項1に記載のハイブリットシステム。 The hybrid control device is configured to perform the stop control when a charge amount of a battery that charges power generated by the motor generator is larger than a preset charge amount. The hybrid system according to claim 1.
  3.  請求項1又は2に記載のハイブリッドシステムを搭載したことを特徴とするハイブリッド車両。 A hybrid vehicle equipped with the hybrid system according to claim 1 or 2.
  4.  内燃機関と電動発電機を有するハイブリッドシステムの動力伝達方法において、
     前記内燃機関のクランク軸に直結して無段変速機構を介して前記クランク軸と前記電動発電機との間の動力伝達を行うと共に、
     前記内燃機関の停止操作時に、前記無段変速機構の前記内燃機関の回転数に対する前記電動発電機の回転数の比である回転数比を小さくして前記クランク軸に加わる負荷を大きくして、前記クランク軸が停止したときのクランク角を予め設定した停止範囲内にすることを特徴とするハイブリッドシステムの動力伝達方法。
    In a power transmission method of a hybrid system having an internal combustion engine and a motor generator,
    While directly connecting to the crankshaft of the internal combustion engine to transmit power between the crankshaft and the motor generator via a continuously variable transmission mechanism,
    During the stop operation of the internal combustion engine, the rotational speed ratio, which is the ratio of the rotational speed of the motor generator to the rotational speed of the internal combustion engine of the continuously variable transmission mechanism, is reduced to increase the load applied to the crankshaft, A power transmission method for a hybrid system, wherein a crank angle when the crankshaft is stopped is within a preset stop range.
PCT/JP2014/070642 2013-08-09 2014-08-05 Hybrid system, hybrid vehicle, and power transmission method for hybrid system WO2015020061A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480040061.9A CN105392681A (en) 2013-08-09 2014-08-05 Hybrid system, hybrid vehicle, and power transmission method for hybrid system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-166192 2013-08-09
JP2013166192A JP2015033935A (en) 2013-08-09 2013-08-09 Hybrid system, hybrid vehicle and power transmission method for hybrid system

Publications (1)

Publication Number Publication Date
WO2015020061A1 true WO2015020061A1 (en) 2015-02-12

Family

ID=52461392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070642 WO2015020061A1 (en) 2013-08-09 2014-08-05 Hybrid system, hybrid vehicle, and power transmission method for hybrid system

Country Status (3)

Country Link
JP (1) JP2015033935A (en)
CN (1) CN105392681A (en)
WO (1) WO2015020061A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891838B (en) * 2017-07-18 2023-03-14 雅马哈发动机株式会社 Vehicle with a steering wheel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099308A (en) * 1999-09-29 2001-04-10 Mitsubishi Motors Corp Controller for vehicle with continuously variable transmission
JP2013119301A (en) * 2011-12-07 2013-06-17 Daimler Ag Engine stop controller for hybrid electric vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459980B1 (en) * 1999-02-08 2002-10-01 Toyota Jidosha Kabushiki Kaisha Vehicle braked with motor torque and method of controlling the same
JP2004142590A (en) * 2002-10-24 2004-05-20 Toyota Motor Corp Power output unit, control method for the same, and hybrid vehicle
JP4062264B2 (en) * 2003-06-06 2008-03-19 アイシン・エィ・ダブリュ株式会社 Vehicle drive control device, vehicle drive control method, and program
JP2008014146A (en) * 2006-07-03 2008-01-24 Denso Corp Stop control device for internal combustion engine
DE102011056431A1 (en) * 2011-12-14 2013-06-20 Dr. Ing. H.C. F. Porsche Ag Hybrid powertrain for e.g. motor car, has electromotor that is designed as belt starter generator and is connected with combustion engine through belt drive unit which is designed as continuously variable transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099308A (en) * 1999-09-29 2001-04-10 Mitsubishi Motors Corp Controller for vehicle with continuously variable transmission
JP2013119301A (en) * 2011-12-07 2013-06-17 Daimler Ag Engine stop controller for hybrid electric vehicle

Also Published As

Publication number Publication date
JP2015033935A (en) 2015-02-19
CN105392681A (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6390084B2 (en) Hybrid system, hybrid vehicle, and hybrid system control method
US9050974B2 (en) Drive system and method for controlling drive system
JP2002307956A (en) Driving device for vehicle
JP6889580B2 (en) Engine control unit
WO2015020096A1 (en) Hybrid system and method for controlling same
JP2015033971A (en) Hybrid system, hybrid vehicle, and power transmission method of hybrid system
WO2015020097A1 (en) Hybrid system and method for controlling same
WO2015020059A1 (en) Hybrid system, hybrid vehicle, and power transmission method for hybrid system
JP6197464B2 (en) Hybrid system and control method thereof
WO2015020061A1 (en) Hybrid system, hybrid vehicle, and power transmission method for hybrid system
WO2015041330A1 (en) Hybrid system and hybrid vehicle
JP6281206B2 (en) Hybrid system, hybrid vehicle, and power transmission method of hybrid system
JP6264775B2 (en) Hybrid system and control method thereof
JP6197466B2 (en) Hybrid system, hybrid vehicle, and power transmission method of hybrid system
WO2015041331A1 (en) Hybrid system and hybrid vehicle
JP2017140939A (en) Operation control device for vehicle
JP2004176545A (en) Power output device, its control method, and vehicle
JP2015030281A (en) Hybrid system and hybrid vehicle
JP6197465B2 (en) Hybrid system, hybrid vehicle, and power transmission method of hybrid system
JP2015033923A (en) Hybrid system and hybrid vehicle
JP2015033969A (en) Hybrid system and hybrid vehicle
JP6364720B2 (en) Hybrid system, hybrid vehicle, and abnormality diagnosis method for hybrid system
JP2012106598A (en) Hybrid vehicle
JP6263896B2 (en) Hybrid system, hybrid vehicle, and abnormality diagnosis method for hybrid system
JP2022063475A (en) Control device for hybrid vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040061.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601577

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14835118

Country of ref document: EP

Kind code of ref document: A1