JP2015028132A - Epoxy resin composition for cast molding, mold product for high voltage equipment using the same and manufacturing method thereof - Google Patents

Epoxy resin composition for cast molding, mold product for high voltage equipment using the same and manufacturing method thereof Download PDF

Info

Publication number
JP2015028132A
JP2015028132A JP2014029586A JP2014029586A JP2015028132A JP 2015028132 A JP2015028132 A JP 2015028132A JP 2014029586 A JP2014029586 A JP 2014029586A JP 2014029586 A JP2014029586 A JP 2014029586A JP 2015028132 A JP2015028132 A JP 2015028132A
Authority
JP
Japan
Prior art keywords
epoxy resin
curing accelerator
resin composition
temperature
latent curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014029586A
Other languages
Japanese (ja)
Other versions
JP6461475B2 (en
Inventor
保田 直紀
Naoki Yasuda
直紀 保田
茂之 山本
Shigeyuki Yamamoto
茂之 山本
野村 徹
Toru Nomura
徹 野村
浩 磯谷
Hiroshi Isotani
浩 磯谷
長谷川 洋
Hiroshi Hasegawa
洋 長谷川
愛一郎 橋爪
Aiichiro Hashizume
愛一郎 橋爪
直生 笠松
Tadao Kasamatsu
直生 笠松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nagase Chemtex Corp
Original Assignee
Mitsubishi Electric Corp
Nagase Chemtex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nagase Chemtex Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014029586A priority Critical patent/JP6461475B2/en
Priority to CN201410299785.7A priority patent/CN104250427B/en
Publication of JP2015028132A publication Critical patent/JP2015028132A/en
Application granted granted Critical
Publication of JP6461475B2 publication Critical patent/JP6461475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition for cast molding capable of producing a homogeneous molded body having high electrical insulation properties and high toughness, with excellent molding properties, and having quick curability within a casting temperature range, while securing a long pot life.SOLUTION: An epoxy resin composition for cast molding includes: a bisphenol type epoxy resin; an acid anhydride hardening agent; a hardening accelerator; and an inorganic filler. The hardening accelerator includes three kinds of hardening accelerators having different reaction activity initiation temperature. The amount of the inorganic filler is 40-85 wt.% based on the total resin composition.

Description

本発明は、注型成形用エポキシ樹脂組成物、並びにそれを用いた高電圧機器用モールド製品及びその製造方法に関する。   The present invention relates to an epoxy resin composition for cast molding, a molded product for high-voltage equipment using the same, and a method for producing the same.

エポキシ樹脂は、その優れた耐熱性、耐薬品性、絶縁性及び接着性のために、高電圧機器用モールド製品、例えば、モールド変圧器、真空遮断器、絶縁機器の開閉装置、管路気中送電装置、その他の電気機器の絶縁支持又は電気部材間の絶縁スペーサ、ブッシングなどの絶縁部材などの部品に使用されている。しかしながら、近年ニーズの高度化に伴い、より高い機能を有するエポキシ樹脂が求められている。特に、作業効率化の観点から、注型温度域(110〜160℃)での速硬化性が大きな課題となっており、これに対応可能なエポキシ樹脂素材の出現が強く求められている。   Epoxy resins are molded products for high voltage equipment due to their excellent heat resistance, chemical resistance, insulation and adhesion, for example, mold transformers, vacuum circuit breakers, switchgears for insulation equipment, and air in pipelines. It is used for parts such as an insulating member such as an insulating support for an electric power transmission device and other electric devices, an insulating spacer between electric members, or a bushing. However, with the recent advancement of needs, an epoxy resin having a higher function is demanded. In particular, from the viewpoint of increasing work efficiency, rapid curability in the casting temperature range (110 to 160 ° C.) has become a major issue, and the emergence of an epoxy resin material that can cope with this is strongly demanded.

以上のような理由から、生産性向上による低コスト化の観点から、注型絶縁樹脂であるエポキシ樹脂の速硬化及び短時間硬化を達成するという課題は極めて重要なことであり、エポキシ樹脂構造を変えずに硬化速度を速める樹脂組成物の検討が進められている。   For the reasons described above, from the viewpoint of cost reduction by improving productivity, the problem of achieving rapid curing and short-time curing of the epoxy resin, which is a cast insulating resin, is extremely important. Studies of resin compositions that increase the curing speed without change are underway.

そこで、反応性の高い硬化剤を含有させる方法として、例えば、特許文献1には、エポキシ樹脂と、アルカノールアミン化合物と、一分子中にアミノ基を2個以上有するアミン化合物とを含有するエポキシ樹脂組成物が開示され、また、特許文献2には、微粉末状イミダゾール化合物組成物と、エポキシ樹脂とを含有するエポキシ樹脂組成物が開示されている。特許文献1のエポキシ樹脂組成物は、全温度領域で硬化速度が高くなり、低温硬化性も発現することが特徴である。また、特許文献2のエポキシ樹脂組成物は、140℃付近で劇的に硬化速度が速くなり、1分程度で硬化することが特徴である。   Therefore, as a method for containing a highly reactive curing agent, for example, Patent Document 1 discloses an epoxy resin containing an epoxy resin, an alkanolamine compound, and an amine compound having two or more amino groups in one molecule. A composition is disclosed, and Patent Document 2 discloses an epoxy resin composition containing a finely powdered imidazole compound composition and an epoxy resin. The epoxy resin composition of Patent Document 1 is characterized in that the curing rate is high in all temperature ranges and low temperature curability is also exhibited. In addition, the epoxy resin composition of Patent Document 2 is characterized in that the curing speed is dramatically increased around 140 ° C., and the composition is cured in about 1 minute.

特開2007−246601号公報JP 2007-246601 A 特開2010−180162号公報JP 2010-180162 A

しかしながら、高電圧機器用途では、50℃〜80℃の温度領域で配合や混合を行う必要がある上に、その樹脂組成物を110℃以上(注型温度)に加熱された注型成形用金型に注入するのに数分〜数十分の時間を要する。そのため、特許文献1のエポキシ樹脂組成物では、作業時間の自由度が低く、ポットライフが短いという問題がある。また、特許文献2のエポキシ樹脂組成物では、注入時に硬化することになり、所望の成型物が得られないという問題がある。更に、特許文献2のエポキシ樹脂組成物では、110℃以上で硬化反応が急激に進むため、内部発熱が大きく、成型物にヒケやボイドといった形状異常が発生し易くなるという問題もある。
また、これらの先行技術のように、第一級アミン、第二級アミンあるいはイミダゾール化合物を硬化剤として用いることにより、硬化速度を高めたり、常温硬化性を発現させることは可能である。しかしながら、これらの硬化剤を用いたエポキシ樹脂組成物は、吸湿により電気絶縁性が低下するため、接着剤、土木・建築などの用途には使用できるものの、高電圧機器用の絶縁部材には適さない。高電圧機器用途では、酸無水物系硬化剤が絶縁信頼性の面で優れていると言え、酸無水物系硬化剤を含有するエポキシ樹脂組成物の硬化速度を高めることが必須である。
従って、本発明は、上記のような問題を解決するためになされたものであり、高電圧機器部品用あるいは構造物用の注型樹脂として長期の実績があるビスフェノール型エポキシ樹脂と、酸無水物系硬化剤とを含有するエポキシ樹脂組成物において、注型作業を行うのに必要な長い可使時間(ポットライフ)の確保と成型異常の起因となる内部発熱の抑制とを両立し、さらに注型成形用金型の設定温度である注型温度領域(110℃〜160℃)での硬化速度を選択的に高めることで、注型成形サイクル時間の短縮が可能な注型成形用エポキシ樹脂組成物を提供することを目的とする。
However, in high-voltage equipment applications, it is necessary to mix and mix in the temperature range of 50 ° C to 80 ° C, and the resin composition is heated to 110 ° C or higher (casting temperature). It takes several minutes to several tens of minutes to inject into the mold. Therefore, the epoxy resin composition of Patent Document 1 has a problem that the degree of freedom in working time is low and the pot life is short. Further, the epoxy resin composition of Patent Document 2 is cured at the time of injection, and there is a problem that a desired molded product cannot be obtained. Further, the epoxy resin composition of Patent Document 2 has a problem that since the curing reaction rapidly proceeds at 110 ° C. or higher, the internal heat generation is large, and the molded product is likely to have shape abnormalities such as sink marks and voids.
Further, as in these prior arts, by using a primary amine, secondary amine, or imidazole compound as a curing agent, it is possible to increase the curing rate or to exhibit room temperature curability. However, epoxy resin compositions using these curing agents can be used for applications such as adhesives, civil engineering, and construction because their electrical insulation properties decrease due to moisture absorption, but are suitable for insulating members for high-voltage equipment. Absent. In high voltage equipment applications, it can be said that the acid anhydride curing agent is excellent in terms of insulation reliability, and it is essential to increase the curing rate of the epoxy resin composition containing the acid anhydride curing agent.
Accordingly, the present invention has been made to solve the above-described problems, and is a bisphenol-type epoxy resin that has a long track record as a casting resin for high-voltage equipment parts or structures, and acid anhydrides. In epoxy resin compositions that contain a hardener, it ensures both long life (pot life) required for casting operations and internal heat generation that causes molding abnormalities. Cast molding epoxy resin composition capable of shortening the casting molding cycle time by selectively increasing the curing rate in the casting temperature range (110 ° C. to 160 ° C.) which is the set temperature of the mold for molding. The purpose is to provide goods.

本発明者らは、ビスフェノール型エポキシ樹脂と、酸無水物系硬化剤と、無機充填剤と、反応活性開始温度が異なる3種類の硬化促進剤とを含有するエポキシ樹脂組成物が、長い可使時間(ポットライフ)と硬化時の内部発熱の抑制とを両立しながら、注型温度領域(110℃〜160℃)での硬化速度を選択的に高めることができることを見出し、本発明を完成するに至った。   The present inventors have long used an epoxy resin composition containing a bisphenol type epoxy resin, an acid anhydride curing agent, an inorganic filler, and three types of curing accelerators having different reaction activation start temperatures. Discovering that the curing rate in the casting temperature region (110 ° C. to 160 ° C.) can be selectively increased while achieving both time (pot life) and suppression of internal heat generation during curing, and the present invention is completed. It came to.

即ち、本発明は、ビスフェノール型エポキシ樹脂と、酸無水物系硬化剤と、硬化促進剤と、無機充填剤とを混合した注型成形用エポキシ樹脂組成物であって、前記硬化促進剤が、反応活性開始温度が樹脂混合温度以下である硬化促進剤(A)と、反応活性開始温度が注型成形用金型の設定温度に対して±20℃の範囲内である潜在性硬化促進剤(C)と、反応活性開始温度が樹脂混合温度を超え且つ潜在性硬化促進剤(C)の反応活性開始温度より低い温度である潜在性硬化促進剤(B)とからなり、前記無機充填剤の量が樹脂組成物全体に対して40重量%以上85重量%以下であることを特徴とする注型成形用エポキシ樹脂組成物である。
また、本発明は、前記注型成形用エポキシ樹脂組成物を、前記酸無水物系硬化剤、前記硬化促進剤(A)、前記潜在性硬化促進剤(B)及び前記潜在性硬化促進剤(C)からなる混合物と、それ以外の成分からなる混合物とを混合することにより調製し、この注型成形用エポキシ樹脂組成物を1kg/cm以上20kg/cm以下の圧力で金型に注入して成形することを特徴とする高電圧機器用モールド製品の製造方法である。
また、本発明は、上記した製造方法により得られることを特徴とする高電圧機器用モールド製品である。
That is, the present invention is a cast molding epoxy resin composition in which a bisphenol-type epoxy resin, an acid anhydride-based curing agent, a curing accelerator, and an inorganic filler are mixed, and the curing accelerator is A curing accelerator (A) having a reaction activation start temperature not higher than the resin mixing temperature, and a latent curing accelerator having a reaction activation start temperature within a range of ± 20 ° C. with respect to the set temperature of the casting mold ( C) and a latent curing accelerator (B) having a reaction activity start temperature exceeding the resin mixing temperature and lower than the reaction activity start temperature of the latent cure accelerator (C), An epoxy resin composition for cast molding, characterized in that the amount is 40% by weight or more and 85% by weight or less based on the whole resin composition.
The present invention also provides the cast molding epoxy resin composition comprising the acid anhydride curing agent, the curing accelerator (A), the latent curing accelerator (B), and the latent curing accelerator ( C) and a mixture comprising the other components were prepared by mixing, and this cast molding epoxy resin composition was injected into the mold at a pressure of 1 kg / cm 2 or more and 20 kg / cm 2 or less. It is the manufacturing method of the molded product for high voltage apparatuses characterized by forming by carrying out.
Moreover, this invention is a molded product for high voltage apparatuses characterized by being obtained by an above-described manufacturing method.

本発明によれば、長いポットライフと硬化時の内部発熱の抑制とを両立しながら、注型温度領域で速硬化性を有し且つ成形性に優れ、高い電気絶縁性及び高い靭性を有する均質な樹脂成型物を与えることのできる注型成形用エポキシ樹脂組成物を提供することができる。本発明の注型成形用エポキシ樹脂組成物を用いることにより、注型成形サイクル時間を短縮することができるので、モールド製品の生産性を高めることができる。   According to the present invention, while having both a long pot life and suppression of internal heat generation at the time of curing, it has high curability in the casting temperature range, excellent moldability, and has high electrical insulation and high toughness. It is possible to provide an epoxy resin composition for cast molding that can provide a simple resin molded product. Since the casting molding cycle time can be shortened by using the epoxy resin composition for casting molding of the present invention, the productivity of the molded product can be increased.

本発明の実施の形態における硬化促進剤の反応活性開始温度の調査方法を示す図である。It is a figure which shows the investigation method of the reaction activity start temperature of the hardening accelerator in embodiment of this invention. 促進剤(1〜3種類)を配合した樹脂組成物を130℃で加熱した時の加熱時間と中心部の樹脂内部温度との関係を示す図である。It is a figure which shows the relationship between the heating time when the resin composition which mix | blended the accelerator (1-3 types) is heated at 130 degreeC, and the resin internal temperature of center part. 促進剤(1〜3種類)を配合した樹脂組成物を130℃で加熱した時の加熱時間と硬化率との関係を示す図である。It is a figure which shows the relationship between the heating time when a resin composition which mix | blended the accelerator (1-3 types) was heated at 130 degreeC, and a cure rate. 促進剤量を調整した樹脂組成物を130℃で加熱した時の加熱時間と硬化率との関係を示す図である。It is a figure which shows the relationship between the heating time when the resin composition which adjusted the quantity of accelerator was heated at 130 degreeC, and a cure rate. 実施例1〜2及び比較例1〜4で得られたエポキシ樹脂組成物のポットライフを示す図である。It is a figure which shows the pot life of the epoxy resin composition obtained in Examples 1-2 and Comparative Examples 1-4. 実施例1〜2及び比較例1〜4で得られたエポキシ樹脂組成物の硬化速度を示す図である。It is a figure which shows the cure rate of the epoxy resin composition obtained in Examples 1-2 and Comparative Examples 1-4. 実施例3〜5で得られたエポキシ樹脂組成物の硬化速度を示す図である。It is a figure which shows the cure rate of the epoxy resin composition obtained in Examples 3-5.

実施の形態1.
本発明の実施の形態にかかる注型成形用エポキシ樹脂組成物は、ビスフェノール型エポキシ樹脂と、酸無水物系硬化剤と、特定の硬化促進剤と、無機充填剤とを混合したものであり、長い可使時間(ポットライフ)と硬化時の内部発熱の抑制とを両立しながら、注型温度領域(110℃〜160℃)での硬化速度を選択的に高めることで、樹脂組成物の金型への注入→一次硬化→金型から離型の注型成形サイクル時間を短縮することを特徴とする。
Embodiment 1 FIG.
The epoxy resin composition for cast molding according to the embodiment of the present invention is a mixture of a bisphenol type epoxy resin, an acid anhydride curing agent, a specific curing accelerator, and an inorganic filler, By selectively increasing the curing rate in the casting temperature range (110 ° C. to 160 ° C.) while achieving both a long pot life (pot life) and suppression of internal heat generation during curing, the resin composition gold It is characterized by shortening the casting molding time of mold injection → primary curing → mold release.

本発明の実施の形態に用いられるビスフェノール型エポキシ樹脂としては、公知のものを用いることができる。ビスフェノール型エポキシ樹脂の具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ブロム化ビスフェノールA型エポキシ樹脂、ブロム化ビスフェノールF型エポキシ樹脂、ブロム化ビスフェノールAD型エポキシ樹脂などが挙げられる。これらのビスフェノール型エポキシ樹脂は、単独で用いてもよいし、2種類以上を混合して用いてもよい。これらの中でも、硬化剤等の他の原料と均一に混合しやすいという理由で、60℃以下で液状であるビスフェノール型エポキシ樹脂が好ましく、その中でも特に、100g/eq以上300g/eq以下のエポキシ当量を有するビスフェノール型エポキシ樹脂が好ましい。なお、60℃以下で固体状のエポキシ樹脂であっても、60℃以下で液状であるエポキシ樹脂あるいは酸無水物系硬化剤に溶解するものであれば、併用することは可能である。また、本発明の効果を損なわない範囲で、ビスフェノール型エポキシ樹脂以外のエポキシ樹脂、例えば、脂環式エポキシ樹脂、ブロム化脂環式エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂、ブロム化クレゾールノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、トリグリシジルイソシアネートやヒダントインエポキシのような複素環式エポキシ樹脂などを併用してもよい。   As the bisphenol type epoxy resin used in the embodiment of the present invention, known ones can be used. Specific examples of the bisphenol type epoxy resin include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, brominated bisphenol A type epoxy resin, brominated bisphenol F type epoxy resin, and brominated bisphenol AD. Type epoxy resin. These bisphenol-type epoxy resins may be used alone or in combination of two or more. Among these, a bisphenol type epoxy resin that is liquid at 60 ° C. or lower is preferable because it can be uniformly mixed with other raw materials such as a curing agent, and among them, an epoxy equivalent of 100 g / eq or more and 300 g / eq or less is particularly preferable. A bisphenol-type epoxy resin having is preferable. In addition, even if it is a solid epoxy resin at 60 degrees C or less, if it melt | dissolves in the epoxy resin or acid anhydride type hardening | curing agent which is liquid at 60 degrees C or less, it is possible to use together. In addition, an epoxy resin other than the bisphenol type epoxy resin, for example, an alicyclic epoxy resin, a brominated alicyclic epoxy resin, a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a bromine, and the like within the range not impairing the effects of the present invention. Phenol novolac epoxy resin, brominated cresol novolac epoxy resin, hydrogenated bisphenol A epoxy resin, heterocyclic epoxy resin such as triglycidyl isocyanate and hydantoin epoxy may be used in combination.

本発明の実施の形態に用いられる酸無水物系硬化剤としては、公知のカルボン酸無水物を用いることができる。酸無水物系硬化剤の具体例としては、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコール無水トリメリット酸、ビフェニルテトラカルボン酸無水物などの芳香族カルボン酸無水物、アゼライン酸、セバシン酸、ドデカン二酸などの脂肪族カルボン酸の無水物、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、クロレンド酸無水物、ハイミック酸無水物(ナジック酸無水物)、水素化ナジック酸無水物などの脂環式カルボン酸無水物、及びこれらの酸無水物の構造中にアルキル基等の置換基を有する酸無水物などが挙げられる。これらの酸無水物系硬化剤は、単独で用いてもよいし、2種類以上を混合して用いてもよい。これらの酸無水物系硬化剤の中でも、エポキシ樹脂等の他の原料と均一に混合しやすいという理由で、60℃以下で液状である酸無水物系硬化剤が好ましい。特に、アルキル基置換体は室温で液状であるものが多く、均一混合の面で有効であり、例えば、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロフタル酸無水物、ドデセニルコハク酸無水物が好ましい。
酸無水物系硬化剤の配合量は、ビスフェノール型エポキシ樹脂のエポキシ基(ビスフェノール型エポキシ樹脂以外のエポキシ樹脂を併用する場合、そのエポキシ樹脂のエポキシ基を含む)に対するカルボキシル基の当量比が、通常、0.3以上1.5以下となる量であり、好ましくは、0.5以上1.2以下となる量である。酸無水物系硬化剤の配合量が、エポキシ樹脂のエポキシ基に対するカルボキシル基の当量比が0.3となる量より少ないと、耐熱性が劣る場合があり、一方、1.5となる量より多いと、ポットライフが短くなる場合がある。
As the acid anhydride curing agent used in the embodiment of the present invention, a known carboxylic acid anhydride can be used. Specific examples of the acid anhydride-based curing agent include, for example, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol trimellitic anhydride, biphenyltetracarboxylic anhydride Aromatic carboxylic acid anhydrides such as products, anhydrides of aliphatic carboxylic acids such as azelaic acid, sebacic acid, dodecanedioic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, chlorendic anhydride, highmic acid anhydride Product (nadic acid anhydride), alicyclic carboxylic acid anhydrides such as hydrogenated nadic acid anhydride, and acid anhydrides having substituents such as alkyl groups in the structure of these acid anhydrides. These acid anhydride curing agents may be used alone or in combination of two or more. Among these acid anhydride-based curing agents, acid anhydride-based curing agents that are liquid at 60 ° C. or lower are preferable because they are easily mixed uniformly with other raw materials such as epoxy resins. In particular, many alkyl group-substituted products are liquid at room temperature and are effective in terms of uniform mixing. For example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, hydrogenation Methyl nadic acid anhydride, trialkyltetrahydrophthalic acid anhydride, and dodecenyl succinic acid anhydride are preferred.
The compounding amount of the acid anhydride curing agent is usually equivalent to the equivalent ratio of carboxyl group to the epoxy group of the bisphenol type epoxy resin (including the epoxy group of the epoxy resin when using an epoxy resin other than the bisphenol type epoxy resin) , 0.3 to 1.5, and preferably 0.5 to 1.2. When the blending amount of the acid anhydride curing agent is less than the amount in which the equivalent ratio of the carboxyl group to the epoxy group of the epoxy resin is 0.3, the heat resistance may be inferior, whereas the amount to be 1.5 If it is large, the pot life may be shortened.

本発明の実施の形態に用いられる硬化促進剤としては、反応活性開始温度が所定の条件を満たし、酸無水物系硬化剤の硬化を促進させる作用を有する化合物であれば用いることができる。硬化促進剤の具体例としては、第三級アミン、第三級アミン塩、ホウ酸エステル、ルイス酸、有機金属化合物、有機リン系化合物、第四級アンモニウム塩、第四級ホスホニウム塩、アミン錯体、イミダゾール系化合物、チタン及びコバルトのような遷移金属を含む化合物などが挙げられる。これらの中から、反応活性開始温度が異なる3種類の硬化促進剤を選定し、エポキシ樹脂組成物に配合する。反応活性開始温度が低いものから順に(A)、(B)及び(C)とした場合、(A)は、原材料を混練する際の樹脂混合温度以下に反応活開始温度を有する硬化促進剤であり、(C)は、硬化温度に相当する注型成形用金型の設定温度に対して±20℃の範囲内に反応活開始温度を有する潜在性硬化促進剤であり、(B)は、反応活開始温度が樹脂混合温度を超え且つ硬化促進剤(C)の反応活性開始温度より低い温度である潜在性硬化促進剤である。これらの硬化促進剤は、互いの反応活性を阻害しないものを選定すればよい。
また、これらの硬化促進剤の配合量は、(A)〜(C)を合計して、ビスフェノール型エポキシ樹脂100重量部(ビスフェノール型エポキシ樹脂以外のエポキシ樹脂を併用する場合、そのエポキシ樹脂も含む)に対して、好ましくは0.01重量部以上3.0重量部以下であり、更に好ましくは0.02重量部以上2.0重量部以下である。硬化促進剤の配合量が、ビスフェノール型エポキシ樹脂100重量部に対して0.01重量部より少ないと、硬化反応の促進効果が劣る場合があり、一方、3.0重量部より多いと、ポットライフが短くなる場合がある。また、硬化促進性を微調整するために、上記した3種類の硬化促進剤に加えて、他の硬化促進剤を添加してもよい。
As the curing accelerator used in the embodiment of the present invention, any compound can be used as long as the reaction activity start temperature satisfies a predetermined condition and has an action of promoting the curing of the acid anhydride curing agent. Specific examples of curing accelerators include tertiary amines, tertiary amine salts, boric acid esters, Lewis acids, organometallic compounds, organophosphorus compounds, quaternary ammonium salts, quaternary phosphonium salts, amine complexes. , Imidazole compounds, and compounds containing transition metals such as titanium and cobalt. From these, three types of curing accelerators having different reaction activity start temperatures are selected and blended into the epoxy resin composition. When (A), (B) and (C) are used in order from the lowest reaction activity start temperature, (A) is a curing accelerator having a reaction activity start temperature below the resin mixing temperature when kneading the raw materials. And (C) is a latent curing accelerator having a reaction activation start temperature within a range of ± 20 ° C. with respect to the set temperature of the casting mold corresponding to the curing temperature, and (B) is It is a latent curing accelerator having a reaction activation start temperature that exceeds the resin mixing temperature and is lower than the reaction activation start temperature of the curing accelerator (C). These curing accelerators may be selected from those that do not inhibit each other's reaction activity.
Moreover, the compounding quantity of these hardening accelerators totals (A)-(C), and when the epoxy resin other than bisphenol type epoxy resin is used together with 100 weight part of bisphenol type epoxy resin (the epoxy resin is also included) ) Is preferably 0.01 parts by weight or more and 3.0 parts by weight or less, and more preferably 0.02 parts by weight or more and 2.0 parts by weight or less. If the blending amount of the curing accelerator is less than 0.01 parts by weight with respect to 100 parts by weight of the bisphenol type epoxy resin, the effect of promoting the curing reaction may be inferior. Life may be shortened. In addition to the above-described three types of curing accelerators, other curing accelerators may be added in order to finely adjust the curing acceleration.

また、潜在性硬化促進剤(C)の配合量を潜在性硬化促進剤(B)の配合量より多くすることにより、潜在性硬化促進剤(C)の添加による低温領域での反応速度の上昇やポットライフの低下に対する影響を抑制することができる。   Also, by increasing the blending amount of the latent curing accelerator (C) over the blending amount of the latent curing accelerator (B), the reaction rate in the low temperature region is increased by adding the latent curing accelerator (C). And the influence on the decrease in pot life can be suppressed.

硬化促進剤の反応活性開始温度は、樹脂の粘度の上昇温度や樹脂の発熱温度を調査することで知ることができる。例えば、図1に示すように、エポキシ樹脂及び酸無水物系硬化剤を混合した樹脂混合物と、その樹脂混合物に硬化促進剤を添加した樹脂混合物との粘弾性スペクトル(温度−粘度曲線)における粘度上昇曲線を比較することにより知ることができる。図1から分かるように、硬化促進剤を添加した樹脂混合物では、硬化促進剤を添加しない樹脂混合物より粘度上昇の変曲点が低温側にシフトしており、その変曲点に相当する温度が反応活性開始温度となる。なお、硬化促進剤の反応活性開始温度は、一義的な値を有しているものではなく、エポキシ樹脂、硬化剤、無機充填材及び他の添加剤の種類及び配合量により変化するものである。   The reaction activation start temperature of the curing accelerator can be known by investigating the temperature at which the viscosity of the resin is increased and the heat generation temperature of the resin. For example, as shown in FIG. 1, the viscosity in a viscoelastic spectrum (temperature-viscosity curve) of a resin mixture obtained by mixing an epoxy resin and an acid anhydride curing agent and a resin mixture obtained by adding a curing accelerator to the resin mixture. It can be found by comparing the rising curves. As can be seen from FIG. 1, in the resin mixture to which the curing accelerator is added, the inflection point of the increase in viscosity is shifted to a lower temperature side than the resin mixture to which the curing accelerator is not added, and the temperature corresponding to the inflection point is The reaction activation temperature is reached. The reaction activation start temperature of the curing accelerator does not have a unique value, but varies depending on the type and amount of the epoxy resin, the curing agent, the inorganic filler, and other additives. .

50℃〜80℃の温度領域で混合された樹脂組成物は、注型温度領域(110℃〜160℃)で予熱された注型成形用金型中に注入されると、金型からの熱を受けて徐々に温度が上昇する。反応活性開始温度が異なる3種の硬化促進剤(A)、潜在性硬化促進剤(B)及び潜在性硬化促進剤(C)が添加されていることにより、温度上昇の過程で(A)、(B)及び(C)の順番で活性化され、触媒作用を発現する。これにより、各々の促進剤由来の反応促進作用が段階的に進行することで、反応速度を高めるのに加えて、急激な樹脂の硬化(重合)反応が抑制でき、硬化時の内部発熱の上昇を抑制できる。加圧ゲル注型による成型では、硬化時の樹脂内部温度が金型設定温度+70℃以下(厚み:100mmの樹脂中で測定)であれば、成型物の形状異常(ヒケ)の発生を防止できる傾向がある。注型時のバラツキを考慮すると、ヒケ防止には、硬化時の樹脂内部温度が金型設定温度+60℃以下にすることがより好ましい。   When the resin composition mixed in the temperature range of 50 ° C. to 80 ° C. is injected into a casting mold preheated in the casting temperature range (110 ° C. to 160 ° C.), the heat from the mold In response, the temperature rises gradually. By adding three kinds of curing accelerators (A), latent curing accelerators (B) and latent curing accelerators (C) having different reaction activation start temperatures, (A) It is activated in the order of (B) and (C), and exhibits catalytic action. As a result, the reaction-promoting action derived from each accelerator progresses stepwise, thereby increasing the reaction rate and suppressing the rapid resin curing (polymerization) reaction, increasing internal heat generation during curing. Can be suppressed. In molding by pressure gel casting, if the resin internal temperature at the time of curing is below the mold set temperature + 70 ° C. (measured in a resin with a thickness of 100 mm), it is possible to prevent the occurrence of shape abnormality (sink) in the molded product. Tend. Considering the variation at the time of casting, it is more preferable that the resin internal temperature at the time of curing is set to the mold setting temperature + 60 ° C. or less in order to prevent sink marks.

60℃での可使時間(ポットライフ)が2時間以上となるように、1種類の促進剤のみを配合した樹脂組成物、反応活性開始温度が異なる2種類の促進剤を配合した樹脂組成物あるいは反応活性開始温度が異なる3種類の促進剤を配合した樹脂組成物(本発明)を、60℃で混合した後、φ100mmで高さ200mmの金属容器に入れ、130℃で加熱した時の加熱時間と中心部の樹脂内部温度との関係を図2に示す。低温で反応活性がある硬化促進剤の量を増大したような一般的な速硬化樹脂の場合、短時間で樹脂内部温度が上昇する速硬化特有の傾向が見られるが、樹脂内部温度が230℃まで上昇し、成型物にヒケが発生したり、あるいは、急激な反応による粘度上昇のため、内部や表面にボイドが残存する形状異常が発生する。また、一般的な速硬化樹脂の場合、加熱開始初期から粘度上昇が観察され、可使時間(ポットライフ)が短いことが間接的に分かる。反応活性開始温度が異なる2種類の促進剤を用いた場合、樹脂内部温度の上昇曲線に変曲点が1点存在しており、また、反応活性開始温度が異なる3種類の促進剤を用いた場合(本発明)、樹脂内部温度の上昇曲線に変曲点が2点存在しており、段階的に硬化が促進されていることが分かる。樹脂内部温度の挙動から、硬化速度は、2種類の促進剤を用いた場合でも増大するが、3種類の促進剤を用いた場合に顕著に増大することが分かる。また、3種類の促進剤を配合した樹脂組成物は、樹脂内部温度の最大値は1種類あるいは2種類の促進剤を配合した樹脂組成物と同等であることから、樹脂内部温度の上昇が抑制され、ヒケ防止が可能となる樹脂内部温度(金型設定温度+70℃以下)が確保されていることが分かる。さらに、3種類の促進剤を配合した樹脂組成物は、加熱開始初期の粘度上昇は小さく、可使時間(ポットライフ)が長いことが間接的に分かる。高温の1次硬化温度に設定された金型への樹脂充填が完了するには数分要する。充填中に硬化による粘度上昇が高いと、充填不足や形状異常が発生する。従って、樹脂の硬化速度(=内部発熱の上昇速度)は金型への充填完了までは小さく、完了後に増大するような、硬化遅延性を有する材料設計が必要である。すなわち、3種類の促進剤を配合した樹脂組成物(本発明)は、低温活性の促進剤量を減らすなど、それらの配合量を調整することで、充填中の硬化速度低減を図り、図2のように、一般な速硬化樹脂にはない硬化遅延性を発現させ、成型時に形状異常が起きにくくすることができる。   Resin composition containing only one kind of accelerator so that the pot life at 60 ° C. is 2 hours or more, and resin composition containing two kinds of accelerators having different reaction activation start temperatures Or after mixing the resin composition (this invention) which mix | blended three types of accelerators from which reaction activity start temperature differs at 60 degreeC, it puts into a metal container with a diameter of 100 mm and a height of 200 mm, and heats when it heats at 130 degreeC The relationship between time and the resin internal temperature at the center is shown in FIG. In the case of a general fast-curing resin in which the amount of a curing accelerator having a reactive activity at a low temperature is increased, a tendency specific to rapid curing in which the resin internal temperature rises in a short time is observed, but the resin internal temperature is 230 ° C. As a result, sink marks are generated in the molded product, or a viscosity increase due to a rapid reaction causes a shape abnormality in which voids remain inside or on the surface. In addition, in the case of a general fast-curing resin, an increase in viscosity is observed from the beginning of heating, and it can be indirectly seen that the pot life is short. When two kinds of accelerators having different reaction activity starting temperatures were used, one inflection point was present in the rising curve of the resin internal temperature, and three kinds of accelerators having different reaction activity starting temperatures were used. In the case (the present invention), there are two inflection points in the rising curve of the internal temperature of the resin, and it can be seen that curing is accelerated step by step. From the behavior of the resin internal temperature, it can be seen that the curing rate increases even when two kinds of accelerators are used, but significantly increases when three kinds of accelerators are used. In addition, the resin composition containing three types of accelerators has the same maximum resin internal temperature as the resin composition containing one or two types of accelerators. Thus, it can be seen that a resin internal temperature (die set temperature + 70 ° C. or lower) that can prevent sink marks is secured. Furthermore, it can be seen indirectly that a resin composition containing three kinds of accelerators has a small increase in viscosity at the beginning of heating and a long pot life (pot life). It takes several minutes to complete the resin filling into the mold set at the high primary curing temperature. If the viscosity increase due to curing is high during filling, insufficient filling or shape abnormality occurs. Therefore, a material design having a retarding property of curing such that the curing rate of the resin (= increase rate of internal heat generation) is small until the filling of the mold is completed and increases after completion of the filling is necessary. That is, the resin composition containing the three types of accelerators (invention) can reduce the curing rate during filling by adjusting the amount of the accelerator, such as reducing the amount of the low-temperature activity accelerator. As described above, it is possible to develop a retarding property that is not found in general fast-curing resins, and to make it difficult for shape abnormality to occur during molding.

また、注型成型用エポキシ樹脂組成物の注型成型工程は、(1)注型成形用金型へのエポキシ樹脂組成物の注入、(2)一次硬化、(3)注型成形用金型からの離型、及び(4)二次硬化から構成される。二次硬化は、離型した成型物を一括で加熱オーブンに入れ、一次硬化温度(注型成形用金型の設定温度)と同等以上の温度で加熱処理し、完全に硬化させる。二次硬化条件は、一次硬化温度以上でエポキシ樹脂の熱分解温度以下、すなわち、110〜180℃で、樹脂組成物の硬化が完了するまで加熱する。加熱時間は、硬化が完了する時間であればよいが、5時間〜24時間が好ましく用いられる。(1)〜(3)が注型成形サイクルであり、そのサイクル時間を短縮するには、一次硬化時間を短くすることが効果的である。二次硬化後の成型物のガラス転移点に対する一次硬化後のガラス転移点の比を硬化率(%)[=一次硬化後のガラス転移点/二次硬化後のガラス転移点×100]とすると、注型成形用金型から離型できるのに必要な一次硬化後の硬化率は50%以上、離型作業時の変形を防ぐには好ましくは60%以上が必要となる。   In addition, the casting process of the casting mold epoxy resin composition includes (1) injection of the epoxy resin composition into the casting mold, (2) primary curing, and (3) casting mold. And (4) secondary curing. In the secondary curing, molds that have been released from molds are put in a heating oven in a lump, and heat-treated at a temperature equal to or higher than the primary curing temperature (setting temperature of the casting mold), and completely cured. The secondary curing conditions are the primary curing temperature or higher and the thermal decomposition temperature of the epoxy resin or lower, that is, 110 to 180 ° C., until the resin composition is completely cured. The heating time may be a time for completing the curing, but preferably 5 hours to 24 hours. (1) to (3) are casting molding cycles. To shorten the cycle time, it is effective to shorten the primary curing time. When the ratio of the glass transition point after primary curing to the glass transition point of the molded product after secondary curing is the curing rate (%) [= glass transition point after primary curing / glass transition point after secondary curing × 100]. The degree of cure after primary curing required for releasing from the casting mold is preferably 50% or more, and preferably 60% or more to prevent deformation during the mold release operation.

60℃での可使時間(ポットライフ)が2時間以上となるように、1種類の促進剤のみを配合した樹脂組成物、反応活性開始温度が異なる2種類の促進剤を配合した樹脂組成物あるいは反応活性開始温度が異なる3種類の促進剤を配合した樹脂組成物(本発明)を、60℃で混合した後、φ100mmで高さ200mmの金属容器に入れ、130℃で加熱した時の加熱時間と中心部の硬化率との関係を図3に示す。1種類あるいは2種類の促進剤を配合した樹脂組成物では、硬化率の最大値に達するまでの時間に差はあるが、その値には大きな差は見られない。一方、3種類の促進剤を配合した樹脂組成物(本発明)では、硬化率曲線が短時間側で且つ高硬化率側に全体的にシフトしており、単調増加の傾向が維持されている。これは粘度の急激な上昇が抑えられていることを意味し、成型物のボイド不良を防止する効果を有し、且つ長い可使時間(ポットライフ)を確保しながら、硬化時間の短縮と硬化率の上昇とを両立させることができることを示している。   Resin composition containing only one kind of accelerator so that the pot life at 60 ° C. is 2 hours or more, and resin composition containing two kinds of accelerators having different reaction activation start temperatures Or after mixing the resin composition (this invention) which mix | blended three types of accelerators from which reaction activity start temperature differs at 60 degreeC, it puts into a metal container with a diameter of 100 mm and a height of 200 mm, and heats when it heats at 130 degreeC FIG. 3 shows the relationship between time and the cure rate at the center. In the resin composition containing one or two kinds of accelerators, there is a difference in the time to reach the maximum value of the curing rate, but there is no significant difference in the value. On the other hand, in the resin composition (invention) containing three kinds of accelerators, the curing rate curve is shifted to the short time side and the high curing rate side as a whole, and the tendency of monotonous increase is maintained. . This means that the rapid increase in viscosity is suppressed, and it has the effect of preventing void defects in the molded product, while shortening the curing time and curing while ensuring a long pot life (pot life). This indicates that it is possible to achieve both an increase in rate.

また、図4に示すように、60℃での可使時間(ポットライフ)が2時間以上となるように反応活性開始温度が異なる2種類の促進剤を配合した樹脂組成物と、低温で反応活性がある硬化促進剤の量を増大した樹脂組成物及び高温で反応活性がある硬化促進剤の量を増大した樹脂組成物との対比から分かるように、低温あるいは高温で反応活性がある促進剤量を調整しても硬化率の最大値は高くならない上、加熱時間が短い領域で硬化率が著しく上昇する傾向がある。これは、樹脂粘度の上昇が速いことを意味し、それにより樹脂内部に含まれるボイドが抜け難くなり、成型物の表面や内部にボイドが残存する不良が発生する上、可使時間(ポットライフ)を低下させるため、好ましくない。
以上のように、本発明のように反応活性開始温度が異なる3種類の促進剤を用いることで、長い可使時間(ポットライフ)と硬化時の内部発熱の抑制とを両立しながら、注型温度領域で速硬化性を有し且つ成形性に優れ、高い電気絶縁性及び高い靭性を有する均質な樹脂成型物を与えることができる。
Moreover, as shown in FIG. 4, it reacts at low temperature with the resin composition which mix | blended two types of promoters from which reaction activity start temperature differs so that the pot life at 60 degreeC may be 2 hours or more. As can be seen from the comparison between the resin composition having an increased amount of the curing accelerator having an activity and the resin composition having an increased amount of the curing accelerator having a reaction activity at a high temperature, the accelerator having a reaction activity at a low temperature or a high temperature. Even if the amount is adjusted, the maximum value of the curing rate does not increase, and the curing rate tends to increase remarkably in a region where the heating time is short. This means that the viscosity of the resin increases rapidly, which makes it difficult for voids contained in the resin to escape, resulting in defects that remain on the surface and inside of the molded product, and the pot life (pot life). ) Is not preferable.
As described above, by using three kinds of accelerators having different reaction activation start temperatures as in the present invention, casting can be performed while achieving both a long pot life (pot life) and suppression of internal heat generation during curing. It is possible to provide a homogeneous resin molded product that has rapid curability in the temperature region and excellent moldability, and has high electrical insulation and high toughness.

本発明の実施の形態にかかる注型成形用エポキシ樹脂組成物には、樹脂組成物全体に対して40重量%以上85重量%以下の無機充填剤を配合するため、室温では粘度が高く、混合することができない。従って、樹脂組成物の粘度を注型成形用金型に注入可能なレベル、具体的には40000mPa・s以下、特に複雑な構造の注型成形用金型の細部まで樹脂組成物を確実に注入する場合や成型物表面あるいは内部のボイド発生を抑制する場合は、20000mPa・s以下に低下させることが好ましく、その粘度を確保できるように樹脂混合温度を設定する必要がある。設定される樹脂混合温度は、樹脂組成物のポットライフの確保のため、50℃以上80℃以下とすることが好ましい。   In the epoxy resin composition for cast molding according to the embodiment of the present invention, 40 wt% or more and 85 wt% or less of the inorganic filler is blended with respect to the entire resin composition, and therefore, the viscosity is high at room temperature and mixing Can not do it. Therefore, the resin composition is surely injected to a level at which the viscosity of the resin composition can be injected into the casting mold, specifically, 40000 mPa · s or less, especially to the details of the casting mold having a complicated structure. When suppressing the generation of voids on the surface of the molded product or inside, it is preferable to lower it to 20000 mPa · s or less, and it is necessary to set the resin mixing temperature so as to ensure the viscosity. The set resin mixing temperature is preferably 50 ° C. or higher and 80 ° C. or lower in order to ensure the pot life of the resin composition.

硬化促進剤(A)は、上記した樹脂混合温度で活性状態にあるものを選定する必要があるため、その反応活性開始温度が70℃以下の硬化促進剤を選択するのが好ましい。硬化促進剤(A)は、この樹脂混合温度でエポキシ樹脂の重合反応を促進させる作用があるため、混合作業時にエポキシ樹脂の重合反応が進行し、粘度が上昇することになる。混合作業から注型成形用金型への注入作業までは、2時間以上を確保することが好ましい。例えば、樹脂混合温度を60℃とした場合、エポキシ樹脂組成物の可使時間(ポットライフ)は、60℃での混合開始からエポキシ樹脂組成物の粘度が2倍になるまでの時間と定義される。硬化促進剤(A)は樹脂混合時に反応活性であるため、その配合量を増やせば、混合時に粘度上昇が大きくなり、可使時間(ポットライフ)が短くなる。従って、硬化促進剤(A)の配合量は、このポットライフが2時間以上を確保できる範囲内の量とすることが好ましい。硬化促進剤(A)は、低温でエポキシ樹脂の重合反応を進める働きがあるため、エポキシ樹脂組成物を混合時に活性化している。従って、エポキシ樹脂組成物を110℃以上に加熱された注型成形用金型に注入する前に重合は進んでいるため、注入した後に急激な重合反応が起こらないので、発熱量が少なくなり、成型物の異常(ヒケやボイド)の発生を抑制する役割を果たす。   Since it is necessary to select a curing accelerator (A) that is in an active state at the above resin mixing temperature, it is preferable to select a curing accelerator having a reaction activation start temperature of 70 ° C. or lower. Since the curing accelerator (A) has an action of accelerating the polymerization reaction of the epoxy resin at the resin mixing temperature, the polymerization reaction of the epoxy resin proceeds during the mixing operation, and the viscosity increases. It is preferable to secure 2 hours or more from the mixing operation to the injection operation into the casting mold. For example, when the resin mixing temperature is 60 ° C., the pot life of the epoxy resin composition is defined as the time from the start of mixing at 60 ° C. until the viscosity of the epoxy resin composition doubles. The Since the curing accelerator (A) is reactive at the time of resin mixing, increasing the blending amount increases the viscosity at the time of mixing and shortens the pot life (pot life). Therefore, the blending amount of the curing accelerator (A) is preferably set to an amount within a range where this pot life can ensure 2 hours or more. Since the curing accelerator (A) has a function of advancing the polymerization reaction of the epoxy resin at a low temperature, the epoxy resin composition is activated at the time of mixing. Therefore, since the polymerization proceeds before the epoxy resin composition is injected into a casting mold heated to 110 ° C. or higher, since a rapid polymerization reaction does not occur after the injection, the amount of heat generation is reduced. It plays a role in suppressing the occurrence of abnormalities (sink marks and voids) in the molded product.

潜在性硬化促進剤(C)は、その反応活性開始温度が注型成形用金型の設定温度(硬化温度に相当する)に対して±20℃の範囲内にある化合物である。この温度範囲は、加熱された注型成形用金型の温度に近い温度であり、注型温度領域でのエポキシ樹脂組成物の硬化速度を選択的に且つ効果的に高める。より選択的に硬化速度を高めるには、反応活性開始温度が注型成形用金型の設定温度に対して±10℃の範囲内にある潜在性硬化促進剤(C)を選定すればよい。また、潜在性硬化促進剤(C)が活性化する前に、硬化促進剤(A)及び潜在性硬化促進剤(B)の活性化によりエポキシ樹脂組成物は既に重合反応がかなり進行している。すなわち、重合に関与する反応基の多くが消費され、硬化率が高くなっている。硬化促進剤(A)及び潜在性硬化促進剤(B)の促進作用による重合反応により、分子鎖が長くなっているため、残存する反応基の電子密度がかなり減少しており、活性度が著しく低下している。潜在性硬化促進剤(C)は、そのような状況で活性になることで、残存する反応基の重合を促進させ、硬化率を短時間で高める効果がある。潜在性硬化促進剤(C)の反応活性開始温度の好適な範囲は、エポキシ樹脂と酸無水物系硬化剤とを含有するエポキシ樹脂組成物の一般的な硬化温度である110℃以上160℃以下である。また、潜在性硬化促進剤(B)との機能に明確な差をつけることに加えて、低温領域における反応速度の上昇及びポットライフの低下を起こさせないため、潜在性硬化促進剤(C)と潜在性硬化促進剤(B)との反応活性開始温度差を10℃以上とすることが好ましい。   The latent curing accelerator (C) is a compound whose reaction activity initiation temperature is within a range of ± 20 ° C. with respect to the set temperature (corresponding to the curing temperature) of the casting mold. This temperature range is close to the temperature of the heated casting mold, and selectively and effectively increases the curing rate of the epoxy resin composition in the casting temperature region. In order to increase the curing rate more selectively, a latent curing accelerator (C) having a reaction activation start temperature within a range of ± 10 ° C. with respect to the set temperature of the casting mold may be selected. Moreover, before the latent curing accelerator (C) is activated, the polymerization reaction of the epoxy resin composition has already proceeded considerably due to the activation of the curing accelerator (A) and the latent curing accelerator (B). . That is, most of the reactive groups involved in the polymerization are consumed and the curing rate is high. Due to the polymerization reaction due to the promoting action of the curing accelerator (A) and the latent curing accelerator (B), the molecular chain is long, so the electron density of the remaining reactive groups is considerably reduced, and the activity is remarkably high. It is falling. The latent curing accelerator (C) is active in such a situation, thereby promoting the polymerization of the remaining reactive groups and increasing the curing rate in a short time. The suitable range of the reaction activation start temperature of the latent curing accelerator (C) is 110 ° C. or higher and 160 ° C. or lower which is a general curing temperature of an epoxy resin composition containing an epoxy resin and an acid anhydride curing agent. It is. Further, in addition to making a clear difference in function with the latent curing accelerator (B), it does not cause an increase in reaction rate and a decrease in pot life in the low temperature region, so that the latent curing accelerator (C) and It is preferable that the difference in reaction activity start temperature with the latent curing accelerator (B) is 10 ° C. or more.

潜在性硬化促進剤(B)は、その反応活性開始温度が樹脂混合温度を超え且つ潜在性硬化促進剤(C)の反応活性開始温度より低い温度である。硬化温度(注型温度)に加熱された注型成形用金型に、樹脂混合温度に加温されたエポキシ樹脂組成物が注入され、成形される。注型成形用金型の設定温度は、エポキシ樹脂組成物の種類や成型物の肉厚により微調整されるが、エポキシ樹脂と酸無水物系硬化剤とを含有するエポキシ樹脂組成物では、一般的に110℃以上160℃以下の範囲内である。従って、潜在性硬化促進剤(B)の反応活性開始温度の上限及び下限は、樹脂混合温度及び注型成形用金型の設定温度により変化するが、反応活性開始温度の好適な範囲は70℃以上110℃以下である。硬化促進剤(A)は樹脂混合温度で活性であるため、樹脂混合時に硬化反応を促進させているが、潜在性硬化促進剤(B)は、110℃以上に加熱された注型成形用金型にエポキシ樹脂組成物を注入した後の硬化反応を促進させる役割を果たす。潜在性硬化促進剤(B)が反応活性になる時点で、硬化促進剤(A)の反応活性によってエポキシ樹脂組成物は硬化(重合)が既に進行しているため、重合に関与する反応基が減少している。重合により分子量が増大しているため、残存する反応基は電子密度が低下し活性度が低くなっているが、潜在性硬化促進剤(B)が活性化することで、硬化率を高めることができる。硬化促進剤(A)の活性温度と潜在性硬化促進剤(B)の活性温度とが異なるため、重合が段階的に促進さることになり、潜在性硬化促進剤(B)が活性化した際には、急激な重合反応が起こらないため、樹脂内部温度の急激な上昇を抑えながら、硬化率を高めることができる。硬化促進剤(A)との機能に明確な差をつけるため、硬化促進剤(A)と潜在性硬化促進剤(B)との反応活性開始温度差を10℃以上とすることが好ましい。   The latent curing accelerator (B) has a reaction activity initiation temperature that exceeds the resin mixing temperature and is lower than the reaction activity initiation temperature of the latent curing accelerator (C). An epoxy resin composition heated to the resin mixing temperature is injected into a casting mold heated to a curing temperature (casting temperature) and molded. The set temperature of the casting mold is finely adjusted depending on the type of epoxy resin composition and the thickness of the molded product, but it is generally used for epoxy resin compositions containing an epoxy resin and an acid anhydride curing agent. In particular, it is within the range of 110 ° C. or higher and 160 ° C. or lower. Accordingly, the upper and lower limits of the reaction activation start temperature of the latent curing accelerator (B) vary depending on the resin mixing temperature and the setting temperature of the casting mold, but the preferred range of the reaction activation start temperature is 70 ° C. It is 110 degrees C or less. Since the curing accelerator (A) is active at the resin mixing temperature, the curing reaction is promoted at the time of resin mixing, but the latent curing accelerator (B) is a casting mold heated to 110 ° C. or higher. It plays the role of promoting the curing reaction after the epoxy resin composition is injected into the mold. When the latent curing accelerator (B) becomes reactive, the epoxy resin composition has already been cured (polymerized) due to the reactive activity of the curing accelerator (A). is decreasing. Since the molecular weight is increased by polymerization, the remaining reactive groups have a reduced electron density and a low activity, but the latent curing accelerator (B) is activated to increase the curing rate. it can. Since the activation temperature of the curing accelerator (A) is different from the activation temperature of the latent curing accelerator (B), the polymerization is accelerated in stages, and the latent curing accelerator (B) is activated. In this case, since a rapid polymerization reaction does not occur, the curing rate can be increased while suppressing a rapid increase in the internal temperature of the resin. In order to make a clear difference in the function with the curing accelerator (A), it is preferable that the difference in reaction activity start temperature between the curing accelerator (A) and the latent curing accelerator (B) is 10 ° C. or more.

本発明の実施の形態に用いられる3種類の硬化促進剤、即ち、硬化促進剤(A)、潜在性硬化促進剤(B)及び潜在性硬化促進剤(C)としては、下記に列挙する化合物の中から、反応活性開始温度が所定の条件を満たすものを適宜選定すればよい。   As the three types of curing accelerators used in the embodiment of the present invention, that is, the curing accelerator (A), the latent curing accelerator (B) and the latent curing accelerator (C), the following compounds are listed. Of these, those having a reaction activity start temperature satisfying a predetermined condition may be appropriately selected.

第三級アミンとしては、例えば、ラウリルジメチルアミン、N,N−ジメチルシクロヘキシルアミン、N,N−ジメチルベンジルアミン、N,N−ジメチルアニリン、(N,N−ジメチルアミノメチル)フェノール、2,4,6−トリス(N,N−ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)などが挙げられる。   Examples of the tertiary amine include lauryl dimethylamine, N, N-dimethylcyclohexylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline, (N, N-dimethylaminomethyl) phenol, 2,4. , 6-Tris (N, N-dimethylaminomethyl) phenol, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 ( DBN).

第三級アミン塩としては、例えば、上記した第三級アミンのカルボン酸塩、スルホン酸塩、無機酸塩などが挙げられる。カルボン酸塩としては、オクチル酸塩などの炭素数1〜30(特に、炭素数1〜10)のカルボン酸の塩(特に、脂肪酸の塩)などが挙げられる。スルホン酸塩としては、p−トルエンスルホン酸塩、ベンゼンスルホン酸塩、メタンスルホン酸塩、エタンスルホン酸塩などが挙げられる。第三級アミン塩の代表的な例として、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)の塩(例えば、p−トルエンスルホン酸塩、オクチル酸塩)などが挙げられる。   Examples of the tertiary amine salt include the above-mentioned tertiary amine carboxylates, sulfonates, and inorganic acid salts. Examples of the carboxylate include salts of carboxylic acids having 1 to 30 carbon atoms (particularly 1 to 10 carbon atoms) such as octylate (particularly salts of fatty acids). Examples of the sulfonate include p-toluenesulfonate, benzenesulfonate, methanesulfonate, and ethanesulfonate. Typical examples of the tertiary amine salt include salts of 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) (for example, p-toluenesulfonate, octylate). .

ホウ酸エステルとしては、例えば、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル、環状ホウ酸エステル化合物などが挙げられる。   Examples of borate esters include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, and cyclic borate ester compounds.

ルイス酸としては、電子対を受容する性質を有する化合物(遷移金属系化合物を含む)であればよいが、ホウ素、アルミニウム、ガリウム、インジウム、タリウムの他、チタン、亜鉛、スズ、スカンジウム、イッテルビウム、バナジウム、クロム、マンガン、コバルト、ニッケル、鉄及び銅のいずれかの元素を含む化合物であることが、特性として好ましい。   The Lewis acid may be a compound having a property of accepting an electron pair (including a transition metal compound), but in addition to boron, aluminum, gallium, indium, thallium, titanium, zinc, tin, scandium, ytterbium, A compound containing any element of vanadium, chromium, manganese, cobalt, nickel, iron, and copper is preferable as a characteristic.

有機金属化合物としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛、アルミニウムアセチルアセトン錯体などが挙げられる。   Examples of the organometallic compound include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate, aluminum acetylacetone complex, and the like.

有機リン系化合物としては、例えば、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィンなどが挙げられる。   Examples of the organic phosphorus compound include tetraphenylphosphonium / tetraphenylborate and triphenylphosphine.

第四級アンモニウム塩としては、例えば、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、ヨウ化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム、塩化トリエチルベンジルアンモニウム、臭化トリエチルベンジルアンモニウム、ヨウ化トリエチルベンジルアンモニウム、塩化トリエチルフェネチルアンモニウム、臭化トリエチルフェネチルアンモニウム、臭化トリエチルフェネチルアンモニウムなどが挙げられる。   Examples of quaternary ammonium salts include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrabutylammonium chloride, and tetrabutyl bromide. Examples include ammonium, tetrabutylammonium iodide, triethylbenzylammonium chloride, triethylbenzylammonium bromide, triethylbenzylammonium iodide, triethylphenethylammonium chloride, triethylphenethylammonium bromide, triethylphenethylammonium bromide, and the like.

第四級ホスホニウム塩としては、例えば、塩化テトラブチルホスホニウム、ヨウ化テトラブチルホスホニウム、酢酸テトラブチルホスホニウム、塩化テトラフェニルホスホニウム、臭化テトラフェニルホスホニウム、ヨウ化テトラフェニルホスホニウム、塩化エチルトリフェニルホスホニウム、臭化エチルトリフェニルホスホニウム、ヨウ化エチルトリフェニルホスホニウム、酢酸エチルトリフェニルホスホニウム、リン酸エチルトリフェニルホスホニウム、塩化プロピルトリフェニルホスホニウム、臭化プロピルトリフェニルホスホニウム、ヨウ化プロピルトリフェニルホスホニウム、塩化ブチルトリフェニルホスホニウム、臭化ブチルトリフェニルホスホニウム、ヨウ化ブチルトリフェニルホスホニウムなどが挙げられる。   Examples of the quaternary phosphonium salt include tetrabutylphosphonium chloride, tetrabutylphosphonium iodide, tetrabutylphosphonium acetate, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, tetraphenylphosphonium iodide, ethyltriphenylphosphonium chloride, odor Ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium acetate, ethyltriphenylphosphonium phosphate, propyltriphenylphosphonium chloride, propyltriphenylphosphonium bromide, propyltriphenylphosphonium iodide, butyltriphenyl chloride Examples thereof include phosphonium, butyltriphenylphosphonium bromide, and butyltriphenylphosphonium iodide.

アミン錯体としては、三フッ化ホウ素、三塩化ホウ素及び三臭化ホウ素のようなハロゲン化ホウ素とアミン化合物との錯体であるハロゲン化ホウ素アミン錯体が挙げられる。アミン化合物としては、例えば、トリメチルアミン、トリ−n−プロピルアミン、N,N−ジメチルオクチルアミン、N,N−ジメチルベンジルアミンなどの脂肪族三級アミン類、N,N−ジメチルアニリンなどの芳香族三級アミン類、1位がアルキル化された置換あるいは無置換のイミダゾールあるいはピリジンなどの複素環三級アミン類、モノエチルアミン、n−ヘキシルアミンなどの脂肪族一級アミン類、ベンジルアミンなどの芳香環を含む脂肪族一級アミン類、アニリンなどの芳香族一級アミン類、ピペリジンなどの二級アミン類などが挙げられる。ハロゲン化ホウ素アミン錯体の代表的な例としては、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素ジエチルアミン錯体、三フッ化ホウ素イソプロピルアミン錯体、三フッ化ホウ素クロロフェニルアミン錯体、三フッ化ホウ素−トリアリルアミン錯体、三フッ化ホウ素ベンジルアミン錯体、三フッ化ホウ素アニリン錯体、三塩化ホウ素モノエチルアミン錯体、三塩化ホウ素フェノール錯体、三塩化ホウ素ピペリジン錯体、三塩化ホウ素硫化ジメチル錯体、三塩化ホウ素N,N−ジメチルオクチルアミン錯体、三塩化ホウ素N,N−ジメチルドデシルアミン錯体、三塩化ホウ素N,N−ジエチルジオクチルアミン錯体などが挙げられる。   Examples of the amine complex include a boron halide amine complex which is a complex of a boron halide and an amine compound such as boron trifluoride, boron trichloride and boron tribromide. Examples of the amine compound include aliphatic tertiary amines such as trimethylamine, tri-n-propylamine, N, N-dimethyloctylamine and N, N-dimethylbenzylamine, and aromatics such as N, N-dimethylaniline. Tertiary amines, 1-alkylated substituted or unsubstituted imidazole or pyridine heterocyclic tertiary amines such as monoethylamine and n-hexylamine primary aliphatic amines, benzylamine and other aromatic rings Aliphatic primary amines containing, aromatic primary amines such as aniline, secondary amines such as piperidine, and the like. Representative examples of the boron halide amine complex include boron trifluoride monoethylamine complex, boron trifluoride diethylamine complex, boron trifluoride isopropylamine complex, boron trifluoride chlorophenylamine complex, boron trifluoride-tri Allylamine complex, boron trifluoride benzylamine complex, boron trifluoride aniline complex, boron trichloride monoethylamine complex, boron trichloride phenol complex, boron trichloride piperidine complex, boron trichloride dimethyl sulfide complex, boron trichloride N, N -A dimethyloctylamine complex, a boron trichloride N, N-dimethyldodecylamine complex, a boron trichloride N, N-diethyldioctylamine complex, etc. are mentioned.

イミダゾール系化合物としては、例えば、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−ウンデシルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−エチル,4−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン・イソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸の2:3付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾールなどが挙げられる。   Examples of imidazole compounds include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ')) Ethyl-s-triazine, 2,4-diamino-6 (2'-undecylimidazole (1')) ethyl-s-triazine, 2,4-diamino-6 (2'-ethyl, 4-methyl) Imidazole (1 ′)) ethyl-s-triazine, 2,4-diamino 6 (2′-methylimidazole (1 ′)) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3 , 5-dihydroxymethylimidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole and the like.

上記の化合物の中でも、硬化促進剤(A)としては、70℃以下に反応活性開始温度が存在する第三級アミンをより好ましく用いることができる。潜在性硬化促進剤(B)としては、70℃以上110℃以下に反応活性開始温度が存在する第三級アミン塩、第四級アンモニウム塩、第四級ホスホニウム塩、イミダゾール系化合物及びハロゲン化ホウ素アミン錯体からなる群から選択されるものをより好ましく用いることができる。また、潜在性硬化促進剤(C)としては、110℃以上160℃以下に反応活性開始温度が存在する第三級アミン塩、第四級アンモニウム塩、第四級ホスホニウム塩、イミダゾール系化合物及びハロゲン化ホウ素アミン錯体からなる群から選択されるものをより好ましく用いることができる。
特に、潜在性硬化促進剤(B)及び潜在性硬化促進剤(C)は、種類の異なる群から選択し、温度による反応性に明確な差を出すことで高い硬化促進性を得ることができる。例えば、潜在性硬化促進剤(B)としては、70℃以上110℃以下に反応活性開始温度が存在する第三級アミン塩、第四級アンモニウム塩、第四級ホスホニウム塩及びイミダゾール系化合物を用い、潜在性硬化促進剤(C)としては、110℃以上160℃以下に反応活性開始温度が存在するハロゲン化ホウ素アミン錯体を用いることより好ましい。
Among the above compounds, as the curing accelerator (A), a tertiary amine having a reaction activation start temperature at 70 ° C. or lower can be used more preferably. The latent curing accelerator (B) includes tertiary amine salts, quaternary ammonium salts, quaternary phosphonium salts, imidazole compounds, and boron halides having a reaction activation start temperature of 70 ° C. or higher and 110 ° C. or lower. Those selected from the group consisting of amine complexes can be used more preferably. Further, as the latent curing accelerator (C), tertiary amine salts, quaternary ammonium salts, quaternary phosphonium salts, imidazole compounds and halogens having a reaction activation start temperature at 110 ° C. or higher and 160 ° C. or lower are used. Those selected from the group consisting of boron bromide amine complexes can be used more preferably.
In particular, the latent curing accelerator (B) and the latent curing accelerator (C) can be selected from different types of groups, and high curing acceleration can be obtained by giving a clear difference in reactivity depending on temperature. . For example, as the latent curing accelerator (B), a tertiary amine salt, a quaternary ammonium salt, a quaternary phosphonium salt, and an imidazole compound having a reaction activation start temperature at 70 ° C. or higher and 110 ° C. or lower are used. As the latent curing accelerator (C), it is more preferable to use a boron halide amine complex having a reaction activation start temperature at 110 ° C. or higher and 160 ° C. or lower.

本発明の実施の形態に用いられる無機充填剤としては、注型成形用エポキシ樹脂組成物に用いられる公知の材料を用いることができる。無機充填剤の具体例としては、例えば、シリカ(結晶シリカ及び溶融シリカ)、アルミナ、タルク、クレー、炭酸カルシウム、ケイ酸カルシウム、二酸化チタン、窒化ケイ素、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、ガラス、硫酸バリウム、マグネシア、酸化ベリリウム、雲母、酸化マグネシウムなどが挙げられる。無機充填剤の形状は、好適には破砕状又は球状であるが、略球状、凝集状、鱗片状、繊維状、ミルドファイバー、ウィスカーなどであってもよい。これらの無機充填剤は、単独で用いてもよいし、2種類以上を混合して用いてもよい。無機充填剤の中でも、高い電気絶縁性を有するという理由で、シリカ粉末、アルミナ粉末、マグネシア粉末、ガラス短繊維及びガラスビーズを好ましく用いることができる。
無機充填材の配合量は、樹脂組成物全体に対して40重量%以上85重量%以下の範囲で、樹脂組成物のポットライフが2時間以上確保できる樹脂混合温度で均一に混合できる量であればよいが、好ましくは、樹脂組成物全体に対して50重量%以上70重量%以下である。無機充填剤の配合量が40重量%より少ないと、成型物の機械強度が劣り、一方、85重量%より多いと、樹脂成分と均一に混合できなくなり、成型物特性の再現性が得られない。
As an inorganic filler used for embodiment of this invention, the well-known material used for the epoxy resin composition for cast molding can be used. Specific examples of the inorganic filler include, for example, silica (crystalline silica and fused silica), alumina, talc, clay, calcium carbonate, calcium silicate, titanium dioxide, silicon nitride, aluminum hydroxide, aluminum nitride, boron nitride, and glass. , Barium sulfate, magnesia, beryllium oxide, mica, magnesium oxide and the like. The shape of the inorganic filler is preferably crushed or spherical, but may be substantially spherical, aggregated, scaly, fibrous, milled fiber, whisker or the like. These inorganic fillers may be used alone or in combination of two or more. Among inorganic fillers, silica powder, alumina powder, magnesia powder, short glass fibers, and glass beads can be preferably used because they have high electrical insulation.
The blending amount of the inorganic filler should be an amount that can be uniformly mixed at a resin mixing temperature that can secure a pot life of the resin composition of 2 hours or more in a range of 40 wt% to 85 wt% with respect to the entire resin composition. However, it is preferably 50% by weight or more and 70% by weight or less based on the entire resin composition. When the blending amount of the inorganic filler is less than 40% by weight, the mechanical strength of the molded product is inferior. On the other hand, when it exceeds 85% by weight, the resin component cannot be uniformly mixed and the reproducibility of the molded product characteristics cannot be obtained. .

また、得られる成型物の耐クラック性を向上させたり、耐衝撃性を向上させる目的で、熱可塑性樹脂、ゴム成分、各種オリゴマーなどをエポキシ樹脂組成物に添加してもよい。熱可塑性樹脂の具体例としては、ブチラール樹脂、ポリアミド樹脂、芳香族ポリエステル樹脂、フェノキシ樹脂、MBS樹脂(メチルメタクリレート・ブタジエン・スチレン共重合体)、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合体)、アクリル樹脂、シリコーンオイル、シリコーン樹脂、シリコーンゴム、フッ素ゴムなどにより変性することができる。また、各種プラスチック粉末、各種エンジニアリングプラスチック粉末などをエポキシ樹脂組成物に添加してもよい。   Moreover, you may add a thermoplastic resin, a rubber component, various oligomers, etc. to an epoxy resin composition in order to improve the crack resistance of the molded product obtained, or to improve impact resistance. Specific examples of the thermoplastic resin include butyral resin, polyamide resin, aromatic polyester resin, phenoxy resin, MBS resin (methyl methacrylate / butadiene / styrene copolymer), ABS resin (acrylonitrile / butadiene / styrene copolymer), It can be modified with acrylic resin, silicone oil, silicone resin, silicone rubber, fluororubber and the like. Various plastic powders, various engineering plastic powders, and the like may be added to the epoxy resin composition.

更に、接着性を向上せるための接着性付与剤及びカップリング剤、無機充填剤及び固体粉末のエポキシ樹脂組成物中での沈降を抑制するための沈降防止剤及び分散剤、ボイド発生を防止するための消泡剤、塗料定着剤、酸化防止剤、難燃化剤、着色剤、増粘剤、減粘剤、界面活性剤などをエポキシ樹脂組成物に添加してもよい。   Furthermore, an anti-settling agent and a dispersant for preventing settling in an epoxy resin composition of an adhesion imparting agent and a coupling agent, an inorganic filler, and a solid powder for improving adhesiveness, and preventing generation of voids. Antifoaming agents, paint fixing agents, antioxidants, flame retardants, colorants, thickeners, thickeners, surfactants, and the like may be added to the epoxy resin composition.

本発明の実施の形態にかかる注型成形用エポキシ樹脂組成物は、温調機能を有する混合装置を用いて製造することができる。強制混合ミキサー、自公転式混合装置、万能混合機などの混合装置を用いると、樹脂成分と無機充填剤とを均一に混合させることができる。樹脂混合温度は、注型成形用エポキシ樹脂組成物の粘度が2倍になるまでの時間である可使時間(ポットライフ)が2時間以上確保できる温度であればよいが、50℃以上80℃以下が好ましい。エポキシ樹脂組成物の粘度は、混合温度で40000mPa・s以下であることが好ましい。エポキシ樹脂組成物の粘度が40000mPa・sより高い場合には、注型成形用金型の細部までエポキシ樹脂組成物が注入されず、所望の成型物が得られないため好ましくない。エポキシ樹脂組成物の粘度は、より低粘度のエポキシ樹脂を配合することによって低下させることが可能である。エポキシ樹脂組成物の適否判断として、特に、60℃での粘度が40000mPa・s以下、特に成型物表面あるいは内部のボイド発生を抑制するには20000mPa・s以下が好ましく、且つその温度でのポットライフが2時間以上であることを目安とするとよい。   The epoxy resin composition for cast molding according to the embodiment of the present invention can be manufactured using a mixing device having a temperature control function. If a mixing device such as a forced mixing mixer, a self-revolving mixer, or a universal mixer is used, the resin component and the inorganic filler can be uniformly mixed. The resin mixing temperature may be a temperature at which the pot life, which is the time until the viscosity of the epoxy resin composition for casting molding doubles, can be secured for 2 hours or more, but is 50 ° C. or more and 80 ° C. The following is preferred. The viscosity of the epoxy resin composition is preferably 40000 mPa · s or less at the mixing temperature. When the viscosity of the epoxy resin composition is higher than 40000 mPa · s, the epoxy resin composition is not injected to the details of the casting mold, and a desired molded product cannot be obtained. The viscosity of the epoxy resin composition can be lowered by blending a lower viscosity epoxy resin. In order to judge the suitability of the epoxy resin composition, in particular, the viscosity at 60 ° C. is 40,000 mPa · s or less, particularly 20000 mPa · s or less is preferable to suppress generation of voids on the surface or inside of the molded product, and the pot life at that temperature It is recommended that the value be 2 hours or longer.

混合したエポキシ樹脂組成物は、成型物中にボイドが発生するのを抑制するため、金型に注型する前に、混合温度で真空脱法処理を行うことが好ましい。真空脱法処理後のエポキシ樹脂組成物を、エポキシ樹脂組成物の硬化反応が進行する温度である110℃〜160℃に加熱した注型成形用金型に注入し、加圧ゲル化法又は真空注型法により成形加工を行なう。注型成形用金型の設定温度は、110℃以上160℃以下の範囲内が好ましいが、高温になると、硬化時間は短くなるが、ヒケやボイドなどの形状異常が発生しやすい傾向がある。真空注型法では、高温で真空状態を維持するので、エポキシ樹脂組成物を構成する液状の原材料が揮発する可能性がある。従って、形状異常の抑制や原材料の揮発防止の観点から、注型成形用金型の設定温度は、130℃以上140℃以下がより好ましい。なお、注型成形用金型から離型後の二次硬化は、注型成形用金型の設定温度と同じか又はそれ以上の温度で実施し、成型物の変形や劣化などの悪影響がない温度であればよいが、200℃以下が好ましい。   In order to suppress generation of voids in the molded product, the mixed epoxy resin composition is preferably subjected to a vacuum degassing treatment at a mixing temperature before being cast into a mold. The epoxy resin composition after the vacuum degassing treatment is injected into a casting mold heated to 110 ° C. to 160 ° C., which is the temperature at which the curing reaction of the epoxy resin composition proceeds, and then the pressure gelation method or vacuum casting Molding is performed by the mold method. The set temperature of the casting mold is preferably in the range of 110 ° C. or higher and 160 ° C. or lower. However, when the temperature is high, the curing time is shortened, but shape abnormalities such as sink marks and voids tend to occur. In the vacuum casting method, since the vacuum state is maintained at a high temperature, the liquid raw material constituting the epoxy resin composition may volatilize. Therefore, the set temperature of the casting mold is more preferably 130 ° C. or higher and 140 ° C. or lower from the viewpoint of suppressing shape abnormality and preventing raw material volatilization. In addition, secondary curing after mold release from the casting mold is performed at a temperature equal to or higher than the set temperature of the casting mold, and there is no adverse effect such as deformation or deterioration of the molded product. Although it may be temperature, it is preferably 200 ° C. or lower.

エポキシ樹脂組成物の硬化速度の変化は、ゲルタイムテスターでゲル化時間を計測することで把握できる。注型成形用金型の設定温度でのゲル化時間と、注型成形用金型の設定温度より10℃低い温度でのゲル化時間との差が5分以上であると、成型物にヒケやボイドといった形状異常が発生し難い。ゲルタイムテスターで測定する際のサンプル量は1gと少ないため、実際の注型成形用金型での注型時に離型可能な硬化時間は、ゲル化時間のおよそ2〜3倍程度の時間を見込む必要がある。また、注型成形サイクル時間を20分以内に短縮するためには、注型成形用金型の設定温度でのゲル化時間は、3分以上10分以下にすることが好ましい。   The change in the curing rate of the epoxy resin composition can be grasped by measuring the gelation time with a gel time tester. If the difference between the gelling time at the set temperature of the casting mold and the gelling time at a temperature 10 ° C. lower than the set temperature of the casting mold is 5 minutes or more, the molded product will sink. And shape abnormalities such as voids are unlikely to occur. Since the sample amount when measuring with a gel time tester is as small as 1 g, the curing time that can be released when casting with an actual casting mold is expected to be about 2 to 3 times the gelling time. There is a need. Further, in order to shorten the casting molding cycle time within 20 minutes, it is preferable that the gelation time at the set temperature of the casting mold is 3 minutes or more and 10 minutes or less.

エポキシ樹脂組成物のポットライフを確保するため、使用前には、酸無水物系硬化剤、硬化促進剤(A)、潜在性硬化促進剤(B)及び潜在性硬化促進剤(C)からなる混合物と、それ以外の成分からなる混合物との2つに分けて保管するとよい。使用時は、これらの混合物を混合装置にて混合して注型成形用エポキシ樹脂組成物を調製し、この注型成形用エポキシ樹脂組成物を1kg/cm以上20kg/cm以下の圧力で、設定温度に予め加熱した注型成形用金型に注入して成形する。成型物へのボイド(気泡)の混入やヒケの発生などの成形異常を防ぐことに加えて、生産効率を高める目的で、注型成形用金型内の樹脂成分が完全にゲル化するまで圧力を加え続けて短時間で固化させる加圧ゲル化法により成形することが好ましい。加圧ゲル化法は、エポキシ樹脂組成物の反応性の制御が可能であり、成形異常の発生を抑制できる。 In order to ensure the pot life of the epoxy resin composition, it comprises an acid anhydride curing agent, a curing accelerator (A), a latent curing accelerator (B), and a latent curing accelerator (C) before use. It is good to divide and store in two, a mixture and a mixture composed of other components. At the time of use, these mixtures are mixed with a mixing device to prepare an epoxy resin composition for cast molding, and the cast epoxy resin composition is cast at a pressure of 1 kg / cm 2 or more and 20 kg / cm 2 or less. Then, it is poured into a casting mold preheated to a set temperature and molded. In addition to preventing molding abnormalities such as voids (bubbles) in the molded product and the occurrence of sink marks, pressure is applied until the resin component in the casting mold completely gels for the purpose of increasing production efficiency. It is preferable to form by a pressure gelation method in which the material is continuously added and solidified in a short time. The pressure gelation method can control the reactivity of the epoxy resin composition and can suppress the occurrence of molding abnormality.

また、加圧ゲル化法以外の成形法としては、密閉容器内において、エポキシ樹脂組成物を、設定温度に予め加熱した注型成形用金型に減圧状態で注入した後、圧力を加えずに硬化炉で硬化させる真空注型法を採用してもよい。真空注型法でも、成型物へのボイド(気泡)の混入を防ぐことが可能である。本発明の実施の形態にかかる注型成形用エポキシ樹脂組成物の成形法として、真空注型法を採用した場合、加圧ゲル化法ほどの生産性の顕著な向上は見込めないが、従来のエポキシ樹脂組成物を成形する場合と比べれば、硬化速度の上昇による成形時間の短縮効果は得られる。   Further, as a molding method other than the pressure gelation method, the epoxy resin composition is injected in a reduced pressure state into a casting mold preheated to a set temperature in a sealed container, and then no pressure is applied. A vacuum casting method for curing in a curing furnace may be employed. Even in the vacuum casting method, it is possible to prevent the inclusion of voids (bubbles) in the molded product. When a vacuum casting method is employed as a molding method for the epoxy resin composition for casting molding according to the embodiment of the present invention, a significant improvement in productivity as in the pressure gelling method cannot be expected. Compared to the case of molding the epoxy resin composition, the effect of shortening the molding time due to an increase in the curing rate can be obtained.

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、これらによって本発明が限定されるものではない。実施例1〜2及び比較例1〜4は、130℃の注型温度(注型成形用金型の設定温度)での硬化時間を短時間化することを想定して、組成調整した例である。実施例3〜5は、実施例1〜2とは異なるビスフェノール型エポキシ樹脂及び酸無水物系硬化剤を用いて、130℃〜150℃の注型温度での硬化時間を選択的に高めるように組成調整した例である。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited by these. Examples 1 and 2 and Comparative Examples 1 to 4 are examples in which the composition was adjusted assuming that the curing time at a casting temperature of 130 ° C. (setting temperature of the casting mold) was shortened. is there. Examples 3-5 use bisphenol-type epoxy resins and acid anhydride curing agents different from those in Examples 1-2 to selectively increase the curing time at a casting temperature of 130 ° C to 150 ° C. This is an example of composition adjustment.

〔実施例1〕
ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq):100重量部、酸無水物系硬化剤としてのメチルテトラヒドロ無水フタル酸:85.5重量部、無機充填剤としての溶融シリカ:150重量部、硬化促進剤(A)としての2,4,6−トリス(N,N−ジメチルアミノメチル)フェノール(常温で反応活性である):0.2重量部、潜在性硬化促進剤(B)としての1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)のオクチル酸塩(反応活性開始温度が約100℃である):0.3重量部、及び潜在性硬化促進剤(C)としての三フッ化ホウ素モノエチルアミン錯体(反応活性開始温度が約120℃である):0.2重量部を、60℃で15分間混合した後、真空脱泡して注型成形用エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の60℃での粘度変化は、図5のようになり、粘度が2倍になるまでの時間(ポットライフ)は4.3時間であった。
[Example 1]
Bisphenol A type epoxy resin (epoxy equivalent: 190 g / eq): 100 parts by weight, methyltetrahydrophthalic anhydride as acid anhydride curing agent: 85.5 parts by weight, fused silica as inorganic filler: 150 parts by weight, 2,4,6-Tris (N, N-dimethylaminomethyl) phenol (reactive at room temperature) as curing accelerator (A): 0.2 part by weight, as latent curing accelerator (B) Octylate of 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) (reaction activation starting temperature is about 100 ° C.): 0.3 part by weight, and latent curing accelerator (C) Boron trifluoride monoethylamine complex as (reaction activity start temperature is about 120 ° C.): 0.2 parts by weight is mixed at 60 ° C. for 15 minutes, and then vacuum degassed to form an epoxy resin composition for cast molding It was prepared. The viscosity change of this epoxy resin composition at 60 ° C. was as shown in FIG. 5, and the time until the viscosity doubled (pot life) was 4.3 hours.

また、実施例1のエポキシ樹脂組成物について、成形温度を90〜150℃の温度に設定した際のゲル化時間をゲルタイムテスター(安田精機製作所製No.153)で測定した。測定結果を図6に示す。このゲルタイムテスターは、熱硬化性樹脂組成物のゲル化時間を測定する装置で、熱硬化性樹脂組成物を入れた試験管中で回転するローターが、ゲル化に伴う一定のトルク発生により、磁気カップリング機構を介して脱落するまでの時間を、ゲル化時間として測定するものである。なお、注型成形作業での離型可能な時間は、その温度でのゲル化時間とは一致せず、成型物の肉厚でも異なるが、経験的にゲル化時間の1.5倍〜2.5倍程度長くなる傾向がある。   Moreover, about the epoxy resin composition of Example 1, the gelation time at the time of setting a shaping | molding temperature to the temperature of 90-150 degreeC was measured with the gel time tester (No.153 by Yasuda Seiki Seisakusho). The measurement results are shown in FIG. This gel time tester is a device that measures the gelation time of a thermosetting resin composition. The rotor that rotates in a test tube containing the thermosetting resin composition generates a certain amount of torque that accompanies the gelation. The time until it falls off via the coupling mechanism is measured as the gelation time. The mold release time in the cast molding operation does not match the gelation time at that temperature and differs depending on the thickness of the molded product, but empirically 1.5 times to 2 times the gelation time. It tends to be about 5 times longer.

図6に示されるように、実施例1のエポキシ樹脂組成物についてのゲル化時間の温度変化(ゲル化曲線)は、約120℃以上の温度でゲル化速度が、後述する比較例1〜4のエポキシ樹脂組成物に比べ顕著に上昇しており、潜在性硬化促進剤(C)の反応活性開始温度よりやや高い温度付近に変曲点(約127℃)を有し、注型温度付近(125℃〜150℃)で選択的に反応が速くなっている挙動であった。このゲル化挙動は、比較例のようなゲル化時間が単調減少する挙動とは異なることが分かる。また、注型温度である130℃でのゲル化時間は8分であり、後述する比較例より著しく短い。   As FIG. 6 shows, the temperature change (gelation curve) of the gelation time about the epoxy resin composition of Example 1 is about 120 degreeC or more, and the gelation rate is Comparative Examples 1-4 mentioned later. The inflection point (about 127 ° C.) is slightly higher than the reaction activation start temperature of the latent curing accelerator (C), and near the casting temperature ( 125 to 150 ° C.), the reaction was selectively accelerated. It can be seen that this gelation behavior is different from the behavior in which the gelation time monotonously decreases as in the comparative example. Further, the gelation time at 130 ° C., which is the casting temperature, is 8 minutes, which is significantly shorter than the comparative example described later.

実施例1のエポキシ樹脂組成物を用いて注型成形を実施した。即ち、実施例1のエポキシ樹脂組成物を60℃の温度に保持したまま、130℃に加熱した注型成形用金型に5kg/cmの圧力で注入し、加圧ゲル化法により15分間加熱硬化させ、注型成形用金型から離型した後、150℃で16時間の二次硬化を行い、成型物を得た。成型物には、ボイドやヒケなどの形状異常はないことを確認した。このように、実施例1のエポキシ樹脂組成物を使用することで、ポットライフを2時間以上確保しながら、後述する比較例のエポキシ樹脂組成物と比べて、60%前後の1次硬化時間を短縮することが可能であった。 Cast molding was carried out using the epoxy resin composition of Example 1. That is, the epoxy resin composition of Example 1 was poured at a pressure of 5 kg / cm 2 into a casting mold heated to 130 ° C. while maintaining the temperature at 60 ° C., and 15 minutes by the pressure gelation method. After heat-curing and releasing from the casting mold, secondary curing was performed at 150 ° C. for 16 hours to obtain a molded product. It was confirmed that there were no shape abnormalities such as voids and sink marks in the molded product. Thus, by using the epoxy resin composition of Example 1, a primary curing time of around 60% was obtained as compared with an epoxy resin composition of a comparative example described later while securing a pot life of 2 hours or more. It was possible to shorten it.

〔実施例2〕
ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq):100重量部、酸無水物系硬化剤としてのメチルテトラヒドロ無水フタル酸:85.5重量部、無機充填剤としての溶融シリカ:150重量部、硬化促進剤(A)としての2,4,6−トリス(N,N−ジメチルアミノメチル)フェノール(常温で反応活性である):0.2重量部、潜在性硬化促進剤(B)としての1−シアノエチル−2−メチルイミダゾール(反応活性開始温度が約100℃である):0.2重量部、及び潜在性硬化促進剤(C)としての三フッ化ホウ素モノエチルアミン錯体(反応活性開始温度が約120℃である):0.4重量部を、60℃で15分間混合した後、真空脱泡して注型成形用エポキシ樹脂組成物を調製した。実施例1との違いは、潜在性硬化促進剤(C)の配合量を潜在性硬化促進剤(B)の配合量より多くしたことである。このエポキシ樹脂組成物の60℃での粘度変化は、図5のようになり、粘度が2倍になるまでの時間(ポットライフ)は4.0時間であった。
[Example 2]
Bisphenol A type epoxy resin (epoxy equivalent: 190 g / eq): 100 parts by weight, methyltetrahydrophthalic anhydride as acid anhydride curing agent: 85.5 parts by weight, fused silica as inorganic filler: 150 parts by weight, 2,4,6-Tris (N, N-dimethylaminomethyl) phenol (reactive at room temperature) as curing accelerator (A): 0.2 part by weight, as latent curing accelerator (B) 1-cyanoethyl-2-methylimidazole (reaction activity start temperature is about 100 ° C.): 0.2 part by weight, and boron trifluoride monoethylamine complex (reaction activity start temperature as latent curing accelerator (C)) Is about 120 ° C.): 0.4 parts by weight were mixed at 60 ° C. for 15 minutes, and then vacuum degassed to prepare an epoxy resin composition for cast molding. The difference from Example 1 is that the blending amount of the latent curing accelerator (C) is larger than the blending amount of the latent curing accelerator (B). The change in viscosity of this epoxy resin composition at 60 ° C. was as shown in FIG. 5, and the time until the viscosity doubled (pot life) was 4.0 hours.

実施例2のエポキシ樹脂組成物について、実施例1と同様にしてゲル化時間を測定した。測定結果を図6に示す。図6に示されるように、実施例2のエポキシ樹脂組成物についてのゲル化時間の温度変化は、125℃付近からゲル化速度が急激に上昇しており、その変曲点も130℃(実施例1より3℃高い)に明確に存在する挙動であった。また、注型温度である130℃でのゲル化時間は6分であり、実施例1より2分短くなった。   For the epoxy resin composition of Example 2, the gelation time was measured in the same manner as in Example 1. The measurement results are shown in FIG. As shown in FIG. 6, the temperature change of the gelation time for the epoxy resin composition of Example 2 is that the gelation rate has rapidly increased from around 125 ° C., and the inflection point is also 130 ° C. The behavior was clearly present at 3 ° C. higher than Example 1. The gelation time at 130 ° C., which is the casting temperature, was 6 minutes, which was 2 minutes shorter than Example 1.

実施例2のエポキシ樹脂組成物を用いて注型成形を実施した。即ち、実施例2のエポキシ樹脂組成物を60℃の温度に保持したまま、130℃に加熱した注型成形用金型に5kg/cmの圧力で注入し、加圧ゲル化法により12分間加熱硬化させ、注型成形用金型から離型した後、150℃で16時間の二次硬化を行い、成型物を得た。成型物には、ボイドやヒケなどの形状異常はないことを確認した。このことから、潜在性硬化促進剤(B)と潜在性硬化促進剤(C)との配合比を制御することで、ゲルタイム変化の変曲点が制御できること及び反応速度の注型温度領域での選択性を高められることが分かった。 Cast molding was performed using the epoxy resin composition of Example 2. That is, the epoxy resin composition of Example 2 was poured at a pressure of 5 kg / cm 2 into a casting mold heated to 130 ° C. while maintaining the temperature of 60 ° C., and 12 minutes by the pressure gelation method. After heat-curing and releasing from the casting mold, secondary curing was performed at 150 ° C. for 16 hours to obtain a molded product. It was confirmed that there were no shape abnormalities such as voids and sink marks in the molded product. From this, by controlling the compounding ratio of the latent curing accelerator (B) and the latent curing accelerator (C), the inflection point of the gel time change can be controlled and the reaction rate in the casting temperature range. It was found that selectivity can be improved.

〔比較例1〕
ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq):100重量部、酸無水物系硬化剤としてのメチルテトラヒドロ無水フタル酸:85.5重量部、及び無機充填剤としての溶融シリカ:150重量部を、60℃で15分間混合した後、真空脱泡して注型成形用エポキシ樹脂組成物を調製した。実施例1との違いは、硬化促進剤(A)、潜在性硬化促進剤(B)及び潜在性硬化促進剤(C)を添加しなかったことである。このエポキシ樹脂組成物の60℃での粘度変化は、図5のようになり、粘度が2倍になるまでの時間(ポットライフ)は6時間となり、注型作業を行うには十分な時間があった。
[Comparative Example 1]
Bisphenol A type epoxy resin (epoxy equivalent: 190 g / eq): 100 parts by weight, methyltetrahydrophthalic anhydride as acid anhydride curing agent: 85.5 parts by weight, and fused silica as inorganic filler: 150 parts by weight Were mixed at 60 ° C. for 15 minutes, and then vacuum degassed to prepare a cast molding epoxy resin composition. The difference from Example 1 is that the curing accelerator (A), the latent curing accelerator (B) and the latent curing accelerator (C) were not added. The change in viscosity of this epoxy resin composition at 60 ° C. is as shown in FIG. 5, and the time until the viscosity doubles (pot life) is 6 hours, which is enough time for the casting operation. there were.

比較例1のエポキシ樹脂組成物について、実施例1と同様にしてゲル化時間を測定した。測定結果を図6に示す。図6に示されるように、比較例1のエポキシ樹脂組成物のゲル化曲線は、温度の上昇とともに、単調減少する挙動であった。また、注型温度である130℃でのゲル化時間は35分であった。   With respect to the epoxy resin composition of Comparative Example 1, the gelation time was measured in the same manner as in Example 1. The measurement results are shown in FIG. As shown in FIG. 6, the gelation curve of the epoxy resin composition of Comparative Example 1 was a behavior that monotonously decreased with increasing temperature. The gel time at a casting temperature of 130 ° C. was 35 minutes.

比較例1のエポキシ樹脂組成物を用いて注型成形を実施した。即ち、比較例1のエポキシ樹脂組成物を60℃の温度に保持したまま、130℃に加熱した注型成形用金型に5kg/cmの圧力で注入し、加圧ゲル化法により加熱硬化させたところ、離型できる状態まで硬化させるのに80分を要した。離型した後、150℃で16時間の二次硬化を行い、成型物を得た。硬化速度が遅く、硬化時の発熱による温度上昇が比較的少ないため、離型後の成型物には、ボイドやヒケの形状異常は観察されなかった。 Cast molding was performed using the epoxy resin composition of Comparative Example 1. That is, while keeping the epoxy resin composition of Comparative Example 1 at a temperature of 60 ° C., it was poured into a casting mold heated to 130 ° C. at a pressure of 5 kg / cm 2 and heat-cured by a pressure gelation method. As a result, 80 minutes were required for curing to a state where the mold could be released. After mold release, secondary curing was performed at 150 ° C. for 16 hours to obtain a molded product. Since the curing rate was slow and the temperature rise due to heat generation during curing was relatively small, no abnormalities of voids or sink marks were observed in the molded product after release.

〔比較例2〕
ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq):100重量部、酸無水物系硬化剤としてのメチルテトラヒドロ無水フタル酸:85.5重量部、無機充填剤としての溶融シリカ:150重量部、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)のオクチル酸塩(反応活性開始温度が約100℃である):0.7重量部を、60℃で15分間混合した後、真空脱泡して注型成形用エポキシ樹脂組成物を調製した。実施例1との違いは、硬化促進剤(A)、潜在性硬化促進剤(B)及び潜在性硬化促進剤(C)の代わりに、潜在性硬化促進剤(B)としての1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)のオクチル酸塩のみを添加したことである。このエポキシ樹脂組成物の60℃での粘度変化は、図5のようになり、粘度が2倍になるまでの時間(ポットライフ)は3.5時間となり、注型作業を行うには十分な時間があった。
[Comparative Example 2]
Bisphenol A type epoxy resin (epoxy equivalent: 190 g / eq): 100 parts by weight, methyltetrahydrophthalic anhydride as acid anhydride curing agent: 85.5 parts by weight, fused silica as inorganic filler: 150 parts by weight, Octylate of 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) (reaction activity starting temperature is about 100 ° C.): After mixing 0.7 parts by weight at 60 ° C. for 15 minutes Then, vacuum degassing was performed to prepare an epoxy resin composition for casting molding. The difference from Example 1 is that, instead of the curing accelerator (A), the latent curing accelerator (B) and the latent curing accelerator (C), 1,8− as the latent curing accelerator (B) is used. Only dioctabicyclo [5.4.0] undecene-7 (DBU) octylate was added. The viscosity change of this epoxy resin composition at 60 ° C. is as shown in FIG. 5, and the time until the viscosity doubles (pot life) is 3.5 hours, which is sufficient for the casting operation. There was time.

比較例2のエポキシ樹脂組成物について、実施例1と同様にしてゲル化時間を測定した。測定結果を図6に示す。図6に示されるように、比較例2のエポキシ樹脂組成物のゲル化曲線は、比較例1と同様に温度とともに単調減少する挙動であり、注型温度領域に実施例のような明確な変曲点は存在せず、注型温度領域の顕著な反応性向上は得られなかった。また、注型温度である130℃でのゲル化時間は22分であった。   For the epoxy resin composition of Comparative Example 2, the gelation time was measured in the same manner as in Example 1. The measurement results are shown in FIG. As shown in FIG. 6, the gelation curve of the epoxy resin composition of Comparative Example 2 is a behavior that monotonously decreases with temperature in the same manner as in Comparative Example 1, and clearly changes as in the Examples in the casting temperature region. There were no inflection points, and a significant improvement in reactivity in the casting temperature region was not obtained. The gelation time at 130 ° C., which is the casting temperature, was 22 minutes.

比較例2のエポキシ樹脂組成物を用いて注型成形を実施した。即ち、比較例2のエポキシ樹脂組成物60℃の温度に保持したまま、130℃に加熱した注型成形用金型に5kg/cmの圧力で注入し、加圧ゲル化法により加熱硬化させたところ、離型できる状態まで硬化させるのに48分を要した。離型した後、150℃で16時間の二次硬化を行い、成型物を得た。硬化時の発熱による温度上昇が多いため、離型後の成型物には、ヒケの形状異常が観察された。
この比較例のように、硬化促進剤を1種類だけ添加した場合は、反応活性開始温度に達した瞬間に重合反応が一気に進行するため、急激な発熱を引き起こし易く、この発熱により硬化反応が加速され、成型物の形状や肉厚によっては、成型物にヒケやボイドのような形状異常を引き起こす。
一方、実施例のように、低温、中温及び高温と異なる反応活性開始温度を有する硬化促進剤を2時間以上のポットライフが確保できる配合で添加している場合、低温側から硬化促進剤が機能し、樹脂温度が徐々に上昇し、樹脂の重合反応を徐々に進行させるため、硬化時の発熱による温度上昇が抑えられている。
Cast molding was performed using the epoxy resin composition of Comparative Example 2. That is, while maintaining the epoxy resin composition of Comparative Example 2 at a temperature of 60 ° C., it was poured into a casting mold heated to 130 ° C. at a pressure of 5 kg / cm 2 , and heat-cured by a pressure gelation method. As a result, it took 48 minutes to cure to a state where it could be released. After mold release, secondary curing was performed at 150 ° C. for 16 hours to obtain a molded product. Since there was a lot of temperature rise due to heat generation during curing, sink marks in the molded product after mold release were observed.
As in this comparative example, when only one type of curing accelerator is added, the polymerization reaction proceeds at a stroke when the reaction activation start temperature is reached, so that sudden heat generation is likely to occur. This heat generation accelerates the curing reaction. Depending on the shape and thickness of the molded product, abnormal shapes such as sink marks and voids are caused in the molded product.
On the other hand, when a curing accelerator having a reaction activity starting temperature different from low temperature, medium temperature and high temperature is added in a formulation that can ensure a pot life of 2 hours or more as in the examples, the curing accelerator functions from the low temperature side. However, since the resin temperature gradually rises and the polymerization reaction of the resin gradually proceeds, the temperature rise due to heat generation during curing is suppressed.

〔比較例3〕
ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq):100重量部、酸無水物系硬化剤としてのメチルテトラヒドロ無水フタル酸:85.5重量部、無機充填剤として溶融シリカ:150重量部、2,4,6−トリス(N,N−ジメチルアミノメチル)フェノール(常温で反応活性である):0.5重量部、及び1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)のオクチル酸塩(反応活性開始温度が約100℃である):0.5重量部を、60℃で15分間混合した後、真空脱泡して注型成形用エポキシ樹脂組成物を調製した。実施例1との違いは、硬化促進剤(A)、潜在性硬化促進剤(B)及び潜在性硬化促進剤(C)の代わりに、注型温度領域での反応速度を高めるため、硬化促進剤(A)及び潜在性硬化促進剤(B)のみをポットライフが確保できる範囲内で増量して添加したことである。このエポキシ樹脂組成物の60℃での粘度変化は、図5のようになり、粘度が2倍になるまでの時間(ポットライフ)は2.0時間となり、注型作業を実施可能なレベルであった。
[Comparative Example 3]
Bisphenol A type epoxy resin (epoxy equivalent: 190 g / eq): 100 parts by weight, methyltetrahydrophthalic anhydride as an acid anhydride curing agent: 85.5 parts by weight, fused silica as an inorganic filler: 150 parts by weight, 2 , 4,6-Tris (N, N-dimethylaminomethyl) phenol (reactive at room temperature): 0.5 part by weight, and 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) Octylate (reaction activity start temperature is about 100 ° C.): 0.5 part by weight was mixed at 60 ° C. for 15 minutes, and then vacuum degassed to prepare an epoxy resin composition for cast molding. The difference from Example 1 is that instead of the curing accelerator (A), the latent curing accelerator (B) and the latent curing accelerator (C), the reaction rate in the casting temperature region is increased, so that the curing acceleration It is that only the agent (A) and the latent curing accelerator (B) were added in an amount within a range where the pot life can be secured. The change in viscosity at 60 ° C. of this epoxy resin composition is as shown in FIG. 5, and the time until the viscosity doubles (pot life) is 2.0 hours, which is a level at which the casting operation can be performed. there were.

比較例3のエポキシ樹脂組成物について、実施例1と同様にしてゲル化時間を測定した。測定結果を図6に示す。図6に示されるように、比較例3のエポキシ樹脂組成物のゲル化曲線は、温度とともに単調減少する挙動であり、注型温度領域に実施例のような明確な変曲点は存在せず、注型温度領域の顕著な反応性向上は得られなかった。また、注型温度である130℃でのゲル化時間は17分であった。   For the epoxy resin composition of Comparative Example 3, the gelation time was measured in the same manner as in Example 1. The measurement results are shown in FIG. As shown in FIG. 6, the gelation curve of the epoxy resin composition of Comparative Example 3 is a behavior that monotonously decreases with temperature, and there is no clear inflection point as in the example in the casting temperature range. The remarkable reactivity improvement in the casting temperature region was not obtained. The gel time at a casting temperature of 130 ° C. was 17 minutes.

比較例3のエポキシ樹脂組成物を用いて注型成形を実施した。即ち、比較例3のエポキシ樹脂組成物を60℃の温度に保持したまま、130℃に加熱した注型成形用金型に5kg/cmの圧力で注入し、加圧ゲル化法により加熱硬化させたところ、離型できる状態まで硬化させるのに40分を要した。離型した後、150℃で16時間の二次硬化を行い、成型物を得た。成型物は、硬化促進剤(A)の添加により、硬化発熱温度が抑制されており、離型した成型物には形状異常はなく、良好であった。
この比較例のように、硬化促進剤(A)及び潜在性硬化促進剤(B)の2種類を、60℃で2時間のポットライフを確保できる範囲内で最適化した場合、実施例1のような短時間(15分)での離型を達成することはできない。
Cast molding was performed using the epoxy resin composition of Comparative Example 3. That is, the epoxy resin composition of Comparative Example 3 was poured at a pressure of 5 kg / cm 2 into a casting mold heated to 130 ° C. while maintaining the temperature of 60 ° C., and heat-cured by a pressure gelation method. As a result, it took 40 minutes to cure to a state where the mold could be released. After mold release, secondary curing was performed at 150 ° C. for 16 hours to obtain a molded product. The molded product was excellent in that the curing exothermic temperature was suppressed by the addition of the curing accelerator (A), and the molded product released from the mold had no shape abnormality.
As in this comparative example, when the two types of curing accelerator (A) and latent curing accelerator (B) were optimized within a range where a pot life of 2 hours at 60 ° C. could be secured, It is not possible to achieve mold release in such a short time (15 minutes).

〔比較例4〕
ビスフェノールA型エポキシ樹脂(エポキシ当量:190g/eq):100重量部、酸無水物系硬化剤としてのメチルテトラヒドロ無水フタル酸:85.5重量部、無機充填剤としての溶融シリカ:150重量部、2,4,6−トリス(N,N−ジメチルアミノメチル)フェノール(常温で反応活性である):0.2重量部、及び三フッ化ホウ素モノエチルアミン錯体(反応活性開始温度が約120℃である):0.5重量部を、60℃で15分間混合した後、真空脱泡して注型成形用エポキシ樹脂組成物を調製した。実施例1との違いは、硬化促進剤(A)、潜在性硬化促進剤(B)及び潜在性硬化促進剤(C)の代わりに、硬化促進剤(A)及び潜在性硬化促進剤(C)のみを添加したことである。このエポキシ樹脂組成物の60℃での粘度変化は、図5のようになり、粘度が2倍になるまでの時間(ポットライフ)は4.8時間となり、注型作業を行うには十分な時間があった。
[Comparative Example 4]
Bisphenol A type epoxy resin (epoxy equivalent: 190 g / eq): 100 parts by weight, methyltetrahydrophthalic anhydride as acid anhydride curing agent: 85.5 parts by weight, fused silica as inorganic filler: 150 parts by weight, 2,4,6-tris (N, N-dimethylaminomethyl) phenol (reactive at room temperature): 0.2 part by weight, and boron trifluoride monoethylamine complex (reaction activity starting temperature is about 120 ° C. A): After mixing 0.5 parts by weight at 60 ° C. for 15 minutes, vacuum degassing was performed to prepare an epoxy resin composition for cast molding. The difference from Example 1 is that instead of the curing accelerator (A), the latent curing accelerator (B) and the latent curing accelerator (C), the curing accelerator (A) and the latent curing accelerator (C ) Only. The viscosity change of this epoxy resin composition at 60 ° C. is as shown in FIG. 5, and the time until the viscosity doubles (pot life) is 4.8 hours, which is sufficient for the casting operation. There was time.

比較例4のエポキシ樹脂組成物について、実施例1と同様にしてゲル化時間を測定した。測定結果を図6に示す。図6に示されるように、比較例4のエポキシ樹脂組成物のゲル化曲線は、温度とともに単調減少する挙動であり、注型温度領域に実施例のような明確な変曲点は存在せず、注型温度領域の顕著な反応性向上は得られなかった。注型温度である130℃でのゲル化時間は19分であり、潜在性硬化促進剤(C)を増量したにもかかわらず短くならなかった。   For the epoxy resin composition of Comparative Example 4, the gelation time was measured in the same manner as in Example 1. The measurement results are shown in FIG. As shown in FIG. 6, the gelation curve of the epoxy resin composition of Comparative Example 4 is a behavior that monotonously decreases with temperature, and there is no clear inflection point as in the example in the casting temperature region. The remarkable reactivity improvement in the casting temperature region was not obtained. The gelation time at the casting temperature of 130 ° C. was 19 minutes, and it did not become short despite the increase in the latent curing accelerator (C).

比較例4のエポキシ樹脂組成物を用いて注型成形を実施した。即ち、比較例4のエポキシ樹脂組成物を60℃の温度に保持したまま、130℃に加熱した注型成形用金型に5kg/cmの圧力で注入し、加圧ゲル化法により加熱硬化させたところ、離型できる状態まで硬化させるのに47分を要した。離型した後、150℃で16時間の二次硬化を行い、成型物を得た。成型物は、硬化促進剤(A)の添加により、硬化発熱温度が抑制されており、離型した成型物には形状異常はなく、良好であった。
この比較例のように、硬化促進剤(A)及び潜在性硬化促進剤(C)の2種類を添加した場合、注型成形用金型に注入されたエポキシ樹脂組成物の温度は、除々に上昇するが、潜在性硬化促進剤(C)の反応活性開始温度が高いため、温度上昇時のエポキシ樹脂の重合が遅く、実施例1のような短時間(15分)での離型を達成することはできない。
Cast molding was performed using the epoxy resin composition of Comparative Example 4. That is, while keeping the epoxy resin composition of Comparative Example 4 at a temperature of 60 ° C., it was injected at a pressure of 5 kg / cm 2 into a casting mold heated to 130 ° C. and heat-cured by a pressure gelation method. As a result, it took 47 minutes to cure to a state where the mold could be released. After mold release, secondary curing was performed at 150 ° C. for 16 hours to obtain a molded product. The molded product was excellent in that the curing exothermic temperature was suppressed by the addition of the curing accelerator (A), and the molded product released from the mold had no shape abnormality.
When two types of curing accelerator (A) and latent curing accelerator (C) are added as in this comparative example, the temperature of the epoxy resin composition injected into the casting mold is gradually increased. Although the reaction activation start temperature of the latent curing accelerator (C) is high, the polymerization of the epoxy resin at the time of the temperature rise is slow, and release in a short time (15 minutes) as in Example 1 is achieved. I can't do it.

〔比較例5〕
実施例1のメチルテトラヒドロ無水フタル酸:85.5重量部の代わりに、ポリエチレンポリアミン:20重量部を使用して、60℃で混合したところ、混合途中でゲル化して注型成形用エポキシ樹脂組成物を調製することができなかった。これは、硬化剤として常温硬化性の脂肪族アミンを用いたため、硬化速度は劇的に速くなるが、発熱反応が高く、可使時間が著しく短くなるためである。この比較例のようなエポキシ樹脂組成物は、一定の作業時間が必要な高電圧機器向けの成形用途には適さない。
[Comparative Example 5]
In place of 85.5 parts by weight of methyltetrahydrophthalic anhydride of Example 1, 20 parts by weight of polyethylene polyamine was mixed at 60 ° C., and gelled in the middle of mixing to form an epoxy resin composition for cast molding. The product could not be prepared. This is because the room temperature curable aliphatic amine is used as the curing agent, so that the curing speed is dramatically increased, but the exothermic reaction is high and the pot life is remarkably shortened. The epoxy resin composition as in this comparative example is not suitable for molding applications for high voltage equipment that requires a certain working time.

〔実施例3〕
ビスフェノールA型エポキシ樹脂(エポキシ当量:210g/eq):100重量部、酸無水物系硬化剤としての無水メチルナジック酸:80重量部、無機充填剤としての溶融シリカ:130重量部、硬化促進剤(A)としてのN,N−ジメチルシクロヘキシルアミン(常温で反応活性である):0.3重量部、潜在性硬化促進剤(B)としての1−ベンジル−2−メチルイミダゾール(反応活性開始温度が約80℃である):0.2重量部、及び潜在性硬化促進剤(C)としての三フッ化ホウ素ジエチルアミン錯体(反応活性開始温度が約125℃である):0.5重量部を、60℃で15分間混合した後、真空脱泡して注型成形用エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の60℃での粘度変化を測定したところ、粘度が2倍になるまでの時間(ポットライフ)は4時間であった。
Example 3
Bisphenol A type epoxy resin (epoxy equivalent: 210 g / eq): 100 parts by weight, methyl nadic anhydride as an acid anhydride curing agent: 80 parts by weight, fused silica as an inorganic filler: 130 parts by weight, curing accelerator N, N-dimethylcyclohexylamine (reactive at room temperature) as (A): 0.3 part by weight, 1-benzyl-2-methylimidazole (reaction activity start temperature as latent curing accelerator (B)) Is about 80 ° C.): 0.2 part by weight, and boron trifluoride diethylamine complex as the latent curing accelerator (C) (reaction activation start temperature is about 125 ° C.): 0.5 part by weight After mixing at 60 ° C. for 15 minutes, vacuum degassing was performed to prepare an epoxy resin composition for cast molding. When the change in viscosity at 60 ° C. of this epoxy resin composition was measured, the time until the viscosity doubled (pot life) was 4 hours.

実施例3のエポキシ樹脂組成物について、実施例1と同様にしてゲル化時間を測定した。測定結果を図7に示す。図7に示されるように、実施例3のエポキシ樹脂組成物についてのゲル化時間の温度変化は、潜在性硬化促進剤(C)の反応活性開始温度付近(130℃)に明確な変曲点を有する挙動となり、注型温度である140℃でのゲル化時間は6分であった。   For the epoxy resin composition of Example 3, the gelation time was measured in the same manner as in Example 1. The measurement results are shown in FIG. As shown in FIG. 7, the temperature change of the gelation time for the epoxy resin composition of Example 3 is a clear inflection point near the reaction activation start temperature (130 ° C.) of the latent curing accelerator (C). The gelation time at 140 ° C., which is the casting temperature, was 6 minutes.

実施例3のエポキシ樹脂組成物を用いて注型成形を実施した。即ち、実施例3のエポキシ樹脂組成物を60℃の温度に保持したまま、140℃に加熱した注型成形用金型に8kg/cmの圧力で注入し、加圧ゲル化法により10分間加熱硬化させ、注型成形用金型から離型した後、155℃で12時間の二次硬化を行い、成型物を得た。成型物を観察したところ、ボイドやヒケなどの形状異常はないことを確認した。 Cast molding was performed using the epoxy resin composition of Example 3. That is, the epoxy resin composition of Example 3 was poured at a pressure of 8 kg / cm 2 into a casting mold heated to 140 ° C. while maintaining the temperature at 60 ° C., and 10 minutes by the pressure gelation method. After heat-curing and releasing from the casting mold, secondary curing was performed at 155 ° C. for 12 hours to obtain a molded product. When the molded product was observed, it was confirmed that there were no shape abnormalities such as voids and sink marks.

〔実施例4〕
ビスフェノールF型エポキシ樹脂(エポキシ当量:170g/eq):100重量部、酸無水物系硬化剤としてのメチルテトラヒドロ無水フタル酸:80重量部、無機充填剤としての結晶シリカ:150重量部、硬化促進剤(A)としてのN,N−ジメチルベンジルアミン(常温で反応活性である):0.1重量部、潜在性硬化促進剤(B)としての臭化テトラフェニルホスホニウム(反応活性開始温度が約90℃である):0.2重量部、及び潜在性硬化促進剤(C)としての三塩化ホウ素N,N−ジエチルジオクチルアミン錯体(反応活性開始温度が約125℃である):0.3重量部を、60℃で15分間混合した後、真空脱泡して注型成形用エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の60℃での粘度変化を測定したところ、粘度が2倍になるまでの時間(ポットライフ)は5時間であった。
Example 4
Bisphenol F type epoxy resin (epoxy equivalent: 170 g / eq): 100 parts by weight, methyltetrahydrophthalic anhydride as an acid anhydride curing agent: 80 parts by weight, crystalline silica as an inorganic filler: 150 parts by weight, curing acceleration N, N-dimethylbenzylamine as an agent (A) (reactive at room temperature): 0.1 part by weight, tetraphenylphosphonium bromide as a latent curing accelerator (B) (reaction activity start temperature is about 90 ° C.): 0.2 part by weight, and boron trichloride N, N-diethyldioctylamine complex as the latent curing accelerator (C) (reaction activation start temperature is about 125 ° C.): 0.3 After mixing parts by weight at 60 ° C. for 15 minutes, vacuum degassing was performed to prepare an epoxy resin composition for cast molding. When the change in viscosity at 60 ° C. of this epoxy resin composition was measured, the time until the viscosity doubled (pot life) was 5 hours.

実施例4のエポキシ樹脂組成物について、実施例1と同様にしてゲル化時間を測定した。測定結果を図7に示す。図7に示されるように、実施例4のエポキシ樹脂組成物についてのゲル化時間の温度変化は、潜在性硬化促進剤(C)の反応活性開始温度付近(128℃)に明確な変曲点を有する挙動となり、注型温度である140℃でのゲル化時間は6分であった。   For the epoxy resin composition of Example 4, the gelation time was measured in the same manner as in Example 1. The measurement results are shown in FIG. As shown in FIG. 7, the temperature change of the gelation time for the epoxy resin composition of Example 4 is a clear inflection point near the reaction activation start temperature (128 ° C.) of the latent curing accelerator (C). The gelation time at 140 ° C., which is the casting temperature, was 6 minutes.

実施例4のエポキシ樹脂組成物を用いて注型成形を実施した。即ち、実施例4のエポキシ樹脂組成物を60℃の温度に保持したまま、140℃に加熱した注型成形用金型に10kg/cmの圧力で注入し、加圧ゲル化法により10分間加熱硬化させ、注型成形用金型から離型した後、145℃で16時間の二次硬化を行い、成型物を得た。成型物を観察したところ、ボイドやヒケなどの形状異常はないことを確認した。 Cast molding was performed using the epoxy resin composition of Example 4. That is, the epoxy resin composition of Example 4 was poured at a pressure of 10 kg / cm 2 into a casting mold heated to 140 ° C. while maintaining the temperature at 60 ° C., and 10 minutes by the pressure gelation method. After heat-curing and releasing from the casting mold, secondary curing was performed at 145 ° C. for 16 hours to obtain a molded product. When the molded product was observed, it was confirmed that there were no shape abnormalities such as voids and sink marks.

〔実施例5〕
ビスフェノールAD型エポキシ樹脂(エポキシ当量:175g/eq):100重量部、酸無水物系硬化剤としてのトリアルキルテトラヒドロ無水フタル酸:85重量部、無機充填剤としてのアルミナ:300重量部、硬化促進剤(A)としての(N,N−ジメチルアミノメチル)フェノール(常温で反応活性である):0.1重量部、潜在性硬化促進剤(B)としての1−シアノエチル−2−メチルイミダゾール(反応活性開始温度が約100℃である):0.2重量部、及び潜在性硬化促進剤(C)としての三塩化ホウ素モノエチルアミン錯体(反応活性開始温度が約125℃である):0.3重量部を、60℃で15分間混合した後、真空脱泡して注型成形用エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の60℃での粘度変化を測定したところ、粘度が2倍になるまでの時間(ポットライフ)は4.5時間であった。
Example 5
Bisphenol AD type epoxy resin (epoxy equivalent: 175 g / eq): 100 parts by weight, trialkyltetrahydrophthalic anhydride as an acid anhydride curing agent: 85 parts by weight, alumina as an inorganic filler: 300 parts by weight, curing acceleration (N, N-dimethylaminomethyl) phenol (reactive at room temperature) as agent (A): 0.1 part by weight, 1-cyanoethyl-2-methylimidazole as latent curing accelerator (B) The reaction activation start temperature is about 100 ° C.): 0.2 part by weight, and boron trichloride monoethylamine complex as the latent curing accelerator (C) (reaction activity start temperature is about 125 ° C.): 0. After mixing 3 parts by weight at 60 ° C. for 15 minutes, vacuum degassing was performed to prepare an epoxy resin composition for cast molding. When the change in viscosity of this epoxy resin composition at 60 ° C. was measured, the time until the viscosity doubled (pot life) was 4.5 hours.

実施例5のエポキシ樹脂組成物について、実施例1と同様にしてゲル化時間を測定した。測定結果を図7に示す。図7に示されるように、実施例5のエポキシ樹脂組成物についてのゲル化時間の温度変化は、潜在性硬化促進剤(C)の反応活性開始温度付近(125℃)に明確な変曲点を有する挙動となり、140℃での注型温度でのゲル化時間は7分であった。   For the epoxy resin composition of Example 5, the gelation time was measured in the same manner as in Example 1. The measurement results are shown in FIG. As shown in FIG. 7, the temperature change of the gelation time for the epoxy resin composition of Example 5 is a clear inflection point near the reaction activation start temperature (125 ° C.) of the latent curing accelerator (C). The gelation time at a casting temperature of 140 ° C. was 7 minutes.

実施例5のエポキシ樹脂組成物を用いて注型成形を実施した。即ち、実施例5のエポキシ樹脂組成物を60℃の温度に保持したまま、140℃に加熱した注型成形用金型に4kg/cmの圧力で注入し、加圧ゲル化法により15分間加熱硬化させ、注型成形用金型から離型した後、150℃で16時間の二次硬化を行い、成型物を得た。成型物には、ボイドやヒケなどの形状異常はないことを確認した。 Cast molding was performed using the epoxy resin composition of Example 5. That is, the epoxy resin composition of Example 5 was poured at a pressure of 4 kg / cm 2 into a casting mold heated to 140 ° C. while maintaining the temperature at 60 ° C., and 15 minutes by the pressure gelation method. After heat-curing and releasing from the casting mold, secondary curing was performed at 150 ° C. for 16 hours to obtain a molded product. It was confirmed that there were no shape abnormalities such as voids and sink marks in the molded product.

〔実施例6〕
実施例1のエポキシ樹脂組成物と注型条件で、電極を埋め込んだ絶縁ロッドを成形した。離型後の二次硬化時間は、135℃で16時間とした。この絶縁ロッドを用いて、破壊電界を測定したところ60kV/mmであり、汎用の高電圧機器用注型樹脂と同等以上であることを確認した。また、ヒートサイクル試験(100℃〜−30℃、100サイクル)を行った後、クラック発生もなく、更に、絶縁特性、機械特性、耐熱特性などの成型物特性に全く変化がないことが確認され、長期信頼性の高い注型絶縁物であることが実証された。
Example 6
An insulating rod in which an electrode was embedded was molded under the casting conditions of the epoxy resin composition of Example 1. The secondary curing time after mold release was 16 hours at 135 ° C. Using this insulating rod, the breakdown electric field was measured and found to be 60 kV / mm, which was equal to or higher than that of a general-purpose casting resin for high-voltage equipment. In addition, after conducting a heat cycle test (100 ° C. to −30 ° C., 100 cycles), it was confirmed that there was no cracking and that there was no change in molding properties such as insulation properties, mechanical properties, and heat resistance properties. Proven to be a long-term reliable cast insulator.

〔実施例7〕
実施例5のエポキシ樹脂組成物と注型条件で、絶縁スペーサを成形した。離型後の二次硬化時間は、150℃で20時間とした。この絶縁スペーサを用いて、耐SF分解ガス性の評価を実施した。評価は、放電容器内にSFを封入後、針対平板電極を用いて5時間の連続放電を行い、その後に表面抵抗をJIS K6911に準じて測定した。表面抵抗の低下は殆どなく、耐SF分解ガス性を有することが判った。
Example 7
An insulating spacer was molded using the epoxy resin composition of Example 5 and casting conditions. The secondary curing time after mold release was 20 hours at 150 ° C. Using this insulating spacer, SF 6 decomposition gas resistance was evaluated. In the evaluation, after SF 6 was sealed in a discharge vessel, continuous discharge was performed for 5 hours using a needle-to-plate electrode, and then the surface resistance was measured according to JIS K6911. It was found that there was almost no decrease in surface resistance and SF 6 decomposition gas resistance was exhibited.

Claims (11)

ビスフェノール型エポキシ樹脂と、酸無水物系硬化剤と、硬化促進剤と、無機充填剤とを混合した注型成形用エポキシ樹脂組成物であって、
前記硬化促進剤が、反応活性開始温度が樹脂混合温度以下である硬化促進剤(A)と、反応活性開始温度が注型成形用金型の設定温度に対して±20℃の範囲内である潜在性硬化促進剤(C)と、反応活性開始温度が樹脂混合温度を超え且つ潜在性硬化促進剤(C)の反応活性開始温度より低い温度である潜在性硬化促進剤(B)とからなり、前記無機充填剤の量が樹脂組成物全体に対して40重量%以上85重量%以下であることを特徴とする注型成形用エポキシ樹脂組成物。
A cast molding epoxy resin composition in which a bisphenol type epoxy resin, an acid anhydride curing agent, a curing accelerator, and an inorganic filler are mixed,
The curing accelerator is a curing accelerator (A) having a reaction activity start temperature not higher than the resin mixing temperature, and the reaction activity start temperature is in the range of ± 20 ° C. with respect to the set temperature of the casting mold. The latent curing accelerator (C) and the latent curing accelerator (B) whose reaction activity initiation temperature exceeds the resin mixing temperature and is lower than the reaction activity initiation temperature of the latent curing accelerator (C). The amount of the inorganic filler is 40% by weight or more and 85% by weight or less based on the entire resin composition.
前記硬化促進剤(A)の反応活性開始温度が70℃以下であり、前記潜在性硬化促進剤(B)の反応活性開始温度が70℃以上110℃以下であり、前記潜在性硬化促進剤(C)の反応活性開始温度が110℃以上であり、前記硬化促進剤(A)と前記潜在性硬化促進剤(B)との反応活性開始温度差及び前記潜在性硬化促進剤(B)と前記潜在性硬化促進剤(C)との反応活性開始温度差が10℃以上であることを特徴とする請求項1に記載の注型成形用エポキシ樹脂組成物。   The reaction activity starting temperature of the curing accelerator (A) is 70 ° C. or lower, the reaction activity starting temperature of the latent curing accelerator (B) is 70 ° C. or higher and 110 ° C. or lower, and the latent curing accelerator ( The reaction activity start temperature of C) is 110 ° C. or higher, the reaction activity start temperature difference between the curing accelerator (A) and the latent curing accelerator (B), and the latent curing accelerator (B) and the above The epoxy resin composition for cast molding according to claim 1, wherein a difference in reaction activity start temperature with the latent curing accelerator (C) is 10 ° C. or more. 前記硬化促進剤(A)、前記潜在性硬化促進剤(B)及び前記潜在性硬化促進剤(C)が、第三級アミン、第三級アミン塩、ホウ酸エステル、ルイス酸、有機金属化合物、有機リン系化合物、第四級アンモニウム塩、第四級ホスホニウム塩、アミン錯体及びイミダゾール系化合物からなる群から選択されることを特徴とする請求項1又は2に記載の注型成形用エポキシ樹脂組成物。   The curing accelerator (A), the latent curing accelerator (B) and the latent curing accelerator (C) are a tertiary amine, a tertiary amine salt, a boric acid ester, a Lewis acid, an organometallic compound. 3. An epoxy resin for cast molding according to claim 1, wherein the epoxy resin is selected from the group consisting of organic phosphorus compounds, quaternary ammonium salts, quaternary phosphonium salts, amine complexes and imidazole compounds. Composition. 前記硬化促進剤(A)が、第三級アミンであり、前記潜在性硬化促進剤(B)及び前記潜在性硬化促進剤(C)が、第三級アミン塩、第四級アンモニウム塩、第四級ホスホニウム塩、イミダゾール系化合物及びハロゲン化ホウ素アミン錯体からなる群から選択されることを特徴とする請求項1〜3のいずれか一項に記載の注型成形用エポキシ樹脂組成物。   The curing accelerator (A) is a tertiary amine, and the latent curing accelerator (B) and the latent curing accelerator (C) are tertiary amine salts, quaternary ammonium salts, The epoxy resin composition for cast molding according to any one of claims 1 to 3, wherein the epoxy resin composition is selected from the group consisting of a quaternary phosphonium salt, an imidazole compound and a boron halide amine complex. 前記硬化促進剤(A)、前記潜在性硬化促進剤(B)及び前記潜在性硬化促進剤(C)の合計量が、前記ビスフェノール型エポキシ樹脂100重量部に対して0.01重量部以上3.0重量部以下であることを特徴とする請求項1〜4のいずれか一項に記載の注型成形用エポキシ樹脂組成物。   The total amount of the curing accelerator (A), the latent curing accelerator (B) and the latent curing accelerator (C) is 0.01 parts by weight or more and 3 parts by weight with respect to 100 parts by weight of the bisphenol type epoxy resin. It is 0.0 weight part or less, The epoxy resin composition for cast molding as described in any one of Claims 1-4 characterized by the above-mentioned. 前記潜在性硬化促進剤(C)の量が、前記潜在性硬化促進剤(B)の量よりも多いことを特徴とする請求項1〜5のいずれか一項に記載の注型成形用エポキシ樹脂組成物。   The amount of the latent curing accelerator (C) is larger than the amount of the latent curing accelerator (B), and the casting mold epoxy according to any one of claims 1 to 5, Resin composition. 前記無機充填剤が、シリカ粉末、アルミナ粉末、マグネシア粉末、ガラス短繊維及びガラスビーズからなる群から選択されることを特徴とする請求項1〜6のいずれか一項に記載の注型成形用エポキシ樹脂組成物。   The said inorganic filler is selected from the group which consists of a silica powder, an alumina powder, a magnesia powder, a glass short fiber, and a glass bead, For the cast molding as described in any one of Claims 1-6 characterized by the above-mentioned. Epoxy resin composition. 可使時間を、注型成形用エポキシ樹脂組成物の粘度が60℃の加温下で2倍になるまでの時間と定義した場合、その可使時間が2時間以上であることを特徴とする請求項1〜7のいずれか一項に記載の注型成形用エポキシ樹脂組成物。   When the pot life is defined as the time until the viscosity of the epoxy resin composition for cast molding doubles under heating at 60 ° C., the pot life is 2 hours or more. The epoxy resin composition for cast molding according to any one of claims 1 to 7. 請求項1〜8のいずれか一項に記載の注型成形用エポキシ樹脂組成物を、前記酸無水物系硬化剤、前記硬化促進剤(A)、前記潜在性硬化促進剤(B)及び前記潜在性硬化促進剤(C)からなる混合物と、それ以外の成分からなる混合物とを混合することにより調製し、この注型成形用エポキシ樹脂組成物を1kg/cm以上20kg/cm以下の圧力で金型に注入して成形することを特徴とする高電圧機器用モールド製品の製造方法。 The epoxy resin composition for cast molding according to any one of claims 1 to 8, wherein the acid anhydride curing agent, the curing accelerator (A), the latent curing accelerator (B), and the The mixture was prepared by mixing a mixture composed of the latent curing accelerator (C) and a mixture composed of other components, and the epoxy resin composition for cast molding was 1 kg / cm 2 or more and 20 kg / cm 2 or less. A method for producing a molded product for a high-voltage device, wherein the molding is performed by pouring into a mold with pressure. 前記金型内の樹脂が完全にゲル化するまで前記圧力を加え続けて固化させることを特徴とする請求項9に記載の高電圧機器用モールド製品の製造方法。   The method for producing a molded product for a high voltage device according to claim 9, wherein the pressure is continuously applied until the resin in the mold is completely gelled. 請求項9又は10に記載の製造方法により得られることを特徴とする高電圧機器用モールド製品。   A molded product for high-voltage equipment, which is obtained by the production method according to claim 9 or 10.
JP2014029586A 2013-06-27 2014-02-19 Epoxy resin composition for cast molding, and method for producing molded product for high voltage equipment using the same Active JP6461475B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014029586A JP6461475B2 (en) 2013-06-27 2014-02-19 Epoxy resin composition for cast molding, and method for producing molded product for high voltage equipment using the same
CN201410299785.7A CN104250427B (en) 2013-06-27 2014-06-27 Cast molding composition epoxy resin and employ its high voltage installation mechanograph and manufacture method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013134767 2013-06-27
JP2013134767 2013-06-27
JP2014029586A JP6461475B2 (en) 2013-06-27 2014-02-19 Epoxy resin composition for cast molding, and method for producing molded product for high voltage equipment using the same

Publications (2)

Publication Number Publication Date
JP2015028132A true JP2015028132A (en) 2015-02-12
JP6461475B2 JP6461475B2 (en) 2019-01-30

Family

ID=52492017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029586A Active JP6461475B2 (en) 2013-06-27 2014-02-19 Epoxy resin composition for cast molding, and method for producing molded product for high voltage equipment using the same

Country Status (2)

Country Link
JP (1) JP6461475B2 (en)
CN (1) CN104250427B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512471A (en) * 2015-03-26 2018-05-17 ハンツマン・アドヴァンスト・マテリアルズ・ライセンシング・(スイッツランド)・ゲーエムベーハー Method of manufacturing an insulation system for electrical engineering, products obtained therefrom, and uses thereof
KR20190091544A (en) * 2016-12-12 2019-08-06 에보니크 데구사 게엠베하 New Low Temperature Anhydride Epoxy Cured System
JP2020536998A (en) * 2017-10-09 2020-12-17 サイテック インダストリーズ インコーポレイテッド Curable resin composition and fiber reinforced resin matrix composite material
CN114147181A (en) * 2021-10-21 2022-03-08 浙江林家昌隆阀门铸造有限公司 Double-furnace casting method
JP7365118B2 (en) 2016-03-15 2023-10-19 ハンツマン・アドヴァンスト・マテリアルズ・ライセンシング・(スイッツランド)・ゲーエムベーハー Process for the production of insulation systems for electrical engineering, products obtained therefrom and their use

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047383B (en) * 2015-08-20 2018-05-08 王永法 A kind of resistance to shorting oil-immersed transformer device body and preparation method thereof
CN105820507A (en) * 2016-04-19 2016-08-03 西安思坦电气技术有限公司 Insulation layer of glass fiber-reinforced plastic capacitive transformer bushing and preparation method thereof
EP3559073A4 (en) * 2016-12-21 2020-08-26 Huntsman Advanced Materials Licensing (Switzerland) GmbH Latent curing accelerators
CN108215233B (en) * 2017-12-11 2019-12-24 湖北耐创新材料洁具有限公司 Pressure forming process of resin and mineral mixed casting part
AU2019248484A1 (en) * 2018-04-04 2020-10-01 Huntsman Advanced Materials Licensing (Switzerland) Gmbh Accelerator composition for the cure of epoxy resins with aromatic amines
CN108736363A (en) * 2018-05-18 2018-11-02 慈溪益成电器有限公司 A kind of High aititude shielding contact box
CN114395219A (en) * 2022-01-17 2022-04-26 南通中集能源装备有限公司 Hydrogen storage bottle, liquid epoxy resin system wound by wet method and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242732A (en) * 1994-03-04 1995-09-19 Mitsubishi Electric Corp Epoxy resin composition for molding, molded product made using the same for high-voltage apparatus, and production thereof
JPH1060085A (en) * 1996-08-20 1998-03-03 Mitsubishi Electric Corp Resin composition for molding, molded product for high voltage equipment by using the same and its production
JPH1160908A (en) * 1997-08-19 1999-03-05 Nitto Denko Corp Casting type epoxy resin for electric insulation
JP2000239356A (en) * 1999-02-17 2000-09-05 Mitsubishi Electric Corp Thermosetting resin composition and insulated coil using the same
JP2001226463A (en) * 2000-02-17 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003266434A (en) * 2002-03-14 2003-09-24 Toto Ltd Manufacturing method for resin molded body and manufacturing method for bulk mold compound for preparing resin molded body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3666287B2 (en) * 1999-02-16 2005-06-29 三菱電機株式会社 Thermosetting resin composition and insulated coil using the same
JP2002145996A (en) * 2000-11-10 2002-05-22 Mitsubishi Electric Corp Thermosetting resin composition and insulated coil using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242732A (en) * 1994-03-04 1995-09-19 Mitsubishi Electric Corp Epoxy resin composition for molding, molded product made using the same for high-voltage apparatus, and production thereof
JPH1060085A (en) * 1996-08-20 1998-03-03 Mitsubishi Electric Corp Resin composition for molding, molded product for high voltage equipment by using the same and its production
JPH1160908A (en) * 1997-08-19 1999-03-05 Nitto Denko Corp Casting type epoxy resin for electric insulation
JP2000239356A (en) * 1999-02-17 2000-09-05 Mitsubishi Electric Corp Thermosetting resin composition and insulated coil using the same
JP2001226463A (en) * 2000-02-17 2001-08-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003266434A (en) * 2002-03-14 2003-09-24 Toto Ltd Manufacturing method for resin molded body and manufacturing method for bulk mold compound for preparing resin molded body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512471A (en) * 2015-03-26 2018-05-17 ハンツマン・アドヴァンスト・マテリアルズ・ライセンシング・(スイッツランド)・ゲーエムベーハー Method of manufacturing an insulation system for electrical engineering, products obtained therefrom, and uses thereof
JP7365118B2 (en) 2016-03-15 2023-10-19 ハンツマン・アドヴァンスト・マテリアルズ・ライセンシング・(スイッツランド)・ゲーエムベーハー Process for the production of insulation systems for electrical engineering, products obtained therefrom and their use
KR20190091544A (en) * 2016-12-12 2019-08-06 에보니크 데구사 게엠베하 New Low Temperature Anhydride Epoxy Cured System
JP2020501000A (en) * 2016-12-12 2020-01-16 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH A novel low temperature acid anhydride epoxy curing system
US11286336B2 (en) 2016-12-12 2022-03-29 Evonik Operations Gmbh Low temperature anhydride epoxy cured systems
KR102439519B1 (en) 2016-12-12 2022-09-05 에보니크 오퍼레이션즈 게엠베하 Novel low temperature anhydride epoxy cured system
JP2020536998A (en) * 2017-10-09 2020-12-17 サイテック インダストリーズ インコーポレイテッド Curable resin composition and fiber reinforced resin matrix composite material
JP7242661B2 (en) 2017-10-09 2023-03-20 サイテック インダストリーズ インコーポレイテッド Curable resin composition and fiber-reinforced resin matrix composite
CN114147181A (en) * 2021-10-21 2022-03-08 浙江林家昌隆阀门铸造有限公司 Double-furnace casting method
CN114147181B (en) * 2021-10-21 2023-12-29 浙江林家昌隆阀门铸造有限公司 Double-furnace casting method

Also Published As

Publication number Publication date
CN104250427B (en) 2016-08-17
CN104250427A (en) 2014-12-31
JP6461475B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6461475B2 (en) Epoxy resin composition for cast molding, and method for producing molded product for high voltage equipment using the same
JP5738261B2 (en) Epoxy-vinyl copolymerization type liquid resin composition, cured product thereof, production method, insulating material using cured product, electronic / electrical device
JP6849698B2 (en) Cured resin composition, cured product and curing method of the cured resin composition, and semiconductor device
JP2013053218A (en) Thermosetting resin composition and resin composition for sealing semiconductor
JP5756082B2 (en) Direct overmolding
JP7086982B2 (en) A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device.
CN103649158A (en) Insulation formulations
JP6310730B2 (en) Epoxy resin composition and electric power equipment using the same
JP2012102230A (en) Curable resin composition and electric and electronic part using the same
JP2012162664A (en) Thermosetting resin composition and resin composition for sealing semiconductor
JPWO2019083004A1 (en) A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device.
JPS6230215B2 (en)
US3637572A (en) Epoxy resins with organoboron cure promotors
JP7086981B2 (en) A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device.
JP5383642B2 (en) Powder coating method and gas insulated switchgear
JP2012224684A (en) Thermosetting resin composition and resin composition for sealing semiconductor
JPS6249292B2 (en)
JP2004051824A (en) Epoxy resin composition for casting
JPH09328535A (en) Latent catalyst and thermosetting resin composition containing the same
JPH0637212A (en) Epoxy composition for semiconductor sealing
JP2009102586A (en) Thermosetting resin composition, cured material, and high thermal conduction coil
JPH0315655B2 (en)
JP6946088B2 (en) A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device.
JPS6210569B2 (en)
JP6539017B2 (en) Two-component epoxy resin composition and method of manufacturing case mold type capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180322

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181226

R150 Certificate of patent or registration of utility model

Ref document number: 6461475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250