JP2015028450A - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
JP2015028450A
JP2015028450A JP2013158286A JP2013158286A JP2015028450A JP 2015028450 A JP2015028450 A JP 2015028450A JP 2013158286 A JP2013158286 A JP 2013158286A JP 2013158286 A JP2013158286 A JP 2013158286A JP 2015028450 A JP2015028450 A JP 2015028450A
Authority
JP
Japan
Prior art keywords
magnetic pole
circumferential direction
portions
magnetic
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013158286A
Other languages
Japanese (ja)
Other versions
JP6070464B2 (en
Inventor
泰行 奥田
Yasuyuki Okuda
泰行 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013158286A priority Critical patent/JP6070464B2/en
Publication of JP2015028450A publication Critical patent/JP2015028450A/en
Application granted granted Critical
Publication of JP6070464B2 publication Critical patent/JP6070464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor in which generation of disturbance in a magnetic flux is suppressed.SOLUTION: A rotor includes a first region (10a) in which a plurality of isomagnetic pole parts (11, 12) with different magnetic poles are alternately arranged in a circumferential direction, and a second region (30a) in which a chipped magnetic pole part (30) is provided. The chipped magnetic pole part consists of two ends (31, 32) and a central part (33) arranged between the two ends. The central part includes a first magnetic pole part (34) consisting of the same magnetic pole as those of the ends, and a second magnetic pole part (35) consisting of a magnetic pole different from those of the ends. The area of the second magnetic pole part is smaller than the area of the first magnetic pole part. Different polarity parts (13, 14) with a magnetic pole different from those of the isomagnetic pole parts are provided in the plurality of isomagnetic pole parts, and the area in the circumferential direction of the different polarity part provided in the isomagnetic pole part gradually becomes smaller as apart from the central part toward the circumferential direction so that magnetic force of the plurality of isomagnetic pole parts gradually gets stronger as apart from the central part toward the circumferential direction.

Description

本発明は、回転軸の周方向に回転する回転体に関するものである。   The present invention relates to a rotating body that rotates in the circumferential direction of a rotating shaft.

従来、例えば特許文献1に示されるように、N極とS極が交互に配列された磁気部材を有する磁気式位置検出装置が提案されている。   Conventionally, as shown in Patent Document 1, for example, a magnetic position detection device having a magnetic member in which N poles and S poles are alternately arranged has been proposed.

特開2006−23179号公報JP 2006-23179 A

上記した磁気部材には、通常、大きさが同一のN極とS極とが交互に配列された第1領域と、第1領域に設けられた磁極よりも大きい磁極部が設けられた第2領域と、がある。第1領域にて形成される磁束が磁気部材の回転角度を検出するのに用いられ、第2領域にて形成される磁束が磁気部材の回転角度の基準位置を検出するのに用いられる。   The above-described magnetic member is usually provided with a first region in which N poles and S poles having the same size are alternately arranged, and a second magnetic pole portion larger than the magnetic pole provided in the first region. There is an area. The magnetic flux formed in the first region is used to detect the rotation angle of the magnetic member, and the magnetic flux formed in the second region is used to detect the reference position of the rotation angle of the magnetic member.

ところで、上記したように第2領域に大きい磁極部が形成されると、その磁極部の磁力が強いために、第2領域の磁極部と隣接する第1領域のN極若しくはS極との間で形成される磁束が乱れる。このような磁束の乱れが生じると、磁気部材の回転角度を高精度に検出することがかなわなくなる虞がある。   By the way, as described above, when a large magnetic pole portion is formed in the second region, the magnetic force of the magnetic pole portion is strong, and therefore, the magnetic pole portion in the second region and the adjacent N pole or S pole in the first region. The magnetic flux formed by is disturbed. When such disturbance of magnetic flux occurs, there is a possibility that the rotation angle of the magnetic member cannot be detected with high accuracy.

そこで、本発明は上記問題点に鑑み、磁束に乱れが生じることが抑制された回転体を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a rotating body in which disturbance of magnetic flux is suppressed.

上記した目的を達成するために、本発明は、自身の中心(RC)を厚さ方向に貫く回転軸の周方向に回転する環状の回転体であって、周方向における横幅が一定の等磁極部(10)と、等磁極部よりも横幅が広い欠け磁極部(30)と、を有し、回転体の外環面は、磁極が異なる複数の等磁極部(11,12)が周方向に交互に配列された第1領域(10a)と、欠け磁極部の形成された第2領域(30a)と、から成り、欠け磁極部は、周方向において隣接する等磁極部とは異なる磁極から成る2つの端部(31,32)と、周方向において2つの端部の間に配置された中央部(33)と、から成り、中央部は、端部と同一の磁極から成る複数の第1磁極部(34)と、端部とは異なる磁極から成る複数の第2磁極部(35)と、を有し、第1磁極部の周方向に沿う面積が、周方向で自身と隣り合う第2磁極部の周方向の面積よりも大きく、中央部の磁極としての性質が、端部および第1磁極部それぞれと同一と成っており、複数の等磁極部の少なくとも2つに、自身とは磁極の異なる異極部(13,14)が設けられ、中央部から周方向に離れるにしたがって複数の等磁極部の磁力が徐々に強まるように、中央部から周方向に離れるにしたがって等磁極部に設けられる異極部の周方向の面積が徐々に小さくなっていることを特徴とする。   In order to achieve the above-described object, the present invention is an annular rotating body that rotates in the circumferential direction of a rotating shaft that passes through its center (RC) in the thickness direction, and has an equal magnetic pole with a constant lateral width in the circumferential direction. And a plurality of equal magnetic pole portions (11, 12) having different magnetic poles in the circumferential direction on the outer ring surface of the rotating body. The first regions (10a) and the second regions (30a) in which the missing magnetic pole portions are formed are alternately arranged, and the missing magnetic pole portions are formed from magnetic poles different from the equimagnetic pole portions adjacent in the circumferential direction. Comprising two end portions (31, 32) and a central portion (33) disposed between the two end portions in the circumferential direction, wherein the central portion includes a plurality of second magnetic poles having the same magnetic pole as the end portion. One magnetic pole part (34) and a plurality of second magnetic pole parts (35) composed of magnetic poles different from the end parts, The area along the circumferential direction of one magnetic pole part is larger than the area in the circumferential direction of the second magnetic pole part adjacent to itself in the circumferential direction, and the properties as the magnetic pole in the central part are the same as the end part and the first magnetic pole part, respectively. And at least two of the plurality of equal magnetic pole portions are provided with different polar portions (13, 14) having different magnetic poles from itself, and the magnetic force of the plurality of equal magnetic pole portions is increased in the circumferential direction from the central portion. The area in the circumferential direction of the different pole part provided in the equal magnetic pole part gradually decreases as the distance from the center part increases in the circumferential direction.

このように本発明によれば、欠け磁極部(30)は、2つの端部(31,32)と、2つの端部(31,32)の間に配置された中央部(33)と、から成る。中央部(33)は、端部(31,32)と同一の磁極から成る複数の第1磁極部(34)と、端部(31,2)とは異なる磁極から成る複数の第2磁極部(35)と、を有する。そして中央部(33)の磁性を端部(31,32)および第1磁極部(34)それぞれと同一とするために、第1磁極部の周方向に沿う面積が、周方向で自身と隣り合う第2磁極部の周方向の面積よりも大きくなっている。   Thus, according to the present invention, the chipped magnetic pole portion (30) includes two end portions (31, 32) and a central portion (33) disposed between the two end portions (31, 32). Consists of. The central portion (33) includes a plurality of first magnetic pole portions (34) composed of the same magnetic pole as the end portions (31, 32) and a plurality of second magnetic pole portions composed of magnetic poles different from the end portions (31, 2). (35). In order to make the magnetism of the central portion (33) the same as that of each of the end portions (31, 32) and the first magnetic pole portion (34), the area along the circumferential direction of the first magnetic pole portion is adjacent to itself in the circumferential direction. It is larger than the area in the circumferential direction of the matching second magnetic pole part.

これによれば、中央部(33)の磁力が弱まり、欠け磁極部(30)の磁力も弱まる。これにより、欠け磁極部(30)のために、欠け磁極部(30)の周囲にて形成される磁束が乱れることが抑制される。この結果、例えば磁気信号を電気信号に変換する検出部(200)などによって、回転体(100)の回転角度を高精度に検出することがかなわなくなることが抑制される。   According to this, the magnetic force of the center part (33) is weakened, and the magnetic force of the chipped magnetic pole part (30) is also weakened. Thereby, the magnetic flux formed around the chipped magnetic pole part (30) is prevented from being disturbed due to the chipped magnetic pole part (30). As a result, for example, the detection unit (200) that converts a magnetic signal into an electrical signal can be prevented from detecting the rotation angle of the rotating body (100) with high accuracy.

なお、上記したように、欠け磁極部(30)の磁力が弱まると、欠け磁極部(30)と周方向で隣接する等磁極部(11)や、それと隣接する等磁極部(12)の磁力が欠け磁極部(30)に対して強まる。そのため、両者の間に形成される磁束に乱れが生じる虞がある。   As described above, when the magnetic force of the chipped magnetic pole portion (30) is weakened, the magnetic force of the equimagnetic pole portion (11) adjacent to the chipped magnetic pole portion (30) in the circumferential direction or the magnetic pole portion (12) adjacent thereto. Becomes stronger with respect to the chipped magnetic pole part (30). Therefore, there is a possibility that the magnetic flux formed between the two may be disturbed.

そこで本発明では、等磁極部(10)に自身とは磁極の異なる異極部(13,14)が設けられており、異極部(13,14)の周方向の面積は、中央部(33)から周方向に離れるにしたがって複数の等磁極部(10)の磁力が徐々に強まるように、中央部(33)から周方向に離れるにしたがって徐々に小さくなっている。これにより、中央部(33)から離れるにしたがって等磁極部(10)の磁力が徐々に強まり、等磁極部(10)と欠け磁極部(30)との磁力差が徐々に大きくなる。この結果、等磁極部(10)と欠け磁極部(30)との間で形成される磁束に乱れが生じることが抑制される。   Therefore, in the present invention, the equal magnetic pole part (10) is provided with different polar parts (13, 14) having different magnetic poles from the self magnetic pole part (10), and the circumferential area of the different polar parts (13, 14) is the central part ( As the magnetic force of the plurality of equal magnetic pole portions (10) gradually increases as the distance from the central portion (33) increases in the circumferential direction, the magnetic field gradually decreases from the central portion (33) in the circumferential direction. As a result, the magnetic force of the equal magnetic pole portion (10) gradually increases as the distance from the central portion (33) increases, and the magnetic force difference between the equal magnetic pole portion (10) and the missing magnetic pole portion (30) gradually increases. As a result, turbulence in the magnetic flux formed between the equal magnetic pole part (10) and the chipped magnetic pole part (30) is suppressed.

中央部の中心を厚さ方向に貫く基準線(BL)を介して、第1磁極部、第2磁極部、端部、および、異極部それぞれが周方向で対称配置された構成が好適である。これによれば、基準線(BL)を介して、第1磁極部(34)、第2磁極部(35)、端部(31,32)、および、異極部(13,14)それぞれが周方向で非対称に配置された構成とは異なり、基準線(BL)を介した周方向の磁界が対称形状を成す。したがって、等磁極部(10)と欠け磁極部(30)との間で形成される磁束に乱れが生じることが抑制され、上記した検出部(200)によって回転体(100)の回転角度を高精度に検出することがかなわなくなることが抑制される。   A configuration in which the first magnetic pole part, the second magnetic pole part, the end part, and the different pole part are symmetrically arranged in the circumferential direction via a reference line (BL) penetrating the center of the central part in the thickness direction is preferable. is there. According to this, the first magnetic pole portion (34), the second magnetic pole portion (35), the end portions (31, 32), and the different pole portions (13, 14) are respectively connected via the reference line (BL). Unlike the configuration arranged asymmetrically in the circumferential direction, the circumferential magnetic field via the reference line (BL) forms a symmetrical shape. Accordingly, the magnetic flux formed between the equal magnetic pole part (10) and the chipped magnetic pole part (30) is prevented from being disturbed, and the rotation angle of the rotating body (100) is increased by the detection part (200). It is suppressed that it becomes impossible to detect accurately.

周方向において端部と隣接する第2磁極部は、基準線側に位置する第2磁極部よりも、周方向の面積が大きく、端部との面積差が小さくなっている。これによれば、端部(31,32)、および、それと隣接する第2磁極部(35)との磁力差が小さくなり、端部(31,32)、および、それと隣接する等磁極部(11)との間で形成される磁束に乱れが生じることが抑制される。   The second magnetic pole portion adjacent to the end portion in the circumferential direction has a larger area in the circumferential direction and a smaller area difference from the end portion than the second magnetic pole portion located on the reference line side. According to this, the magnetic force difference between the end portions (31, 32) and the second magnetic pole portion (35) adjacent to the end portions (31, 32) is reduced, and the end portions (31, 32) and the equal magnetic pole portion (adjacent to the end portions (31, 32) 11) is prevented from being disturbed in the magnetic flux formed between the two.

中央部は、第1磁極部と第2磁極部とが周方向に交互に配列されて成り、基準線から周方向に離れるにしたがって、単位面積当たりに含まれる第2磁極部の面積が徐々に減少し、第1磁極部の面積が徐々に増加する。これによれば、中央部(33)の磁力が基準線BLから周方向に沿って端部(31,32)に向かうにしたがって徐々に増大する。したがって、中央部(33)の磁力が基準線(BL)から周方向に沿って端部(31,32)に向かうにしたがって徐々に減少する構成とは異なり、欠け磁極部(30)と、それと周方向にて隣接する等磁極部(11)との磁極としての境界が明りょうとなり、両者の間に形成される磁束に乱れが生じることが抑制される。   The central portion is formed by alternately arranging the first magnetic pole portion and the second magnetic pole portion in the circumferential direction, and the area of the second magnetic pole portion included per unit area gradually increases as the distance from the reference line in the circumferential direction increases. It decreases, and the area of the first magnetic pole part gradually increases. According to this, the magnetic force of the central portion (33) gradually increases as it goes from the reference line BL toward the end portions (31, 32) along the circumferential direction. Therefore, unlike the configuration in which the magnetic force of the central portion (33) gradually decreases from the reference line (BL) toward the end portions (31, 32) along the circumferential direction, the chipped magnetic pole portion (30), The boundary as a magnetic pole with the equal magnetic pole part (11) adjacent in the circumferential direction becomes clear, and the occurrence of disturbance in the magnetic flux formed between them is suppressed.

中央部の磁極としての性質を、端部および第1磁極部それぞれと同様とするために、全ての第2磁極部それぞれの周方向の面積が、全ての第1磁極部のいずれよりも周方向の面積が小さい。これによれば、第2磁極部(35)の少なくとも1つの面積が、第1磁極部(34)のいずれか1つよりも面積が大きい構成とは異なり、中央部(33)にて局所的に第2磁極部(35)の磁性が強まることが抑制される。   In order to make the properties of the central part as a magnetic pole the same as those of the end part and the first magnetic pole part, the area in the circumferential direction of all of the second magnetic pole parts is more circumferential than any of all of the first magnetic pole parts. The area of is small. According to this, unlike the configuration in which at least one area of the second magnetic pole part (35) is larger than any one of the first magnetic pole parts (34), the area is locally at the central part (33). In addition, the magnetism of the second magnetic pole portion (35) is suppressed from increasing.

なお、特許請求の範囲に記載の請求項、および、課題を解決するための手段それぞれに記載の要素に括弧付きで符号をつけているが、この括弧付きの符号は実施形態に記載の各構成要素との対応関係を簡易的に示すためのものであり、実施形態に記載の要素そのものを必ずしも示しているわけではない。括弧付きの符号の記載は、いたずらに特許請求の範囲を狭めるものではない。   In addition, although the elements described in the claims and the means for solving the problems are attached with parentheses, the parentheses are attached to each component described in the embodiment. This is to simply show the correspondence with the elements, and does not necessarily indicate the elements themselves described in the embodiments. The description of the reference numerals with parentheses does not unnecessarily narrow the scope of the claims.

回転体と検出部の相対位置を概略的に示す斜視図である。It is a perspective view which shows roughly the relative position of a rotary body and a detection part. 検出部にて電気信号に変換された磁束の回転角に対する変動を示すグラフ図である。It is a graph which shows the fluctuation | variation with respect to the rotation angle of the magnetic flux converted into the electrical signal in the detection part. 回転体の外環面の一部を切り取り、平面に展開した展開図である。It is the expanded view which cut off a part of outer ring surface of a rotary body, and expand | deployed on the plane. 図3に示す領域Aの拡大展開図である。FIG. 4 is an enlarged development view of a region A shown in FIG. 3. 異極部を回転体が有さない構成における境界の角度誤差のエアギャップ依存性を示すグラフである。It is a graph which shows the air gap dependence of the angle error of the boundary in the structure which does not have a different pole part in a rotary body. 異極部を回転体が有する構成における境界の角度誤差のエアギャップ依存性を示すグラフである。It is a graph which shows the air gap dependence of the angle error of the boundary in the structure which has a different pole part in a rotary body. 回転体の変形例を示す展開図である。It is an expanded view which shows the modification of a rotary body. 図7に示す領域Aの拡大展開図である。FIG. 8 is an enlarged development view of a region A shown in FIG. 7. 回転体の変形例を示す展開図である。It is an expanded view which shows the modification of a rotary body. 回転体の変形例を示す展開図である。It is an expanded view which shows the modification of a rotary body. 回転体の変形例を示す展開図である。It is an expanded view which shows the modification of a rotary body.

以下、本発明の実施の形態を図に基づいて説明する。
(第1実施形態)
図1〜図6に基づいて、本実施形態に係る回転体を説明する。なお、図1,3,4においては、磁極を明りょうとするために、N極にハッチングを入れている。また図4では、本来であれば図示されないが、欠け磁極部30と紙面右方で隣接する等磁極部11,12を破線で示している。そして以下に示す磁極の異なる等磁極部11,12同士の境界、および、欠け磁極部30と等磁極部10との境界それぞれを、#を用いて示す。例えば5番目の境界を#5と示す。図3に示すように、本実施形態では上記した境界が合計でN個ある。Nは4以上の自然数であり、本実施形態では58である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
Based on FIGS. 1-6, the rotary body which concerns on this embodiment is demonstrated. In FIGS. 1, 3, and 4, the N pole is hatched to clarify the magnetic poles. In FIG. 4, although not shown in the drawing, the equal magnetic pole portions 11 and 12 adjacent to the chipped magnetic pole portion 30 on the right side of the drawing are indicated by broken lines. The boundaries between the equal magnetic pole portions 11 and 12 having different magnetic poles and the boundary between the chipped magnetic pole portion 30 and the equal magnetic pole portion 10 are shown using #. For example, the fifth boundary is indicated as # 5. As shown in FIG. 3, in the present embodiment, there are a total of N boundaries as described above. N is a natural number of 4 or more, and is 58 in this embodiment.

以下においては、回転体100と検出部200それぞれが配置された同一の高さ位置における平面を規定平面、規定平面に直交し、回転体100の回転中心RC(図1に示す×印)を貫く方向を軸方向と示す。また、軸方向の周りの方向を周方向(図1に示す曲線矢印)と示し、軸方向と直交する方向を径方向(例えば図1に示す一点鎖線)と示す。なお、上記した軸方向に沿う回転体100の軸が、特許請求の範囲に記載の回転軸に相当し、軸方向が、特許請求の範囲に記載の厚さ方向に相当する。   In the following, a plane at the same height position where each of the rotator 100 and the detection unit 200 is arranged is a specified plane, orthogonal to the specified plane, and penetrates the center of rotation RC (x mark shown in FIG. 1) of the rotator 100. The direction is indicated as the axial direction. Further, a direction around the axial direction is indicated as a circumferential direction (curved arrow shown in FIG. 1), and a direction orthogonal to the axial direction is indicated as a radial direction (for example, a one-dot chain line shown in FIG. 1). In addition, the axis | shaft of the rotary body 100 along the above-mentioned axial direction is equivalent to the rotating shaft as described in a claim, and an axial direction is equivalent to the thickness direction as described in a claim.

回転体100は、図1に部分的に示すように環状を成し、周方向に回転する。回転体100は、周方向における横幅が一定の等磁極部10と、等磁極部10よりも横幅の広い欠け磁極部30と、を有する。そして図3に示すように、回転体100の外環面は、等磁極部10が形成された第1領域10aと、欠け磁極部30の形成された第2領域30aと、から成る。本実施形態では、第1領域10aの横幅は、回転体100の中心角度で表すと342°であり、第2領域30aの横幅は18°である。上記した領域10a,30aそれぞれを構成する磁極部10,30それぞれの厚さ、すなわち、以下に示す磁極部11〜14,31〜35それぞれの厚さは、回転体100と同一の厚さを有する。したがって、各磁極部11,12,31〜35それぞれの体積(磁力)は、周方向の幅(以下、横幅と示す)によって決定される。   The rotating body 100 has an annular shape as shown in part in FIG. The rotating body 100 includes an equal magnetic pole part 10 having a constant lateral width in the circumferential direction and a chipped magnetic pole part 30 having a wider lateral width than the equal magnetic pole part 10. As shown in FIG. 3, the outer ring surface of the rotator 100 includes a first region 10 a in which the equal magnetic pole portion 10 is formed and a second region 30 a in which the chipped magnetic pole portion 30 is formed. In the present embodiment, the horizontal width of the first region 10a is 342 ° in terms of the central angle of the rotating body 100, and the horizontal width of the second region 30a is 18 °. The thickness of each of the magnetic pole portions 10 and 30 constituting each of the above-described regions 10a and 30a, that is, the thickness of each of the magnetic pole portions 11 to 14 and 31 to 35 shown below has the same thickness as that of the rotating body 100. . Accordingly, the volume (magnetic force) of each of the magnetic pole portions 11, 12, 31 to 35 is determined by the width in the circumferential direction (hereinafter, referred to as a lateral width).

等磁極部10としては、異極の関係にある第1等磁極部11と第2等磁極部12とがあり、周方向にて複数の第1等磁極部11と第2等磁極部12とが交互に配列されている。本実施形態では第1等磁極部11がN極、第2等磁極部12がS極となっており、磁束は第1等磁極部11から第2等磁極部12へと流れる。隣接する等磁極部11,12間の磁束は、半円形の軌跡を描くように流れ、この半円形の軌跡を描く磁束が、回転体100とともに回転する。これにより、図2に示すように、検出部200を透過する磁束の向きが周期的に変化する。   The equal magnetic pole portion 10 includes a first equal magnetic pole portion 11 and a second equal magnetic pole portion 12 having a different polarity, and a plurality of first equal magnetic pole portions 11 and second equal magnetic pole portions 12 in the circumferential direction. Are arranged alternately. In the present embodiment, the first equal magnetic pole portion 11 has an N pole and the second equal magnetic pole portion 12 has an S pole, and the magnetic flux flows from the first equal magnetic pole portion 11 to the second equal magnetic pole portion 12. Magnetic flux between adjacent equal magnetic pole portions 11 and 12 flows so as to draw a semicircular locus, and the magnetic flux that draws this semicircular locus rotates together with the rotating body 100. Thereby, as shown in FIG. 2, the direction of the magnetic flux which permeate | transmits the detection part 200 changes periodically.

検出部200は、第1領域10aにて形成される磁束に基づいて回転体100の回転角を検出し、第2領域30aにて形成される磁束に基づいて回転体100の回転角度の基準位置を検出する。検出部200は、磁束の向きの周期的な変化を電気信号に変換し、その変換した電気信号と閾値とを比較する。そしてその比較結果に応じて、変換した電気信号をパルス信号に変換する。このパルス信号のパルスの立ち上がりエッジ、若しくは、立ち下がりエッジが、隣接する等磁極部11,12の境界、および、欠け磁極部30と等磁極部10(第1等磁極部11)との境界に相当する。本実施形態では、等磁極部11,12それぞれを合わせると57個あり、これらの横幅は、回転体100の中心角度で表すと6°である。   The detection unit 200 detects the rotation angle of the rotating body 100 based on the magnetic flux formed in the first region 10a, and the reference position of the rotation angle of the rotating body 100 based on the magnetic flux formed in the second region 30a. Is detected. The detection unit 200 converts a periodic change in the direction of the magnetic flux into an electric signal, and compares the converted electric signal with a threshold value. Then, the converted electrical signal is converted into a pulse signal according to the comparison result. The rising edge or falling edge of the pulse of this pulse signal is at the boundary between adjacent equal magnetic pole portions 11 and 12, and the boundary between the missing magnetic pole portion 30 and the equal magnetic pole portion 10 (first equal magnetic pole portion 11). Equivalent to. In the present embodiment, the equal magnetic pole portions 11 and 12 are 57 in total, and the lateral width thereof is 6 ° in terms of the central angle of the rotating body 100.

欠け磁極部30は、周方向において隣接する等磁極部(第1等磁極部11)とは異なる磁極から成る2つの端部31,32と、周方向において2つの端部31,32の間に配置された中央部33と、から成る。中央部33は、端部31,32と同一の磁極から成る第1磁極部34と、端部31,32とは異なる磁極から成る第2磁極部35と、を有する。図3および図4に示すように、磁極部34,35それぞれは厚さが一定の矩形を成し、周方向にて交互に配列され、ストライプ形状を成している。なお、第1磁極部34の周方向に沿う面積が、周方向で自身と隣り合う第2磁極部35の周方向の面積よりも大きくなっているため、中央部33の磁極としての性質は、端部31,32および第1磁極部34それぞれと同様である。本実施形態では、全ての第2磁極部35の合計の面積が、全ての第1磁極部34の合計の面積よりも小さく、全ての第2磁極部35それぞれの面積は、全ての第1磁極部34のいずれよりも面積が小さくなっている。   The chipped magnetic pole portion 30 is formed between two end portions 31 and 32 made of magnetic poles different from the equimagnetic pole portion (first equimagnetic pole portion 11) adjacent in the circumferential direction and between the two end portions 31 and 32 in the circumferential direction. And a central portion 33 arranged. The central portion 33 includes a first magnetic pole portion 34 made of the same magnetic pole as the end portions 31 and 32, and a second magnetic pole portion 35 made of a magnetic pole different from the end portions 31 and 32. As shown in FIGS. 3 and 4, the magnetic pole portions 34 and 35 each have a rectangular shape with a constant thickness, and are alternately arranged in the circumferential direction to form a stripe shape. In addition, since the area along the circumferential direction of the first magnetic pole portion 34 is larger than the area in the circumferential direction of the second magnetic pole portion 35 adjacent to itself in the circumferential direction, the property of the central portion 33 as the magnetic pole is This is the same as each of the end portions 31 and 32 and the first magnetic pole portion 34. In the present embodiment, the total area of all the second magnetic pole portions 35 is smaller than the total area of all the first magnetic pole portions 34, and the area of each of all the second magnetic pole portions 35 is all the first magnetic pole portions 35. The area is smaller than any of the portions 34.

本実施形態では、中央部33にて形成される磁束を均一とするために、すべての第1磁極部34の横幅L1が互いに相等しく、すべての第2磁極部35の横幅L2が互いに相等しくなっている。第1磁極部34の横幅L1は、回転体100の中心角度で表すと1.25°であり、第2磁極部35の横幅L2は0.5°である。そして第1磁極部34は6つあるので、その合計の面積は6×1.25°(7.50°)に比例し、第2磁極部35は7つあるので、その合計の面積は7×0.50°(3.50°)に比例する。第2磁極部35の横幅L2は第1磁極部34の横幅L1の0.4〜0.7倍の関係にあり、全ての第2磁極部35の横幅の合計は、全ての第1磁極部34と端部31,32の合計の横幅の0.18〜0.33倍の関係にある。すなわち、欠け磁極部30におけるS極の割合が67〜82%であり、N極の割合が18〜33%の関係にある。なお、中央部33の横幅L5は11.00°である。   In the present embodiment, in order to make the magnetic flux formed at the central portion 33 uniform, the lateral widths L1 of all the first magnetic pole portions 34 are equal to each other, and the lateral widths L2 of all the second magnetic pole portions 35 are equal to each other. It has become. The horizontal width L1 of the first magnetic pole portion 34 is 1.25 ° in terms of the center angle of the rotating body 100, and the horizontal width L2 of the second magnetic pole portion 35 is 0.5 °. Since there are six first magnetic pole portions 34, the total area is proportional to 6 × 1.25 ° (7.50 °), and since there are seven second magnetic pole portions 35, the total area is 7 X Proportional to 0.50 ° (3.50 °). The lateral width L2 of the second magnetic pole portion 35 is 0.4 to 0.7 times the lateral width L1 of the first magnetic pole portion 34, and the sum of the lateral widths of all the second magnetic pole portions 35 is all the first magnetic pole portions. 34 and the end portions 31 and 32 have a relationship of 0.18 to 0.33 times the total lateral width. That is, the ratio of the S pole in the chipped magnetic pole part 30 is 67 to 82%, and the ratio of the N pole is 18 to 33%. The lateral width L5 of the central portion 33 is 11.00 °.

また、端部31,32それぞれの横幅L3,L4は、磁極部34,35にて形成される磁束よりも端部31,32にて形成される磁束を強めるために、磁極部34,35それぞれの横幅L1,L2よりも広くなっている。そして、端部31,32の横幅L3,L4が互いに等しくなっている。端部31,32それぞれの横幅L3,L4は、回転体100の中心角度で表すと3.40°であり、横幅L3,L4は、欠け磁極部30の横幅の0.14〜0.25倍である。   Further, the lateral widths L3 and L4 of the end portions 31 and 32 are respectively set so that the magnetic flux portions 34 and 35 are stronger than the magnetic fluxes formed by the magnetic pole portions 34 and 35, respectively. Are wider than the horizontal widths L1 and L2. The lateral widths L3 and L4 of the end portions 31 and 32 are equal to each other. The lateral widths L3 and L4 of the end portions 31 and 32 are 3.40 ° in terms of the center angle of the rotating body 100, and the lateral widths L3 and L4 are 0.14 to 0.25 times the lateral width of the chipped magnetic pole portion 30. It is.

次に、本実施形態に係る回転体100の特徴点を説明する。図3および図4に示すように、複数の等磁極部11,12の少なくとも2つに、自身とは磁極の異なる異極部13,14が設けられている。本実施形態では、欠け磁極部30と周方向にて隣接する2つの第1等磁極部11それぞれに1つの第1異極部13が形成され、その第1等磁極部11と周方向にて隣接する2つの第2等磁極部12それぞれに1つの第2異極部14が形成されている。上記したように、等磁極部11,12は互いに横幅L1,L2が相等しく、その面積も相等しいが、異極部13,14は互いに横幅L6,L7が相異なり、その面積も相異なる。これは、中央部33から周方向に離れるにしたがって等磁極部11,12の磁力が徐々に強まるようにするためであり、横幅L6は横幅L7よりも広く、第1異極部13は第2異極部14よりも面積が大きくなっている。このような構成とすることで、等磁極部11,12に設けられる異極部13,14の面積が、中央部33から周方向に離れるにしたがって徐々に小さくなっている。第1異極部13の横幅L6は0.5°であり、第2異極部14の横幅L7は0.4°である。1つの等磁極部11,12に形成される異極部13,14それぞれの横幅は、等磁極部11,12それぞれの横幅の0.03〜0.20倍である。また、欠け磁極部30へ影響し、欠け磁極部30から周方向に離れた等磁極部11,12への影響を抑えるために、異極部13,14それぞれは、等磁極部11,12が有する周方向の2つの端部の内、欠け磁極部30側の端部からその中央までの間に形成されている。具体的に言えば、異極部13,14それぞれは、等磁極部11,12の欠け磁極部30側の端部から、等磁極部11,12の横幅の0.20〜0.40倍だけ離れた位置に形成されている。なお、本実施形態では、図3および図4に示すように、中央部33の中心を軸方向に貫く基準線BLを介して、磁極部34,35、端部31,32、および、異極部13,14それぞれが周方向で対称配置されている。   Next, feature points of the rotating body 100 according to the present embodiment will be described. As shown in FIGS. 3 and 4, at least two of the plurality of equal magnetic pole portions 11 and 12 are provided with different pole portions 13 and 14 having different magnetic poles from the same. In the present embodiment, one first different pole portion 13 is formed in each of the two first equal magnetic pole portions 11 adjacent to the chipped magnetic pole portion 30 in the circumferential direction, and in the circumferential direction with the first equal magnetic pole portion 11. One second different pole portion 14 is formed in each of two adjacent second equal magnetic pole portions 12. As described above, the equal magnetic pole portions 11 and 12 have the same widths L1 and L2 and the same area, but the different pole portions 13 and 14 have the same widths L6 and L7, and the areas are also different. This is so that the magnetic force of the equal magnetic pole portions 11 and 12 gradually increases as the distance from the central portion 33 in the circumferential direction increases. The lateral width L6 is wider than the lateral width L7, and the first different pole portion 13 is the second The area is larger than that of the different pole portion 14. With such a configuration, the areas of the different pole portions 13 and 14 provided in the equal magnetic pole portions 11 and 12 are gradually reduced as they are separated from the central portion 33 in the circumferential direction. The lateral width L6 of the first different pole portion 13 is 0.5 °, and the lateral width L7 of the second different pole portion 14 is 0.4 °. The width of each of the different pole portions 13 and 14 formed in one of the equal magnetic pole portions 11 and 12 is 0.03 to 0.20 times the width of each of the equal magnetic pole portions 11 and 12. Further, in order to suppress the influence on the equal magnetic pole portions 11 and 12 that affect the chipped magnetic pole portion 30 and are separated from the chipped magnetic pole portion 30 in the circumferential direction, the different magnetic pole portions 13 and 14 have the same magnetic pole portions 11 and 12 respectively. Of the two end portions in the circumferential direction, it is formed between the end portion on the chipped magnetic pole portion 30 side and the center thereof. Specifically, each of the different pole portions 13 and 14 is 0.20 to 0.40 times the lateral width of the equal magnetic pole portions 11 and 12 from the end of the equal magnetic pole portions 11 and 12 on the chipped magnetic pole portion 30 side. It is formed at a distant position. In the present embodiment, as shown in FIGS. 3 and 4, the magnetic pole portions 34 and 35, the end portions 31 and 32, and the different polarities are provided via a reference line BL passing through the center of the central portion 33 in the axial direction. Each of the parts 13 and 14 is symmetrically arranged in the circumferential direction.

以下、回転体100の作用効果を説明する。上記したように、欠け磁極部30は、2つの端部31,32と、2つの端部31,32の間に配置された中央部33と、から成る。中央部33は、端部31,32と同一の磁極から成る複数の第1磁極部34と、端部31,2とは異なる磁極から成る複数の第2磁極部35と、を有する。そして中央部33の磁性を端部31,32および第1磁極部34それぞれと同一とするために、第1磁極部34の周方向に沿う面積が、周方向で自身と隣り合う第2磁極部35の周方向の面積よりも大きくなっている。   Hereinafter, the function and effect of the rotating body 100 will be described. As described above, the chipped magnetic pole portion 30 includes the two end portions 31 and 32 and the central portion 33 disposed between the two end portions 31 and 32. The central portion 33 has a plurality of first magnetic pole portions 34 made of the same magnetic poles as the end portions 31 and 32 and a plurality of second magnetic pole portions 35 made of magnetic poles different from the end portions 31 and 2. In order to make the magnetism of the central portion 33 the same as that of each of the end portions 31 and 32 and the first magnetic pole portion 34, the area along the circumferential direction of the first magnetic pole portion 34 is adjacent to itself in the circumferential direction. It is larger than the area of 35 in the circumferential direction.

これによれば、中央部33の磁力が弱まり、欠け磁極部30の磁力も弱まる。これにより、欠け磁極部30のために、欠け磁極部30の周囲にて形成される磁束が乱れることが抑制される。この結果、例えば本実施形態で示した検出部200などによって、回転体100の回転角度を高精度に検出することがかなわなくなることが抑制される。   According to this, the magnetic force of the central portion 33 is weakened, and the magnetic force of the chipped magnetic pole portion 30 is also weakened. Thereby, the magnetic flux formed around the chipped magnetic pole part 30 due to the chipped magnetic pole part 30 is suppressed from being disturbed. As a result, for example, the detection unit 200 shown in the present embodiment can prevent the rotation angle of the rotating body 100 from being detected with high accuracy.

なお、上記したように、欠け磁極部30の磁力が弱まると、欠け磁極部30と周方向で隣接する等磁極部11や、それと隣接する等磁極部12の磁力が欠け磁極部30に対して強まる。そのため、両者の間に形成される磁束に乱れが生じる虞がある。   As described above, when the magnetic force of the chipped magnetic pole part 30 is weakened, the magnetic force of the equimagnetic pole part 11 adjacent to the chipped magnetic pole part 30 in the circumferential direction and the magnetic pole part 12 adjacent to the chipped magnetic pole part 30 are Strengthen. Therefore, there is a possibility that the magnetic flux formed between the two may be disturbed.

図5に、本実施形態とは異なり、異極部13,14が回転体100に形成されていない場合における境界#N−2,#N−1,#N,#1,#2,#3それぞれの角度誤差と、回転体100と検出部200との離間距離(エアギャップ)との関係を、実線、破線、一点鎖線、二点鎖線、太線、太破線で示す。欠け磁極部30と、それと隣接する第1等磁極部11との境界は、#Nと#1である。そして、その第1等磁極部11と隣接する第2等磁極部12との境界は、#N−1と#2である。また、その第2等磁極部12と隣接する第1等磁極部11との境界は、#N−2と#3である。この欠け磁極部30の近傍に位置する境界#N−2,#N−1,#N,#1,#2,#3の磁束が、主として欠け磁極部30の影響を受ける。他の等磁極部11,12の境界#4〜#N−3にて形成される磁束は、それほど欠け磁極部30の影響を受けず、上記したエアギャップに対して角度誤差が小さい。しかしながら、図5に示すように、境界#N−2,#N−1,#N,#1,#2,#3それぞれは欠け磁極部30の影響を少なからず受けるため、エアギャップに対して角度誤差が生じる。異極部13,14が回転体100に形成されていないために、磁力のバランスが整わず、各境界にて角度誤差が生じるのである。   In FIG. 5, unlike the present embodiment, boundaries # N−2, # N−1, #N, # 1, # 2, and # 3 when the different pole portions 13 and 14 are not formed on the rotating body 100 are shown. The relationship between each angle error and the separation distance (air gap) between the rotating body 100 and the detection unit 200 is indicated by a solid line, a broken line, a one-dot chain line, a two-dot chain line, a thick line, and a thick broken line. The boundary between the chipped magnetic pole part 30 and the first equal magnetic pole part 11 adjacent thereto is #N and # 1. The boundaries between the first equal magnetic pole part 11 and the adjacent second equal magnetic pole part 12 are # N-1 and # 2. The boundary between the second equal magnetic pole part 12 and the adjacent first equal magnetic pole part 11 is # N-2 and # 3. Magnetic fluxes at the boundaries # N−2, # N−1, #N, # 1, # 2, and # 3 located in the vicinity of the chipped magnetic pole part 30 are mainly affected by the chipped magnetic pole part 30. Magnetic fluxes formed at the boundaries # 4 to # N-3 of the other equal magnetic pole portions 11 and 12 are not so affected by the missing magnetic pole portion 30 and have a small angle error with respect to the air gap. However, as shown in FIG. 5, each of the boundaries # N−2, # N−1, #N, # 1, # 2, and # 3 is affected by the chipped magnetic pole portion 30 to some extent. An angular error occurs. Since the different pole portions 13 and 14 are not formed on the rotating body 100, the balance of magnetic force is not adjusted, and an angle error occurs at each boundary.

これに対して、本実施形態に記載の回転体100では、等磁極部10に自身とは磁極の異なる異極部13,14が設けられており、異極部13,14の面積は、中央部33から周方向に離れるにしたがって徐々に小さくなっている。これにより、中央部33から離れるにしたがって等磁極部11,12の磁力が徐々に強まり、等磁極部11,12と欠け磁極部30との磁力差が徐々に大きくなっている。そのため、図6に示すように、磁力のバランスが整い、境界#N−2,#N−1,#N,#1,#2,#3にて生じる角度誤差が低減される。この結果、等磁極部11,12と欠け磁極部30との間で形成される磁束に乱れが生じることが抑制される。   On the other hand, in the rotating body 100 described in the present embodiment, the uniform magnetic pole portion 10 is provided with the different polar portions 13 and 14 having different magnetic poles from the same magnetic pole portion 10. As the distance from the portion 33 in the circumferential direction is gradually decreased. As a result, the magnetic force of the equal magnetic pole portions 11 and 12 gradually increases as the distance from the central portion 33 increases, and the magnetic force difference between the equal magnetic pole portions 11 and 12 and the chipped magnetic pole portion 30 gradually increases. Therefore, as shown in FIG. 6, the magnetic force is balanced, and the angle error generated at the boundaries # N−2, # N−1, #N, # 1, # 2, and # 3 is reduced. As a result, turbulence in the magnetic flux formed between the equal magnetic pole portions 11 and 12 and the chipped magnetic pole portion 30 is suppressed.

基準線BLを介して、磁極部34,35、端部31,32、および、異極部13,14それぞれが周方向で対称配置されている。これによれば、基準線BLを介して、磁極部、端部、および、異極部それぞれが周方向で非対称に配置された構成とは異なり、基準線BLを介した周方向の磁界が対称形状を成す。したがって、等磁極部10と欠け磁極部30との間で形成される磁束に乱れが生じることが抑制され、上記した検出部200によって回転体100の回転角度を高精度に検出することがかなわなくなることが抑制される。   The magnetic pole portions 34 and 35, the end portions 31 and 32, and the different pole portions 13 and 14 are arranged symmetrically in the circumferential direction via the reference line BL. According to this, the magnetic field in the circumferential direction via the reference line BL is symmetric, unlike the configuration in which the magnetic pole part, the end part, and the different pole part are arranged asymmetrically in the circumferential direction via the reference line BL. Form the shape. Therefore, the magnetic flux formed between the equal magnetic pole part 10 and the chipped magnetic pole part 30 is prevented from being disturbed, and the detection part 200 cannot detect the rotation angle of the rotating body 100 with high accuracy. It is suppressed.

全ての第2磁極部35それぞれの面積が、全ての第1磁極部34のいずれよりも面積が小さい。これによれば、第2磁極部の少なくとも1つの面積が、第1磁極部のいずれか1つよりも面積が大きい構成とは異なり、中央部33にて局所的に第2磁極部35の磁性が強まることが抑制される。   The area of each of the second magnetic pole portions 35 is smaller than that of all of the first magnetic pole portions 34. According to this, unlike the configuration in which at least one area of the second magnetic pole part is larger than any one of the first magnetic pole parts, the magnetic property of the second magnetic pole part 35 locally at the central part 33. Is suppressed from strengthening.

また、磁極部34,35それぞれは厚さが一定の矩形を成し、周方向にて交互に配列されている。すなわち、磁極部34,35それぞれはストライプ形状を成している。これによれば、中央部33が、磁極が異なり、厚さの不均一な三角形や台形などの磁極部で構成される場合とは異なり、横幅を調整するだけで、中央部33にて形成される磁束を調整することができる。   The magnetic pole portions 34 and 35 each have a rectangular shape with a constant thickness, and are alternately arranged in the circumferential direction. That is, each of the magnetic pole portions 34 and 35 has a stripe shape. According to this, the central portion 33 is formed at the central portion 33 only by adjusting the lateral width, unlike the case where the magnetic portion has a different magnetic pole and is formed of a magnetic pole portion such as a triangle or a trapezoid having a non-uniform thickness. Magnetic flux can be adjusted.

端部31,32の横幅L3,L4は、磁極部34,35それぞれの横幅L1,L2よりも広い。これによれば、端部の横幅が磁極部の横幅よりも狭い構成とは異なり、端部31,32と、それと隣接する第1等磁極部11とによって形成される磁束が、周方向で隣接する等磁極部11,12同士によって形成される磁束に近づけることができる。これにより、上記した検出部200によって回転体100の回転角度を高精度に検出することがかなわなくなることが抑制される。   The lateral widths L3 and L4 of the end portions 31 and 32 are wider than the lateral widths L1 and L2 of the magnetic pole portions 34 and 35, respectively. According to this, unlike the configuration in which the lateral width of the end portion is narrower than the lateral width of the magnetic pole portion, the magnetic flux formed by the end portions 31 and 32 and the first equal magnetic pole portion 11 adjacent thereto is adjacent in the circumferential direction. It is possible to approach the magnetic flux formed by the equal magnetic pole portions 11 and 12. Accordingly, it is possible to prevent the detection unit 200 from detecting the rotation angle of the rotating body 100 with high accuracy.

中央部33にて形成される磁束を均一とするために、すべての第1磁極部34の横幅L1が互いに相等しく、すべての第2磁極部35の横幅L2が互いに相等しい。これによれば、すべての第1磁極部の横幅が互いに相異なり、すべての第2磁極部の横幅が互いに相異なる構成とは異なり、中央部33にて形成される磁束が均一となる。これにより、局所的な磁束乱れのために、回転体100の回転角度を高精度に検出することがかなわなくなることが抑制される。   In order to make the magnetic flux formed at the central portion 33 uniform, the lateral widths L1 of all the first magnetic pole portions 34 are equal to each other, and the lateral widths L2 of all the second magnetic pole portions 35 are equal to each other. According to this, unlike the configuration in which the widths of all the first magnetic pole portions are different from each other and the widths of all the second magnetic pole portions are different from each other, the magnetic flux formed in the central portion 33 is uniform. Thereby, it is suppressed that it becomes impossible to detect the rotation angle of the rotating body 100 with high accuracy due to local magnetic flux disturbance.

以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本実施形態では、等磁極部11,12それぞれを合わせると57個あり、境界が58個である例を示した。しかしながら、等磁極部11,12それぞれを合わせた数としては3個以上であり、境界の数としては4以上であれば良い。   In the present embodiment, there are 57 examples in which the equal magnetic pole portions 11 and 12 are combined, and there are 58 boundaries. However, the total number of the equal magnetic pole portions 11 and 12 is three or more, and the number of boundaries may be four or more.

本実施形態では、第1領域10aの横幅は回転体100の中心角度で表すと342°であり、第2領域30aの横幅は18°である例を示した。しかしながら、第1領域10aは第2領域30aよりも横幅が長ければ良く、上記例に限定されない。   In the present embodiment, the horizontal width of the first region 10a is 342 ° in terms of the central angle of the rotating body 100, and the horizontal width of the second region 30a is 18 °. However, the first region 10a only needs to have a longer width than the second region 30a, and is not limited to the above example.

本実施形態では、等磁極部11,12それぞれの横幅は回転体100の中心角度で表すと6°である例を示した。しかしながら等磁極部11,12それぞれの横幅としては上記例に限定されず、例えば5°でも良い。なお、第2領域30aは等磁極部10よりも横幅が長い。   In the present embodiment, an example in which the horizontal width of each of the equal magnetic pole portions 11 and 12 is 6 ° in terms of the central angle of the rotating body 100 has been described. However, the width of each of the equal magnetic pole portions 11 and 12 is not limited to the above example, and may be 5 °, for example. The second region 30 a has a longer width than the equimagnetic pole portion 10.

本実施形態では、磁極部34,35それぞれは厚さが一定の矩形を成し、周方向にて交互に配列されている例を示した。しかしながら、磁極部34,35の形状、および、その配列としては上記例に限定されず、中央部33の磁極としての性質が端部31,32および第1磁極部34それぞれと同様となれば良い。   In the present embodiment, an example is shown in which the magnetic pole portions 34 and 35 each have a rectangular shape with a constant thickness and are alternately arranged in the circumferential direction. However, the shape and arrangement of the magnetic pole portions 34 and 35 are not limited to the above example, and the properties of the central portion 33 as the magnetic pole may be the same as those of the end portions 31 and 32 and the first magnetic pole portion 34. .

本実施形態では、第1磁極部34の横幅L1は1.25°であり、第2磁極部35の横幅L2は0.5°である例を示した。しかしながら、横幅L1は横幅L2よりも広ければ良く、上記例に限定されない。より好ましくは、第2磁極部35の横幅L2は第1磁極部34の横幅L1の0.4〜0.7倍の関係にあると良い。   In this embodiment, the lateral width L1 of the first magnetic pole portion 34 is 1.25 °, and the lateral width L2 of the second magnetic pole portion 35 is 0.5 °. However, the width L1 is not limited to the above example as long as it is wider than the width L2. More preferably, the lateral width L2 of the second magnetic pole part 35 is in a relationship of 0.4 to 0.7 times the lateral width L1 of the first magnetic pole part 34.

本実施形態では、第1磁極部34は6つあり、第2磁極部35は7つある例を示した。しかしながら、全ての第2磁極部35の合計の面積が、全ての第1磁極部34の合計の面積よりも小さければ良く、磁極部34,35それぞれの数としては上記例に限定されない。より好ましくは、全ての第2磁極部35の横幅の合計は、全ての第1磁極部34と端部31,32の合計の横幅の0.18〜0.33倍の関係にあると良い。   In the present embodiment, an example in which there are six first magnetic pole portions 34 and seven second magnetic pole portions 35 is shown. However, the total area of all the second magnetic pole portions 35 only needs to be smaller than the total area of all the first magnetic pole portions 34, and the number of magnetic pole portions 34 and 35 is not limited to the above example. More preferably, the total lateral width of all the second magnetic pole portions 35 is in a relationship of 0.18 to 0.33 times the total lateral width of all the first magnetic pole portions 34 and the end portions 31 and 32.

本実施形態では、欠け磁極部30におけるS極の割合が67〜82%であり、N極の割合が18〜33%の関係にある例を示した。しかしながらこれとは逆に、欠け磁極部30におけるN極の割合が67〜82%であり、S極の割合が18〜33%の関係でも良い。この場合、図7および図8に示すように、端部31,32および第1磁極部34それぞれがN極となり、第2磁極部35がS極となる。また、欠け磁極部30と周方向で隣接する等磁極部(第1等磁極部11)がS極となり、これと隣接する等磁極部(第2等磁極部12)がN極となる。更に、第1異極部13がN極となり、第2異極部14がS極となる。   In the present embodiment, the example in which the ratio of the S pole in the chipped magnetic pole part 30 is 67 to 82% and the ratio of the N pole is 18 to 33% is shown. However, conversely, the ratio of the N pole in the chipped magnetic pole part 30 may be 67 to 82%, and the ratio of the S pole may be 18 to 33%. In this case, as shown in FIGS. 7 and 8, each of the end portions 31 and 32 and the first magnetic pole portion 34 is an N pole, and the second magnetic pole portion 35 is an S pole. Further, the equimagnetic pole portion (first equimagnetic pole portion 11) adjacent to the chipped magnetic pole portion 30 in the circumferential direction becomes the S pole, and the equimagnetic pole portion (second equimagnetic pole portion 12) adjacent thereto becomes the N pole. Further, the first different pole portion 13 becomes the N pole, and the second different pole portion 14 becomes the S pole.

本実施形態では、端部31,32の横幅L3,L4が互いに相等しい例を示した。しかしながら、端部31,32の横幅L3,L4が互いに相異なる構成を採用することもできる。ただし、横幅L3,L4は、欠け磁極部30の横幅の0.14〜0.25倍の関係にあると良い。   In the present embodiment, an example in which the lateral widths L3 and L4 of the end portions 31 and 32 are equal to each other is shown. However, it is possible to adopt a configuration in which the lateral widths L3 and L4 of the end portions 31 and 32 are different from each other. However, the lateral widths L3 and L4 are preferably in a relationship of 0.14 to 0.25 times the lateral width of the chipped magnetic pole part 30.

本実施形態では、欠け磁極部30と周方向にて隣接する2つの第1等磁極部11それぞれに1つの第1異極部13が形成され、その第1等磁極部11と周方向にて隣接する2つの第2等磁極部12それぞれに1つの第2異極部14が形成されている例を示した。しかしながら、少なくとも欠け磁極部30と周方向にて隣接する2つの第1等磁極部11それぞれに第1異極部13が形成されていればよく、その第1等磁極部11と周方向にて隣接する2つの第2等磁極部12それぞれに第2異極部14が形成されていなくとも良い。また、図9および図10に示すように、第1等磁極部11に形成される第1異極部13の数や、第2等磁極部12に形成される第2異極部14の数それぞれも限定されない。中央部33から周方向に離れるにしたがって等磁極部11,12の磁力が徐々に強まるように、中央部33から周方向に離れるにしたがって異極部13,14それぞれの面積が徐々に小さくなっていれば良い。図9では、欠け磁極部30と周方向にて隣接する2つの第1等磁極部11それぞれに2つの第1異極部13が形成され、その第1等磁極部11と周方向にて隣接する2つの第2等磁極部12それぞれに1つの第2異極部14が形成されている。また図10では、欠け磁極部30と周方向にて隣接する2つの第1等磁極部11それぞれに1つの第1異極部13が形成され、その第1等磁極部11と周方向にて隣接する2つの第2等磁極部12それぞれに2つの第2異極部14が形成されている。図9および図10いずれの構成においても、第1異極部13の合計の面積は、第2異極部14の合計の面積よりも大きくなっている。なお、もちろんではあるが、境界#N−3、N−2を形成する第1等磁極部11や、境界#3、#4を形成する第1等磁極部11に第1異極部13が形成された構成などを採用することもできる。   In the present embodiment, one first different pole portion 13 is formed in each of the two first equal magnetic pole portions 11 adjacent to the chipped magnetic pole portion 30 in the circumferential direction, and in the circumferential direction with the first equal magnetic pole portion 11. An example is shown in which one second different pole portion 14 is formed in each of two adjacent second equal magnetic pole portions 12. However, it is only necessary that the first different pole portion 13 is formed in each of the two first equal magnetic pole portions 11 adjacent to the chipped magnetic pole portion 30 in the circumferential direction. The second different pole portion 14 may not be formed in each of the two adjacent second equal magnetic pole portions 12. Further, as shown in FIGS. 9 and 10, the number of first different pole portions 13 formed in the first equal magnetic pole portion 11 and the number of second different pole portions 14 formed in the second equal magnetic pole portion 12. Each is not limited. As the magnetic force of the equal magnetic pole portions 11 and 12 gradually increases as the distance from the central portion 33 increases in the circumferential direction, the areas of the different polar portions 13 and 14 gradually decrease as the distance from the central portion 33 increases in the circumferential direction. Just do it. In FIG. 9, two first different magnetic pole portions 13 are formed in each of the two first equal magnetic pole portions 11 adjacent to the chipped magnetic pole portion 30 in the circumferential direction, and adjacent to the first equal magnetic pole portion 11 in the circumferential direction. One second different pole portion 14 is formed in each of the two second equal magnetic pole portions 12. Further, in FIG. 10, one first different pole portion 13 is formed in each of two first equal magnetic pole portions 11 adjacent to the chipped magnetic pole portion 30 in the circumferential direction. Two second different pole portions 14 are formed in each of two adjacent second equal magnetic pole portions 12. 9 and 10, the total area of the first different pole portion 13 is larger than the total area of the second different pole portion 14. Needless to say, the first different pole portion 13 is formed on the first equal magnetic pole portion 11 that forms the boundaries # N-3 and N-2 and the first equal magnetic pole portion 11 that forms the boundaries # 3 and # 4. A formed configuration or the like can also be employed.

本実施形態では、第1異極部13の横幅L6は0.5°であり、第2異極部14の横幅L7は0.4°である例を示した。しかしながら、1つの等磁極部11,12に形成される異極部13,14それぞれの合計の横幅としては上記例に限定されず、等磁極部11,12それぞれの横幅の0.03〜0.20倍であれば良い。   In the present embodiment, the lateral width L6 of the first different pole portion 13 is 0.5 °, and the lateral width L7 of the second different pole portion 14 is 0.4 °. However, the total lateral width of the different pole portions 13 and 14 formed in one equal magnetic pole portion 11 and 12 is not limited to the above example, and the width of each of the equal magnetic pole portions 11 and 12 is 0.03 to 0. It may be 20 times.

本実施形態では、基準線BLを介して、磁極部34,35、端部31,32、および、異極部13,14それぞれが周方向で対称配置された構成を示した。しかしながら、基準線BLを介して、磁極部34,35、端部31,32、および、異極部13,14それぞれが周方向で非対称に配置された構成を採用することもできる。   In the present embodiment, the configuration in which the magnetic pole portions 34 and 35, the end portions 31 and 32, and the different polar portions 13 and 14 are symmetrically arranged in the circumferential direction via the reference line BL is shown. However, it is also possible to employ a configuration in which the magnetic pole portions 34 and 35, the end portions 31 and 32, and the different polar portions 13 and 14 are arranged asymmetrically in the circumferential direction via the reference line BL.

本実施形態では、中央部33にて形成される磁束を均一とするために、すべての第1磁極部34の横幅L1が互いに相等しく、すべての第2磁極部35の横幅L2が互いに相等しい例を示した。しかしながら、すべての第1磁極部34の横幅L1が互いに異なり、すべての第2磁極部35の横幅L2が互いに異なる構成を採用することもできる。若しくは、すべての第1磁極部34の内の少なくとも1組の横幅L1が互いに異なり、すべての第2磁極部35の内の少なくとも1組の横幅L2が互いに等しい構成を採用することもできる。   In the present embodiment, in order to make the magnetic flux formed in the central portion 33 uniform, the lateral widths L1 of all the first magnetic pole portions 34 are equal to each other, and the lateral widths L2 of all the second magnetic pole portions 35 are equal to each other. An example is shown. However, it is also possible to adopt a configuration in which the lateral widths L1 of all the first magnetic pole portions 34 are different from each other and the lateral widths L2 of all the second magnetic pole portions 35 are different from each other. Alternatively, a configuration in which at least one set of lateral widths L1 in all the first magnetic pole portions 34 is different from each other, and at least one set of lateral widths L2 in all the second magnetic pole portions 35 may be equal to each other.

例えば図10に示すように、周方向において端部31,32と隣接する第2磁極部35は、基準線BL側に位置する3つの第2磁極部35よりも、周方向の面積が大きく、端部31,32との面積差が小さくなっている。これによれば、端部31,32、および、それと隣接する第2磁極部35との磁力差が小さくなり、端部31,32、および、それと隣接する第1等磁極部11との間で形成される磁束に乱れが生じることが抑制される。なお、図10では、7つの第2磁極部35が形成されているが、上気した基準線BL側に位置する第2等磁極部35それぞれは面積が等しく、残り4つの第2等磁極部35それぞれの面積が等しくなっている。詳しく言えば、3つの第2等磁極部35の横幅は0.5°であり、残り4つの第2等磁極部35の横幅は0.6°となっている。   For example, as shown in FIG. 10, the second magnetic pole portion 35 adjacent to the end portions 31 and 32 in the circumferential direction has a larger area in the circumferential direction than the three second magnetic pole portions 35 located on the reference line BL side. The area difference between the end portions 31 and 32 is small. According to this, the magnetic force difference between the end portions 31 and 32 and the second magnetic pole portion 35 adjacent thereto is reduced, and between the end portions 31 and 32 and the first equal magnetic pole portion 11 adjacent thereto. Disturbances in the formed magnetic flux are suppressed. In FIG. 10, seven second magnetic pole portions 35 are formed. However, each of the second equal magnetic pole portions 35 located on the above-described reference line BL side has the same area, and the remaining four second magnetic pole portions. The areas of 35 are equal. Specifically, the lateral width of the three second equal magnetic pole portions 35 is 0.5 °, and the lateral width of the remaining four second equal magnetic pole portions 35 is 0.6 °.

また、例えば図11に示すように、基準線BLから周方向に離れるにしたがって、単位面積当たりに含まれる第2磁極部35の面積が徐々に減少し、第1磁極部34の面積が徐々に増加する構成を採用することもできる。これによれば、中央部33の磁力が基準線BLから周方向に沿って端部31,32に向かうにしたがって徐々に増大する。したがって、中央部の磁力が基準線BLから周方向に沿って端部に向かうにしたがって徐々に減少する構成とは異なり、欠け磁極部30と、それと周方向にて隣接する第1等磁極部11との磁極としての境界#N、#1が明りょうとなり、両者の間に形成される磁束に乱れが生じることが抑制される。   For example, as shown in FIG. 11, the area of the second magnetic pole part 35 included per unit area gradually decreases as the distance from the reference line BL in the circumferential direction decreases, and the area of the first magnetic pole part 34 gradually increases. Increasing configurations can also be employed. According to this, the magnetic force of the center part 33 increases gradually as it goes to the edge parts 31 and 32 along the circumferential direction from the reference line BL. Therefore, unlike the configuration in which the magnetic force in the central portion gradually decreases from the reference line BL toward the end portion along the circumferential direction, the chipped magnetic pole portion 30 and the first equal magnetic pole portion 11 adjacent thereto in the circumferential direction. Boundaries #N and # 1 as magnetic poles become clear, and turbulence in the magnetic flux formed between them is suppressed.

10,11,12・・・等磁極部
10a・・・第1領域
30・・・欠け磁極部
30a・・・第2領域
31,32・・・端部
33・・・中央部
34・・・第1磁極部
35・・・第2磁極部
13,14・・・異極部
100・・・回転体
10, 11, 12, etc. Magnetic pole part 10 a, first region 30, chipped magnetic pole part 30 a, second region 31, 32, end 33, central part 34,. 1st magnetic pole part 35 ... 2nd magnetic pole part 13, 14 ... different pole part 100 ... rotating body

Claims (5)

自身の中心(RC)を厚さ方向に貫く回転軸の周方向に回転する環状の回転体であって、
前記周方向における横幅が一定の等磁極部(10)と、
前記等磁極部よりも横幅が広い欠け磁極部(30)と、を有し、
前記回転体の外環面は、磁極が異なる複数の前記等磁極部(11,12)が前記周方向に交互に配列された第1領域(10a)と、前記欠け磁極部の形成された第2領域(30a)と、から成り、
前記欠け磁極部は、前記周方向において隣接する前記等磁極部とは異なる磁極から成る2つの端部(31,32)と、前記周方向において2つの前記端部の間に配置された中央部(33)と、から成り、
前記中央部は、前記端部と同一の磁極から成る複数の第1磁極部(34)と、前記端部とは異なる磁極から成る複数の第2磁極部(35)と、を有し、
前記第1磁極部の前記周方向に沿う面積が、前記周方向で自身と隣り合う前記第2磁極部の前記周方向の面積よりも大きく、前記中央部の磁極としての性質が、前記端部および前記第1磁極部それぞれと同一と成っており、
複数の前記等磁極部の少なくとも2つに、自身とは磁極の異なる異極部(13,14)が設けられ、
前記中央部から前記周方向に離れるにしたがって複数の前記等磁極部の磁力が徐々に強まるように、前記中央部から前記周方向に離れるにしたがって前記等磁極部に設けられる前記異極部の前記周方向の面積が徐々に小さくなっていることを特徴とする回転体。
An annular rotating body that rotates in the circumferential direction of a rotating shaft that penetrates its center (RC) in the thickness direction,
An equal magnetic pole portion (10) having a constant lateral width in the circumferential direction;
A chipped magnetic pole part (30) having a wider width than the equal magnetic pole part,
The outer ring surface of the rotating body has a first region (10a) in which a plurality of the equal magnetic pole portions (11, 12) having different magnetic poles are alternately arranged in the circumferential direction, and a first portion where the chipped magnetic pole portions are formed. 2 regions (30a),
The chipped magnetic pole portion includes two end portions (31, 32) made of a magnetic pole different from the equimagnetic pole portion adjacent in the circumferential direction, and a central portion disposed between the two end portions in the circumferential direction. (33)
The central portion includes a plurality of first magnetic pole portions (34) made of the same magnetic pole as the end portion, and a plurality of second magnetic pole portions (35) made of a magnetic pole different from the end portion,
The area of the first magnetic pole part along the circumferential direction is larger than the area of the second magnetic pole part adjacent to itself in the circumferential direction in the circumferential direction, and the property of the central part as the magnetic pole is the end part. And the same as each of the first magnetic pole portions,
At least two of the plurality of equi-magnetic pole portions are provided with different pole portions (13, 14) having different magnetic poles from themselves,
The magnetic pole portions of the different magnetic pole portions provided in the equal magnetic pole portion as it moves away from the central portion in the circumferential direction so that the magnetic force of the plurality of equal magnetic pole portions gradually increases as the distance from the central portion in the circumferential direction increases. A rotating body characterized by a gradually decreasing area in the circumferential direction.
前記中央部の中心を前記厚さ方向に貫く基準線(BL)を介して、前記第1磁極部、前記第2磁極部、前記端部、および、前記異極部それぞれが前記周方向で対称配置されていることを特徴とする請求項1に記載の回転体。   Each of the first magnetic pole part, the second magnetic pole part, the end part, and the different pole part is symmetrical in the circumferential direction via a reference line (BL) penetrating the center of the central part in the thickness direction. The rotating body according to claim 1, wherein the rotating body is arranged. 前記周方向において前記端部と隣接する前記第2磁極部は、前記基準線側に位置する前記第2磁極部よりも、前記周方向の面積が大きく、前記端部との面積差が小さくなっていることを特徴とする請求項2に記載の回転体。   The second magnetic pole portion adjacent to the end portion in the circumferential direction has a larger area in the circumferential direction and a smaller area difference from the end portion than the second magnetic pole portion located on the reference line side. The rotating body according to claim 2, wherein the rotating body is provided. 前記中央部は、前記第1磁極部と前記第2磁極部とが前記周方向に交互に配列されて成り、
前記基準線から前記周方向に離れるにしたがって、単位面積当たりに含まれる前記第2磁極部の面積が徐々に減少し、前記第1磁極部の面積が徐々に増加することを特徴とする請求項2に記載の回転体。
The central portion is formed by alternately arranging the first magnetic pole portion and the second magnetic pole portion in the circumferential direction,
The area of the second magnetic pole part included per unit area gradually decreases and the area of the first magnetic pole part gradually increases as the distance from the reference line in the circumferential direction increases. The rotating body according to 2.
前記中央部の磁極としての性質を、前記端部および前記第1磁極部それぞれと同一とするために、前記第1磁極部と前記第2磁極部とが前記周方向に交互に配列され、全ての前記第2磁極部それぞれの前記周方向の面積が、全ての前記第1磁極部のいずれよりも前記周方向の面積が小さいことを特徴とする請求項1〜4いずれか1項に記載の回転体。   In order to make the properties of the central portion as magnetic poles the same as the end portions and the first magnetic pole portions, the first magnetic pole portions and the second magnetic pole portions are alternately arranged in the circumferential direction, 5. The area in the circumferential direction of each of the second magnetic pole parts is smaller in area in the circumferential direction than any of all the first magnetic pole parts. Rotating body.
JP2013158286A 2013-07-30 2013-07-30 Rotating body Expired - Fee Related JP6070464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158286A JP6070464B2 (en) 2013-07-30 2013-07-30 Rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158286A JP6070464B2 (en) 2013-07-30 2013-07-30 Rotating body

Publications (2)

Publication Number Publication Date
JP2015028450A true JP2015028450A (en) 2015-02-12
JP6070464B2 JP6070464B2 (en) 2017-02-01

Family

ID=52492217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158286A Expired - Fee Related JP6070464B2 (en) 2013-07-30 2013-07-30 Rotating body

Country Status (1)

Country Link
JP (1) JP6070464B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157812A1 (en) * 2015-04-01 2016-10-06 株式会社デンソー Magnetic ring and rotation sensor comprising same
WO2019150440A1 (en) * 2018-01-30 2019-08-08 新電元工業株式会社 Drive control system, motor, and method for controlling drive control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241829A (en) * 1993-02-19 1994-09-02 Nippondenso Co Ltd Rotational-position detection device
JP2008039744A (en) * 2006-08-10 2008-02-21 Uchiyama Mfg Corp Annular magnetic encoder
JP2009025163A (en) * 2007-07-19 2009-02-05 Nok Corp Magnetic encoder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241829A (en) * 1993-02-19 1994-09-02 Nippondenso Co Ltd Rotational-position detection device
JP2008039744A (en) * 2006-08-10 2008-02-21 Uchiyama Mfg Corp Annular magnetic encoder
JP2009025163A (en) * 2007-07-19 2009-02-05 Nok Corp Magnetic encoder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157812A1 (en) * 2015-04-01 2016-10-06 株式会社デンソー Magnetic ring and rotation sensor comprising same
JP2016194487A (en) * 2015-04-01 2016-11-17 株式会社デンソー Magnetic ring and rotation sensor including the same
WO2019150440A1 (en) * 2018-01-30 2019-08-08 新電元工業株式会社 Drive control system, motor, and method for controlling drive control system
JP6577145B1 (en) * 2018-01-30 2019-09-18 新電元工業株式会社 Drive control system, motor, and control method of drive control system

Also Published As

Publication number Publication date
JP6070464B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
US9893580B2 (en) Rotor for rotary electric machine
JP6210284B2 (en) Rotation angle detector
US10302461B2 (en) Rotation detection device
JP6062882B2 (en) Rotation angle detector with pedestal and rotary machine
JP5765317B2 (en) Rotating electrical machine rotor
US9400194B2 (en) Magnetic detection device and on-vehicle rotation detection device equipped with the same
TWI547064B (en) Rotor for permanent magnet type electric motor
JP6319538B1 (en) Rotation angle detector and torque sensor
JP6070464B2 (en) Rotating body
JP6407284B2 (en) Rotation detector
JP6867386B2 (en) Resolver
US9513143B2 (en) Combined radial position and speed sensor assembly
RU2016136186A (en) RADIAL SENSOR
JP6107589B2 (en) Rotation angle sensor
JP6115383B2 (en) Rotating body and rotation detection system including the same
JP6332111B2 (en) Magnetic ring and rotation sensor having the magnetic ring
JP6766849B2 (en) Rotation angle detector
JP2016008929A (en) Revolution speed sensor
JP2012198053A (en) Magnetic sensor and current sensor using the same
JP6064816B2 (en) Rotation sensor
JP2017123779A5 (en)
JP6024577B2 (en) Encoder
JP2013050330A (en) Magnetic sensor and current sensor using the same
JP4543728B2 (en) Magnetic encoder
JP7179284B2 (en) stator core structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R151 Written notification of patent or utility model registration

Ref document number: 6070464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees