JP2015027934A - Manufacturing method of nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst - Google Patents

Manufacturing method of nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst Download PDF

Info

Publication number
JP2015027934A
JP2015027934A JP2014133151A JP2014133151A JP2015027934A JP 2015027934 A JP2015027934 A JP 2015027934A JP 2014133151 A JP2014133151 A JP 2014133151A JP 2014133151 A JP2014133151 A JP 2014133151A JP 2015027934 A JP2015027934 A JP 2015027934A
Authority
JP
Japan
Prior art keywords
nitrogen
group
carbon alloy
carbon
containing carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2014133151A
Other languages
Japanese (ja)
Other versions
JP2015027934A5 (en
Inventor
順 田邉
Jun Tanabe
順 田邉
直也 畠山
Naoya HATAKEYAMA
直也 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014133151A priority Critical patent/JP2015027934A/en
Publication of JP2015027934A publication Critical patent/JP2015027934A/en
Publication of JP2015027934A5 publication Critical patent/JP2015027934A5/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nitrogen-containing carbon alloy having an unprecedentedly high oxidation-reduction activity and a method for manufacturing the same.SOLUTION: The present invention concerns a manufacturing method of a nitrogen-containing carbon alloy including a step of firing a precursor including: at least one type selected from among heterocyclic aromatic compounds possessing nitrogen-containing aromatic groups expressed by the following general formula (1), salts thereof, and hydrates thereof; and an inorganic metal salt: [in the general formula (1), A expresses an atomic group constituted by a 5- to 11-membered non-condensed heteroaromatic rings; L expresses a single bond or (x+1)-valent linkage group; B expresses a hydrogen atom, substituted or unsubstituted aromatic group, or substituted or unsubstituted nitrogen-containing aromatic group, where at least one member of B is a substituted or unsubstituted nitrogen-containing aromatic group; within the at least one nitrogen-containing aromatic group, either or both of 3- and 4-position ring skeleton constituent atoms adjacent to the coupling site with L are nitrogen atoms].

Description

本発明は、含窒素カーボンアロイの製造方法、含窒素カーボンアロイ及び燃料電池触媒に関する。具体的には、本発明は、含窒素芳香族基を有する複素芳香環化合物と無機金属塩を含む前駆体を焼成する工程を含む含窒素カーボンアロイの製造方法、含窒素カーボンアロイ、及び含窒素カーボンアロイを用いた燃料電池触媒に関する   The present invention relates to a method for producing a nitrogen-containing carbon alloy, a nitrogen-containing carbon alloy, and a fuel cell catalyst. Specifically, the present invention relates to a method for producing a nitrogen-containing carbon alloy including a step of firing a precursor containing a heteroaromatic ring compound having a nitrogen-containing aromatic group and an inorganic metal salt, a nitrogen-containing carbon alloy, and a nitrogen-containing compound. Fuel cell catalyst using carbon alloy

従来、白金(Pt)やパラジウム(Pd)等を用いる貴金属系触媒は、高い酸素還元活性を有する触媒として、例えば自動車や家庭用電熱併給システム等に使用される固体高分子電解質型燃料電池に用いられてきた。しかし、このような貴金属系触媒は高コストであるため、さらなる普及が難しくなっているのが現状である。
このため、白金を大幅に低減した触媒や、白金を使用することなく形成された触媒の技術開発が進められている。
Conventionally, a noble metal catalyst using platinum (Pt), palladium (Pd), etc. is used as a catalyst having a high oxygen reduction activity, for example, for a solid polymer electrolyte fuel cell used in automobiles, household electric heat supply systems, etc. Has been. However, since such noble metal-based catalysts are expensive, it is difficult to further spread them.
For this reason, technological development of a catalyst in which platinum is greatly reduced or a catalyst formed without using platinum is being promoted.

白金を使用することなく形成され得る触媒としては、炭素触媒が知られており、窒素含有化合物を熱処理することによって得られる含窒素カーボンアロイは炭素触媒として用いられている。例えば、特許文献1には、s-トリアジン環誘導体と金属との複合体からなる固体高分子型燃料電池用触媒が開示されている。また、特許文献2には、分子量が60〜2000の含窒素複素環化合物と無機金属又は無機金属塩を焼成して製造される含窒素カーボンアロイ触媒が開示されている。   A carbon catalyst is known as a catalyst that can be formed without using platinum, and a nitrogen-containing carbon alloy obtained by heat-treating a nitrogen-containing compound is used as a carbon catalyst. For example, Patent Document 1 discloses a polymer electrolyte fuel cell catalyst comprising a composite of an s-triazine ring derivative and a metal. Patent Document 2 discloses a nitrogen-containing carbon alloy catalyst produced by firing a nitrogen-containing heterocyclic compound having a molecular weight of 60 to 2000 and an inorganic metal or inorganic metal salt.

また、非特許文献1には、2−ピリジルトリアジンのFe錯体[Fe(TPTZ)2]を炭素に担持した混合物を加熱焼成して作成した燃料電池用非白金触媒が開示されている。ここでは、2−ピリジルトリアジンと金属錯体の混合物を焼成することが提案されており、無機金属を使用することや、無機金属を焼成することについては記載されていない。 Non-patent document 1 discloses a non-platinum catalyst for a fuel cell prepared by heating and firing a mixture of 2- pyridyltriazine Fe complex [Fe (TPTZ) 2 ] supported on carbon. Here, it is proposed to fire a mixture of 2-pyridyltriazine and a metal complex, and there is no description about using an inorganic metal or firing an inorganic metal.

特開2007−175578号公報JP 2007-175578 A 特開2011−225431号公報JP 2011-225431-A

Bezerra, Cicero W. B.; Zhang, Lei; Lee, Kunchan; Liu, Hansan; Zhang, Jianlu; Shi, Zheng; Marques, Aldalea L. B.; Marques, Edmar P.; Wu, Shaohong; Zhang, Jiujun, Electrochimica Acta (2008), 53(26), 7703-7710.Bezerra, Cicero WB; Zhang, Lei; Lee, Kunchan; Liu, Hansan; Zhang, Jianlu; Shi, Zheng; Marques, Aldalea LB; Marques, Edmar P .; Wu, Shaohong; Zhang, Jiujun, Electrochimica Acta (2008), 53 (26), 7703-7710.

上述したように、窒素含有化合物を含む含窒素カーボンアロイ触媒は、白金を用いなくとも触媒活性を発揮することができる。しかしながら、近年の燃料電池等の用途では、さらに高い酸素還元活性を有することが求められており、従来の炭素触媒が有する酸素還元活性では不十分な場合があった。このため、より高い酸素還元活性を発揮できる含窒素カーボンアロイを製造することが求められていた。
また、従来の含窒素化合物を用いた含窒素カーボンアロイの製造方法においては、その収率が悪く、生産性に関してさらなる改善が求められていた。
As described above, the nitrogen-containing carbon alloy catalyst containing a nitrogen-containing compound can exhibit catalytic activity without using platinum. However, recent applications such as fuel cells are required to have higher oxygen reduction activity, and the oxygen reduction activity of conventional carbon catalysts may be insufficient. For this reason, it has been desired to produce a nitrogen-containing carbon alloy that can exhibit higher oxygen reduction activity.
Moreover, in the conventional method for producing a nitrogen-containing carbon alloy using a nitrogen-containing compound, the yield is poor, and further improvement in productivity has been demanded.

そこで本発明者らは、このような従来技術の課題を解決するために、より高い酸素還元活性を有する含窒素カーボンアロイを製造することを目的として検討を進めた。さらに、本発明者らは、含窒素カーボンアロイの収量を高め、生産性を高めることも目的として検討を進めた。   In order to solve the problems of the prior art, the present inventors have proceeded with studies for the purpose of producing a nitrogen-containing carbon alloy having higher oxygen reduction activity. Furthermore, the present inventors have studied for the purpose of increasing the yield of nitrogen-containing carbon alloy and increasing productivity.

上記の課題を解決するために鋭意検討を行った結果、本発明者らは、特定の構造を有する含窒素芳香族基を有する複素芳香環化合物と無機金属塩を含む前駆体を焼成して、含窒素カーボンアロイを製造することにより、酸素還元活性を十分に高めることができることを見出した。さらに、本発明者らは含窒素カーボンアロイの収量を高めることにも成功し、本発明を完成するに至った。
具体的に、本発明は、以下の構成を有する。
As a result of intensive studies to solve the above problems, the present inventors calcined a precursor containing a heteroaromatic ring compound having a nitrogen-containing aromatic group having a specific structure and an inorganic metal salt, It has been found that the oxygen reduction activity can be sufficiently increased by producing a nitrogen-containing carbon alloy. Furthermore, the present inventors succeeded in increasing the yield of nitrogen-containing carbon alloy, and completed the present invention.
Specifically, the present invention has the following configuration.

[1]下記一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物、その塩及びその水和物から選択される少なくとも一種と、無機金属塩を含む前駆体を焼成する工程を含む含窒素カーボンアロイの製造方法;

Figure 2015027934
一般式(1)中、Aは5〜11員の非縮合複素芳香環から構成される原子団を表し、Lは単結合または(x+1)価の連結基を表し、Bは水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基を表し、少なくとも1つのBは、置換または無置換の含窒素芳香族基であり、含窒素芳香族基の少なくとも1つにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。Aの非縮合複素芳香環におけるヘテロ原子数は、Bの含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。また、xおよびyはそれぞれ独立に1以上の整数を表す。
[2]一般式(1)において、xは1〜3の整数を表し、yは1〜5の整数を表す[1]に記載の含窒素カーボンアロイの製造方法。
[3]一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物は、下記一般式(2)で表される[1]または[2]に記載の含窒素カーボンアロイの製造方法;
Figure 2015027934
一般式(2)中、Q1〜Q3はそれぞれ独立にヘテロ原子又は炭素原子を表し、Q1〜Q3のうち少なくとも1つは窒素原子であり、b1〜b3はそれぞれ独立に水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基を表し、b1〜b3の少なくともいずれか1つは置換または無置換の含窒素芳香族基であり、含窒素芳香族基の少なくとも1つにおいて、結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。Q1〜Q3を含む非縮合複素芳香環におけるヘテロ原子数は、b1〜b3の含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。
[4]一般式(2)において、Q1〜Q3は窒素原子である[3]に記載の含窒素カーボンアロイの製造方法。
[5]一般式(2)において、b1〜b3は6員の置換または無置換の含窒素芳香族基である[3]または[4]に記載の含窒素カーボンアロイの製造方法。
[6]一般式(2)において、b1〜b3はピリジル基またはピリミジル基である[3]〜[5]のいずれかに記載の含窒素カーボンアロイの製造方法。
[7]含窒素芳香族基を有する複素芳香環化合物は、下記式(3)または(4)で表される化合物である[1]〜[6]のいずれかに記載の含窒素カーボンアロイの製造方法。
Figure 2015027934
[8]一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物は、下記一般式(5)で表される[1]または[2]に記載の含窒素カーボンアロイの製造方法;
Figure 2015027934
一般式(5)中、Aは5〜11員の非縮合複素芳香環から構成される原子団を表し、Lは単結合、または(x+1)価の連結基を表し、Bは水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基であり、少なくとも1つのBは、置換または無置換の含窒素芳香族基であり、含窒素芳香族基の少なくとも1つにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。Aの非縮合複素芳香環におけるヘテロ原子数は、Bの含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。また、xは1以上の整数を表す。
[9]一般式(5)において、xは1〜5の整数を表す[8]に記載の含窒素カーボンアロイの製造方法。
[10]含窒素芳香族基を有する複素芳香環化合物は、下記化合物群より選択される化合物である[1]または[2]に記載の含窒素カーボンアロイの製造方法。
Figure 2015027934
[11]無機金属塩は、無機金属塩化物である[1]〜[10]のいずれかに記載の含窒素カーボンアロイの製造方法。
[12]無機金属塩の金属種が、FeまたはCoである[1]〜[11]のいずれかに記載の含窒素カーボンアロイの製造方法。
[13]無機金属塩は、含水塩である[1]〜[12]のいずれかに記載の含窒素カーボンアロイの製造方法。
[14]有機金属錯体をさらに含む[1]〜[13]のいずれかに記載の含窒素カーボンアロイの製造方法。
[15]有機金属錯体は、金属アセタート錯体、またはβ−ジケトン金属錯体である[14]に記載の含窒素カーボンアロイの製造方法。
[16]有機金属錯体は、アセチルアセトン鉄(II)錯体である[14]または[15]に記載の含窒素カーボンアロイの製造方法。
[17]焼成する工程は、前駆体を400℃以上で焼成する工程である[1]〜[16]のいずれかに記載の含窒素カーボンアロイの製造方法。
[18]焼成する工程は、前駆体を700〜1000℃で焼成する工程である[1]〜[17]のいずれかに記載の含窒素カーボンアロイの製造方法。
[19]焼成する工程の前に、前駆体を粉砕する工程をさらに含む[1]〜[18]のいずれかに記載の含窒素カーボンアロイの製造方法。
[20]焼成する工程の後に、焼成された含窒素カーボンアロイを酸で洗浄する酸洗浄工程を含む[1]〜[19]のいずれかに記載の含窒素カーボンアロイの製造方法。
[21]焼成する工程の後に、焼成された含窒素カーボンアロイを粉砕する工程と、再焼成する工程とをさらに含む[1]〜[20]のいずれかに記載の含窒素カーボンアロイの製造方法。
[22]再焼成する工程は、1000〜1500℃で焼成する工程である[21]に記載の含窒素カーボンアロイの製造方法。
[23]再焼成する工程の前に、脱気及び窒素置換する工程をさらに含む[21]又は[22]に記載の含窒素カーボンアロイの製造方法。
[24][1]〜[23]のいずれかに記載の方法で製造された含窒素カーボンアロイ。
[25][24]に記載の含窒素カーボンアロイを用いた燃料電池触媒。 [1] A precursor containing an inorganic metal salt and at least one selected from a heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the following general formula (1), a salt thereof and a hydrate thereof is calcined. A method for producing a nitrogen-containing carbon alloy comprising a step;
Figure 2015027934
In general formula (1), A represents an atomic group composed of a 5- to 11-membered non-fused heteroaromatic ring, L represents a single bond or a (x + 1) -valent linking group, and B represents a hydrogen atom, a substituted or Represents an unsubstituted aromatic group, or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one B is a substituted or unsubstituted nitrogen-containing aromatic group, and at least one of the nitrogen-containing aromatic groups , Any one or both of the ring skeleton constituent atoms at the 3-position and the 4-position with respect to the bonding site with L are nitrogen atoms. The number of heteroatoms in the non-fused heteroaromatic ring of A is the same as or more than the number of heteroatoms per one nitrogen-containing aromatic group of B. X and y each independently represents an integer of 1 or more.
[2] The method for producing a nitrogen-containing carbon alloy according to [1], wherein in General Formula (1), x represents an integer of 1 to 3, and y represents an integer of 1 to 5.
[3] The heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the general formula (1) is a nitrogen-containing carbon alloy according to [1] or [2] represented by the following general formula (2). Production method;
Figure 2015027934
In General Formula (2), Q 1 to Q 3 each independently represents a hetero atom or a carbon atom, at least one of Q 1 to Q 3 is a nitrogen atom, b1 to b3 are each independently a hydrogen atom, Represents a substituted or unsubstituted aromatic group, or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one of b1 to b3 is a substituted or unsubstituted nitrogen-containing aromatic group, and a nitrogen-containing aromatic group In at least one of the groups, one or both of the ring skeleton constituent atoms at the 3-position and the 4-position with respect to the binding site are nitrogen atoms. Q Number heteroatoms in non-fused heteroaromatic ring containing 1 to Q 3 is or greater identical to the number of heteroatoms in the nitrogen-containing aromatic group per one of b1 to b3.
[4] The method for producing a nitrogen-containing carbon alloy according to [3], wherein in the general formula (2), Q 1 to Q 3 are nitrogen atoms.
[5] The method for producing a nitrogen-containing carbon alloy according to [3] or [4], wherein in general formula (2), b1 to b3 are 6-membered substituted or unsubstituted nitrogen-containing aromatic groups.
[6] The method for producing a nitrogen-containing carbon alloy according to any one of [3] to [5], wherein b1 to b3 are a pyridyl group or a pyrimidyl group in the general formula (2).
[7] The heteroaromatic ring compound having a nitrogen-containing aromatic group is a compound represented by the following formula (3) or (4), the nitrogen-containing carbon alloy according to any one of [1] to [6] Production method.
Figure 2015027934
[8] The heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the general formula (1) is a nitrogen-containing carbon alloy according to [1] or [2] represented by the following general formula (5). Production method;
Figure 2015027934
In general formula (5), A represents an atomic group composed of a 5- to 11-membered non-condensed heteroaromatic ring, L represents a single bond or a (x + 1) -valent linking group, B represents a hydrogen atom, substituted Or an unsubstituted aromatic group or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one B is a substituted or unsubstituted nitrogen-containing aromatic group, and at least one of the nitrogen-containing aromatic groups In the above, any one or both of the ring skeleton constituting atoms at the 3rd and 4th positions relative to the bonding site with L are nitrogen atoms. The number of heteroatoms in the non-fused heteroaromatic ring of A is the same as or more than the number of heteroatoms per one nitrogen-containing aromatic group of B. X represents an integer of 1 or more.
[9] The method for producing a nitrogen-containing carbon alloy according to [8], wherein x in the general formula (5) represents an integer of 1 to 5.
[10] The method for producing a nitrogen-containing carbon alloy according to [1] or [2], wherein the heteroaromatic ring compound having a nitrogen-containing aromatic group is a compound selected from the following compound group.
Figure 2015027934
[11] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [10], wherein the inorganic metal salt is an inorganic metal chloride.
[12] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [11], wherein the metal species of the inorganic metal salt is Fe or Co.
[13] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [12], wherein the inorganic metal salt is a hydrate salt.
[14] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [13], further comprising an organometallic complex.
[15] The method for producing a nitrogen-containing carbon alloy according to [14], wherein the organometallic complex is a metal acetate complex or a β-diketone metal complex.
[16] The method for producing a nitrogen-containing carbon alloy according to [14] or [15], wherein the organometallic complex is an acetylacetone iron (II) complex.
[17] The step of firing is the method for producing a nitrogen-containing carbon alloy according to any one of [1] to [16], which is a step of firing the precursor at 400 ° C. or higher.
[18] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [17], wherein the firing step is a step of firing the precursor at 700 to 1000 ° C.
[19] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [18], further including a step of pulverizing the precursor before the step of firing.
[20] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [19], including an acid washing step of washing the fired nitrogen-containing carbon alloy with an acid after the firing step.
[21] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [20], further comprising a step of pulverizing the fired nitrogen-containing carbon alloy and a step of re-firing after the step of firing. .
[22] The method for producing a nitrogen-containing carbon alloy according to [21], wherein the re-baking step is a step of baking at 1000 to 1500 ° C.
[23] The method for producing a nitrogen-containing carbon alloy according to [21] or [22], further including a step of deaeration and nitrogen substitution before the step of refiring.
[24] A nitrogen-containing carbon alloy produced by the method according to any one of [1] to [23].
[25] A fuel cell catalyst using the nitrogen-containing carbon alloy according to [24].

本発明の製造方法によれば、十分に高い酸素還元活性を有する含窒素カーボンアロイを得ることができる。このため、本発明の製造方法により得られた含窒素カーボンアロイは、炭素触媒として使用することができ、このような炭素触媒は、燃料電池や環境触媒に好ましく用いられる。
また、本発明の製造方法によれば、含窒素カーボンアロイの収量を高めることができ、生産性を高めることができる。
According to the production method of the present invention, a nitrogen-containing carbon alloy having a sufficiently high oxygen reduction activity can be obtained. For this reason, the nitrogen-containing carbon alloy obtained by the production method of the present invention can be used as a carbon catalyst, and such a carbon catalyst is preferably used for a fuel cell or an environmental catalyst.
Moreover, according to the manufacturing method of this invention, the yield of a nitrogen-containing carbon alloy can be raised and productivity can be improved.

本発明の含窒素カーボンアロイを用いた燃料電池の概略構成図である。It is a schematic block diagram of the fuel cell using the nitrogen-containing carbon alloy of this invention. 本発明の含窒素カーボンアロイを用いた電気二重層キャパシタの概略構成図である。It is a schematic block diagram of the electric double layer capacitor using the nitrogen-containing carbon alloy of this invention.

以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は「〜」前後に記載される数値を下限値および上限値として含む範囲を意味する。   Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on representative embodiments and specific examples, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

本発明は、特定の構造を有する含窒素芳香族基を有する複素芳香環化合物、その塩及びその水和物から選択される少なくとも一種と、無機金属塩を含む前駆体を焼成する工程を含む含窒素カーボンアロイの製造方法に関する。以下では、含窒素芳香族基を有する複素芳香環化合物と無機金属塩等について詳細に説明する。   The present invention includes a step of firing a precursor containing an inorganic metal salt and at least one selected from a heteroaromatic ring compound having a nitrogen-containing aromatic group having a specific structure, a salt thereof and a hydrate thereof. The present invention relates to a method for producing a nitrogen carbon alloy. Below, the hetero aromatic ring compound which has a nitrogen-containing aromatic group, an inorganic metal salt, etc. are demonstrated in detail.

<含窒素芳香族基を有する複素芳香環化合物>
本発明で用いる含窒素芳香族基を有する複素芳香環化合物は、下記一般式(1)で表される。なお、含窒素芳香族基を有する複素芳香環化合物には、それらの塩またはそれらの水和物が含まれるものとする。
<Heteroaromatic ring compound having nitrogen-containing aromatic group>
The heteroaromatic ring compound having a nitrogen-containing aromatic group used in the present invention is represented by the following general formula (1). Note that the heteroaromatic ring compound having a nitrogen-containing aromatic group includes salts thereof or hydrates thereof.

Figure 2015027934
Figure 2015027934

一般式(1)中、Aは5〜11員の非縮合複素芳香環から構成される原子団を表し、Lは単結合または(x+1)価の連結基を表す。Bは水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基を表し、少なくとも1つのBは、置換または無置換の含窒素芳香族基であり、含窒素芳香族基の少なくとも1つにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。Aの非縮合複素芳香環におけるヘテロ原子数は、Bの含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。また、xおよびyはそれぞれ独立に1以上の整数を表す。   In general formula (1), A represents an atomic group composed of a 5- to 11-membered non-fused heteroaromatic ring, and L represents a single bond or a (x + 1) -valent linking group. B represents a hydrogen atom, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one B is a substituted or unsubstituted nitrogen-containing aromatic group, In at least one of the group groups, either one or both of the ring skeleton constituent atoms at the 3rd and 4th positions relative to the bonding site with L is a nitrogen atom. The number of heteroatoms in the non-fused heteroaromatic ring of A is the same as or more than the number of heteroatoms per one nitrogen-containing aromatic group of B. X and y each independently represents an integer of 1 or more.

一般式(1)において、Aは5〜11員の非縮合複素芳香環から構成される原子団を表す。ここで、非縮合複素芳香環とは、縮合環を有さない複素芳香環であり、このような非縮合複素芳香環から構成される原子団は、非縮合複素芳香環を少なくとも1つ有する。なお、非縮合複素芳香環から構成される原子団は、2つ以上の非縮合複素芳香環から構成されてもよいが、1つの非縮合複素芳香環をから構成されることが好ましい。1つの非縮合複素芳香環の環員数は、5〜11であればよく、5〜10であることが好ましく、5〜8であることがより好ましく、5または6であることがさらに好ましい。   In the general formula (1), A represents an atomic group composed of a 5- to 11-membered non-fused heteroaromatic ring. Here, the non-fused heteroaromatic ring is a heteroaromatic ring having no fused ring, and the atomic group composed of such a non-fused heteroaromatic ring has at least one non-fused heteroaromatic ring. The atomic group composed of a non-fused heteroaromatic ring may be composed of two or more non-fused heteroaromatic rings, but is preferably composed of one non-fused heteroaromatic ring. The number of ring members of one non-fused heteroaromatic ring may be 5 to 11, preferably 5 to 10, more preferably 5 to 8, and still more preferably 5 or 6.

5〜11員の非縮合複素芳香環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子からなる群から選ばれる1〜3個のへテロ原子を挙げることができる。非縮合複素芳香環としては、例えば、ピリジン環、ピリミジン環、トリアジン環、イミダゾール環、ピロリン環、イミダゾール基、フラン環、チオフェン環等を挙げることができ、中でも、ピリジン環、ピリミジン環、トリアジン環、イミダゾール環、ピロリン環を好ましく例示することができる。   Examples of the hetero atom constituting the 5- to 11-membered non-condensed heteroaromatic ring include 1 to 3 heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom. Examples of the non-fused heteroaromatic ring include a pyridine ring, a pyrimidine ring, a triazine ring, an imidazole ring, a pyrroline ring, an imidazole group, a furan ring, and a thiophene ring. Among them, a pyridine ring, a pyrimidine ring, and a triazine ring Preferred examples include an imidazole ring and a pyrroline ring.

一般式(1)において、Lは、単結合または(x+1)価の連結基を表す。
(x+1)価の連結基としては、置換もしくは無置換の芳香族基、置換もしくは無置換のアルキレン基、置換もしくは無置換のアルケニレン基、置換もしくは無置換のアルキニレン基、置換もしくは無置換のシクロアルキレン基、−CO−、−CO2−、−O−、−NH−、−SO−、−SO2−、−S−、−CONH−、−NHCO−、又はこれらの組み合わせよりx−1個の任意の水素原子を除いたx+1価の基であることが好ましい。
上記芳香族基は炭素数6〜20であることが好ましく、フェニレン基、ビフェニレン基、またはナフチレン基であることがより好ましく、フェニレン基またはビフェニレン基であることがさらに好ましく、フェニレン基であることが特に好ましい。
上記アルキレン基の炭素数は1〜20であることが好ましく、1〜15であることがより好ましく、1〜10であることがさらに好ましく、1〜6であることが特に好ましい。
上記アルケニレン基は炭素数2〜20であることが好ましく、2〜15であることがより好ましく、2〜10であることがさらに好ましく、2〜6であることが特に好ましい。
上記アルキニレン基は炭素数2〜20であることが好ましく、2〜15であることがより好ましく、2〜10であることがさらに好ましく、2〜6であることが特に好ましい。
上記シクロアルキレン基は炭素数が4〜20であることが好ましく、4〜15であることがより好ましく、5〜12であることがさらに好ましく、5〜10であることが特に好ましい。
置換基を有する場合、置換基としては、ハロゲン原子(フッ素原子、クロル原子、臭素原子又はヨウ素原子)、ヒドロキシ基、シアノ基、脂肪族基(アラルキル基、シクロアルキル基、活性メチン基等を含む)、ビニル基、アリル基、アセチレニル基、アリール基(置換する位置は問わない)、アシル基、脂肪族オキシ基(アルコキシ基又は、アルキレンオキシ基、エチレンオキシ基若しくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、脂肪族カルボニル基、アリールカルボニル基、ヘテロ環カルボニル基、脂肪族オキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基、スルホニルカルバモイル基、アシルカルバモイル基、スルファモイルカルバモイル基、チオカルバモイル基、脂肪族カルボニルオキシ基、アリールオキシカルボニルオキシ基、ヘテロ環カルボニルオキシ基、アミノ基、脂肪族アミノ基、アリールアミノ基、ヘテロ環アミノ基、アシルアミノ基、脂肪族オキシアミノ基、アリールオキシアミノ基、スルファモイルアミノ基、アシルスルファモイルアミノ基、オキサモイルアミノ基、脂肪族オキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、ヘテロ環オキシカルボニルアミノ基、カルバモイルアミノ基、メルカプト基、脂肪族チオ基、アリールチオ基、ヘテロ環チオ基、アルキルスルフィニル基、アリールスルフィニル基、脂肪族スルホニル基、アリールスルホニル基、ヘテロ環スルホニル基、スルファモイル基、脂肪族スルホニルウレイド基、アリールスルホニルウレイド基、ヘテロ環スルホニルウレイド基、脂肪族スルホニルオキシ基、アリールスルホニルオキシ基、ヘテロ環スルホニルオキシ基、スルファモイル基、脂肪族スルファモイル基、アリールスルファモイル基、ヘテロ環スルファモイル基、アシルスルファモイル基、スルフォニルスルファモイル基又はその塩、カルバモイルスルファモイル基、スルホンアミド基、脂肪族ウレイド基、アリールウレイド基、ヘテロ環ウレイド基、脂肪族スルホンアミド基、アリールスルホンアミド基、ヘテロ環スルホンアミド基、脂肪族スルフィニル基、アリールスルフィニル基、ニトロ基、ニトロソ基、ジアゾ基、アゾ基、ヒドラジノ基、ジ脂肪族オキシホスフィニル基、ジアリールオキシホスフィニル基、シリル基(例えばトリメチルシリル、t−ブチルジメチルシリル、フェニルジメチルシリル)、シリルオキシ基(例えばトリメチルシリルオキシ、t−ブチルジメチルシリルオキシ)、ボロノ基、イオン性親水性基(例えば、カルボキシル基、スルホ基、ホスホノ基及び4級アンモニウム基)等を挙げることができる。中でも、置換基としてハロゲン原子(フッ素原子、クロル原子、臭素原子又はヨウ素原子)、ビニル基、アリル基、アセチレニル基、アリール基(置換する位置は問わない)、アミノ基が好ましい。
例えば、xが1の場合、Lは単結合又は2価の連結基を表し、xが2の場合、Lは3価の連結基を表す。2価の連結基としては、例えば、置換もしくは無置換のアルキレン基、置換もしくは無置換のアルケニレン基、アルキニレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニレン基、置換もしくは無置換のナフチレン基、−CO−、−CO2−、−O−、−NH−、−SO−、−SO2−、−S−、−CONH−、−NHCO−等を挙げることができる。また、3価の連結基としては、例えば、>CH−、>N−や、2価の連結基の例として挙げた基のうち置換基を有するものから1つの水素原子を取り除いた基等を挙げることができる。Lは、上記の連結基を2つ以上組み合わせて得られる基であってもよい。例えば、置換もしくは無置換のアルキレン基、アルケニレン基、アルキニレン基を2つ以上組み合わせたり、置換もしくは無置換のアルキレン基、アルケニレン基、アルキニレン基と置換もしくは無置換のフェニレン基を2つ以上組み合わせて連結基とすることができる。また、Lが複数ある場合、複数のLは同じであっても異なっていてもよい。
(x+1)価の連結基としては、フェニレン基、炭素数1〜6のアルキレン基、炭素数2〜6のアルケニレン基、炭素数2〜6のアルキニレン基、−CO2−、−CONH−、−O−、又はこれらの組み合わせよりx−1個の任意の水素原子を除いたx+1価の基であることが好ましく、フェニレン基、炭素数1〜4のアルキレン基、炭素数2〜6のアルケニレン基、炭素数2〜6のアルキニレン基、−CONH−、又はこれらの組み合わせよりx−1個の任意の水素原子を除いたx+1価の基であることがさらに好ましい。
In the general formula (1), L represents a single bond or a (x + 1) -valent linking group.
The (x + 1) -valent linking group includes a substituted or unsubstituted aromatic group, a substituted or unsubstituted alkylene group, a substituted or unsubstituted alkenylene group, a substituted or unsubstituted alkynylene group, a substituted or unsubstituted cycloalkylene group, -CO -, - CO 2 - , - O -, - NH -, - SO -, - SO 2 -, - S -, - CONH -, - NHCO-, or a combination thereof from x-1 single An x + 1 valent group excluding any hydrogen atom is preferred.
The aromatic group preferably has 6 to 20 carbon atoms, more preferably a phenylene group, a biphenylene group, or a naphthylene group, further preferably a phenylene group or a biphenylene group, and more preferably a phenylene group. Particularly preferred.
The alkylene group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, still more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms.
The alkenylene group preferably has 2 to 20 carbon atoms, more preferably 2 to 15 carbon atoms, still more preferably 2 to 10 carbon atoms, and particularly preferably 2 to 6 carbon atoms.
The alkynylene group preferably has 2 to 20 carbon atoms, more preferably 2 to 15 carbon atoms, still more preferably 2 to 10 carbon atoms, and particularly preferably 2 to 6 carbon atoms.
The cycloalkylene group preferably has 4 to 20 carbon atoms, more preferably 4 to 15 carbon atoms, still more preferably 5 to 12 carbon atoms, and particularly preferably 5 to 10 carbon atoms.
When having a substituent, the substituent includes a halogen atom (fluorine atom, chloro atom, bromine atom or iodine atom), hydroxy group, cyano group, aliphatic group (aralkyl group, cycloalkyl group, active methine group, etc. ), Vinyl group, allyl group, acetylenyl group, aryl group (regardless of the position of substitution), acyl group, aliphatic oxy group (alkoxy group, alkyleneoxy group, ethyleneoxy group or propyleneoxy group unit repeatedly containing Aryloxy group, heterocyclic oxy group, aliphatic carbonyl group, arylcarbonyl group, heterocyclic carbonyl group, aliphatic oxycarbonyl group, aryloxycarbonyl group, heterocyclic oxycarbonyl group, carbamoyl group, sulfonylcarbamoyl group , Acylcarbamoyl group, sulfamoylcarba Yl group, thiocarbamoyl group, aliphatic carbonyloxy group, aryloxycarbonyloxy group, heterocyclic carbonyloxy group, amino group, aliphatic amino group, arylamino group, heterocyclic amino group, acylamino group, aliphatic oxyamino group , Aryloxyamino group, sulfamoylamino group, acylsulfamoylamino group, oxamoylamino group, aliphatic oxycarbonylamino group, aryloxycarbonylamino group, heterocyclic oxycarbonylamino group, carbamoylamino group, mercapto group , Aliphatic thio group, arylthio group, heterocyclic thio group, alkylsulfinyl group, arylsulfinyl group, aliphatic sulfonyl group, arylsulfonyl group, heterocyclic sulfonyl group, sulfamoyl group, aliphatic sulfonylureido group, aryl Sulfonylureido group, heterocyclic sulfonylureido group, aliphatic sulfonyloxy group, arylsulfonyloxy group, heterocyclic sulfonyloxy group, sulfamoyl group, aliphatic sulfamoyl group, arylsulfamoyl group, heterocyclic sulfamoyl group, acylsulfamoyl group Sulfonylsulfamoyl group or a salt thereof, carbamoylsulfamoyl group, sulfonamido group, aliphatic ureido group, arylureido group, heterocyclic ureido group, aliphatic sulfonamido group, arylsulfonamido group, heterocyclic sulfonamido group , Aliphatic sulfinyl group, arylsulfinyl group, nitro group, nitroso group, diazo group, azo group, hydrazino group, dialiphatic oxyphosphinyl group, diaryloxyphosphinyl group, silyl group (for example, trimethylsilyl) , T-butyldimethylsilyl, phenyldimethylsilyl), silyloxy groups (eg trimethylsilyloxy, t-butyldimethylsilyloxy), borono groups, ionic hydrophilic groups (eg carboxyl groups, sulfo groups, phosphono groups and quaternary ammonium) Group) and the like. Among these, a halogen atom (a fluorine atom, a chloro atom, a bromine atom or an iodine atom), a vinyl group, an allyl group, an acetylenyl group, an aryl group (regarding the position of substitution) and an amino group are preferable as a substituent.
For example, when x is 1, L represents a single bond or a divalent linking group, and when x is 2, L represents a trivalent linking group. Examples of the divalent linking group include a substituted or unsubstituted alkylene group, a substituted or unsubstituted alkenylene group, an alkynylene group, a substituted or unsubstituted cycloalkylene group, a substituted or unsubstituted phenylene group, a substituted or unsubstituted group. biphenylene group, a substituted or unsubstituted naphthylene group, -CO -, - CO 2 - , - O -, - NH -, - SO -, - SO 2 -, - S -, - CONH -, - NHCO- , etc. Can be mentioned. Examples of the trivalent linking group include, for example,>CH—,> N—, a group obtained by removing one hydrogen atom from a group having a substituent among the groups listed as examples of the divalent linking group, and the like. Can be mentioned. L may be a group obtained by combining two or more of the above linking groups. For example, a combination of two or more substituted or unsubstituted alkylene groups, alkenylene groups, and alkynylene groups, or a combination of two or more substituted or unsubstituted alkylene groups, alkenylene groups, alkynylene groups, and substituted or unsubstituted phenylene groups. It can be based. When there are a plurality of L, the plurality of L may be the same or different.
Examples of the (x + 1) -valent linking group include a phenylene group, an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, an alkynylene group having 2 to 6 carbon atoms, —CO 2 —, —CONH—, — O- or a x + 1 valent group in which x-1 arbitrary hydrogen atoms are removed from a combination thereof, a phenylene group, an alkylene group having 1 to 4 carbon atoms, and an alkenylene group having 2 to 6 carbon atoms , An alkynylene group having 2 to 6 carbon atoms, —CONH—, or a combination of x + 1 valences in which x−1 arbitrary hydrogen atoms are removed from a combination thereof is more preferable.

一般式(1)において、Bは水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基を表し、少なくとも1つのBは、置換または無置換の含窒素芳香族基を表す。ここで、含窒素芳香族基とは、窒素原子を芳香族基の構成原子として有する基をいう。Bが複数存在する場合は、Bのうち少なくとも1つが置換または無置換の含窒素芳香族基であればよいが、全てのBが置換または無置換の含窒素芳香族基であることが好ましい。また、含窒素芳香族基は、ピリジル基、ピリミジル基、トリアジル基及又はイミダゾリル基であることが好ましい。また、複数あるBは同一であっても異なっていてもよい。
Bは水素原子、フェニル基、ピリジル基、ピリミジル基、トリアジン基、又はイミダゾリル基であることが好ましい。Bが芳香族基である場合、炭素数は6〜14であることが好ましく、6〜10であることが更に好ましく、フェニル基であることが特に好ましい。少なくとも1つBは含窒素芳香族基であり、この場合、5〜11員であることが好ましく、5〜8員であることがさらに好ましく、5又は6員であることがより好ましく、ピリジル基、ピリミジル基、トリアジン基、又はイミダゾリル基であることが特に好ましい。
In the general formula (1), B represents a hydrogen atom, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one B is a substituted or unsubstituted nitrogen-containing aromatic group Represents a group. Here, the nitrogen-containing aromatic group means a group having a nitrogen atom as a constituent atom of the aromatic group. When a plurality of B are present, at least one of the Bs may be a substituted or unsubstituted nitrogen-containing aromatic group, but it is preferable that all Bs are substituted or unsubstituted nitrogen-containing aromatic groups. The nitrogen-containing aromatic group is preferably a pyridyl group, a pyrimidyl group, a triazyl group, or an imidazolyl group. A plurality of B may be the same or different.
B is preferably a hydrogen atom, a phenyl group, a pyridyl group, a pyrimidyl group, a triazine group, or an imidazolyl group. When B is an aromatic group, the number of carbon atoms is preferably 6 to 14, more preferably 6 to 10, and particularly preferably a phenyl group. At least one B is a nitrogen-containing aromatic group. In this case, it is preferably 5 to 11 members, more preferably 5 to 8 members, more preferably 5 or 6 members, and a pyridyl group. , A pyrimidyl group, a triazine group, or an imidazolyl group is particularly preferable.

Bで表される芳香族基又は含窒素芳香族基が置換基を有する場合、好ましい置換基の具体例として、ハロゲン原子(フッ素原子、クロル原子、臭素原子又はヨウ素原子)、ヒドロキシ基、シアノ基、脂肪族基(アラルキル基、シクロアルキル基、活性メチン基等を含む)、ビニル基、アリル基、アセチレニル基、アリール基(置換する位置は問わない)、アシル基、脂肪族オキシ基(アルコキシ基又は、アルキレンオキシ基、エチレンオキシ基若しくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、脂肪族カルボニル基、アリールカルボニル基、ヘテロ環カルボニル基、脂肪族オキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基、スルホニルカルバモイル基、アシルカルバモイル基、スルファモイルカルバモイル基、チオカルバモイル基、脂肪族カルボニルオキシ基、アリールオキシカルボニルオキシ基、ヘテロ環カルボニルオキシ基、アミノ基、脂肪族アミノ基、アリールアミノ基、ヘテロ環アミノ基、アシルアミノ基、脂肪族オキシアミノ基、アリールオキシアミノ基、スルファモイルアミノ基、アシルスルファモイルアミノ基、オキサモイルアミノ基、脂肪族オキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、ヘテロ環オキシカルボニルアミノ基、カルバモイルアミノ基、メルカプト基、脂肪族チオ基、アリールチオ基、ヘテロ環チオ基、アルキルスルフィニル基、アリールスルフィニル基、脂肪族スルホニル基、アリールスルホニル基、ヘテロ環スルホニル基、スルファモイル基、脂肪族スルホニルウレイド基、アリールスルホニルウレイド基、ヘテロ環スルホニルウレイド基、脂肪族スルホニルオキシ基、アリールスルホニルオキシ基、ヘテロ環スルホニルオキシ基、スルファモイル基、脂肪族スルファモイル基、アリールスルファモイル基、ヘテロ環スルファモイル基、アシルスルファモイル基、スルフォニルスルファモイル基又はその塩、カルバモイルスルファモイル基、スルホンアミド基、脂肪族ウレイド基、アリールウレイド基、ヘテロ環ウレイド基、脂肪族スルホンアミド基、アリールスルホンアミド基、ヘテロ環スルホンアミド基、脂肪族スルフィニル基、アリールスルフィニル基、ニトロ基、ニトロソ基、ジアゾ基、アゾ基、ヒドラジノ基、ジ脂肪族オキシホスフィニル基、ジアリールオキシホスフィニル基、シリル基(例えばトリメチルシリル、t−ブチルジメチルシリル、フェニルジメチルシリル)、シリルオキシ基(例えばトリメチルシリルオキシ、t−ブチルジメチルシリルオキシ)、ボロノ基、イオン性親水性基(例えば、カルボキシル基、スルホ基、ホスホノ基及び4級アンモニウム基)等を挙げることができる。
不飽和基を含有する置換基がより好ましく、ビニル基、アリル基、アセチレニル基、アリール基(フェニル基、ナフチル基、フェナンスレン基、アントラセニル基、トリフェニル基、ピレニル基、ペリレニル基、ベンズヒドリル基、ベンジル基、シナミル基、クメニル基、メチシル基、フェニルエチル基、スチリル基、トリル基、トリチル基、キシリル基)がさらに好ましい。これらの置換基群はさらに置換されてもよく、更なる置換基としては、以上に説明した置換基および複素芳香族基(置換する位置は問わない)から選択される基を挙げることができる。
When the aromatic group or nitrogen-containing aromatic group represented by B has a substituent, specific examples of preferable substituents include a halogen atom (a fluorine atom, a chloro atom, a bromine atom or an iodine atom), a hydroxy group, and a cyano group. , Aliphatic groups (including aralkyl groups, cycloalkyl groups, active methine groups, etc.), vinyl groups, allyl groups, acetylenyl groups, aryl groups (regardless of the position of substitution), acyl groups, aliphatic oxy groups (alkoxy groups) Or an aryloxy group, a heterocyclic oxy group, an aliphatic carbonyl group, an arylcarbonyl group, a heterocyclic carbonyl group, an aliphatic oxycarbonyl group. , Aryloxycarbonyl group, heterocyclic oxycarbonyl group, carbamoyl group, sulfonylcal Moyl group, acylcarbamoyl group, sulfamoylcarbamoyl group, thiocarbamoyl group, aliphatic carbonyloxy group, aryloxycarbonyloxy group, heterocyclic carbonyloxy group, amino group, aliphatic amino group, arylamino group, heterocyclic amino Group, acylamino group, aliphatic oxyamino group, aryloxyamino group, sulfamoylamino group, acylsulfamoylamino group, oxamoylamino group, aliphatic oxycarbonylamino group, aryloxycarbonylamino group, heterocyclic oxy Carbonylamino group, carbamoylamino group, mercapto group, aliphatic thio group, arylthio group, heterocyclic thio group, alkylsulfinyl group, arylsulfinyl group, aliphatic sulfonyl group, arylsulfonyl group, heterocyclic sulfonyl group, Rufamoyl group, aliphatic sulfonylureido group, arylsulfonylureido group, heterocyclic sulfonylureido group, aliphatic sulfonyloxy group, arylsulfonyloxy group, heterocyclic sulfonyloxy group, sulfamoyl group, aliphatic sulfamoyl group, arylsulfamoyl group , Heterocyclic sulfamoyl group, acylsulfamoyl group, sulfonylsulfamoyl group or a salt thereof, carbamoylsulfamoyl group, sulfonamido group, aliphatic ureido group, arylureido group, heterocyclic ureido group, aliphatic sulfonamido group , Arylsulfonamide group, heterocyclic sulfonamido group, aliphatic sulfinyl group, arylsulfinyl group, nitro group, nitroso group, diazo group, azo group, hydrazino group, dialiphatic oxyphosphinyl group, diaryl Oxyphosphinyl group, silyl group (eg trimethylsilyl, t-butyldimethylsilyl, phenyldimethylsilyl), silyloxy group (eg trimethylsilyloxy, t-butyldimethylsilyloxy), borono group, ionic hydrophilic group (eg carboxyl Group, sulfo group, phosphono group and quaternary ammonium group).
Substituents containing unsaturated groups are more preferred, vinyl group, allyl group, acetylenyl group, aryl group (phenyl group, naphthyl group, phenanthrene group, anthracenyl group, triphenyl group, pyrenyl group, perylenyl group, benzhydryl group, benzyl group. Group, cinamyl group, cumenyl group, methicyl group, phenylethyl group, styryl group, tolyl group, trityl group, xylyl group). These substituent groups may be further substituted, and examples of the further substituent include groups selected from the substituents and heteroaromatic groups described above (regardless of the position of substitution).

含窒素芳香族基の少なくとも1つにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。なお、本発明では、含窒素芳香族基の少なくとも1つにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子であればよいが、含窒素芳香族基の全てにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子であることがより好ましい。含窒素芳香族基においては、Lとの結合位に対して3位又は4位の環骨格構成原子のみが窒素原子であることが好ましいが、該当箇所以外の環骨格構成原子が窒素原子であってもよい。例えば、Lとの結合位に対して3位と1位の環骨格構成原子が窒素原子であったり、3位と2位の環骨格構成原子が窒素原子であったり、4位と2位の環骨格構成原子が窒素原子であってもよい。より好ましくは、3位又は4位の環骨格構成原子のみが窒素原子であり、例えば、3位及び4位のいずれか一方又は両方の環骨格構成原子が窒素原子であることが好ましい。
また、本発明では、非縮合複素芳香環から構成される原子団が、トリアジン環を含む場合、含窒素芳香族基において、2位の環骨格構成原子は窒素原子ではないことが好ましい。
In at least one of the nitrogen-containing aromatic groups, either one or both of the ring skeleton constituting atoms at the 3-position and the 4-position with respect to the bonding site with L are nitrogen atoms. In the present invention, in at least one of the nitrogen-containing aromatic groups, either one or both of the ring skeleton constituting atoms at the 3-position and the 4-position with respect to the bonding site with L may be a nitrogen atom, In all of the nitrogen-containing aromatic groups, it is more preferable that either one or both of the ring skeleton constituent atoms at the 3-position and the 4-position with respect to the bonding site with L is a nitrogen atom. In the nitrogen-containing aromatic group, it is preferable that only the ring skeleton constituting atom at the 3rd or 4th position with respect to the bonding position with L is a nitrogen atom, but the ring skeleton constituting atom other than the corresponding site is a nitrogen atom. May be. For example, the ring skeleton constituent atoms at the 3rd and 1st positions relative to the bond position with L are nitrogen atoms, the ring skeleton constituent atoms at the 3rd and 2nd positions are nitrogen atoms, or the 4th and 2nd positions. The ring skeleton constituent atom may be a nitrogen atom. More preferably, only the ring skeleton constituting atom at the 3rd or 4th position is a nitrogen atom, for example, it is preferred that one or both of the ring skeleton constituting atoms at the 3rd and 4th positions are nitrogen atoms.
In the present invention, when the atomic group composed of a non-condensed heteroaromatic ring includes a triazine ring, the 2-position ring skeleton constituent atom in the nitrogen-containing aromatic group is preferably not a nitrogen atom.

一般式(1)において、Aの非縮合複素芳香環におけるヘテロ原子数は、Bの含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。ここで、Bの含窒素芳香族基が複数ある場合は、全ての含窒素芳香族基1つ当たりにおけるヘテロ原子数が上記の条件を満たす。また、Aの原子団が2つ以上の非縮合複素芳香環から構成される場合、Aの非縮合複素芳香環におけるヘテロ原子数とは、1つの非縮合複素芳香環当たりにおけるヘテロ原子数を表す。   In the general formula (1), the number of heteroatoms in the non-condensed heteroaromatic ring of A is the same as or larger than the number of heteroatoms per one nitrogen-containing aromatic group of B. Here, when there are a plurality of nitrogen-containing aromatic groups of B, the number of heteroatoms per all nitrogen-containing aromatic groups satisfies the above condition. When the atomic group of A is composed of two or more non-fused heteroaromatic rings, the number of heteroatoms in the non-fused heteroaromatic ring of A represents the number of heteroatoms per one non-fused heteroaromatic ring. .

一般式(1)において、xおよびyはそれぞれ独立に1以上の整数を表す。xは、1〜6の整数であることが好ましく、1〜5の整数であることがより好ましく、1〜4の整数であることがさらに好ましく、1〜3の整数であることがよりさらに好ましく、1又は2であることが特に好ましい。また、yは、1〜8の整数であることが好ましく、1〜6の整数であることがより好ましく、1〜5の整数であることがさらに好ましく、1〜3の整数であることがよりさらに好ましい。   In general formula (1), x and y each independently represents an integer of 1 or more. x is preferably an integer of 1 to 6, more preferably an integer of 1 to 5, more preferably an integer of 1 to 4, and still more preferably an integer of 1 to 3. 1 or 2 is particularly preferable. In addition, y is preferably an integer of 1 to 8, more preferably an integer of 1 to 6, more preferably an integer of 1 to 5, and more preferably an integer of 1 to 3. Further preferred.

本発明では、上述した構造を有する含窒素芳香族基を有する複素芳香環化合物を用いることにより、無機金属またはその塩に含窒素芳香族基が配位して、多孔性構造を形成する。これらの化合物をさらに昇温加熱することで複素芳香環化合物の中心の原子団が熱分解して、酸素還元反応(ORR)活性部位を形成し、高活性な含窒素カーボンアロイを得ることができる。本発明では、一般式(1)におけるAを5〜11員の非縮合複素芳香環から構成することにより、非縮合複素芳香部(中心の原子団)の熱分解を容易に進行させることができる。これにより、酸素還元反応(ORR)活性部位の形成を促進することができ、より高活性な含窒素カーボンアロイを得ることができる。   In the present invention, by using a heteroaromatic ring compound having a nitrogen-containing aromatic group having the above-described structure, a nitrogen-containing aromatic group is coordinated to an inorganic metal or a salt thereof to form a porous structure. When these compounds are further heated and heated, the central atomic group of the heteroaromatic ring compound is thermally decomposed to form an oxygen reduction reaction (ORR) active site, and a highly active nitrogen-containing carbon alloy can be obtained. . In the present invention, by constituting A in the general formula (1) from a 5- to 11-membered non-condensed heteroaromatic ring, the thermal decomposition of the non-condensed heteroaromatic part (central atomic group) can be easily advanced. . Thereby, formation of an oxygen reduction reaction (ORR) active site can be promoted, and a higher activity nitrogen-containing carbon alloy can be obtained.

また、無機金属と含窒素芳香族基の配位は、含窒素芳香族基において、Lとの結合位に対して3位及び4位の環骨格構成原子いずれか一方又は両方が窒素原子である場合により進行しやすくなる。これは、2位の環骨格構成原子が窒素原子である場合、中心の原子団が有する複素原子と含窒素芳香族基の窒素原子の距離が近くなることにより、無機金属が中心の原子団の複素原子にも配位し、錯体を形成するためであると考えられる。このような配位は、無機金属と含窒素芳香族基の好ましい配位の態様でなく、中心の原子団の熱分解が進行しにくくなる原因となる。このため、2位の環骨格構成原子が窒素原子であると、酸素還元反応(ORR)活性部位の形成が抑制され、含窒素カーボンアロイの触媒活性が低下するものと考えられる。   The coordination between the inorganic metal and the nitrogen-containing aromatic group is such that either one or both of the ring skeleton constituent atoms at the 3-position and the 4-position with respect to the bonding position with L in the nitrogen-containing aromatic group are nitrogen atoms. In some cases, it becomes easier to proceed. This is because, when the ring skeleton constituent atom at the 2-position is a nitrogen atom, the distance between the hetero atom of the central atomic group and the nitrogen atom of the nitrogen-containing aromatic group is reduced, so that the inorganic metal is the central atomic group. This is thought to be due to coordination with a heteroatom to form a complex. Such coordination is not a preferred coordination mode of the inorganic metal and the nitrogen-containing aromatic group, and causes the thermal decomposition of the central atomic group to hardly proceed. For this reason, it is considered that when the ring skeleton constituent atom at the 2-position is a nitrogen atom, formation of an oxygen reduction reaction (ORR) active site is suppressed, and the catalytic activity of the nitrogen-containing carbon alloy is lowered.

一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物は、下記一般式(2)で表されることが好ましい。   The heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the general formula (1) is preferably represented by the following general formula (2).

Figure 2015027934
Figure 2015027934

一般式(2)中、Q1〜Q3はそれぞれ独立にヘテロ原子又は炭素原子を表し、Q1〜Q3のうち少なくとも1つは窒素原子であり、b1〜b3はそれぞれ独立に水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基を表し、b1〜b3の少なくともいずれかは置換または無置換の含窒素芳香族基であり、含窒素芳香族基の少なくとも1つにおいて、結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。Q1〜Q3を含む非縮合複素芳香環におけるヘテロ原子数は、b1〜b3の含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。なお、b1〜b3の結合部位とは、b1〜b3と、Q1〜Q3を含む非縮合複素芳香環の間の連結基との結合部位のことをいう。 In General Formula (2), Q 1 to Q 3 each independently represents a hetero atom or a carbon atom, at least one of Q 1 to Q 3 is a nitrogen atom, b1 to b3 are each independently a hydrogen atom, Represents a substituted or unsubstituted aromatic group, or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one of b1 to b3 is a substituted or unsubstituted nitrogen-containing aromatic group, In at least one, one or both of the ring skeleton constituent atoms at the 3-position and the 4-position with respect to the binding site are nitrogen atoms. Q Number heteroatoms in non-fused heteroaromatic ring containing 1 to Q 3 is or greater identical to the number of heteroatoms in the nitrogen-containing aromatic group per one of b1 to b3. Note that the binding site of b1 to b3, and b1 to b3, refers to the binding site of the linking group between the non-fused heteroaromatic ring containing Q 1 to Q 3.

一般式(2)において、Q1〜Q3はそれぞれ独立にヘテロ原子又は炭素原子を表し、Q1〜Q3のうち少なくとも1つは窒素原子を表す。Q1〜Q3はそれぞれ独立に窒素原子、硫黄原子、又は炭素原子であることが好ましく、窒素原子又は炭素原子であることが特に好ましく、いずれか1つは窒素原子である。なお、Q1〜Q3における原子はイオン化していても良い。一般式(2)において、Q1〜Q3のうち少なくとも1つは窒素原子であることが好ましく、Q1〜Q3の全てが窒素原子であることがより好ましい。 In the general formula (2), Q 1 to Q 3 each independently represent a hetero atom or a carbon atom, and at least one of Q 1 to Q 3 represents a nitrogen atom. Q 1 to Q 3 are each independently preferably a nitrogen atom, a sulfur atom, or a carbon atom, particularly preferably a nitrogen atom or a carbon atom, and any one is a nitrogen atom. Note that atoms in Q 1 to Q 3 may be ionized. In the general formula (2), it is preferable that at least one is a nitrogen atom of Q 1 to Q 3, and more preferably all of Q 1 to Q 3 is a nitrogen atom.

一般式(2)におけるb1〜b3は、一般式(1)におけるBと同義であり、好ましい範囲も同様である。また、一般式(2)において、b1〜b3は置換または無置換の含窒素芳香族基を表すことが好ましく、b1〜b3は5又は6員環であることが好ましく、6員環であることがより好ましい。なお、b1〜b3が取り得る置換基としては、一般式(1)において、Bが取り得る置換基と同様の置換基を例示することができる。   B1-b3 in General formula (2) are synonymous with B in General formula (1), and its preferable range is also the same. In the general formula (2), b1 to b3 preferably represent a substituted or unsubstituted nitrogen-containing aromatic group, and b1 to b3 are preferably 5- or 6-membered rings, preferably 6-membered rings. Is more preferable. In addition, as a substituent which b1-b3 can take, in General formula (1), the substituent similar to the substituent which B can take can be illustrated.

さらに、一般式(2)において、b1〜b3はピリジル基、ピリミジル基またはトリアジル基であることが好ましく、ピリジル基またはピリミジル基であることがより好ましい。   Furthermore, in the general formula (2), b1 to b3 are preferably a pyridyl group, a pyrimidyl group or a triazyl group, and more preferably a pyridyl group or a pyrimidyl group.

含窒素芳香族基の少なくとも1つにおいては、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。また、本発明では、Q1〜Q3の全てが窒素原子である場合、b1〜b3において、結合部位に対して2位の環骨格構成原子は窒素原子ではないことが好ましい。なお、b1において2位の環骨格構成原子が窒素原子である場合、Q1およびQ3は炭素原子であることが好ましく、b2において2位の環骨格構成原子が窒素原子である場合、Q1およびQ2は炭素原子であることが好ましく、b3において2位の環骨格構成原子が窒素原子である場合、Q2およびQ3は炭素原子であることが好ましい。すなわち、中心の原子団を構成する窒素原子とb1〜b3で表される含窒素芳香族基の窒素原子間の距離が一定以上であることが好ましく、含窒素芳香族基の窒素原子間の距離は4原子以上であることが好ましい。 In at least one of the nitrogen-containing aromatic groups, either one or both of the ring skeleton constituting atoms at the 3-position and the 4-position with respect to the bonding site with L are nitrogen atoms. In the present invention, when all of Q 1 to Q 3 are nitrogen atoms, in b1 to b3, the ring skeleton constituting atom at the 2-position with respect to the binding site is preferably not a nitrogen atom. Note that when the ring skeleton constituting atom at position 2 in b1 is a nitrogen atom, Q 1 and Q 3 are preferably carbon atoms, and when the atom at the 2nd position in b2 is nitrogen atom, Q 1 And Q 2 are preferably carbon atoms. When the ring skeleton constituting atom at the 2-position in b3 is a nitrogen atom, Q 2 and Q 3 are preferably carbon atoms. That is, the distance between the nitrogen atom constituting the central atomic group and the nitrogen atom of the nitrogen-containing aromatic group represented by b1 to b3 is preferably a certain distance or more, and the distance between the nitrogen atoms of the nitrogen-containing aromatic group Is preferably 4 atoms or more.

一般式(2)において、Q1〜Q3を含む非縮合複素芳香環におけるヘテロ原子数は、b1〜b3の含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。ここで、b1〜b3の含窒素芳香族基が複数ある場合は、全ての含窒素芳香族基1つ当たりにおけるヘテロ原子数が上記の条件を満たす。また、Q1〜Q3を含む非縮合複素芳香環が2つ以上ある場合、非縮合複素芳香環におけるヘテロ原子数とは、1つの非縮合複素芳香環当たりにおけるヘテロ原子数を表す。 In the general formula (2), the number of heteroatoms in the non-condensed heteroaromatic ring containing Q 1 to Q 3 is the same as or more than the number of heteroatoms per one nitrogen-containing aromatic group of b1 to b3. Here, when there are a plurality of nitrogen-containing aromatic groups b1 to b3, the number of heteroatoms per one nitrogen-containing aromatic group satisfies the above condition. When there are two or more non-fused heteroaromatic rings including Q 1 to Q 3 , the number of heteroatoms in the non-fused heteroaromatic ring represents the number of heteroatoms per one non-fused heteroaromatic ring.

一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物は、下記式(3)または(4)で表される化合物であることが好ましい。     The heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the general formula (1) is preferably a compound represented by the following formula (3) or (4).

Figure 2015027934
Figure 2015027934

また、含窒素芳香族基を有する複素芳香環化合物は、下記一般式(5)で表される化合物であってもよい。   The heteroaromatic ring compound having a nitrogen-containing aromatic group may be a compound represented by the following general formula (5).

Figure 2015027934
Figure 2015027934

一般式(5)中、Aは5〜11員の非縮合複素芳香環から構成される原子団を表し、Lは単結合、または(x+1)価の連結基を表し、Bは水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基であり、少なくとも1つのBは、置換または無置換の含窒素芳香族基であり、含窒素芳香族基の少なくとも1つにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。Aの非縮合複素芳香環におけるヘテロ原子数は、Bの含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。また、xは1以上の整数を表す。   In general formula (5), A represents an atomic group composed of a 5- to 11-membered non-condensed heteroaromatic ring, L represents a single bond or a (x + 1) -valent linking group, B represents a hydrogen atom, substituted Or an unsubstituted aromatic group or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one B is a substituted or unsubstituted nitrogen-containing aromatic group, and at least one of the nitrogen-containing aromatic groups In the above, any one or both of the ring skeleton constituting atoms at the 3rd and 4th positions relative to the bonding site with L are nitrogen atoms. The number of heteroatoms in the non-fused heteroaromatic ring of A is the same as or more than the number of heteroatoms per one nitrogen-containing aromatic group of B. X represents an integer of 1 or more.

一般式(5)におけるAは、一般式(1)におけるAと同意であり、好ましい範囲も同様である。また、一般式(5)におけるLは、一般式(1)におけるLと同意であり、好ましい範囲も同様である。   A in the general formula (5) is the same as A in the general formula (1), and the preferred range is also the same. Moreover, L in General formula (5) is the same as L in General formula (1), and its preferable range is also the same.

一般式(5)において、Bは水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基を表し、少なくとも1つのBは、置換または無置換の含窒素芳香族基を表す。ここで、含窒素芳香族基とは、窒素原子を芳香族基の構成原子として有する基をいう。一般式(5)におけるBは、一般式(1)におけるBと同意であり、好ましい範囲も同様である。Bが複数存在する場合は、Bのうち少なくとも1つが置換または無置換の含窒素芳香族基であればよいが、全てのBが置換または無置換の含窒素芳香族基であることが好ましい。また、含窒素芳香族基は、ピリジル基、ピリミジル基、トリアジル基及又はイミダゾリル基であることが好ましい。   In the general formula (5), B represents a hydrogen atom, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one B is a substituted or unsubstituted nitrogen-containing aromatic group Represents a group. Here, the nitrogen-containing aromatic group means a group having a nitrogen atom as a constituent atom of the aromatic group. B in the general formula (5) is the same as B in the general formula (1), and the preferred range is also the same. When a plurality of B are present, at least one of the Bs may be a substituted or unsubstituted nitrogen-containing aromatic group, but it is preferable that all Bs are substituted or unsubstituted nitrogen-containing aromatic groups. The nitrogen-containing aromatic group is preferably a pyridyl group, a pyrimidyl group, a triazyl group, or an imidazolyl group.

Bで表される芳香族基又は含窒素芳香族基が置換基を有する場合、好ましい置換基の具体例は、上述した例と同様のものを挙げることができる。   When the aromatic group or nitrogen-containing aromatic group represented by B has a substituent, specific examples of preferred substituents can include the same examples as described above.

少なくとも1つのBが表す置換または無置換の含窒素芳香族基の少なくとも1つにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。少なくとも1つのBが表す置換または無置換の含窒素芳香族基において、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。好ましい構成については、一般式(1)のBと同様である。   In at least one of the substituted or unsubstituted nitrogen-containing aromatic groups represented by at least one B, one or both of the ring skeleton constituting atoms at the 3-position and 4-position with respect to the bonding site with L are nitrogen atoms. is there. In the substituted or unsubstituted nitrogen-containing aromatic group represented by at least one B, one or both of the ring skeleton constituting atoms at the 3-position and the 4-position with respect to the bonding site with L are nitrogen atoms. The preferred configuration is the same as B in the general formula (1).

一般式(5)において、Aの非縮合複素芳香環におけるヘテロ原子数は、Bの含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。ここで、Bの含窒素芳香族基が複数ある場合は、全ての含窒素芳香族基1つ当たりにおけるヘテロ原子数が上記の条件を満たす。   In the general formula (5), the number of heteroatoms in the non-condensed heteroaromatic ring of A is the same as or larger than the number of heteroatoms per one nitrogen-containing aromatic group of B. Here, when there are a plurality of nitrogen-containing aromatic groups of B, the number of heteroatoms per all nitrogen-containing aromatic groups satisfies the above condition.

一般式(5)において、xは1以上の整数を表す。xは、1〜6の整数であることが好ましく、1〜5の整数であることがより好ましく、1〜4の整数であることがさらに好ましく、1〜3の整数であることがよりさらに好ましく、1又は2であることが特に好ましい。   In the general formula (5), x represents an integer of 1 or more. x is preferably an integer of 1 to 6, more preferably an integer of 1 to 5, more preferably an integer of 1 to 4, and still more preferably an integer of 1 to 3. 1 or 2 is particularly preferable.

一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物の具体例としては、以下の化合物が挙げられる。但し、本発明は以下の具体例により限定されるものではない。   Specific examples of the heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the general formula (1) include the following compounds. However, the present invention is not limited to the following specific examples.

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

なお、中心部にベンゼン環を有する化合物については、末端部の含窒素芳香族基が一般式(1)のAで表される非縮合複素芳香環に該当し、ベンゼン環を含む連結部が一般式(1)のLで表される連結基に相当する。   In addition, about the compound which has a benzene ring in central part, the nitrogen-containing aromatic group of a terminal part corresponds to the non-condensed heteroaromatic ring represented by A of General formula (1), and the connection part containing a benzene ring is common. It corresponds to the linking group represented by L in formula (1).

一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物としては、上記の化合物の中でも下記の化合物は好ましく用いられる。   As the heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the general formula (1), among the above compounds, the following compounds are preferably used.

Figure 2015027934
Figure 2015027934

上述した含窒素芳香族基を有する複素芳香環化合物は、π−π相互作用、配位結合、電荷移動相互作用および水素結合より選択される2つ以上の結合又は相互作用により結晶構造を形成していることが好ましい。結晶構造を形成した低分子性化合物を用いることにより分子間相互作用を向上させて、含窒素カーボンアロイを得る際の焼成時の気化を抑制することができるためである。
ここで言う結晶構造とは結晶中の分子の配列様式・配置様式のことをいう。言い換えると、結晶構造は単位格子の繰り返し構造からなり、分子はこの単位胞内の任意の部位に配置して、配向をしている。また、結晶中において、分子は均一な様体をなしている。すなわち、結晶中の官能基の配置が均一であるため、分子の各相互作用は、単位胞内もしくは単位胞外で同一である。たとえば、積層構造を有する含窒素芳香族基を有する複素芳香環化合物の場合、芳香環、複素環、縮合多環、縮合複素多環、不飽和基(二トリル基、ビニル基、アリル基、アセチレン基)等には相互作用(例えば芳香環はface−to−faceでπ−π相互作用(π−πスタック))が生じる。これらの環や基における不飽和結合由来の炭素のSP2軌道もしくはSP軌道が分子間で規則正しく等間隔で重なることで積層し、積層カラム構造を形成する。
The above heteroaromatic ring compound having a nitrogen-containing aromatic group forms a crystal structure by two or more bonds or interactions selected from π-π interaction, coordination bond, charge transfer interaction and hydrogen bond. It is preferable. This is because by using a low molecular weight compound having a crystal structure, the intermolecular interaction can be improved and vaporization during firing when obtaining a nitrogen-containing carbon alloy can be suppressed.
The crystal structure here refers to the arrangement and arrangement of molecules in the crystal. In other words, the crystal structure consists of a repeating structure of unit cell, and the molecules are arranged at any position in the unit cell and oriented. In the crystal, the molecules have a uniform appearance. That is, since the arrangement of functional groups in the crystal is uniform, each molecular interaction is the same inside or outside the unit cell. For example, in the case of a heteroaromatic compound having a nitrogen-containing aromatic group having a laminated structure, an aromatic ring, a heterocyclic ring, a condensed polycyclic ring, a condensed heterocyclic polycyclic ring, an unsaturated group (nitrile group, vinyl group, allyl group, acetylene) Group) and the like (for example, an aromatic ring is face-to-face and has a π-π interaction (π-π stack)). Stacking is performed by SP 2 orbits of carbons derived from unsaturated bonds in these rings and groups and regularly overlapping at equal intervals between molecules to form a stacked column structure.

さらにこの積層カラム構造において、隣接する積層カラム間は水素結合またはファンデルワールス相互作用により、分子間距離が規定された均一な構造を有する。このため、結晶内の熱伝達が容易に達成される効果を有する。   Further, in this stacked column structure, adjacent stacked columns have a uniform structure in which the intermolecular distance is defined by hydrogen bonding or van der Waals interaction. For this reason, it has the effect that the heat transfer in a crystal | crystallization is achieved easily.

本発明に用いる含窒素芳香族基を有する複素芳香環化合物は結晶性を有していることが好ましい。含窒素芳香族基を有する複素芳香環化合物は結晶性が結晶性を有することにより、化合物は焼成時に配向が制御できることから、均一な炭素材料となるため好ましい。   The heteroaromatic ring compound having a nitrogen-containing aromatic group used in the present invention preferably has crystallinity. The heteroaromatic ring compound having a nitrogen-containing aromatic group is preferable because the crystallinity is crystallinity, and the compound can be controlled in orientation during firing, so that it becomes a uniform carbon material.

含窒素芳香族基を有する複素芳香環化合物は、さらに融点が25℃以上であることが好ましい。融点が25℃以上であると、焼成時に耐熱性に寄与する空気層が存在し、温度と蒸気圧の関係から沸騰もしくは突沸を防ぐことができ、炭素材料が得られやすくなる。   The heteroaromatic ring compound having a nitrogen-containing aromatic group preferably further has a melting point of 25 ° C. or higher. When the melting point is 25 ° C. or higher, there is an air layer that contributes to heat resistance during firing, boiling or bumping can be prevented from the relationship between temperature and vapor pressure, and a carbon material can be easily obtained.

含窒素芳香族基を有する複素芳香環化合物は、特に分子量に限定されないが、低分子性化合物またはオリゴマーの場合60〜2000であることが好ましく、100〜1500であることがより好ましく、130〜1000であることが特に好ましい。上記範囲とすることで、焼成前の精製が容易となる。
含窒素芳香族基を有する複素芳香環化合物がポリマーの場合、数平均分子量が2000〜100万であることが好ましく、2000〜10万であることがより好ましい。分子量分布(分散度=重量平均分子量/数平均分子量)は特に限定されないが、3.0以下が好ましく、2.0以下がより好ましく、1.5以下がさらに好ましい。上記範囲とすることで得られる炭素材料の導電性が向上するため好ましい。
重量平均分子量及び数平均分子量の測定方法としては日本工業規格(JIS K 7252(プラスチックーサイズ排除クロマトグラフィーによる高分子の平均分子量及び分子量分布の求め方)が挙げられ、サイズ排除クロマトグラフィー(SEC)法およびその他の測定方法により得られたデータから、数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、分散度(Mw/Mn)及び分子量1,000未満成分の含有率を求めることができる。
The heteroaromatic ring compound having a nitrogen-containing aromatic group is not particularly limited to the molecular weight, but in the case of a low molecular weight compound or oligomer, it is preferably 60 to 2000, more preferably 100 to 1500, and 130 to 1000. It is particularly preferred that By setting it within the above range, purification before firing becomes easy.
When the heteroaromatic ring compound having a nitrogen-containing aromatic group is a polymer, the number average molecular weight is preferably 2,000 to 1,000,000, and more preferably 2,000 to 100,000. The molecular weight distribution (dispersion degree = weight average molecular weight / number average molecular weight) is not particularly limited, but is preferably 3.0 or less, more preferably 2.0 or less, and even more preferably 1.5 or less. Since the electroconductivity of the carbon material obtained by setting it as the said range improves, it is preferable.
The measurement method of weight average molecular weight and number average molecular weight includes Japanese Industrial Standards (JIS K 7252 (how to determine the average molecular weight and molecular weight distribution of a polymer by plastic size exclusion chromatography), and size exclusion chromatography (SEC). The number average molecular weight (Mn), the weight average molecular weight (Mw), the Z average molecular weight (Mz), the degree of dispersion (Mw / Mn), and the content of components having a molecular weight of less than 1,000 The rate can be determined.

含窒素芳香族基を有する複素芳香環化合物は上記例示化合物中のPoly(4−VinylPyridine)のようなポリマー、低分子性化合物またはオリゴマーであってもよい。ポリマーの場合、重合度nは20〜1.0×104であることが好ましく、20〜1.0×103であることがより好ましく、20〜1.0×102であることがさらに好ましい。低分子性化合物またはオリゴマーの場合、重合度nは2〜20であることが好ましく、4〜10であることがより好ましい。
含窒素芳香族基を有する複素芳香環化合物がポリマーである場合、含窒素芳香族基が共有結合により配置されているため、重合度を上記範囲とすることにより、焼成時に近傍の炭素同士が結合しやすくなり、導電性が向上するため好ましい。
含窒素芳香族基を有する複素芳香環化合物が低分子性化合物またはオリゴマーの場合、含窒素芳香族基が共有結合により結合しているため、重合度を上記範囲とすることにより、焼成時、含窒素芳香族基が金属と配向し、含窒素芳香族基が配列しやすくなり、空孔を形成しやすいので好ましい。
The heteroaromatic ring compound having a nitrogen-containing aromatic group may be a polymer such as Poly (4-VinylPyridine), a low molecular compound or an oligomer in the above exemplary compounds. In the case of a polymer, the polymerization degree n is preferably 20 to 1.0 × 10 4 , more preferably 20 to 1.0 × 10 3 , and further preferably 20 to 1.0 × 10 2. preferable. In the case of a low molecular weight compound or oligomer, the polymerization degree n is preferably 2 to 20, and more preferably 4 to 10.
When the heteroaromatic ring compound having a nitrogen-containing aromatic group is a polymer, since the nitrogen-containing aromatic group is arranged by a covalent bond, by setting the polymerization degree within the above range, adjacent carbons are bonded at the time of firing. This is preferable because it is easy to perform and conductivity is improved.
When the heteroaromatic ring compound having a nitrogen-containing aromatic group is a low molecular weight compound or oligomer, the nitrogen-containing aromatic group is bonded by a covalent bond. The nitrogen aromatic group is preferred because it is oriented with the metal, the nitrogen-containing aromatic group is easily arranged, and vacancies are easily formed.

本発明では、含窒素芳香族基を有する複素芳香環化合物は、前駆体中の全質量に対して0.1質量%を超えて含まれることが好ましく、0.5〜99質量%含まれることがより好ましく、5〜90質量%含まれることがさらに好ましい。含窒素芳香族基を有する複素芳香環化合物を上記範囲内含有させることにより、より高い酸素還元活性を有するカーボンアロイが生成し得る。   In the present invention, the heteroaromatic ring compound having a nitrogen-containing aromatic group is preferably contained in an amount of more than 0.1% by mass, and 0.5 to 99% by mass with respect to the total mass in the precursor. Is more preferable, and it is further more preferable that 5-90 mass% is contained. By containing the heteroaromatic ring compound having a nitrogen-containing aromatic group within the above range, a carbon alloy having higher oxygen reduction activity can be generated.

なお、含窒素芳香族基を有する複素芳香環化合物は、単独で用いてもよいし、2種以上を混合して用いてもよい。また、後述する無機金属塩以外の含窒素芳香族基を有する複素芳香環化合物中の金属含有量は10ppm以下であることが好ましい。   In addition, the hetero aromatic ring compound which has a nitrogen-containing aromatic group may be used independently, and 2 or more types may be mixed and used for it. Moreover, it is preferable that the metal content in the hetero aromatic ring compound which has nitrogen-containing aromatic groups other than the inorganic metal salt mentioned later is 10 ppm or less.

含窒素芳香族基を有する複素芳香環化合物の窒素含率は、前駆体の全質量に対し、0.1質量%〜55質量%であることが好ましく、1質量%〜30質量%であることがより好ましく、さらに4質量%〜20質量%であることが特に好ましい。上記範囲で窒素原子(N)を含有する化合物を使用することにより、別途窒素源となる化合物を導入する必要がなく、結晶エッジに規則正しく窒素原子と金属が均一に位置して、窒素と金属が相互作用しやすくなる。これにより窒素原子と金属の組成比がより高酸素還元活性を有する組成比となり得る。   The nitrogen content of the heteroaromatic ring compound having a nitrogen-containing aromatic group is preferably 0.1% by mass to 55% by mass, and preferably 1% by mass to 30% by mass with respect to the total mass of the precursor. Is more preferable, and it is particularly preferably 4% by mass to 20% by mass. By using a compound containing a nitrogen atom (N) within the above range, there is no need to introduce a separate nitrogen source compound, the nitrogen atom and metal are regularly positioned uniformly on the crystal edge, and the nitrogen and metal are It becomes easy to interact. Thereby, the composition ratio of nitrogen atom and metal can be a composition ratio having higher oxygen reduction activity.

また、含窒素芳香族基を有する複素芳香環化合物は、窒素雰囲気下で400℃におけるΔTGが−95%〜−0.1%である難揮発性化合物であることが好ましく、−95%〜−1%である難揮発性化合物であることがより好ましく、−90%〜−5%であることが特に好ましい。含窒素芳香族基を有する複素芳香環化合物は、焼成時に気化しないで、炭素化する難揮発性化合物であることが好ましい。
ここで、ΔTGは含窒素芳香族基を有する複素芳香環化合物および無機金属塩との混合物のTG−DTA測定において、窒素を毎分100mL流通下、30℃から1000℃まで毎分10℃で昇温した際、室温(30℃)における質量を基準にした400℃での質量減少率を指す。
The heteroaromatic ring compound having a nitrogen-containing aromatic group is preferably a hardly volatile compound having a ΔTG of −95% to −0.1% at 400 ° C. in a nitrogen atmosphere, It is more preferably a hardly volatile compound of 1%, and particularly preferably -90% to -5%. The heteroaromatic ring compound having a nitrogen-containing aromatic group is preferably a hardly volatile compound that is carbonized without being vaporized during firing.
Here, ΔTG is raised at 10 ° C./min from 30 ° C. to 1000 ° C. under a flow of 100 mL / min in TG-DTA measurement of a mixture of a heteroaromatic compound having a nitrogen-containing aromatic group and an inorganic metal salt. When heated, it refers to the mass reduction rate at 400 ° C. based on the mass at room temperature (30 ° C.).

含窒素芳香族基を有する複素芳香環化合物は、一般式(1)で表される構造の顔料であることも好ましい。
顔料は分子間でπ−π相互作用により、積層カラム構造を形成し、積層カラム間を水素結合又はファンデルワールス相互作用により、分子間距離が規定された均一な構造を有するため、結晶内の熱伝達が容易に達成される効果を有する。また、結晶性を有し、熱に対してフォノン(量子化された格子振動)することにより振動緩和され耐熱性を有する。そのため分解温度が炭素化温度まで保持され、分解物の気化が低減されて炭素化が達成される効果を有する。
なかでも、イソインドリン系顔料、イソインドリノン系顔料、ジケトピロロピロール系顔料、キナクリドン系顔料、オキサジン系顔料、フタロシアニン系顔料、キノフタロン系顔料、および上記顔料をラテント化したラテント顔料、また染料を金属イオンで顔料化したレーキ顔料等の顔料が好ましく、ジケトピロロピロール系顔料、キナクリドン系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、および上記顔料をラテント化したラテント顔料(後述)がより好ましい。これらの顔料を焼成すると分解生成するベンゾニトリル(Ph−CN)骨格が反応活性種となり、より高い酸素還元反応活性を有するカーボンアロイ触媒が生成するからである。また金属種(M)が共存することによりPh−CN…Mの錯体を形成し、さらに高酸素還元反応活性なカーボンアロイが生成する。
The heteroaromatic ring compound having a nitrogen-containing aromatic group is also preferably a pigment having a structure represented by the general formula (1).
The pigment forms a stacked column structure by π-π interaction between molecules, and has a uniform structure in which the intermolecular distance is defined by hydrogen bonding or van der Waals interaction between the stacked columns. It has the effect that heat transfer is easily achieved. In addition, it has crystallinity, and is vibration-reduced and heat-resistant by phonon (quantized lattice vibration) against heat. Therefore, the decomposition temperature is maintained up to the carbonization temperature, and there is an effect that the vaporization of the decomposition product is reduced and the carbonization is achieved.
Among them, isoindoline pigments, isoindolinone pigments, diketopyrrolopyrrole pigments, quinacridone pigments, oxazine pigments, phthalocyanine pigments, quinophthalone pigments, and latent pigments or dyes obtained by converting the above pigments into A pigment such as a lake pigment pigmented with a metal ion is preferred, and a diketopyrrolopyrrole pigment, a quinacridone pigment, an isoindoline pigment, an isoindolinone pigment, a quinophthalone pigment, and a latent pigment obtained by laminating the above pigment ( (Described later) is more preferable. This is because, when these pigments are fired, the benzonitrile (Ph-CN) skeleton, which is decomposed and formed, becomes a reactive species, and a carbon alloy catalyst having higher oxygen reduction reaction activity is generated. Further, when the metal species (M) coexists, a complex of Ph—CN.

<無機金属塩>
上述した前駆体の調製には、無機金属塩が用いられる。無機金属塩としては、特に限定はされないが、水酸化物、酸化物、窒化物、亜硫酸化物、硫化物、スルホン化物、カルボニル化物、硝酸化物、亜硝酸化物、ハロゲン化物等とすることができる。好ましくは対イオンがハロゲンイオン、又は硝酸イオンである。対イオンがハロゲンイオン、硝酸イオン又は硫酸イオンであるハロゲン化物、又は硝酸化物であれば、加熱分解時に生成した炭素表面で炭素と結合し、比表面積を増大させることができるため好ましい。本発明では、無機金属塩がハロゲン化物であることが好ましく、無機金属塩化物であることが特に好ましい。
<Inorganic metal salt>
An inorganic metal salt is used for the preparation of the precursor described above. The inorganic metal salt is not particularly limited, but may be a hydroxide, oxide, nitride, sulfite, sulfide, sulfonate, carbonylate, nitrate, nitrite, halide or the like. Preferably, the counter ion is a halogen ion or a nitrate ion. It is preferable that the counter ion is a halide or nitrate in which a halogen ion, a nitrate ion or a sulfate ion is used, because the specific surface area can be increased by binding to carbon on the carbon surface generated during the thermal decomposition. In the present invention, the inorganic metal salt is preferably a halide, and particularly preferably an inorganic metal chloride.

また、無機金属塩は結晶水を含むことができ、無機金属塩は含水塩であることが好ましい。無機金属塩が結晶水を含むことにより熱伝導率が向上するため、均一に焼成可能になる点で好ましい。結晶水を含む無機金属塩としては、例えば、塩化コバルト(III)含水塩、塩化鉄(III)含水塩、塩化コバルト(II)含水塩、塩化鉄(II)含水塩を好適に使用することができる。   The inorganic metal salt can contain water of crystallization, and the inorganic metal salt is preferably a hydrated salt. Since the inorganic metal salt contains crystal water, the thermal conductivity is improved, which is preferable in that it can be uniformly fired. As the inorganic metal salt containing crystal water, for example, cobalt chloride (III) hydrate salt, iron chloride (III) hydrate salt, cobalt chloride (II) hydrate salt, iron chloride (II) hydrate salt is preferably used. it can.

無機金属塩の金属種は、Fe、Co、Ni、MnおよびCrのうち少なくとも1種類であることが好ましく、FeまたはCoであることがより好ましい。Fe、Co、Ni、Mn、Crの塩は、炭素触媒の触媒活性を向上させるナノサイズのシェル構造を形成することに優れ、その中でも特に、Co、Feは、ナノサイズのシェル構造を形成することに優れるため好ましい。また、炭素触媒に含有されたCo、Feは、炭素触媒中において触媒の酸素還元活性を向上させることができる。遷移金属として最も好ましくはFeである。Fe含有含窒素カーボンアロイは立上り電位が高く、反応電子数がCoよりも高く、燃料電池の耐久性を比較的向上させることができる。なお、炭素触媒の活性を阻害しない限り、遷移金属以外の元素(例えば、B、アルカリ金属(Na,K,Cs)、アルカリ土類(Mg,Ca,Ba)、鉛、スズ、インジウム、タリウム等)が1種類以上含まれてもよい。   The metal species of the inorganic metal salt is preferably at least one of Fe, Co, Ni, Mn, and Cr, and more preferably Fe or Co. Fe, Co, Ni, Mn, and Cr salts are excellent in forming a nano-sized shell structure that improves the catalytic activity of the carbon catalyst, and in particular, Co and Fe form a nano-sized shell structure. It is preferable because it is particularly excellent. Moreover, Co and Fe contained in the carbon catalyst can improve the oxygen reduction activity of the catalyst in the carbon catalyst. Most preferably, it is Fe as a transition metal. The Fe-containing nitrogen-containing carbon alloy has a high rising potential, has a higher number of reaction electrons than Co, and can relatively improve the durability of the fuel cell. As long as the activity of the carbon catalyst is not inhibited, elements other than transition metals (for example, B, alkali metals (Na, K, Cs), alkaline earths (Mg, Ca, Ba), lead, tin, indium, thallium, etc. ) May be included in one or more types.

本発明では、前駆体には、前駆体中に含まれる含窒素芳香族基を有する複素芳香環化合物と無機金属塩の合計(但し、合計には水和水の質量を含める)に対して、無機金属塩(但し、ここでいう無機金属塩には水和水の質量を含める)は、5質量%を超えて含まれることが好ましい。これにより、窒素原子との相互作用によって、より高い酸素還元活性を有するカーボンアロイが生成し得る。含窒素芳香族基を有する複素芳香環化合物を含む有機材料を焼成することにより、複素芳香環化合物が分解し、生成した分解生成物が気相中で含窒素カーボンアロイ触媒が形成される。その際に、気相中に金属が近傍に存在すると、分解生成物は金属と相互作用(錯体を形成)し、含窒素カーボンアロイ触媒の性能がさらに向上する。また、窒素原子(N)を構成元素として含む含窒素芳香族基を有する複素芳香環化合物に添加されている特定の遷移金属化合物の触媒作用等により、窒素原子(N)が炭素触媒表面に高濃度に固定化された含窒素カーボンアロイを形成し、この窒素原子(N)と相互作用した遷移金属化合物を含んだ炭素微粒子が形成されることが好ましい。なお、後述する酸処理によって一部の窒素原子(N)と相互作用した遷移金属化合物は脱落してもよい。   In the present invention, the precursor includes the total of the heteroaromatic ring compound having a nitrogen-containing aromatic group and the inorganic metal salt contained in the precursor (however, the total includes the mass of hydrated water), It is preferable that the inorganic metal salt (however, the inorganic metal salt here includes the mass of hydrated water) exceeds 5 mass%. Thereby, the carbon alloy which has higher oxygen reduction activity can be produced | generated by interaction with a nitrogen atom. By firing an organic material containing a heteroaromatic ring compound having a nitrogen-containing aromatic group, the heteroaromatic ring compound is decomposed, and the generated decomposition product forms a nitrogen-containing carbon alloy catalyst in the gas phase. At that time, if a metal is present in the vicinity of the gas phase, the decomposition product interacts with the metal (forms a complex), and the performance of the nitrogen-containing carbon alloy catalyst is further improved. Further, due to the catalytic action of a specific transition metal compound added to a heteroaromatic ring compound having a nitrogen-containing aromatic group containing a nitrogen atom (N) as a constituent element, the nitrogen atom (N) is increased on the carbon catalyst surface. It is preferable to form carbon fine particles containing a transition metal compound which forms a nitrogen-containing carbon alloy fixed at a concentration and interacts with the nitrogen atom (N). In addition, the transition metal compound which interacted with some nitrogen atoms (N) by the acid treatment mentioned later may drop off.

本発明で得られる含窒素カーボンアロイは前駆体中に含まれる含窒素芳香族基を有する複素芳香環化合物と無機金属塩の合計(但し、合計には水和水の質量を含める)に対して、無機金属塩(但し、ここでいう無機金属塩には水和水の質量を含める)が0.1質量%を超えて含まれることが好ましく、0.5質量%を超えて85質量%以下含まれることがより好ましく、1質量%を超えて70質量%以下含まれることがさらに好ましい。この範囲にすることによって、高い酸素還元反応活性(ORR活性)を有するカーボンアロイが生成し得る。   The nitrogen-containing carbon alloy obtained in the present invention is based on the total of the heteroaromatic ring compound having a nitrogen-containing aromatic group and the inorganic metal salt contained in the precursor (however, the total includes the mass of hydrated water) In addition, it is preferable that the inorganic metal salt (however, the inorganic metal salt here includes the mass of hydrated water) exceeds 0.1% by mass, and exceeds 0.5% by mass and is 85% by mass or less. More preferably, it is contained more than 1 mass% and 70 mass% or less. By setting it within this range, a carbon alloy having high oxygen reduction reaction activity (ORR activity) can be generated.

ORR活性は、実施例にて詳述する方法により電位を求め、これをORR活性値として測定することができる。高出力を得るために、酸素還元する際の電位の値が高いことが好ましく、具体的には、0.05mg/cm2の電極塗布量における電流密度値−1mA/cm2の電位が、0.39V以上が好ましく、0.43V以上がより好ましく、0.45V以上がさらに好ましい。
また、0.5mg/cm2の電極塗布量における電流密度値−1mA/cm2の電位が、0.70V以上が好ましく、0.72V以上がより好ましく、0.74V以上がさらに好ましい。塗布量と電流密度は直線的に増加するが、塗布量が増すとカーボンアロイ粒子間の抵抗の増加、酸素および水の拡散抵抗の増加等により電流密度が想定した直線から低くなる。オームの法則により、塗布量と電位の関係においても、同様に、塗布量と電位は直線的からずれて低くなる。0.5mg/cm2における電位の値は、0.05mg/cm2で示した触媒活性とカーボンアロイの導電性を加味した値であり、導電性に優れているため特に好ましい。
The ORR activity can be measured as an ORR activity value by obtaining a potential by the method described in detail in Examples. To obtain high output, it is preferable the value of potential at the time of oxygen reduction is high, specifically, the potential of the current density values -1 mA / cm 2 in the electrode coating weight of 0.05 mg / cm 2 is 0 .39V or more is preferable, 0.43V or more is more preferable, and 0.45V or more is more preferable.
The potential of the current density values -1 mA / cm 2 in the electrode coating amount of 0.5 mg / cm 2 is preferably not less than 0.70 V, more preferably at least 0.72V, and even more preferably 0.74 V. The coating amount and the current density increase linearly, but as the coating amount increases, the current density decreases from the assumed straight line due to an increase in resistance between carbon alloy particles, an increase in diffusion resistance of oxygen and water, and the like. According to Ohm's law, the application amount and the potential are similarly deviated from linearity and become lower in the relationship between the application amount and the potential. The value of the potential at 0.5 mg / cm 2 is a value that takes into account the catalytic activity and the conductivity of the carbon alloy shown at 0.05 mg / cm 2 , and is particularly preferable because of its excellent conductivity.

なお、本発明では、焼成前の有機材料において、含窒素芳香族基を有する複素芳香環化合物と無機金属塩は均一分散させる必要がないという利点を有する。すなわち、含窒素芳香族基を有する複素芳香環化合物が焼成分解した際に、その分解生成物と無機金属塩等の気化物が接触していれば、酸素還元反応活性を有する活性種が形成すると考えられるため、室温での複素芳香環化合物と無機金属塩との混合状態にカーボンアロイの酸素還元反応活性は影響を受けない。   In the present invention, there is an advantage that the heteroaromatic ring compound having a nitrogen-containing aromatic group and the inorganic metal salt do not need to be uniformly dispersed in the organic material before firing. That is, when a heteroaromatic ring compound having a nitrogen-containing aromatic group undergoes calcination decomposition, if the decomposition product is in contact with a vaporized product such as an inorganic metal salt, an active species having oxygen reduction reaction activity is formed. Therefore, the oxygen reduction reaction activity of the carbon alloy is not affected by the mixed state of the heteroaromatic ring compound and the inorganic metal salt at room temperature.

なお、無機金属塩の粒径は、直径0.001〜100μmであることが好ましい。より好ましくは0.01〜10μmである。無機金属塩の粒径をこの範囲内にすることで、含窒素芳香族基を有する複素芳香環化合物と均一に混合させることが可能となり、複素芳香環化合物が分解生成時に錯体を形成しやすくなる。   In addition, it is preferable that the particle diameter of inorganic metal salt is 0.001-100 micrometers in diameter. More preferably, it is 0.01-10 micrometers. By making the particle size of the inorganic metal salt within this range, it becomes possible to uniformly mix with the heteroaromatic ring compound having a nitrogen-containing aromatic group, and the heteroaromatic ring compound is likely to form a complex when it is decomposed. .

<有機金属錯体>
本発明の含窒素カーボンアロイの製造方法において、前駆体はさらに少なくとも一種の有機金属錯体を含むことが好ましい。前駆体に有機金属錯体を添加することにより、高いORR活性が得られることに加えて、高反応電子数を有するカーボンアロイ触媒を得ることができる。
有機金属錯体としては、基礎錯体工学研究会編、錯体化学−基礎と最新の話題−、講談社サイエンティフィク(1994)に記載されている化合物を例示することができ、具体的には金属イオンに配位子が配位した化合物を好ましく例示することができ、金属アセタート錯体、またはβ−ジケトン金属錯体を好ましく用いることができる。なお、有機金属錯体は、多様な配位子の配位数をとることができ、配位幾何異性体でもよいし、金属イオンの価数が異なってもよい。また、有機金属錯体は、金属−炭素結合を有する有機金属化合物でもよい。
<Organic metal complex>
In the method for producing a nitrogen-containing carbon alloy of the present invention, the precursor preferably further contains at least one organometallic complex. By adding an organometallic complex to the precursor, in addition to obtaining high ORR activity, a carbon alloy catalyst having a high number of reaction electrons can be obtained.
Examples of organometallic complexes include compounds described in Basic Complex Engineering Study Group, Complex Chemistry-Fundamentals and Latest Topics, Kodansha Scientific (1994). A compound in which a ligand is coordinated can be preferably exemplified, and a metal acetate complex or a β-diketone metal complex can be preferably used. In addition, the organometallic complex can take the coordination number of various ligands, may be a coordination geometric isomer, and may have different valences of metal ions. The organometallic complex may be an organometallic compound having a metal-carbon bond.

金属イオンとして好ましいものは、Fe、Co、Ni、MnおよびCrのイオンである。
配位子として好ましいものは、単座配位子(ハロゲン化物イオン、シアン化物イオン、アンモニア、ピリジン(py)、トリフェニルホスフィン、カルボン酸等)、二座配位子(エチレンジアミン(en)、β−ジケトナート(アセチルアセトナート(acac)、ピバロイルメタン(DPM)、ジイソブトキシメタン(DIBM)、イソブトキシピバロイルメタン(IBPM)、テトラメチルオクタジオン(TMOD))、トリフルオロアセチルアセトナート(TFA)、ビピリジン(bpy)、フェナントレン(phen)等)、多座配位子(エチレンジアミンテトラ酢酸イオン(edta))等)である。
Preferable metal ions are Fe, Co, Ni, Mn and Cr ions.
Preferred ligands include monodentate ligands (halide ion, cyanide ion, ammonia, pyridine (py), triphenylphosphine, carboxylic acid, etc.), bidentate ligands (ethylenediamine (en), β- Diketonate (acetylacetonate (acac), pivaloylmethane (DPM), diisobutoxymethane (DIBM), isobutoxypivaloylmethane (IBPM), tetramethyloctadione (TMOD)), trifluoroacetylacetonate (TFA), bipyridine (Bpy), phenanthrene (phen), etc.), multidentate ligands (ethylenediaminetetraacetate ion (edta), etc.).

上述した金属錯体として用いることができるものとしては、β−ジケトン金属錯体(ビス(アセチルアセトナト)鉄(II)[Fe(acac)2]、トリス(アセチルアセトナト)鉄(III)[Fe(acac)3]、ビス(アセチルアセトナト)コバルト(II)[Co(acac)2]、トリス(アセチルアセトナト)コバルト(III)[Co(acac)3]、ビス(ジピバロイルメタン)鉄(II)[Fe(DPM)2]、トリス(ジピバロイルメタン)鉄(III)[Fe(DPM)3]、トリス(ジピバロイルメタン)コバルト(III)[Co(DPM)3]、ビス(ジイソブトキシメタン)鉄(II)[Fe(DIBM)2]、トリス(ジイソブトキシメタン)鉄(III)[Fe(DIBM)3]、トリス(ジイソブトキシメタン)コバルト(III)[Co(DIBM)3]、ビス(イソブトキシピバロイルメタン)鉄(II)[Fe(IBPM)2]、トリス(イソブトキシピバロイルメタン)コバルト(III)[Co(IBPM)3]、ビス(テトラメチルオクタジオン)鉄(II)[Fe(TMOD)2])、トリス(テトラメチルオクタジオン)鉄(III)[Fe(TMOD)3]、トリス(テトラメチルオクタジオン)コバルト(III)[Co(TMOD)3])、トリス(1,10−フェナントロリナート)鉄(III)塩化物[Fe(phen)3]Cl2、トリス(1,10−フェナントロリナート)コバルト(III)塩化物[Co(phen)3]Cl2、N,N’−エチレンジアミンビス(サリチリデンアミナト)酸鉄(II)[Fe(salen)]、 N,N’−エチレンジアミンビス(サリチリデンアミナト)酸コバルト(II)[Co(salen)]、トリス(2,2’−ビピリジン)鉄(II)塩化物[Fe(bpy)3]Cl2、トリス(2,2’−ビピリジン)コバルト(II)塩化物[Co(bpy)3]Cl2、鉄フタロシアニン(MPc)及び酢酸鉄[Fe(OAc)2]を挙げることができる。
その中でもβ−ジケトン金属錯体(ビス(アセチルアセトナト)鉄(II)[Fe(acac)2]、トリス(アセチルアセトナト)鉄(III)[Fe(acac)3]、ビス(ジピバロイルメタン)鉄(II)[Fe(DPM)2]、ビス(ジイソブトキシメタン)鉄(II)[Fe(DIBM)2]、ビス(イソブトキシピバロイルメタン)鉄(II)[Fe(IBPM)2]、ビス(テトラメチルオクタジオン)鉄(II)[Fe(TMOD)2])、N,N’−エチレンジアミンビス(サリチリデンアミナト)酸鉄(II)[Fe(salen)]、トリス(2,2’−ビピリジン)鉄(II)塩化物[Fe(bpy)3]Cl2、鉄フタロシアニン(MPc)又は酢酸鉄[Fe(OAc)2]が好ましく、アセチルアセトン鉄(II)錯体であるビス(アセチルアセトナト)鉄(II)[Fe(acac)2]は好ましく用いられる。
Examples of the metal complex that can be used include the β-diketone metal complex (bis (acetylacetonato) iron (II) [Fe (acac) 2 ], tris (acetylacetonato) iron (III) [Fe ( acac) 3 ], bis (acetylacetonato) cobalt (II) [Co (acac) 2 ], tris (acetylacetonato) cobalt (III) [Co (acac) 3 ], bis (dipivaloylmethane) iron (II) [Fe (DPM) 2 ], tris (dipivaloylmethane) iron (III) [Fe (DPM) 3 ], tris (dipivaloylmethane) cobalt (III) [Co (DPM) 3 ] , bis (diisobutoxyphenyl methane) iron (II) [Fe (DIBM) 2], tris (diisobutoxyphenyl methane) iron (III) [Fe (DIBM) 3], tris (diisopropyl Tokishimetan) cobalt (III) [Co (DIBM) 3], bis (iso-butoxy pivaloyl methane) iron (II) [Fe (IBPM) 2], tris (isobutoxy pivaloyl methane) cobalt (III) [Co (IBPM) 3 ], bis (tetramethyloctadione) iron (II) [Fe (TMOD) 2 ]), tris (tetramethyloctadione) iron (III) [Fe (TMOD) 3 ], tris (tetramethylocta Dione) cobalt (III) [Co (TMOD) 3 ]), tris (1,10-phenanthrolinato) iron (III) chloride [Fe (phen) 3 ] Cl 2 , tris (1,10-phenant) Rorinato) cobalt (III) chloride [Co (phen) 3] Cl 2, N, N'- ethylenediamine bis (salicylidene A Minato) iron (I ) [Fe (salen)], N, N′-ethylenediaminebis (salicylideneaminato) cobalt (II) [Co (salen)], tris (2,2′-bipyridine) iron (II) chloride [ Fe (bpy) 3 ] Cl 2 , tris (2,2′-bipyridine) cobalt (II) chloride [Co (bpy) 3 ] Cl 2 , iron phthalocyanine (MPc) and iron acetate [Fe (OAc) 2 ] Can be mentioned.
Among them, β-diketone metal complexes (bis (acetylacetonato) iron (II) [Fe (acac) 2 ], tris (acetylacetonato) iron (III) [Fe (acac) 3 ], bis (dipivaloyl) Methane) iron (II) [Fe (DPM) 2 ], bis (diisobutoxymethane) iron (II) [Fe (DIBM) 2 ], bis (isobutoxypivaloylmethane) iron (II) [Fe (IBPM) 2 ], bis (tetramethyloctadione) iron (II) [Fe (TMOD) 2 ]), N, N′-ethylenediaminebis (salicylideneaminato) iron (II) [Fe (salen)], tris (2,2′-bipyridine) iron (II) chloride [Fe (bpy) 3 ] Cl 2 , iron phthalocyanine (MPc) or iron acetate [Fe (OAc) 2 ] is preferred, and acetylacetone iron (II The complex bis (acetylacetonato) iron (II) [Fe (acac) 2 ] is preferably used.

(β−ジケトン金属錯体)
有機金属錯体としては、β−ジケトン金属錯体を含むことが好ましい。有機金属錯体としてβ−ジケトン金属錯体を単独で用いてもよく、β−ジケトン金属錯体と他の有機金属錯体を混合して用いてもよい。β−ジケトン金属錯体は、下記一般式(6)で表される化合物およびその互変異性体を示す。
(Β-diketone metal complex)
The organometallic complex preferably includes a β-diketone metal complex. As the organometallic complex, a β-diketone metal complex may be used alone, or a β-diketone metal complex and another organometallic complex may be mixed and used. The β-diketone metal complex represents a compound represented by the following general formula (6) and a tautomer thereof.

Figure 2015027934
Figure 2015027934

一般式(6)中、Mは金属を示し、R1およびR3はそれぞれ独立に、置換基を有していてもよい炭化水素基を示し、また、R2は水素原子又は置換基を有していてもよい炭化水素基を示す。R1、R2、R3は、それぞれ互いに結合して環を形成していてもよい。nは0以上の整数を示し、mは1以上の整数を示す。この化合物においては、金属Mの原子又はイオンに対して、β−ジケトン又はそのイオンが配位又は結合している。 In the general formula (6), M represents a metal, R 1 and R 3 each independently represents a hydrocarbon group which may have a substituent, and R 2 has a hydrogen atom or a substituent. The hydrocarbon group which may be carried out is shown. R 1 , R 2 and R 3 may be bonded to each other to form a ring. n represents an integer of 0 or more, and m represents an integer of 1 or more. In this compound, β-diketone or its ion is coordinated or bonded to the atom or ion of metal M.

好ましい金属としては、Fe、Co、Ni、MnおよびCrを挙げることができ、より好ましくはFe、Coであり、さらに好ましくはFeである。   Preferred metals include Fe, Co, Ni, Mn and Cr, more preferably Fe and Co, and still more preferably Fe.

1、R2、R3の置換基を有していてもよい炭化水素基における「炭化水素基」としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、複素環式(ヘテロ環式)炭化水素基、およびこれらが複数個結合した基などが挙げられる。脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s−ブチル、t−ブチル、ヘキシル基などのアルキル基(C1-6アルキル基等);アリル基などのアルケニル基(C2-6アルケニル基等)などが挙げられる。脂環式炭化水素基としては、例えば、シクロペンチル、シクロヘキシル基などのシクロアルキル基(3〜15員のシクロアルキル基等);シクロヘキセニル基などのシクロアルケニル基(3〜15員のシクロアルケニル基等);アダマンチル基などの橋かけ炭素環式基(炭素数6〜20程度の橋かけ炭素環式基等)などが挙げられる。芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等の炭素数6〜20程度の芳香族炭化水素基(アリール基)などが挙げられる。複素環式(ヘテロ環式)炭化水素基としては、例えば、ピロリル基、イミダゾリル基、ピラゾリル基等の含窒素五員環炭化水素基;ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基の含窒素六員環炭化水素基;ピロリジジニル基、インドリジニル基、イソインドリル基、イソインインドリニル基、インドリル基、インダゾリル基、プリニル基、キノリジニル基、キノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、シンノリニル基、プテリジニル基等の含窒素縮合二環系炭化水素基;カルバゾリル基、β−カルボリニル基、フェナントリジニル基、アクリジニル基、ペリミジニル基、フェナントロリニル基、フェナジニル基、アンチリジニル基等の含窒素縮合三環系炭化水素基;含酸素単環系、含酸素多環系、含硫黄系、含セレン・テルル環系炭化水素基などが挙げられる。 Examples of the “hydrocarbon group” in the hydrocarbon group optionally having a substituent for R 1 , R 2 , and R 3 include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. , Heterocyclic (heterocyclic) hydrocarbon groups, and groups in which a plurality of these are bonded. Examples of the aliphatic hydrocarbon group include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, and hexyl groups (C 1-6 alkyl groups and the like); An alkenyl group ( C2-6 alkenyl group etc.) etc. are mentioned. Examples of alicyclic hydrocarbon groups include cycloalkyl groups such as cyclopentyl and cyclohexyl groups (3 to 15 membered cycloalkyl groups); cycloalkenyl groups such as cyclohexenyl groups (3 to 15 membered cycloalkenyl groups and the like) ); A bridged carbocyclic group such as an adamantyl group (such as a bridged carbocyclic group having about 6 to 20 carbon atoms). Examples of the aromatic hydrocarbon group include an aromatic hydrocarbon group (aryl group) having about 6 to 20 carbon atoms such as a phenyl group and a naphthyl group. As the heterocyclic (heterocyclic) hydrocarbon group, for example, a nitrogen-containing five-membered hydrocarbon group such as a pyrrolyl group, an imidazolyl group or a pyrazolyl group; Member ring hydrocarbon group; pyrrolidinyl group, indolizinyl group, isoindolyl group, isoinindolinyl group, indolyl group, indazolyl group, purinyl group, quinolidinyl group, quinolinyl group, naphthyridinyl group, phthalazinyl group, quinoxalinyl group, cinnolinyl group, pteridinyl group Nitrogen-containing condensed bicyclic hydrocarbon groups such as carbazolyl group, β-carbolinyl group, phenanthridinyl group, acridinyl group, perimidinyl group, phenanthrolinyl group, phenazinyl group, and antiridinyl group Hydrocarbon group; oxygen-containing monocyclic system, oxygen-containing polycyclic system Sulfur-containing and selenium-containing tellurium ring system hydrocarbon group.

炭化水素基が有していてもよい置換基としては、例えば、フッ素、塩素、臭素原子などのハロゲン原子;メトキシ、エトキシ、プロポキシ、イソプロピルオキシ、ブトキシ、イソブチルオキシ、t−ブチルオキシ基などのアルコキシ基(C1-4アルコキシ基等);ヒドロキシ基;メトキシカルボニル、エトキシカルボニル基などのアルコキシカルボニル基(C1-4アルコキシ−カルボニル基等);アセチル、プロピオニル、ベンゾイル基などのアシル基(C1-10アシル基等);シアノ基;ニトロ基などが挙げられる。 Examples of the substituent that the hydrocarbon group may have include, for example, a halogen atom such as fluorine, chlorine and bromine; an alkoxy group such as methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy, and t-butyloxy group (C 1-4 alkoxy group etc.); hydroxy group; alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl groups (C 1-4 alkoxy-carbonyl group etc.); acyl groups such as acetyl, propionyl and benzoyl groups (C 1- 10 acyl group); cyano group; nitro group and the like.

1、R2、R3が、それぞれ互いに結合して形成する環としては、例えば、シクロペンタン環、シクロペンテン環、シクロヘキサン環、シクロヘキセン環などの5〜15員のシクロアルカン環又はシクロアルケン環などが挙げられる。 Examples of the ring formed by combining R 1 , R 2 , and R 3 with each other include, for example, a 5- to 15-membered cycloalkane ring or cycloalkene ring such as a cyclopentane ring, cyclopentene ring, cyclohexane ring, cyclohexene ring, etc. Is mentioned.

1、R3としては、アルキル基(C1-6アルキル基等)、アルケニル基(C2-6アルケニル基等)、シクロアルキル基(3〜15員のシクロアルキル基等)、シクロアルケニル基(3〜15員のシクロアルケニル基等)、アリール基(C6-15アリール基等)、置換基を有するアリール基(p−メチルフェニル基、p−ヒドロキシフェニル基などの置換基を有するC6-15アリール基等)などが好ましい。R2としては、水素原子、アルキル基(C1-6アルキル基等)、アルケニル基(C2-6アルケニル基等)、シクロアルキル基(3〜15員のシクロアルキル基等)、シクロアルケニル基(3〜15員のシクロアルケニル基等)、アリール基(C6-15アリール基等)、置換基を有するアリール基(p−メチルフェニル基、p−ヒドロキシフェニル基などの置換基を有するC6-15アリール基等)などが好ましい。 R 1 and R 3 include an alkyl group (C 1-6 alkyl group etc.), an alkenyl group (C 2-6 alkenyl group etc.), a cycloalkyl group (3-15 membered cycloalkyl group etc.), a cycloalkenyl group. (3- to 15-membered cycloalkenyl group etc.), aryl group (C 6-15 aryl group etc.), aryl group having a substituent (C 6 having a substituent such as p-methylphenyl group, p-hydroxyphenyl group) -15 aryl group). R 2 includes a hydrogen atom, an alkyl group (C 1-6 alkyl group etc.), an alkenyl group (C 2-6 alkenyl group etc.), a cycloalkyl group (3-15 membered cycloalkyl group etc.), a cycloalkenyl group. (3- to 15-membered cycloalkenyl group etc.), aryl group (C 6-15 aryl group etc.), aryl group having a substituent (C 6 having a substituent such as p-methylphenyl group, p-hydroxyphenyl group) -15 aryl group).

一般式(6)で表される化合物において、金属の価数nは、0価、1価、2価、3価等のいずれであってもよいが、通常2価または3価である。金属が2価又は3価の場合には、β−ジケトンは、対応するアニオンであるβ−ジケトナートとして配位する。金属の価数をnとした場合、通常、配位数mは同一である。ただし、金属に溶媒等を軸配位させても良く、その場合、金属の価数nと配位数mが異なっても良い。
軸配位しても良い溶媒として、ピリジン、アセトニトリル、アルコール等が例示されるが、軸配位するものであればどの様なものでも良い。
In the compound represented by the general formula (6), the valence n of the metal may be any of 0, 1, 2, 3 and the like, but is usually divalent or trivalent. When the metal is divalent or trivalent, the β-diketone is coordinated as the corresponding anion, β-diketonate. When the metal valence is n, the coordination number m is usually the same. However, a solvent or the like may be axially coordinated with the metal. In that case, the valence n and the coordination number m of the metal may be different.
Examples of the solvent that may be axially coordinated include pyridine, acetonitrile, alcohol, and the like, but any solvent that can be axially coordinated may be used.

β−ジケトン鉄錯体は、市販のものをそのまま、または精製して使用してもよいし、調製して使用してもよい。また、反応系中で発生させて使用することもできる。反応系中で発生させる場合には、例えば、鉄の塩化物、水酸化物とアセチルアセトン等のβ−ジケトンを添加すればよい。この際、必要に応じてアンモニア、アミン類、アルカリ金属またはアルカリ土類金属の水酸化物や炭酸塩、カルボン酸塩などの塩基を添加することができる。   As the β-diketone iron complex, a commercially available product may be used as it is or after purification, or it may be prepared and used. It can also be generated and used in a reaction system. When it is generated in the reaction system, for example, iron chloride, hydroxide and β-diketone such as acetylacetone may be added. At this time, a base such as ammonia, amines, alkali metal or alkaline earth metal hydroxides, carbonates or carboxylates can be added as necessary.

β−ジケトン鉄錯体の添加量は、通常0.001〜50モル%、好ましくは0.01〜20モル%、特に好ましくは0.1〜10モル%程度である。   The addition amount of β-diketone iron complex is usually 0.001 to 50 mol%, preferably 0.01 to 20 mol%, particularly preferably about 0.1 to 10 mol%.

(導電助剤)
本発明では、前駆体に導電助剤を添加して焼成しても良いし、カーボンアロイに添加してもよい。導電助剤が均一に分散されるため好ましくは導電助剤を添加して焼成する方が好ましい。
(Conductive aid)
In the present invention, a conductive additive may be added to the precursor and baked, or may be added to the carbon alloy. Since the conductive auxiliary agent is uniformly dispersed, it is preferable to add a conductive auxiliary agent and fire.

導電助剤としては、特に限定はされないが、例えば、ノーリット(NORIT社製)、ケッチェンブラック(Lion社製)、バルカン(Cabot社製)、ブラックパール(Cabot社製)、アセチレンブラック(Chevron社製)(いずれも商品名)等のカーボンブラック、黒鉛をはじめ、C60やC70等のフラーレン、カーボンナノチューブ、カーボンナノホーン、カーボン繊維等の炭素材料が挙げられる。   Although it does not specifically limit as a conductive support agent, For example, Norrit (made by NORIT), Ketjen black (made by Lion), Vulcan (made by Cabot), black pearl (made by Cabot), acetylene black (Chevron) Carbon black such as (manufactured) (all are trade names), graphite, and carbon materials such as fullerenes such as C60 and C70, carbon nanotubes, carbon nanohorns, and carbon fibers.

導電助剤の添加率は、前駆体の全体質量に対して、0.01質量%〜50質量%であることが好ましく、0.1質量%〜20質量%であることがより好ましく、1質量%〜10質量%であることがさらに好ましい。導電助剤を多く添加しすぎると、系中で無機金属塩から生成する金属の凝集・成長が不均一になり目的とする多孔性含窒素炭素を得ることができないため、不適である。   The addition rate of the conductive assistant is preferably 0.01% by mass to 50% by mass, more preferably 0.1% by mass to 20% by mass, and 1% by mass with respect to the total mass of the precursor. More preferably, the content is from 10% to 10% by mass. If too much conductive additive is added, the aggregation / growth of the metal produced from the inorganic metal salt in the system becomes non-uniform and the desired porous nitrogen-containing carbon cannot be obtained, which is not suitable.

<含窒素カーボンアロイの製造方法>
本発明の含窒素カーボンアロイの製造方法において、前駆体を焼成する工程は、
(1)含窒素芳香族基を有する複素芳香環化合物と、Fe、Co、Ni、MnおよびCrのうち1種類以上を含む無機金属塩を混合して前駆体を調製する工程と、
(2)前駆体を不活性雰囲気下で室温から炭素化温度まで毎分1〜2000℃で昇温する昇温工程と、
(3)400℃〜2000℃で、0.1〜100時間保持する炭素化工程と、
(4)炭素化温度から室温まで冷却する冷却工程を含んでいることが好ましい。
また、前駆体を焼成する工程では、
(5)炭素化処理後に、カーボンアロイを室温まで冷却した後、粉砕処理を行ってもよい。
さらに、本発明の含窒素カーボンアロイの製造方法は焼成工程の後に、
(6)焼成された含窒素カーボンアロイを酸で洗浄する工程を含むことが好ましく、
(7)酸洗浄工程の後に、酸洗浄された含窒素カーボンアロイを再焼成する工程を含むことがより好ましい。
以下、本発明の含窒素カーボンアロイの製造方法について、以上の(1)〜(7)の工程を順に説明する。
<Method for producing nitrogen-containing carbon alloy>
In the method for producing a nitrogen-containing carbon alloy of the present invention, the step of firing the precursor is as follows:
(1) A step of preparing a precursor by mixing a heteroaromatic ring compound having a nitrogen-containing aromatic group and an inorganic metal salt containing one or more of Fe, Co, Ni, Mn and Cr;
(2) a temperature raising step for raising the temperature of the precursor from 1 to 2000 ° C. per minute from room temperature to the carbonization temperature under an inert atmosphere;
(3) a carbonization step of holding at 400 to 2000 ° C. for 0.1 to 100 hours;
(4) It is preferable to include a cooling step of cooling from the carbonization temperature to room temperature.
In the step of firing the precursor,
(5) After the carbonization treatment, the carbon alloy may be cooled to room temperature and then pulverized.
Furthermore, the manufacturing method of the nitrogen-containing carbon alloy of the present invention is the firing step,
(6) It preferably includes a step of washing the baked nitrogen-containing carbon alloy with an acid,
(7) More preferably, after the acid cleaning step, a step of refiring the acid-cleaned nitrogen-containing carbon alloy is included.
Hereinafter, the above-described steps (1) to (7) will be described in order for the method for producing a nitrogen-containing carbon alloy of the present invention.

(1)前駆体の調製工程
前駆体の調製工程では、上述した含窒素芳香族基を有する複素芳香環化合物と、上述した無機金属塩を混合して前駆体を調製する。
(1) Precursor preparation step In the precursor preparation step, the above-described heteroaromatic ring compound having a nitrogen-containing aromatic group and the above-described inorganic metal salt are mixed to prepare a precursor.

含窒素カーボンアロイの製造工程において調整された前駆体はその後焼成されるが、焼成工程の前に前駆体を粉砕する工程をさらに含むことが好ましい。 Although the precursor adjusted in the manufacturing process of a nitrogen-containing carbon alloy is baked after that, it is preferable to further include the process of grind | pulverizing a precursor before a baking process.

(2)昇温工程、(3)炭素化工程および(4)冷却工程
本発明の製造方法においては、特定の構造を有する含窒素芳香族基を有する複素芳香環化合物と無機金属塩とを含む前駆体を炭素化温度まで昇温し、加熱処理後、室温まで冷却することが好ましい。
(2) Temperature raising step, (3) Carbonization step, and (4) Cooling step The production method of the present invention includes a heteroaromatic ring compound having a nitrogen-containing aromatic group having a specific structure and an inorganic metal salt. It is preferable that the precursor is heated to the carbonization temperature and cooled to room temperature after the heat treatment.

また、昇温工程の昇温処理や後述の再焼成工程では、多段階で昇温しても良い。
多段階の昇温処理のうち、後段の昇温処理は、前段の昇温処理の終了後に、温度保持しても、そのまま温度を上げて昇温処理を行ってもよい。また、一旦室温まで冷却した後に温度を上げ、後段の昇温処理を行ってもよい。
また、前段の昇温処理後に室温まで冷却した際には、後述の(5)粉砕処理により、処理後の試料を均一に粉砕してもよいし、さらに成形してもよい。また、後述の、(6)酸洗浄工程により、処理後の試料を酸洗浄して金属を除去してもよい。
Further, the temperature may be raised in multiple stages in the temperature raising process of the temperature raising process and the re-baking process described later.
Of the multi-stage temperature raising processes, the latter stage of the temperature raising process may be carried out by holding the temperature after the completion of the preceding temperature raising process or by raising the temperature as it is. Alternatively, after cooling to room temperature, the temperature may be raised and a subsequent temperature increase process may be performed.
Moreover, when it cools to room temperature after the temperature rising process of a front | former stage, the sample after a process may be grind | pulverized uniformly by the below-mentioned (5) grinding | pulverization process, and you may shape | mold further. Alternatively, the metal may be removed by acid cleaning of the sample after the treatment in (6) acid cleaning step described later.

昇温処理においては、処理前の試料を炭化装置等に挿入した後に常温から所定温度まで昇温してもよいし、或いは、所定温度の炭化装置等へ処理前の試料を挿入することで昇温してもよい。
好ましくは、処理前の試料を常温から所定温度まで昇温するのがよい。所定温度まで昇温する場合には、昇温速度を一定にすることが好ましい。より具体的には、昇温速度は毎分1〜2000℃で昇温することが好ましく、毎分1〜1000℃で昇温することがより好ましく、毎分1〜500℃で昇温することがさらに好ましい。
In the temperature raising process, the sample before treatment may be inserted into a carbonization device and then heated from room temperature to a predetermined temperature, or may be increased by inserting the sample before treatment into a carbonization device or the like at a predetermined temperature. May be warm.
Preferably, the temperature of the sample before processing is raised from room temperature to a predetermined temperature. When raising the temperature to a predetermined temperature, it is preferable to keep the temperature raising rate constant. More specifically, the rate of temperature increase is preferably 1 to 2000 ° C./min, more preferably 1 to 1000 ° C./min, and 1 to 500 ° C./min. Is more preferable.

(予備炭化物)
細孔を形成した予備炭化物を得るために、含窒素芳香族基を有する複素芳香環化合物と無機金属塩等とを含む有機材料の前段の処理は、比較的低温で行うことが好ましい。また、このような低温処理においては、一定温度を保持してもよい。こうすることにより、熱に安定な構造だけを保持し、不安定な不純物成分、溶媒等を除去できる。
(Preliminary carbide)
In order to obtain a preliminary carbide having pores, it is preferable to perform the previous treatment of the organic material containing a heteroaromatic ring compound having a nitrogen-containing aromatic group and an inorganic metal salt at a relatively low temperature. In such a low temperature treatment, a constant temperature may be maintained. By doing so, only a heat-stable structure can be maintained, and unstable impurity components, solvents, and the like can be removed.

比較的低温で行う昇温処理は、含窒素芳香族基を有する複素芳香環化合物と無機金属塩等とを含む有機材料を100℃〜1500℃まで昇温することが好ましく、150℃〜1050℃まで昇温することがより好ましく、200℃〜1000℃まで昇温することがさらに好ましい。こうすることにより、均一な予備炭化物が得られる。   In the temperature raising treatment performed at a relatively low temperature, it is preferable to raise the temperature of an organic material containing a heteroaromatic ring compound having a nitrogen-containing aromatic group and an inorganic metal salt to 100 ° C to 1500 ° C, and 150 ° C to 1050 ° C. It is more preferable to raise the temperature to 200 ° C to 1000 ° C. By doing so, a uniform preliminary carbide is obtained.

上記の昇温処理は、不活性雰囲気下で行うことが好ましい。不活性雰囲気とは、窒素ガスや希ガス雰囲気下などのガス雰囲気をいう。なお、酸素が含まれていたとしても、被処理物を燃焼させない程度まで酸素量を制限した雰囲気であればよい。不活性雰雰囲気は、閉鎖系又は新たなガスを流通させる流通系の何れであってもよく、好ましくは流通系である。流通系とする場合には、ガスの流速は、内径36mmφ当たり0.01〜2.0リットル/分のガスを流通させることが好ましく、ガスの流速は、内径36mmφ当たり0.05〜1.0リットル/分のガスを流通させることがより好ましく、ガスの流速は、内径36mmφ当たり0.1〜0.5リットル/分のガスを流通させることが特に好ましい。   It is preferable to perform said temperature rising process in inert atmosphere. The inert atmosphere refers to a gas atmosphere such as a nitrogen gas or a rare gas atmosphere. Note that even if oxygen is contained, the atmosphere may be any atmosphere in which the amount of oxygen is limited to such an extent that the workpiece is not burned. The inert atmosphere may be either a closed system or a distribution system that distributes a new gas, and is preferably a distribution system. In the case of a circulation system, the gas flow rate is preferably 0.01 to 2.0 liters / minute per 36 mmφ inner diameter, and the gas flow rate is 0.05 to 1.0 per 36 mmφ inner diameter. It is more preferable to circulate a gas of 1 liter / min, and it is particularly preferable that the gas flow rate is 0.1 to 0.5 liter / min of gas per an inner diameter of 36 mmφ.

昇温処理後、温度保持の時間は、0.1時間〜100時間であり、好ましくは0.2時間〜10時間であり、より好ましくは0.5時間〜5時間である。100時間を超えて炭素化処理しても処理時間に相応する効果は得られない場合がある。   After the temperature raising treatment, the temperature holding time is 0.1 to 100 hours, preferably 0.2 to 10 hours, and more preferably 0.5 to 5 hours. Even if the carbonization treatment is performed for more than 100 hours, an effect corresponding to the treatment time may not be obtained.

上記の昇温処理で使用する加熱装置は、特に限定されないが、管状炉(カンタル線炉、イメージング炉)、マッフル炉、真空ガス置換炉、回転炉(ロータリーキルン)、ローラーハースキルン、プッシャーキルン、多段炉、トンネル炉、流動焼成炉等を用いることが好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉、回転炉(ロータリーキルン)、流動焼成炉を用いることがより好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉を用いることが特に好ましい。   The heating device used in the above temperature raising treatment is not particularly limited, but is a tubular furnace (Kantar wire furnace, imaging furnace), muffle furnace, vacuum gas replacement furnace, rotary furnace (rotary kiln), roller hearth kiln, pusher kiln, multistage It is preferable to use a furnace, a tunnel furnace, a fluidized firing furnace or the like, and it is more preferable to use a tubular furnace (a cantal wire furnace, an imaging furnace), a muffle furnace, a rotary furnace (rotary kiln), a fluidized firing furnace, a tubular furnace (a cantal wire) Furnaces, imaging furnaces) and muffle furnaces are particularly preferred.

(不融体)
炭素化温度までの加熱処理において、昇温処理の部分をまとめて不融化処理とする。
不融体を得るためには、前段の特定の構造を有する含窒素芳香族基を有する複素芳香環化合物と無機金属塩とを含む前駆体の昇温処理に引き続き、後段の昇温処理を連続して行うことが好ましい。これにより、前段の余熱を利用することができ、有機材料の分解反応と炭素化反応を連続して行うことができ、分解生成物と金属とが相互作用して、金属をより活性が高い状態で安定化することができる。なお、金属としては、鉄イオンを、2価の状態で含むものを用いることが好ましい。その結果、高い酸素還元性能を有するカーボンアロイを製造することができる。
(Infusible)
In the heat treatment up to the carbonization temperature, the portions of the temperature rise treatment are collectively referred to as an infusible treatment.
In order to obtain an infusible material, the subsequent temperature increase treatment is continued following the temperature increase treatment of the precursor containing the heteroaromatic ring compound having a nitrogen-containing aromatic group having the specific structure in the previous stage and the inorganic metal salt. It is preferable to do so. As a result, the residual heat of the previous stage can be utilized, the decomposition reaction and the carbonization reaction of the organic material can be continuously performed, and the decomposition product and the metal interact with each other, so that the metal is more active. It can be stabilized with. In addition, it is preferable to use what contains an iron ion in a bivalent state as a metal. As a result, a carbon alloy having high oxygen reduction performance can be produced.

後段の昇温処理は、不活性雰囲気下で行うことが好ましく、不活性雰雰囲気は、閉鎖系又は新たなガスを流通させる流通系の何れであってもよく、好ましくは流通系である。流通系とする場合には、ガスの流速は、内径36mmφ当たり0.01ミリリットル〜2.0リットル/分のガスを流通させることが好ましく、ガスの流速は、内径36mmφ当たり0.02ミリリットル〜1.0リットル/分のガスを流通させることがより好ましく、ガスの流速は、内径36mmφ当たり0.05ミリリットル〜0.5リットル/分のガスを流通させることが特に好ましい。なお、後段のガス流量は、前段でのガス流量と異なっていても良い。   The subsequent temperature increase treatment is preferably performed in an inert atmosphere, and the inert atmosphere may be either a closed system or a distribution system for circulating a new gas, and is preferably a distribution system. In the case of a circulation system, the gas flow rate is preferably 0.01 to 2.0 liters / min per 36 mmφ inside diameter, and the gas flow rate is 0.02 to 1 per 36 mmφ inside diameter. More preferably, a gas of 0.0 liter / min is circulated, and the flow rate of the gas is particularly preferably 0.05 to 0.5 liter / min. The downstream gas flow rate may be different from the upstream gas flow rate.

昇温処理後、温度保持の時間は、0.1時間〜100時間であり、好ましくは0.2時間〜10時間であり、より好ましくは0.5時間〜5時間である。100時間を超えて炭素化処理しても処理時間に相応する効果は得られない場合がある。   After the temperature raising treatment, the temperature holding time is 0.1 to 100 hours, preferably 0.2 to 10 hours, and more preferably 0.5 to 5 hours. Even if the carbonization treatment is performed for more than 100 hours, an effect corresponding to the treatment time may not be obtained.

上記の昇温処理で使用する加熱装置は、特に限定されないが、管状炉(カンタル線炉、イメージング炉)、マッフル炉、真空ガス置換炉、回転炉(ロータリーキルン)、ローラーハースキルン、プッシャーキルン、多段炉、トンネル炉、流動焼成炉等を用いることが好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉、回転炉(ロータリーキルン)、流動焼成炉を用いることがより好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉を用いることが特に好ましい。   The heating device used in the above temperature raising treatment is not particularly limited, but is a tubular furnace (Kantar wire furnace, imaging furnace), muffle furnace, vacuum gas replacement furnace, rotary furnace (rotary kiln), roller hearth kiln, pusher kiln, multistage It is preferable to use a furnace, a tunnel furnace, a fluidized firing furnace or the like, and it is more preferable to use a tubular furnace (a cantal wire furnace, an imaging furnace), a muffle furnace, a rotary furnace (rotary kiln), a fluidized firing furnace, a tubular furnace (a cantal wire) Furnaces, imaging furnaces) and muffle furnaces are particularly preferred.

(炭化物)
炭化物を得るために、前段の昇温処理後、室温まで冷却し、均一に粉砕して、酸洗浄を行い後段の昇温処理をすることが好ましい。こうすることにより、炭素化処理における処理温度を上げることができ、炭素構造の規則性がより高められたカーボンアロイを得ることが可能になる。その結果、カーボンアロイの導電性が向上し、高い酸素還元性能が得られ、また、触媒としての耐久性も向上する。
また、前段から直接高温度での炭素化処理を行うことも好ましい。こうすることにより、カーボンアロイの収率が低減する場合があるが、得られるカーボンアロイの結晶子サイズが揃い、そのため金属が均一に分布し、活性が高い状態が保持される。結果として、優れた酸素還元性能を有するカーボンアロイの製造が可能となる。なお、このような処理温度は、炭素化温度を超えないことが好ましく、このような温度範囲で炭素化処理を行うことにより、適切なカーボンアロイを得ることができる。
(carbide)
In order to obtain a carbide, it is preferable to cool to room temperature after the temperature rising treatment in the previous stage, uniformly pulverize, perform acid cleaning, and then perform the temperature rising process in the subsequent stage. By doing so, it is possible to raise the treatment temperature in the carbonization treatment, and to obtain a carbon alloy having a more regular carbon structure. As a result, the conductivity of the carbon alloy is improved, high oxygen reduction performance is obtained, and durability as a catalyst is also improved.
It is also preferable to perform carbonization treatment at a high temperature directly from the previous stage. By doing so, the yield of the carbon alloy may be reduced, but the crystallite size of the obtained carbon alloy is uniform, so that the metal is uniformly distributed and the state of high activity is maintained. As a result, it becomes possible to produce a carbon alloy having excellent oxygen reduction performance. In addition, it is preferable that such process temperature does not exceed carbonization temperature, and an appropriate carbon alloy can be obtained by performing carbonization process in such a temperature range.

特定の構造を有する含窒素芳香族基を有する複素芳香環化合物と無機金属塩とを含む前駆体の炭素化処理の焼成温度は、含窒素芳香族基を有する複素芳香環化合物が熱分解及び炭素化する温度であれば特に制限されないが、炭素化温度の上限は2000℃である必要がある。
無機金属塩を含む前駆体の場合、反応温度の下限は400℃であることが好ましく、500℃であることがより好ましく、600℃であることがさらに好ましく、700℃であることがよりさらに好ましい。反応温度を上記範囲内とすることによって、炭化が進んで高い触媒性能を有するカーボンアロイが得られる。また、反応温度が2000℃以下であれば炭素骨格中に窒素が残留し、所望のN/C原子比とすることでき、十分な酸素還元反応活性が得られる。
焼成温度は、700〜1200℃であることが好ましく、700〜1000℃であることが特に好ましい。この範囲内で炭素化処理を行うと、カーボンアロイの収率が低減する場合があるが、得られるカーボンアロイの結晶子サイズが揃い、そのため金属が均一に分布し、活性が高い状態が保持される。結果として、優れた酸素還元性能を有するカーボンアロイの製造が可能となる。また、上記範囲内で炭素化処理を行うことにより、生成した無機金属の作用に炭素骨格中に窒素が残留し易くなり、酸素還元反応活性を高めることができる。
The firing temperature of the carbonization treatment of the precursor containing a heteroaromatic ring compound having a nitrogen-containing aromatic group having a specific structure and an inorganic metal salt is the same as that of the heteroaromatic ring compound having a nitrogen-containing aromatic group. The upper limit of the carbonization temperature needs to be 2000 ° C., although it is not particularly limited as long as it is a temperature to be converted.
In the case of a precursor containing an inorganic metal salt, the lower limit of the reaction temperature is preferably 400 ° C, more preferably 500 ° C, even more preferably 600 ° C, and even more preferably 700 ° C. . By setting the reaction temperature within the above range, carbon alloy having high catalytic performance due to advanced carbonization can be obtained. Moreover, if reaction temperature is 2000 degrees C or less, nitrogen will remain in carbon skeleton and it can be set as desired N / C atomic ratio, and sufficient oxygen reduction reaction activity will be obtained.
The firing temperature is preferably 700 to 1200 ° C, particularly preferably 700 to 1000 ° C. When carbonization treatment is performed within this range, the yield of carbon alloy may be reduced, but the crystallite size of the obtained carbon alloy is uniform, so that the metal is uniformly distributed and the state of high activity is maintained. The As a result, it becomes possible to produce a carbon alloy having excellent oxygen reduction performance. Further, by performing the carbonization treatment within the above range, nitrogen easily remains in the carbon skeleton due to the action of the generated inorganic metal, and the oxygen reduction reaction activity can be enhanced.

昇温処理は、不活性ガスまたは非酸化性ガス流通下で行うことが好ましく、このような雰囲気は、閉鎖系又は新たなガスを流通させる流通系の何れであってもよく、好ましくは流通系である。流通系とする場合には、ガスの流速は、内径36mmφ当たり0.01ミリリットル〜2.0リットル/分であることが好ましく、内径36mmφ当たり0.02ミリリットル〜1.0リットル/分であることがより好ましく、内径36mmφ当たり0.05ミリリットル〜0.5リットル/分のガスを流通させることが特に好ましい。流速がこの範囲であると、好適に目的とする含窒素カーボンアロイを得ることができるので好ましい。   The temperature raising treatment is preferably performed under a flow of an inert gas or a non-oxidizing gas, and such an atmosphere may be either a closed system or a flow system for flowing a new gas, preferably a flow system. It is. In the case of a flow system, the gas flow rate is preferably 0.01 to 2.0 liters / min per 36 mmφ inner diameter, and 0.02 to 1.0 liter / min per 36 mmφ inner diameter. Is more preferable, and it is particularly preferable to circulate a gas of 0.05 milliliter to 0.5 liter / min per 36 mmφ inside diameter. It is preferable for the flow rate to be within this range because the desired nitrogen-containing carbon alloy can be suitably obtained.

炭素化処理の処理時間は、0.1時間〜100時間であり、好ましくは0.2時間〜10時間であり、より好ましくは0.5時間〜5時間である。100時間を超えて炭素化処理しても処理時間に相応する効果は得られない場合がある。   The treatment time of the carbonization treatment is 0.1 hour to 100 hours, preferably 0.2 hours to 10 hours, and more preferably 0.5 hours to 5 hours. Even if the carbonization treatment is performed for more than 100 hours, an effect corresponding to the treatment time may not be obtained.

上記の昇温処理で使用する加熱装置は、特に限定されないが、管状炉(カンタル線炉、イメージング炉)、マッフル炉、真空ガス置換炉、回転炉(ロータリーキルン)、ローラーハースキルン、プッシャーキルン、多段炉、トンネル炉、流動焼成炉等を用いることが好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉、回転炉(ロータリーキルン)、流動焼成炉を用いることがより好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉を用いることが特に好ましい。   The heating device used in the above temperature raising treatment is not particularly limited, but is a tubular furnace (Kantar wire furnace, imaging furnace), muffle furnace, vacuum gas replacement furnace, rotary furnace (rotary kiln), roller hearth kiln, pusher kiln, multistage It is preferable to use a furnace, a tunnel furnace, a fluidized firing furnace or the like, and it is more preferable to use a tubular furnace (a cantal wire furnace, an imaging furnace), a muffle furnace, a rotary furnace (rotary kiln), a fluidized firing furnace, a tubular furnace (a cantal wire) Furnaces, imaging furnaces) and muffle furnaces are particularly preferred.

(5)粉砕処理
また、炭素化処理後に、カーボンアロイを室温まで冷却した後、粉砕処理を行ってもよい。粉砕処理は当業者に公知のいずれの方法でも行うことができ、例えば、ボールミル(Ball Mill)、メノウ粉砕、機械粉砕等を用いて粉砕することができる。
(5) Crushing treatment After the carbonization treatment, the carbon alloy may be cooled to room temperature and then crushed. The pulverization treatment can be performed by any method known to those skilled in the art, and for example, pulverization can be performed using a ball mill, agate pulverization, mechanical pulverization, or the like.

(6)酸洗浄工程
本発明の含窒素カーボンアロイの製造方法は、焼成工程の後に、焼成された含窒素カーボンアロイを酸で洗浄する酸洗浄工程を含んでもよい。生成したカーボンアロイ触媒の表面上の金属を酸洗浄することにより、ORR活性を向上させることができる。いかなる理論に拘泥するものでもないが、この酸洗浄処理により、最適な多孔性を有する多孔性含窒素カーボンアロイを得ることができるためと予想される。
酸洗浄処理においては、pH7以下の強酸又は弱酸を含む、任意の水性ブロンステッド(プロトン)酸を酸洗浄工程内で用いることができる。さらに、無機酸(鉱酸)又は有機酸を用いることができる。好適な酸の例としては、HCI、HBr、HI、H2SO4、H2SO3、HNO3、HClO4、[HSO4-、[HSO3-、[H3O]+、H2[C24]、HCO2H、HCIO3、HBrO3、HBrO4、HIO3、HIO4、FSO3H、CF3SO3H、CF3CO2H、CH3CO2H、B(OH)3、など(これらの任意の組み合わせを含む)が挙げられるが、これらに限定されない。また、特表2010−524195号公報に記載の方法を本発明でも用いることができる。
(6) Acid Washing Process The method for producing a nitrogen-containing carbon alloy of the present invention may include an acid washing process for washing the fired nitrogen-containing carbon alloy with an acid after the firing process. The ORR activity can be improved by acid cleaning of the metal on the surface of the produced carbon alloy catalyst. Without being bound by any theory, it is expected that a porous nitrogen-containing carbon alloy having optimum porosity can be obtained by this acid cleaning treatment.
In the acid cleaning treatment, any aqueous Bronsted (proton) acid including a strong acid or a weak acid having a pH of 7 or less can be used in the acid cleaning step. Furthermore, an inorganic acid (mineral acid) or an organic acid can be used. Examples of suitable acids include HCI, HBr, HI, H 2 SO 4 , H 2 SO 3 , HNO 3 , HClO 4 , [HSO 4 ] , [HSO 3 ] , [H 3 O] + , H 2 [C 2 O 4 ], HCO 2 H, HCIO 3 , HBrO 3 , HBrO 4 , HIO 3 , HIO 4 , FSO 3 H, CF 3 SO 3 H, CF 3 CO 2 H, CH 3 CO 2 H, B (OH) 3 , etc. (including any combination thereof), but are not limited to these. In addition, the method described in JP-T-2010-524195 can also be used in the present invention.

(7)再焼成工程
本発明の含窒素カーボンアロイの製造方法は、焼成工程の後に、焼成された含窒素カーボンアロイを粉砕する工程と再焼成する工程をさらに含むことが好ましい。より好ましくは酸洗浄工程の後に、酸洗浄された含窒素カーボンアロイを再焼成する工程を含む。このような再焼成工程により、含窒素カーボンアロイを電極に塗布したときの塗布量の増加に伴って電位を向上させることができ、ORR活性を向上させることができる。
(7) Re-baking process It is preferable that the manufacturing method of the nitrogen-containing carbon alloy of this invention further includes the process of grind | pulverizing the baked nitrogen-containing carbon alloy, and the process of re-baking after a baking process. More preferably, after the acid cleaning step, a step of refiring the acid-cleaned nitrogen-containing carbon alloy is included. By such a refiring step, the potential can be improved with an increase in the coating amount when the nitrogen-containing carbon alloy is applied to the electrode, and the ORR activity can be improved.

再焼成工程は炭素の黒鉛化を促進する目的で、焼成工程以上の高温で行う必要があるため、再焼成工程の焼成温度は500〜2000℃であることが好ましく、600〜1500℃であることがより好ましく、1000〜1500℃であることがさらに好ましい。   Since the refiring process needs to be performed at a temperature higher than the calcining process for the purpose of promoting graphitization of carbon, the calcining temperature in the refiring process is preferably 500 to 2000 ° C, and preferably 600 to 1500 ° C. Is more preferable, and it is still more preferable that it is 1000-1500 degreeC.

焼成の際にカーボンアロイ中の窒素原子の含有割合を高く保持しながら炭素の黒鉛化を進行させる観点から、反応時に加圧状態で焼成しても良い。ガス排出口を水でトラップして背圧がかかる状態で焼成しても良い。
炭素化工程の圧力は、0.01〜5MPa、好ましくは0.05〜1MPa、より好ましくは0.08〜0.3MPa、特に好ましくは、0.09〜0.15MPaである。高圧処理はsp3軌道によって構成されるダイヤモンド構造となるために好ましくない。
From the viewpoint of promoting graphitization of carbon while maintaining a high content ratio of nitrogen atoms in the carbon alloy during firing, firing may be performed in a pressurized state during the reaction. The gas discharge port may be trapped with water and fired in a state where back pressure is applied.
The pressure in the carbonization step is 0.01 to 5 MPa, preferably 0.05 to 1 MPa, more preferably 0.08 to 0.3 MPa, and particularly preferably 0.09 to 0.15 MPa. High-pressure treatment is not preferable because it has a diamond structure constituted by sp 3 orbitals.

再焼成工程の方法は、特に限定されないが、好ましくは管状炉、回転炉(ロータリーキルン)、ローラーハースキルン、プッシャーキルン、多段炉、真空ガス置換炉、トンネル炉、流動焼成炉等を用い、より好ましくは回転炉(ロータリーキルン)、真空ガス置換炉、真空ガス置換回転炉(ロータリーキルン)、トンネル炉、流動焼成炉を用い、特に好ましくは真空ガス置換回転炉(真空ガス置換式ロータリーキルン)を用いる。   The method of the refiring step is not particularly limited, but preferably a tubular furnace, a rotary furnace (rotary kiln), a roller hearth kiln, a pusher kiln, a multi-stage furnace, a vacuum gas replacement furnace, a tunnel furnace, a fluidized firing furnace, and the like are more preferable. Uses a rotary furnace (rotary kiln), a vacuum gas replacement furnace, a vacuum gas replacement rotary furnace (rotary kiln), a tunnel furnace, and a fluidized firing furnace, and particularly preferably a vacuum gas replacement rotary furnace (vacuum gas replacement rotary kiln).

再焼成する工程の前には、脱気及び窒素置換する工程をさらに含むことが好ましい。このような工程を設けることで、酸素濃度を低減させることができる。脱気及び窒素置換する工程では、真空ポンプで脱気した後、窒素ガス置換することが好ましい。特に、真空ポンプで脱気した後、窒素ガス置換する操作を複数回繰り返すことが好ましい。この際、脱気用いる装置は、脱気が可能な装置であれば特に限定されないが、真空ガス置換炉、真空ガス置換回転炉(ロータリーキルン)を用いることが好ましい。真空脱気時の圧力は特に限定されないが、4×104Pa以下が好ましく、4×103Pa以下がより好ましく、2×102Pa以下が特に好ましい。 It is preferable to further include a step of deaeration and nitrogen substitution before the step of refiring. By providing such a process, the oxygen concentration can be reduced. In the step of deaeration and nitrogen replacement, it is preferable to perform nitrogen gas replacement after deaeration with a vacuum pump. In particular, it is preferable to repeat the operation of replacing nitrogen gas multiple times after deaeration with a vacuum pump. At this time, the apparatus used for deaeration is not particularly limited as long as it can be deaerated, but it is preferable to use a vacuum gas replacement furnace or a vacuum gas replacement rotary furnace (rotary kiln). The pressure during vacuum degassing is not particularly limited, but is preferably 4 × 10 4 Pa or less, more preferably 4 × 10 3 Pa or less, and particularly preferably 2 × 10 2 Pa or less.

カーボンアロイの再焼成時、カーボンアロイの性能を均一化させる目的でカーボンアロイを流動させることが好ましい。この際用いられる装置は、カーボンアロイを流動させることが可能な装置あれば特に限定されないが、回転炉(ロータリーキルン)、真空ガス置換回転炉(ロータリーキルン)、流動焼成炉を用いることが好ましい。
回転炉(ロータリーキルン)、真空ガス置換回転炉(ロータリーキルン)を用いる場合、焼成時、試料管を回転させるが、回転速度、速度変化等に限定されない。回転速度は好ましくは10rpm以下、より好ましくは5rpm以下である。
When the carbon alloy is refired, it is preferable to flow the carbon alloy in order to make the performance of the carbon alloy uniform. The apparatus used at this time is not particularly limited as long as it can flow the carbon alloy, but it is preferable to use a rotary furnace (rotary kiln), a vacuum gas replacement rotary furnace (rotary kiln), or a fluidized firing furnace.
In the case of using a rotary furnace (rotary kiln) or a vacuum gas replacement rotary furnace (rotary kiln), the sample tube is rotated at the time of firing, but is not limited to the rotational speed, speed change, and the like. The rotation speed is preferably 10 rpm or less, more preferably 5 rpm or less.

本発明の含窒素カーボンアロイの製造方法は、賦活剤の存在下で炭素化処理を行うことが好ましい(賦活工程)。賦活剤の存在下、高温で炭素化処理することにより、カーボンアロイの細孔が発達して表面積が増大し、カーボンアロイの表面における金属の露出度が向上することにより、触媒としての性能が向上する。なお、炭化物の表面積は、N2吸着量により測定することができる。 In the method for producing a nitrogen-containing carbon alloy of the present invention, it is preferable to perform a carbonization treatment in the presence of an activator (activation step). By carbonizing at high temperature in the presence of an activator, the pores of the carbon alloy develop and the surface area increases, and the exposure of the metal on the surface of the carbon alloy improves, thereby improving the performance as a catalyst. To do. The surface area of the carbide can be measured by the N 2 adsorption amount.

使用できる賦活剤としては、特に制限されないが、例えば、二酸化炭素、アンモニアガス、水蒸気、空気、酸素ガス、水素ガス、一酸化炭素ガス、メタンガス、アルカリ金属水酸化物、塩化亜鉛、及びリン酸からなる群より選択される少なくとも1種を用いることができ、さらに好ましくは、二酸化炭素、アンモニアガス、水蒸気、空気、酸素ガスからなる群より選択される少なくとも1種を用いることができる。
気体賦活剤は、不活性ガスで希釈することが好ましく、希釈する不活性ガスとしては、窒素ガス、及び希ガス(例えば、アルゴンガス、ヘリウムガス及びネオンガス)が挙げられる。
気体賦活剤は、炭素化処理の雰囲気中に2〜80モル%、好ましくは10〜60モル%含有させればよい。2モル%以上であれば十分な賦活効果が得られる一方で、80モル%を超える場合には賦活効果が顕著になり炭化物の収率が著しく低減し、効率よく炭化物を製造することができなくなるおそれがある。また、アルカリ金属水酸化物等の固体賦活剤は、固体の状態で被炭化物と混合してもよく、或いは、水等の溶媒で溶解又は希釈した後、被炭化物を含浸するか、或いはスラリー状にして被炭化物に練り込んでもよい。液体賦活剤は、水等で希釈した後、被炭化物を含浸するか或いは被炭化物に練り込めばよい。
熱処理の際、気相の圧力は、常圧、加圧、減圧のいずれであってもよいが、高温下で加圧していることが好ましい。
ガスは静止していても流通していてもよいが、生成した不純物を排出する観点から、流通していることが好ましい。
The activator that can be used is not particularly limited. For example, carbon dioxide, ammonia gas, water vapor, air, oxygen gas, hydrogen gas, carbon monoxide gas, methane gas, alkali metal hydroxide, zinc chloride, and phosphoric acid. At least one selected from the group consisting of carbon dioxide, ammonia gas, water vapor, air, and oxygen gas can be used, more preferably at least one selected from the group consisting of:
The gas activator is preferably diluted with an inert gas. Examples of the inert gas to be diluted include nitrogen gas and rare gases (for example, argon gas, helium gas, and neon gas).
The gas activator may be contained in an atmosphere of carbonization treatment in an amount of 2 to 80 mol%, preferably 10 to 60 mol%. If it is 2 mol% or more, a sufficient activation effect can be obtained, while if it exceeds 80 mol%, the activation effect becomes remarkable and the yield of carbide is remarkably reduced, making it impossible to produce carbide efficiently. There is a fear. In addition, the solid activator such as alkali metal hydroxide may be mixed with the carbonized substance in a solid state, or after being dissolved or diluted with a solvent such as water, impregnated with the carbonized substance or in a slurry state. And may be kneaded into the article to be carbonized. The liquid activator may be diluted with water or the like and then impregnated with the carbonized material or kneaded into the carbonized material.
During the heat treatment, the pressure in the gas phase may be any of normal pressure, pressurization, and reduced pressure, but is preferably pressurized at a high temperature.
The gas may be stationary or distributed, but is preferably distributed from the viewpoint of discharging generated impurities.

炭素化後に窒素原子を導入することもできる。このとき、窒素原子を導入する方法としては、液相ドープ法、気相ドープ法、又は、気相−液相ドープ法を用いて行うことができる。例えば、カーボンアロイに窒素源であるアンモニア雰囲気下で200〜1200℃、5〜180分保持することにより、熱処理して、炭素触媒の表面に窒素原子を導入することができる。   Nitrogen atoms can also be introduced after carbonization. At this time, as a method for introducing nitrogen atoms, a liquid phase doping method, a gas phase doping method, or a gas phase-liquid phase doping method can be used. For example, the carbon alloy can be heat-treated by holding it at 200 to 1200 ° C. for 5 to 180 minutes in an ammonia atmosphere as a nitrogen source to introduce nitrogen atoms onto the surface of the carbon catalyst.

[含窒素カーボンアロイ]
本発明の含窒素カーボンアロイは、上述した含窒素カーボンアロイの製造方法で製造される。
[Nitrogen-containing carbon alloy]
The nitrogen-containing carbon alloy of the present invention is produced by the above-described method for producing a nitrogen-containing carbon alloy.

上記前駆体の焼成により得られた本発明の含窒素カーボンアロイは、窒素が導入されている含窒素カーボンアロイである。本発明の含窒素カーボンアロイには、炭素がsp2混成軌道により化学結合し、二次元に広がった六角網面構造を持つ炭素原子の集合体であるグラフェンが存在することが好ましい。 The nitrogen-containing carbon alloy of the present invention obtained by firing the precursor is a nitrogen-containing carbon alloy into which nitrogen has been introduced. The nitrogen-containing carbon alloy of the present invention preferably contains graphene, which is an aggregate of carbon atoms having a hexagonal network structure in which carbon is chemically bonded by sp 2 hybrid orbitals and spreads in two dimensions.

さらに、本発明の含窒素カーボンアロイにおいて、炭素触媒中の表面窒素原子の含有量は表面の炭素に対して原子比(N/C)で0.02〜0.3であることがより好ましい。窒素原子と炭素原子との原子比(N/C)が0.02未満の場合には、金属と結合する有効な窒素原子の数が減少し、十分な酸素還元触媒特性が得られなくなる。また、窒素原子と炭素原子との原子比(N/C)が0.3を超える場合には、カーボンアロイの炭素骨格の強度が低下し、また電気伝導性が低下する。   Furthermore, in the nitrogen-containing carbon alloy of the present invention, the content of surface nitrogen atoms in the carbon catalyst is more preferably 0.02 to 0.3 in terms of atomic ratio (N / C) to the surface carbon. When the atomic ratio (N / C) of the nitrogen atom to the carbon atom is less than 0.02, the number of effective nitrogen atoms bonded to the metal is reduced, and sufficient oxygen reduction catalyst characteristics cannot be obtained. Moreover, when the atomic ratio (N / C) of nitrogen atoms to carbon atoms exceeds 0.3, the strength of the carbon skeleton of the carbon alloy is lowered, and the electrical conductivity is lowered.

また、カーボンアロイの骨格は、少なくとも炭素原子及び窒素原子により形成されていればよく、その他の原子として水素原子や酸素原子等を含んでいてもよい。その場合、その他の原子と炭素原子及び窒素原子との原子比((その他の原子)/(C+N))は0.3以下であることが好ましい。   Further, the skeleton of the carbon alloy only needs to be formed of at least carbon atoms and nitrogen atoms, and may contain hydrogen atoms, oxygen atoms, and the like as other atoms. In that case, the atomic ratio ((other atoms) / (C + N)) of other atoms to carbon atoms and nitrogen atoms is preferably 0.3 or less.

比表面積分析は、カーボンアロイを所定の容器に入れて液体窒素温度(−196℃)に冷却し、容器内に窒素ガスを導入して吸着させ、その吸着等温線から単分子吸着量と吸着パラメーターを算出し、窒素の分子占有断面積(0.162cm2)から試料の比表面積を算出して求めるBET(Brunauer−Emmett−Teller)法により求めることができる。 In specific surface area analysis, carbon alloy is put in a predetermined container, cooled to liquid nitrogen temperature (-196 ° C), nitrogen gas is introduced into the container and adsorbed, and the adsorption amount of single molecules and adsorption parameters are determined from the adsorption isotherm And the BET (Brunauer-Emmett-Teller) method for calculating and calculating the specific surface area of the sample from the molecular occupation cross section (0.162 cm 2 ) of nitrogen.

カーボンアロイの細孔形状は特に制限されず、例えば、表面のみに細孔が形成されていても、表面のみならず内部にも細孔が形成されていてもよい。内部にも細孔が形成されている場合には、例えば、トンネル状に貫通したものであってもよく、また、球状又は六角柱状等の多角形状の空洞が互いに連結したような形状を有していてもよい。   The pore shape of the carbon alloy is not particularly limited, and for example, pores may be formed only on the surface, or pores may be formed not only on the surface but also inside. When pores are also formed inside, for example, it may be tunnel-shaped, and it has a shape in which polygonal cavities such as spherical or hexagonal columns are connected to each other. It may be.

カーボンアロイの比表面積は、90m2/g以上であることが好ましく、350m2/g以上であることがより好ましく、670m2/g以上であることが特に好ましい。ただし、触媒活性部位(少なくともCとNと金属イオンを構成要件とする金属配位物、あるいは配置空間(場))が高密度に生成・形成した場合は上記範囲外でもよい。
細孔奥まで酸素が十分に行き届き、十分な酸素還元触媒特性が得られる観点からは、カーボンアロイの比表面積は、3000m2/g以下であることが好ましく、2000m2/g以下であることがより好ましく、1500m2/g以下であることが特に好ましい。
The specific surface area of the carbon alloy is preferably at 90m 2 / g or more, more preferably 350 meters 2 / g or more, and particularly preferably 670m 2 / g or more. However, when the catalytically active site (metal coordination product or configuration space (field) having at least C, N, and metal ions as constituents) is generated and formed at a high density, it may be outside the above range.
From the viewpoint of sufficient oxygen reaching the depth of the pores and obtaining sufficient oxygen reduction catalyst characteristics, the specific surface area of the carbon alloy is preferably 3000 m 2 / g or less, and preferably 2000 m 2 / g or less. More preferred is 1500 m 2 / g or less.

本発明の含窒素カーボンアロイの形状は、酸素還元反応活性を有する限り特に限定はされない。例えば、シート状、繊維状、板状、柱状、ブロック状、粒子状、球状以外の多くの楕円、扁平、角型など、大きく歪んだ構造等が挙げられる。分散がし易いという観点から、好ましくはブロック状、粒子状であるが、後述のスラリーを塗布して乾燥させる場合、チキソ性を付与する観点から好ましくは繊維状、板状、柱状である。   The shape of the nitrogen-containing carbon alloy of the present invention is not particularly limited as long as it has oxygen reduction reaction activity. For example, a large distorted structure such as a sheet shape, a fiber shape, a plate shape, a column shape, a block shape, a particle shape, many ellipses other than a spherical shape, a flat shape, a square shape, and the like can be given. From the viewpoint of easy dispersion, it is preferably a block shape or a particle shape. However, when a slurry described later is applied and dried, it is preferably a fiber shape, a plate shape, or a column shape from the viewpoint of imparting thixotropy.

さらに、本発明の含窒素カーボンアロイを溶媒に分散させることにより、カーボンアロイを含有するスラリーを作製することができる。これにより、例えば、燃料電池の電極触媒や、蓄電装置の電極材の作製を容易する際に、カーボンアロイが溶媒に分散されたスラリーを支持材料に塗布して焼成、乾燥させて、任意の形状に加工した炭素触媒を形成することができる。このようにカーボンアロイをスラリーとすることにより、炭素触媒の加工性が向上し、容易に電極触媒や電極材として用いることができる。
本発明の燃料電池用カーボンアロイ触媒は、含窒素カーボンアロイの乾燥後の塗布量が0.01mg/cm2以上であることが好ましく、0.02〜100mg/cm2であることがより好ましく、0.05〜10mg/cm2であることが特に好ましい。
溶媒としては、燃料電池の電極触媒や、蓄電装置の電極材を作製する際に用いられる溶媒を適宜選択して使用することができる。例えば蓄電装置の電極材を作製する際に用いられる溶媒としては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、1,2−ジメトキシエタン(DME)、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、N−メチル−2−ピロリドン(NMP)、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)等一般的な極性溶媒を単独又は複数混合して使用することができる。また、燃料電池の電極触媒を作製する際に用いられる溶媒としては、例えば、水、メタノール、エタノール、イソプロピルアルコール、ブタノール、トルエン、キシレン、メチルエチルケトン、アセトン等を挙げることができる。
Furthermore, the slurry containing a carbon alloy can be produced by dispersing the nitrogen-containing carbon alloy of the present invention in a solvent. Thus, for example, when preparing an electrode catalyst for a fuel cell or an electrode material for a power storage device, a slurry in which a carbon alloy is dispersed in a solvent is applied to a support material, baked, and dried, so that an arbitrary shape is obtained. It is possible to form a carbon catalyst that has been processed into Thus, by making a carbon alloy into a slurry, the workability of the carbon catalyst is improved and it can be easily used as an electrode catalyst or an electrode material.
Fuel cell carbon alloy catalyst of the present invention preferably has a coating amount after drying of the nitrogen-containing carbon alloy is 0.01 mg / cm 2 or more, more preferably 0.02~100mg / cm 2, Particularly preferred is 0.05 to 10 mg / cm 2 .
As the solvent, a solvent used when producing an electrode catalyst for a fuel cell or an electrode material for a power storage device can be appropriately selected and used. For example, as a solvent used when producing an electrode material for a power storage device, diethyl carbonate (DEC), dimethyl carbonate (DMC), 1,2-dimethoxyethane (DME), ethylene carbonate (EC), ethyl methyl carbonate (EMC) ), N-methyl-2-pyrrolidone (NMP), propylene carbonate (PC), γ-butyrolactone (GBL), etc., can be used alone or in combination. In addition, examples of the solvent used in preparing the fuel cell electrode catalyst include water, methanol, ethanol, isopropyl alcohol, butanol, toluene, xylene, methyl ethyl ketone, and acetone.

<含窒素カーボンアロイの用途>
本発明の含窒素カーボンアロイの用途は、構造材料、電極材料、ろ過材料、触媒材料など特に限定されないが、キャパシタやリチウム二次電池などの蓄電装置の電極材料として用いることが好ましく、高い酸素還元反応活性を有する燃料電池や亜鉛空気電池、リチウム空気電池などの炭素触媒として用いることがより好ましい。また、固体高分子電解質膜と、固体高分子電解質膜に接して設けられた触媒層とを備えた電極膜接合体において、上記触媒を触媒層に含むことができる。さらに、上記電極膜接合体は、燃料電池に備えることができる。
<Application of nitrogen-containing carbon alloy>
The use of the nitrogen-containing carbon alloy of the present invention is not particularly limited to structural materials, electrode materials, filtration materials, catalyst materials, etc., but is preferably used as electrode materials for power storage devices such as capacitors and lithium secondary batteries. More preferably, it is used as a carbon catalyst for a fuel cell, zinc-air battery, lithium-air battery or the like having reactive activity. In the electrode membrane assembly including the solid polymer electrolyte membrane and the catalyst layer provided in contact with the solid polymer electrolyte membrane, the catalyst may be included in the catalyst layer. Furthermore, the electrode membrane assembly can be provided in a fuel cell.

(燃料電池)
図1に本発明の含窒素カーボンアロイから成る炭素触媒を用いた燃料電池10の概略構成図を示す。炭素触媒はアノード電極及びカソード電極に適用されている。
燃料電池10は、固体高分子電解質14を挟むように、対向配置されたセパレータ12、アノード電極触媒(燃料極)13、カソード電極触媒(酸化剤極)15及びセパレータ16とから構成される。固体高分子電解質14としては、パーフルオロスルホン酸樹脂膜を代表とするフッ素系陽イオン交換樹脂膜が用いられる。また、炭素触媒をアノード電極触媒13及びカソード電極触媒15として、固体高分子電解質14の双方に接触させることにより、アノード電極触媒13及びカソード電極触媒15に炭素触媒を備えた燃料電池10が構成される。上述の炭素触媒を固体高分子電解質の双方の面に形成し、アノード電極触媒13及びカソード電極触媒15を電極反応層側で固体高分子電解質14の両主面にホットプレスにより密着することにより、MEA(Membrane Electrode Assembly)として一体化させる。
(Fuel cell)
FIG. 1 shows a schematic configuration diagram of a fuel cell 10 using a carbon catalyst made of a nitrogen-containing carbon alloy of the present invention. The carbon catalyst is applied to the anode electrode and the cathode electrode.
The fuel cell 10 includes a separator 12, an anode electrode catalyst (fuel electrode) 13, a cathode electrode catalyst (oxidant electrode) 15, and a separator 16 that are disposed so as to sandwich the solid polymer electrolyte 14. As the solid polymer electrolyte 14, a fluorine-based cation exchange resin membrane represented by a perfluorosulfonic acid resin membrane is used. Moreover, the fuel cell 10 provided with the carbon catalyst in the anode electrode catalyst 13 and the cathode electrode catalyst 15 is configured by bringing the carbon catalyst into contact with both of the solid polymer electrolyte 14 as the anode electrode catalyst 13 and the cathode electrode catalyst 15. The By forming the carbon catalyst described above on both sides of the solid polymer electrolyte, and adhering the anode electrode catalyst 13 and the cathode electrode catalyst 15 to both main surfaces of the solid polymer electrolyte 14 on the electrode reaction layer side by hot pressing, It integrates as MEA (Membrane Electrode Assembly).

従来の燃料電池では、集電体としての機能も有する多孔質のシート(例えば、カーボンペーパー)からなるガス拡散層を、セパレータとアノード及カソード電極触媒との間に介在させていた。これに対して図1の燃料電池10では、比表面積が大きく、さらに、気体の拡散性が高い炭素触媒がアノード及びカソード電極触媒として用いることができる。上述の炭素触媒を電極として使用することにより、ガス拡散層が無い場合にも炭素触媒にガス拡散層の作用を持たせ、アノード及びカソード電極触媒13,15とガス拡散層とを一体化した燃料電池を構成することができるため、ガス拡散層を省略することによる燃料電池の小型化や、コストの削減が可能となる。   In a conventional fuel cell, a gas diffusion layer made of a porous sheet (for example, carbon paper) that also functions as a current collector is interposed between the separator and the anode and cathode electrode catalyst. In contrast, in the fuel cell 10 of FIG. 1, a carbon catalyst having a large specific surface area and high gas diffusibility can be used as the anode and cathode electrode catalyst. By using the above-mentioned carbon catalyst as an electrode, even when there is no gas diffusion layer, the carbon catalyst has a gas diffusion layer function, and the anode and cathode electrode catalysts 13, 15 and the gas diffusion layer are integrated. Since the battery can be configured, the fuel cell can be reduced in size and the cost can be reduced by omitting the gas diffusion layer.

上記セパレータ12,16は、アノード及びカソード電極触媒層13,15を支持すると共に燃料ガスH2や酸化剤ガスO2等の反応ガスの供給・排出を行う。そして、アノード及びカソード電極触媒13,15にそれぞれ反応ガスが供給されると、両電極に備えられた炭素触媒と固体高分子電解質14との境界において、気相(反応ガス)、液相(固体高分子電解質膜)、固相(両電極が持つ触媒)の三相界面が形成される。そして、電気化学反応を生じさせることで直流電力が発生する。
上記電気化学反応において、
カソード側:O2+4H++4e-→2H2
アノード側:H2→2H++2e-
の反応が起こり、アノード側で生成されたH+イオンは固体高分子電解質14中をカソード側に向かって移動し、e-(電子)は外部の負荷を通ってカソード側に移動する。一方、カソード側では酸化剤ガス中に含まれる酸素と、アノード側から移動してきたH+イオン及びe-とが反応して水が生成される。この結果、上述の燃料電池は、水素と酸素とから直流電力を発生し、水を生成することになる。
The separators 12 and 16 support the anode and cathode electrode catalyst layers 13 and 15 and supply and discharge reaction gases such as fuel gas H 2 and oxidant gas O 2 . When a reaction gas is supplied to each of the anode and cathode electrode catalysts 13 and 15, a gas phase (reaction gas) and a liquid phase (solid) are formed at the boundary between the carbon catalyst provided on both electrodes and the solid polymer electrolyte 14. A three-phase interface of a polymer electrolyte membrane) and a solid phase (a catalyst possessed by both electrodes) is formed. And direct-current power generate | occur | produces by producing an electrochemical reaction.
In the above electrochemical reaction,
Cathode side: O 2 + 4H + + 4e → 2H 2 O
Anode side: H 2 → 2H + + 2e
The H + ions generated on the anode side move toward the cathode side in the solid polymer electrolyte 14, and e (electrons) move to the cathode side through an external load. On the other hand, on the cathode side, oxygen contained in the oxidant gas reacts with H + ions and e that have moved from the anode side to generate water. As a result, the above-described fuel cell generates direct-current power from hydrogen and oxygen to generate water.

(蓄電装置)
次に、本発明の含窒素カーボンアロイから成る炭素触媒を電極材に適用した蓄電装置について説明する。図2に含窒素カーボンアロイから成る炭素触媒を用いた、蓄電容量に優れた電気二重層キャパシタ20の概略構成図を示す。
図2に示した電気二重層キャパシタ20は、セパレータ23を介して、分極性電極である第1の電極21及び第2の電極22が対向し、外装蓋24aと外装ケース24bの中に収容されている。また、第1の電極21及び第2の電極22は、それぞれ集電体25を介して、外装蓋24aと外装ケース24bに接続されている。また、セパレータ23には、電解液が含浸されている。そして、ガスケット26を介して電気的に絶縁させた状態で、外装蓋24aと外装ケース24bとをかしめて密封させて電気二重層キャパシタ20が構成されている。
(Power storage device)
Next, a power storage device in which the carbon catalyst made of the nitrogen-containing carbon alloy of the present invention is applied to an electrode material will be described. FIG. 2 shows a schematic configuration diagram of an electric double layer capacitor 20 using a carbon catalyst made of nitrogen-containing carbon alloy and having an excellent storage capacity.
In the electric double layer capacitor 20 shown in FIG. 2, the first electrode 21 and the second electrode 22 which are polarizable electrodes are opposed to each other through the separator 23, and are accommodated in the outer lid 24a and the outer case 24b. ing. The first electrode 21 and the second electrode 22 are connected to the exterior lid 24a and the exterior case 24b via current collectors 25, respectively. The separator 23 is impregnated with an electrolytic solution. The electric double layer capacitor 20 is configured by caulking and sealing the outer lid 24a and the outer case 24b while being electrically insulated via the gasket 26.

図2の電気二重層キャパシタ20において、上述の含窒素カーボンアロイから成る炭素触媒を第1の電極21及び第2の電極22に適用することができる。そして、電極材に炭素触媒が適用された電気二重層キャパシタを構成することができる。上述の炭素触媒は、ナノシェル炭素が集合した繊維状の構造を有し、さらに、繊維径がナノメートル単位であるため比表面積が大きく、キャパシタにおいて電荷が蓄積する電極界面が大きい。さらに、上述の炭素触媒は、電解液に対して電気化学的に不活性であり、適度な電気導電性を有する。このため、キャパシタの電極として適用することにより、電極の単位体積あたりの静電容量を向上させることができる。   In the electric double layer capacitor 20 of FIG. 2, the carbon catalyst made of the above-described nitrogen-containing carbon alloy can be applied to the first electrode 21 and the second electrode 22. And the electric double layer capacitor by which the carbon catalyst was applied to the electrode material can be comprised. The above-described carbon catalyst has a fibrous structure in which nanoshell carbon is aggregated, and furthermore, since the fiber diameter is in a nanometer unit, the specific surface area is large, and the electrode interface where charges are accumulated in the capacitor is large. Furthermore, the above-mentioned carbon catalyst is electrochemically inactive with respect to the electrolytic solution, and has appropriate electrical conductivity. For this reason, the electrostatic capacitance per unit volume of an electrode can be improved by applying as an electrode of a capacitor.

また、上述のキャパシタと同様に、例えば、リチウムイオン二次電池の負極材等のように、炭素材料から構成される電極材として上述の炭素触媒を適用することができる。そして、炭素触媒の比表面積が大きいことにより、蓄電容量の大きな二次電池を構成することができる。   Similarly to the above-described capacitor, for example, the above-described carbon catalyst can be applied as an electrode material composed of a carbon material, such as a negative electrode material of a lithium ion secondary battery. And since the specific surface area of a carbon catalyst is large, a secondary battery with a large electrical storage capacity can be comprised.

(環境触媒)
次に、本発明の含窒素カーボンアロイを、白金等の貴金属を含む環境触媒の代替品として使用する例について説明する。
汚染空気に含まれる汚染物質を(主にガス状物質)等を分解処理により除去するための排ガス浄化用触媒として、白金等の貴金属系の材料が単独又は複合化物されて構成された触媒材料による環境触媒が用いられている。これらの白金等の貴金属を含む排ガス浄化用触媒の代替品として、上述の炭素触媒を使用することができる。上述の炭素触媒は、酸素還元反応触媒作用が付与されているため、汚染物質等の被処理物質の分解機能を有する。このため、上述の炭素触媒を用いて環境触媒を構成することにより、白金等の高価な貴金属類を使用する必要がないため、低コストの環境触媒を提供することができる。また、比表面積が大きいことにより、単位体積あたりの被処理物質を分解する処理面積を大きくすることができ、単位体積あたりの分解機能が優れた環境触媒を構成できる。
なお、上述の炭素触媒を担体として、従来の環境触媒に使用されている白金等の貴金属系の材料が単独又は複合化物を担持させることにより、より分解機能等の触媒作用に優れた環境触媒を構成することができる。なお、上述の炭素触媒を備える環境触媒は、上述の排ガス浄化用触媒だけでなく、水処理用の浄化触媒として用いることもできる。
(Environmental catalyst)
Next, an example in which the nitrogen-containing carbon alloy of the present invention is used as a substitute for an environmental catalyst containing a noble metal such as platinum will be described.
As a catalyst for exhaust gas purification for removing pollutants contained in polluted air (mainly gaseous substances) etc. by decomposition treatment, a catalyst material composed of noble metal materials such as platinum alone or in combination Environmental catalysts are used. The above-mentioned carbon catalyst can be used as an alternative to these exhaust gas purifying catalysts containing noble metals such as platinum. Since the above-described carbon catalyst is provided with an oxygen reduction reaction catalytic action, it has a function of decomposing substances to be treated such as pollutants. For this reason, since it is not necessary to use expensive noble metals, such as platinum, by comprising an environmental catalyst using the above-mentioned carbon catalyst, a low-cost environmental catalyst can be provided. Further, since the specific surface area is large, the treatment area for decomposing the material to be treated per unit volume can be increased, and an environmental catalyst having an excellent decomposition function per unit volume can be constituted.
By using the above-mentioned carbon catalyst as a carrier, a noble metal-based material such as platinum used in conventional environmental catalysts is carried alone or in a composite, and thereby an environmental catalyst having a more excellent catalytic action such as a decomposition function. Can be configured. In addition, the environmental catalyst provided with the above-mentioned carbon catalyst can also be used as a purification catalyst for water treatment as well as the above-described exhaust gas purification catalyst.

また、本発明の含窒素カーボンアロイは、広く化学反応用の触媒として使用することができ、中でも白金触媒の代替品として使用することができる。つまり、白金等の貴金属を含む化学工業用の一般的なプロセス触媒の代替品として、上述の炭素触媒を使用することができる。このため、上述の炭素触媒によれば、白金等の高価な貴金属類を使用することなく、低コストの化学反応プロセス触媒を提供することができる。さらに、上述の炭素触媒は、比表面積が大きいことにより、単位体積あたりの化学反応効率に優れた化学反応プロセス触媒を構成することができる。
このような化学反応用の炭素触媒は、例えば、水素化反応用触媒、脱水素反応用触媒、酸化反応用触媒、重合反応用触媒、改質反応用触媒、水蒸気改質用触媒等に適用することができる。さらに具体的には、「触媒調製(講談社)白崎高保、藤堂尚之共著、1975年」等の触媒に関する文献を参照し、各々の化学反応に炭素触媒を適用することが可能である。
Further, the nitrogen-containing carbon alloy of the present invention can be widely used as a catalyst for chemical reaction, and in particular, can be used as a substitute for a platinum catalyst. That is, the above-mentioned carbon catalyst can be used as a substitute for a general process catalyst for the chemical industry containing a noble metal such as platinum. For this reason, according to the above-mentioned carbon catalyst, a low-cost chemical reaction process catalyst can be provided without using expensive noble metals such as platinum. Furthermore, since the above-mentioned carbon catalyst has a large specific surface area, it can constitute a chemical reaction process catalyst excellent in chemical reaction efficiency per unit volume.
Such a carbon catalyst for chemical reaction is applied to, for example, a hydrogenation reaction catalyst, a dehydrogenation reaction catalyst, an oxidation reaction catalyst, a polymerization reaction catalyst, a reforming reaction catalyst, and a steam reforming catalyst. be able to. More specifically, it is possible to apply a carbon catalyst to each chemical reaction with reference to a catalyst related literature such as “Catalyst Preparation (Kodansha) by Takaho Shirasaki and Naoyuki Todo, 1975”.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。   The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the examples shown below. Unless otherwise specified, “part” is based on mass.

<含窒素カーボンアロイの物性評価方法>
(BET法による比表面積測定)
酸洗浄前の含窒素カーボンアロイ試料、および酸洗浄後に単離した含窒素カーボンアロイ試料について、試料前処理装置(日本ベル社製、BELPREP−flow(商品名))を用いて、含窒素カーボンアロイ試料を200℃、3時間、真空下で乾燥した。
自動比表面積/細孔分布測定装置(日本ベル社製、BELSORP−miniII(商品名))を用いて、含窒素カーボンアロイの比表面積を簡易測定条件で測定した。
比表面積は、装置備え付けの解析プログラムを用いて、BET(Brunauer−Emmett−Teller)法により求めた。
<Method for evaluating properties of nitrogen-containing carbon alloy>
(Specific surface area measurement by BET method)
About the nitrogen-containing carbon alloy sample before acid cleaning, and the nitrogen-containing carbon alloy sample isolated after acid cleaning, using a sample pretreatment device (BELPREPE-flow (trade name) manufactured by Nippon Bell Co., Ltd.), nitrogen-containing carbon alloy The sample was dried under vacuum at 200 ° C. for 3 hours.
The specific surface area of the nitrogen-containing carbon alloy was measured under simple measurement conditions using an automatic specific surface area / pore distribution measuring device (BELSORP-miniII (trade name) manufactured by Bell Japan).
The specific surface area was determined by the BET (Brunauer-Emmett-Teller) method using an analysis program installed in the apparatus.

(実施例1)
<塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料合成(1C)>
((4−Py)3−TAzの調製)
New J.Chem.,2006,30,1276−1281.を参考に、(4−Py)3−TAzを調整した。4−シアノピリジン10g,18−クラウン−6 10g、KOH 225mg,デカリン10mLを混合し、200℃で5時間攪拌した。室温まで空冷後、反応物を濾過し、ピリジンで煮沸洗浄した。得られた固体を1N塩酸に溶解し、アンモニア水によって固体を析出させ、濾過後、水で洗浄乾燥させ、(4−Py)3−TAzを7.1g得た。
Example 1
<Carbon Material Synthesis of Iron (II) Chloride Tetrahydrate Addition (4-Py) 3 -TAz Mixture (1C)>
(Preparation of (4-Py) 3 -TAz)
New J.M. Chem. , 2006, 30, 1276-1281. (4-Py) 3 -TAz was adjusted with reference to FIG. 4-cyanopyridine 10 g, 18-crown-6 10 g, KOH 225 mg, and decalin 10 mL were mixed and stirred at 200 ° C. for 5 hours. After air cooling to room temperature, the reaction product was filtered and washed by boiling with pyridine. The obtained solid was dissolved in 1N hydrochloric acid, and the solid was precipitated with aqueous ammonia, filtered, washed with water and dried to obtain 7.1 g of (4-Py) 3 -TAz.

Figure 2015027934
Figure 2015027934

分子式:C18126、分子量:312.33
元素分析(計算値):C, 69.22, H, 3.87, N, 26.91
Molecular formula: C 18 H 12 N 6 , molecular weight: 312.33
Elemental analysis (calculated value): C, 69.22, H, 3.87, N, 26.91

(塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の調製)
上述の(4−Py)3−TAz 6.30g,塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物(1A)を得た。
(Preparation of iron (II) chloride tetrahydrate (4-Py) 3 -TAz mixture)
After adding 6.30 g of the above (4-Py) 3 -TAz and 6.30 g of iron (II) chloride tetrahydrate, mechanically pulverized and mixed to add iron (II) chloride tetrahydrate (4-Py ) 3 -TAz mixture (1A) was obtained.

(不融化及び炭素化処理)
塩化鉄(II)4水和物添加(4−Py)3−TAz混合物(1A)3.1310gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(1B)0.7923gを得た。
(Infusibilization and carbonization treatment)
Iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture (1A) 3.110 g was measured into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) quartz It was installed in the center of the tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (1B) 0.7923g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(1B)をメノウ乳鉢で粉砕し、酸無洗浄炭素材料を得た。得られた酸無洗浄炭素材料の比表面積を、BET法により測定した結果を、下記表1の酸洗浄前の欄に記載した。
炭素材料(1B)をメノウ乳鉢で粉砕して得られた酸無洗浄炭素材料を、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(1C)0.5334gを得た。得られた酸洗浄済み炭素材料(1C)を実施例1の含窒素カーボンアロイとした。その比表面積をBET法により測定した結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
Carbon material (1B) was pulverized in an agate mortar to obtain an acid-free carbon material. The result of measuring the specific surface area of the obtained acid-free carbon material by the BET method is shown in the column before acid cleaning in Table 1 below.
The acid-free washed carbon material obtained by pulverizing the carbon material (1B) in an agate mortar was repeatedly washed with concentrated hydrochloric acid, centrifuged, and the supernatant was removed until no coloration occurred. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.5334 g of acid-washed carbon material (1C). The obtained acid-washed carbon material (1C) was used as the nitrogen-containing carbon alloy of Example 1. The result of measuring the specific surface area by the BET method is shown in the column after acid cleaning in Table 1 below.

1.カーボンアロイ塗付電極の酸素還元反応(ORR)活性
(カーボンアロイ塗付電極の作製)
得られた実施例1の含窒素カーボンアロイ材料10mgに、バインダーとしてナフィオン溶液(5%アルコール水溶液)110mgと溶媒としての水2.4mL、1−プロパノール(IPA)1.6mLを加え、7mmφのアタッチメントを接続した超音波ホモジナイザー(日精社製、US−150T(商品名))で30分間分散させた。回転リングディスク電極(北斗電工社製HR2−RD1−Pt8/GC5(商品名))を用い、含窒素カーボンアロイ分散液を含窒素カーボンアロイが0.05mg/cm2になるようにカーボン電極上に塗布し、室温で乾燥させて、カーボンアロイ塗付電極を得た。
1. Oxygen reduction reaction (ORR) activity of carbon alloy coated electrode (preparation of carbon alloy coated electrode)
To 10 mg of the obtained nitrogen-containing carbon alloy material of Example 1, 110 mg of Nafion solution (5% alcohol aqueous solution) as a binder, 2.4 mL of water as a solvent and 1.6 mL of 1-propanol (IPA) are added, and a 7 mmφ attachment is added. Was dispersed for 30 minutes with an ultrasonic homogenizer (Nissei Co., Ltd., US-150T (trade name)). Using a rotating ring disk electrode (HR2-RD1-Pt8 / GC5 (trade name) manufactured by Hokuto Denko), the nitrogen-containing carbon alloy dispersion is placed on the carbon electrode so that the nitrogen-containing carbon alloy is 0.05 mg / cm 2. It was applied and dried at room temperature to obtain a carbon alloy coated electrode.

(カーボンアロイ塗付電極の酸素還元反応(ORR)活性測定)
Automatic Polarization System(北斗電工(株)社製、HZ−3000(商品名))に回転電極装置(北斗電工(株)社製、HR−201(商品名))を接続し、作用極は上記で得られたカーボンアロイ塗付電極、対極と参照極はそれぞれ白金電極と飽和カロメル電極(SCE)を用いて以下の手順により測定した。
A.カーボンアロイ材料塗付電極のクリーニングのため、20℃、アルゴンを30分以上バブリングした0.1M硫酸水溶液中で掃引電位0.946〜−0.204V(vs.SCE)、掃引速度50mV/s、10サイクルのサイクリックボルタンメトリーを測定した。
B.ブランク測定のため、20℃、アルゴンを30分以上バブリングした0.1M硫酸水溶液中で掃引電位0.746〜−0.204V(vs.SCE)、掃引速度5mV/s、電極回転速度1500rpmでリニアースイープボルタンメトリーを測定した。
C.酸素還元活性測定のため、酸素を30分以上バブリングした0.5M硫酸水溶液中で掃引電位0.746〜−0.204V(vs.SCE)、掃引速度5mV/s、電極回転数1500rpmでリニアースイープボルタンメトリーを測定した。
D.Cの測定データからBの測定データを減算し、真の酸素還元活性として採用した。得られたボルタモグラム(電圧−電流密度曲線)から、電流密度−1mA/cm2の時の電圧(V vs.RHE)を求め、これをORR活性値とした。
得られた結果を下記表1に記載した。
(Measurement of oxygen reduction reaction (ORR) activity of carbon alloy coated electrode)
A rotating electrode device (Hokuto Denko Co., Ltd., HR-201 (Brand name)) is connected to an Automatic Polarization System (Hokuto Denko Co., Ltd., HZ-3000 (Brand name)). The obtained carbon alloy-coated electrode, counter electrode and reference electrode were measured by the following procedure using a platinum electrode and a saturated calomel electrode (SCE), respectively.
A. For cleaning the carbon alloy material-coated electrode, a sweep potential of 0.946 to −0.204 V (vs. SCE), a sweep rate of 50 mV / s in a 0.1 M sulfuric acid aqueous solution bubbled with argon at 30 ° C. for 30 minutes or more, Ten cycles of cyclic voltammetry were measured.
B. Linear measurement at a sweep potential of 0.746 to -0.204 V (vs. SCE), a sweep speed of 5 mV / s, and an electrode rotation speed of 1500 rpm in a 0.1 M sulfuric acid aqueous solution in which argon was bubbled for 30 minutes or more for blank measurement. Sweep voltammetry was measured.
C. In order to measure the oxygen reduction activity, a linear sweep was performed at a sweep potential of 0.746 to -0.204 V (vs. SCE), a sweep speed of 5 mV / s, and an electrode rotation speed of 1500 rpm in a 0.5 M sulfuric acid aqueous solution bubbled with oxygen for 30 minutes or more. Voltammetry was measured.
D. The measurement data of B was subtracted from the measurement data of C and adopted as the true oxygen reduction activity. From the obtained voltammogram (voltage-current density curve), a voltage (V vs. RHE) at a current density of −1 mA / cm 2 was determined and used as an ORR activity value.
The obtained results are shown in Table 1 below.

(実施例2)
<塩化コバルト(II)6水和物添加(4−Py)3−TAz混合物の炭素材料合成(2C)>
上述の(4−Py)3−TAz 1.60g,コバルト(II)6水和物1.60gを添加後、機械粉砕・混合し、塩化コバルト(II)6水和物添加(4−Py)3−TAz混合物(2A)を得た。
(Example 2)
<Carbon Material Synthesis of Cobalt (II) Chloride Hexahydrate Addition (4-Py) 3 -TAz Mixture (2C)>
After adding 1.60 g of (4-Py) 3 -TAz and 1.60 g of cobalt (II) hexahydrate, mechanically pulverized and mixed to add cobalt (II) hexahydrate (4-Py) A 3- TAz mixture (2A) was obtained.

(不融化及び炭素化処理)
塩化コバルト(II)6水和物添加(4−Py)3−TAz混合物(2A)3.1559gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(2B)1.0901gを得た。
(Infusibilization and carbonization treatment)
Cobalt (II) chloride hexahydrate added (4-Py) 3 -TAz mixture (2A) 3.1559 g was weighed into a quartz boat and inserted into a tube furnace with 4.0 cmφ (inner diameter 3.6 cmφ) quartz It was installed in the center of the tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (2B) 1.0901g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(2B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(2C)0.6635gを得た。得られた酸洗浄済み炭素材料(2C)を実施例2の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (2B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant liquid were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight to obtain 0.6635 g of acid-washed carbon material (2C). The obtained acid cleaned carbon material (2C) was used as the nitrogen-containing carbon alloy of Example 2. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例2の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 2 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例3)
<塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の炭素材料合成(3C)>
((3−Py)3−TAzの調製)
(4−Py)3−TAzの調製法と同条件で行った。3−シアノピリジン10g,18−クラウン−6 10g、KOH 225mg,デカリン10mLを混合し、200℃で5時間攪拌した。室温まで空冷後、反応物を濾過し、ピリジンで煮沸洗浄した。得られた固体を1N塩酸に溶解し、アンモニア水によって固体を析出させ、濾過後、水で洗浄乾燥させ、(3−Py)3−TAzを収量4.1gで得た。
Example 3
<Carbon Material Synthesis of Iron (II) Chloride Tetrahydrate Addition (3-Py) 3 -TAz Mixture (3C)>
(Preparation of (3-Py) 3 -TAz)
(4-Py) 3- TAz was prepared under the same conditions as in the preparation method. 10 g of 3-cyanopyridine, 10 g of 18-crown-6, 225 mg of KOH, and 10 mL of decalin were mixed and stirred at 200 ° C. for 5 hours. After air cooling to room temperature, the reaction product was filtered and washed by boiling with pyridine. The obtained solid was dissolved in 1N hydrochloric acid, the solid was precipitated with aqueous ammonia, filtered, washed with water and dried to obtain (3-Py) 3 -TAz in a yield of 4.1 g.

Figure 2015027934
Figure 2015027934

分子式:C18126、分子量:312.33
元素分析(計算値):C, 69.22, H, 3.87, N, 26.91
Molecular formula: C 18 H 12 N 6 , molecular weight: 312.33
Elemental analysis (calculated value): C, 69.22, H, 3.87, N, 26.91

(塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の調製)
上述の(3−Py)3−TAz 1.60g,塩化鉄(II)4水和物1.60gを添加後、機械粉砕・混合し、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物(3A)を得た。
(Preparation of iron (II) chloride tetrahydrate (3-Py) 3 -TAz mixture)
After adding 1.60 g of the above (3-Py) 3 -TAz and 1.60 g of iron (II) chloride tetrahydrate, mechanically pulverized and mixed to add iron (II) chloride tetrahydrate (3-Py ) 3 -TAz mixture (3A) was obtained.

(不融化及び炭素化処理)
塩化鉄(II)4水和物添加(4−Py)3−TAz混合物(3A)3.1360gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(3B)0.7259gを得た。
(Infusibilization and carbonization treatment)
Iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture (3A) 3.1360 g was measured into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) quartz It was installed in the center of the tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (3B) 0.7259g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(3B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(3C)0.4564gを得た。得られた酸洗浄済み炭素材料(3C)を実施例3の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (3B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight as it was to obtain 0.4564 g of acid-cleaned carbon material (3C). The obtained acid cleaned carbon material (3C) was used as the nitrogen-containing carbon alloy of Example 3. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例3の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 3 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例4)
<塩化コバルト(II)6水和物添加(3−Py)3−TAz混合物の炭素材料合成(4C)>
(塩化コバルト(II)6水和物添加(3−Py)3−TAz混合物の調製)
上述の(3−Py)3−TAz 6.30g,塩化コバルト(II)6水和物6.30gを添加後、機械粉砕・混合し、塩化コバルト(II)6水和物添加(3−Py)3−TAz混合物(4A)を得た。
Example 4
<Carbon Material Synthesis of Cobalt (II) Chloride Hexahydrate Addition (3-Py) 3- TAz Mixture (4C)>
(Preparation of cobalt (II) chloride hexahydrate (3-Py) 3 -TAz mixture)
After adding 6.30 g of the above (3-Py) 3 -TAz and 6.30 g of cobalt (II) chloride hexahydrate, mechanically pulverized and mixed to add cobalt chloride (II) hexahydrate (3-Py ) 3 -TAz mixture (4A) was obtained.

(不融化及び炭素化処理)
塩化コバルト(II)6水和物添加(3−Py)3−TAz混合物(4A)3.1118gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(4B)1.0555gを得た。
(Infusibilization and carbonization treatment)
Cobalt (II) chloride hexahydrate added (3-Py) 3 -TAz mixture (4A) 3.1118 g was measured in a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) quartz It was installed in the center of the tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (4B) 1.0555g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(4B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(4C)0.6443gを得た。得られた酸洗浄済み炭素材料(4C)を実施例4の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (4B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.6443 g of acid-cleaned carbon material (4C). The obtained acid-washed carbon material (4C) was used as the nitrogen-containing carbon alloy of Example 4. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例4の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 4 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例5)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料合成(5C)>
(FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の調製)
上述の(4−Py)3−TAz 6.30g,FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物(5A)を得た。
(Example 5)
<Carbon Material Synthesis of FeAA2, Iron Chloride (II) Tetrahydrate Addition (4-Py) 3 -TAz Mixture (5C)>
(FeAA2, Fe (II) chloride tetrahydrate added (4-Py) 3 -TAz mixture preparation)
After adding the above (4-Py) 3 -TAz 6.30 g, FeAA2 0.403 g and iron (II) chloride tetrahydrate 6.30 g, mechanically pulverized and mixed, FeAA2 and iron (II) chloride 4 water A Japanese addition (4-Py) 3 -TAz mixture (5A) was obtained.

Figure 2015027934
Figure 2015027934

分子式:C1014Fe14、分子量:254.061
元素分析(計算値):C,47.27;H,5.55;Fe,21.98;O,25.19
Molecular formula: C 10 H 14 Fe 1 O 4 , molecular weight: 254.061
Elemental analysis (calculated values): C, 47.27; H, 5.55; Fe, 21.98; O, 25.19

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物(5A)3.1959gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(5B)1.2519gを得た。
(Infusibilization and carbonization treatment)
FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture (5A) 3.1959 g was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) In the center of the quartz tube, nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (5B) 1.2519g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(5B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(5C)0.6562gを得た。得られた酸洗浄済み炭素材料(5C)を実施例5の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (5B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and allowed to stand overnight to obtain 0.6562 g of an acid cleaned carbon material (5C). The obtained acid cleaned carbon material (5C) was used as the nitrogen-containing carbon alloy of Example 5. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例5の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 5 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例6)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料合成(6C)>
(不融化及び炭素化処理)
上述したFeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物(5A)3.1769gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。30℃から800℃まで毎分5℃昇温、800℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(6B)0.8955gを得た。
(Example 6)
<FeAA2, iron (II) chloride tetrahydrate added (4-Py) 3 -TAz mixture carbon material synthesis (6C)>
(Infusibilization and carbonization treatment)
The above-described FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture (5A) (3.1769 g) was weighed into a quartz boat and inserted into a tubular furnace at 4.0 cmφ (inner diameter 3. 6 cmφ) was installed in the center of the quartz tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature. The temperature was raised from 30 ° C. to 800 ° C. by 5 ° C. per minute and held at 800 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (6B) 0.8955g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(6B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(6C)0.5988gを得た。得られた酸洗浄済み炭素材料(6C)を実施例6の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (6B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then allowed to stand overnight to obtain 0.5988 g of acid-washed carbon material (6C). The obtained acid cleaned carbon material (6C) was used as the nitrogen-containing carbon alloy of Example 6. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例6の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 6 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例7)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料合成(7C)>
(不融化及び炭素化処理)
上述したFeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物(5A)3.1134gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。30℃から900℃まで毎分5℃昇温、900℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(7B)0.8122gを得た。
(Example 7)
<FeAA2, Fe (II) chloride tetrahydrate added (4-Py) 3 -TAz mixture carbon material synthesis (7C)>
(Infusibilization and carbonization treatment)
The above-described FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture (5A) 3.1134 g was weighed into a quartz boat, and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3. 6 cmφ) was installed in the center of the quartz tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature. The temperature was raised from 30 ° C to 900 ° C at 5 ° C per minute and held at 900 ° C for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (7B) 0.8122g.

(粉砕・水洗浄処理・比表面積測定)
炭素材料(7B)をメノウ乳鉢で粉砕し、水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、未酸洗浄炭素材料(7C)を得た。得られた未酸洗浄炭素材料(7C)を実施例7の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄前の欄に記載した。
(Crushing, water washing treatment, specific surface area measurement)
The carbon material (7B) was pulverized with an agate mortar, washed with water, filtered and air-dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and left overnight as it was to obtain a non-acid cleaned carbon material (7C). The obtained non-acid cleaned carbon material (7C) was used as the nitrogen-containing carbon alloy of Example 7. The specific surface area was measured by the BET method. The results are shown in the column before acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例7の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 7 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例8)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料合成(8C)>
(Example 8)
<FeAA2, Fe (II) chloride tetrahydrate added (4-Py) 3 -TAz mixture carbon material synthesis (8C)>

(粉砕・酸洗浄処理・比表面積測定)
上述の、未酸洗浄炭素材料(7C)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(8C)0.5040gを得た。得られた酸洗浄済み炭素材料(8C)を実施例8の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The non-acid-cleaned carbon material (7C) was pulverized in an agate mortar, and concentrated hydrochloric acid cleaning, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight as it was to obtain 0.5040 g of acid-cleaned carbon material (8C). The obtained acid-washed carbon material (8C) was used as the nitrogen-containing carbon alloy of Example 8. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例8の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 8 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例9)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料合成(9C)>
(不融化及び炭素化処理)
上述したFeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物(5A)3.2067gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(9B)0.8220gを得た。
Example 9
<Carbon Material Synthesis of FeAA2, Iron (II) Chloride Tetrahydrate Addition (4-Py) 3 -TAz Mixture (9C)>
(Infusibilization and carbonization treatment)
The above-described FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture (5A) (3.2067 g) was weighed into a quartz boat and inserted into a tubular furnace at 4.0 cmφ (inner diameter: 3. 6 cmφ) was installed in the center of the quartz tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature. The temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C. per minute and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (9B) 0.8220g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(9B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(9C)0.5407gを得た。得られた酸洗浄済み炭素材料(9C)を実施例9の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (9B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.5407 g of acid-washed carbon material (9C). The obtained acid-washed carbon material (9C) was used as the nitrogen-containing carbon alloy of Example 9. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例9の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 9 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例10)
<FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の炭素材料合成(10C)>
(FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の調製)
(3−Py)3−TAz6.30g,FeAA2 0.403g、塩化鉄(II)4水和物 6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物(10A)を得た。
(Example 10)
<Carbon Material Synthesis of FeAA2, Iron (II) Chloride Tetrahydrate Addition (3-Py) 3 -TAz Mixture (10C)>
(FeAA2, Fe (II) chloride tetrahydrate added (3-Py) 3 -TAz mixture preparation)
(3-Py) 3 -TAz 6.30 g, FeAA2 0.403 g, iron (II) chloride tetrahydrate 6.30 g was added, then mechanically pulverized and mixed, FeAA2 and iron (II) chloride tetrahydrate added A (3-Py) 3- TAz mixture (10A) was obtained.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物(10A)3.1936gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(10B)1.1322gを得た。
(Infusibilization and carbonization treatment)
FeAA2, iron (II) chloride tetrahydrate added (3-Py) 3 -TAz mixture (10A) 3.1936 g was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) In the center of the quartz tube, nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (10B) 1.1322g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(10B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(10C)0.6234gを得た。得られた酸洗浄済み炭素材料(10C)を実施例10の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (10B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until no coloration occurred. After washing with water, it was filtered and air dried. Furthermore, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.6234 g of acid-cleaned carbon material (10C). The obtained acid-washed carbon material (10C) was used as the nitrogen-containing carbon alloy of Example 10. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例10の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 10 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例11)
<FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の炭素材料合成(11C)>
(不融化及び炭素化処理)
上述したFeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物(10A)3.0646gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。30℃から800℃まで毎分5℃昇温、800℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(11B)0.8184gを得た。
(Example 11)
<FeAA2, iron (II) chloride tetrahydrate added (3-Py) 3 -TAz mixture carbon material synthesis (11C)>
(Infusibilization and carbonization treatment)
The above-described FeAA2 and iron chloride (II) tetrahydrate added (3-Py) 3 -TAz mixture (10A) (3.0646 g) was weighed into a quartz boat and inserted into a tubular furnace at 4.0 cmφ (inner diameter 3. 6 cmφ) was installed in the center of the quartz tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature. The temperature was raised from 30 ° C. to 800 ° C. by 5 ° C. per minute and held at 800 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (11B) 0.8184g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(11B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(11C)0.5646gを得た。得られた酸洗浄済み炭素材料(11C)を実施例11の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (11B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight as it was to obtain 0.5646 g of acid-washed carbon material (11C). The obtained acid-washed carbon material (11C) was used as the nitrogen-containing carbon alloy of Example 11. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例11の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 11 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例12)
<FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の炭素材料合成(12C)>
(不融化及び炭素化処理)
上述したFeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物(10A)3.0131gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。30℃から900℃まで毎分5℃昇温、900℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(12B)0.7353gを得た。
(Example 12)
<Carbon Material Synthesis of FeAA2, Iron Chloride (II) Tetrahydrate Addition (3-Py) 3 -TAz Mixture (12C)>
(Infusibilization and carbonization treatment)
The above-described FeAA2, iron chloride (II) tetrahydrate added (3-Py) 3 -TAz mixture (10A) (3.0131 g) was weighed into a quartz boat and inserted into a tubular furnace at 4.0 cmφ (inner diameter: 3. 6 cmφ) was installed in the center of the quartz tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature. The temperature was raised from 30 ° C to 900 ° C at 5 ° C per minute and held at 900 ° C for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (12B) 0.7353g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(12B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(12C)0.5141gを得た。得られた酸洗浄済み炭素材料(12C)を実施例12の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (12B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant liquid were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.5141 g of acid-washed carbon material (12C). The obtained acid cleaned carbon material (12C) was used as the nitrogen-containing carbon alloy of Example 12. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例12の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 12 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例13)
<FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の炭素材料合成(13C)>
(不融化及び炭素化処理)
上述したFeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物(10A)3.0748gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(13B)0.8436gを得た。
(Example 13)
<Carbon Material Synthesis of FeAA2, Iron (II) Chloride Tetrahydrate Addition (3-Py) 3 -TAz Mixture (13C)>
(Infusibilization and carbonization treatment)
The above-described FeAA2, iron chloride (II) tetrahydrate added (3-Py) 3 -TAz mixture (10A) (3.0748 g) was weighed into a quartz boat and inserted into a tubular furnace at 4.0 cmφ (inner diameter 3. 6 cmφ) was installed in the center of the quartz tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature. The temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C. per minute and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (13B) 0.8436g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(13B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(13C)0.5610gを得た。得られた酸洗浄済み炭素材料(13C)を実施例13の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (13B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.5610 g of acid-cleaned carbon material (13C). The obtained acid cleaned carbon material (13C) was used as the nitrogen-containing carbon alloy of Example 13. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例13の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 13 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例14)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−Py混合物の炭素材料合成(14C)>
((4−Py)3−Pyの調製)
CrystEngComm,2011,13,6864−6870.を参考に、(4−Py)3−Pyを調整した。4−アセチルピリジン1.21g、ピリジン−4−カルボキシアルデヒド0.54gをエタノール40mLに溶解し、KOH0.62g、32%アンモニア水20mLを加え、24時間室温で撹拌した。析出した固体をろ過し、水、エタノールで洗浄乾燥後、エタノールで再結晶し、(4−Py)3−Pyを1.00g得た。
(Example 14)
<FeAA2, Fe (II) chloride tetrahydrate added (4-Py) 3 -Py mixture carbon material synthesis (14C)>
(Preparation of (4-Py) 3 -Py)
CrystEngCom, 2011, 13, 6864-6870. (4-Py) 3 -Py was adjusted. 1.21 g of 4-acetylpyridine and 0.54 g of pyridine-4-carboxaldehyde were dissolved in 40 mL of ethanol, 0.62 g of KOH and 20 mL of 32% aqueous ammonia were added, and the mixture was stirred at room temperature for 24 hours. The precipitated solid was filtered, washed with water and ethanol, dried and recrystallized with ethanol to obtain 1.00 g of (4-Py) 3 -Py.

Figure 2015027934
Figure 2015027934

分子式:C20144、分子量:310.35
元素分析(計算値):C, 77.40, H, 4.55, N, 18.05
Molecular formula: C 20 H 14 N 4 , molecular weight: 310.35
Elemental analysis (calculated value): C, 77.40, H, 4.55, N, 18.05

(FeAA2、塩化鉄(II)4水和物添加(4−Py)3−Py混合物の調製)
上述の(4−Py)3−Py6.30g,FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(4−Py)3−Py混合物(14A)を得た。
(FeAA2, iron (II) chloride tetrahydrate added (4-Py) 3 -Py mixture preparation)
After adding the above (4-Py) 3 -Py 6.30 g, FeAA2 0.403 g, iron (II) chloride tetrahydrate 6.30 g, mechanically pulverized and mixed, FeAA2, iron chloride (II) tetrahydrate Product addition (4-Py) 3 -Py mixture (14A) was obtained.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物(14A)3.2001gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(14B)1.5185gを得た。
(Infusibilization and carbonization treatment)
FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture (14A) 3.2001 g was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) In the center of the quartz tube, nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (14B) 1.5185g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(14B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(14C)0.8111gを得た。得られた酸洗浄済み炭素材料(14C)を実施例14の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (14B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.8111 g of acid-washed carbon material (14C). The obtained acid-washed carbon material (14C) was used as the nitrogen-containing carbon alloy of Example 14. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例14の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 14 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例15)
<FeAA2、塩化鉄(II)4水和物添加(4−MePy)3−TAz/I混合物の炭素材料合成(15C)>
(FeAA2、(4−MePy)3−TAz/Iの調製)
Liebigs Annalen der Chemie,1991,10,1021−1028.を参考に、(4−MePy)3−TAz/Iを調整した。実施例1に記載の(4−Py)3−TAz0.30g、MeI0.54g,DMF5mLをオートクレーブに入れ、90℃で4日間攪拌した。空冷後、沈殿物を濾過し、アセトンで洗浄、乾燥後、(4−MePy)3−TAz/Iを0.55g得た。
(Example 15)
<FeAA2, iron chloride (II) tetrahydrate added (4-MePy) 3 -TAz / I mixture carbon material synthesis (15C)>
(Preparation of FeAA2, (4-MePy) 3 -TAz / I)
Liebigs Analder der Chemie, 1991, 10, 1021-1028. (4-MePy) 3 -TAz / I was adjusted with reference to FIG. (4-Py) 3 -TAz 0.30 g, MeI 0.54 g, and DMF 5 mL described in Example 1 were placed in an autoclave and stirred at 90 ° C. for 4 days. After air cooling, the precipitate was filtered, washed with acetone and dried to obtain 0.55 g of (4-MePy) 3 -TAz / I.

Figure 2015027934
Figure 2015027934

分子式:C212136、分子量:738.15
元素分析(計算値):C, 34.17, H, 2.87, I, 51.58, N, 11.39
Molecular formula: C 21 H 21 I 3 N 6 , molecular weight: 738.15
Elemental analysis (calculated values): C, 34.17, H, 2.87, I, 51.58, N, 11.39

(FeAA2、塩化鉄(II)4水和物添加(4−MePy)3−TAz/I混合物の調製)
上述の(4−MePy)3−TAz/I 6.30g,FeAA2 0.403g、塩化鉄(II)4水和物 6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(4−MePy)3−TAz/I混合物(15A)を得た。
(FeAA2, iron (II) chloride tetrahydrate added (4-MePy) 3 -TAz / I mixture preparation)
After adding the above (4-MePy) 3 -TAz / I 6.30 g, FeAA2 0.403 g, iron (II) chloride tetrahydrate 6.30 g, mechanically pulverized and mixed, FeAA2, iron chloride (II) Tetrahydrate addition (4-MePy) 3- TAz / I mixture (15A) was obtained.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(4−MePy)3−TAz/I混合物(15A)2.0237gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(15B)0.5176gを得た。
(Infusibilization and carbonization treatment)
FeAA2, iron chloride (II) tetrahydrate added (4-MePy) 3 -TAz / I mixture (15A) 2.0237 g was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3. 6 cmφ) was installed in the center of the quartz tube, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (15B) 0.5176g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(15B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(15C)0.3096gを得た。得られた酸洗浄済み炭素材料(15C)を実施例15の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (15B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.3096 g of acid-washed carbon material (15C). The obtained acid cleaned carbon material (15C) was used as the nitrogen-containing carbon alloy of Example 15. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例15の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 15 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例16)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料の再焼成および酸処理(16C)>
(不融化及び炭素化処理 焼成方法A)
実施例5の酸洗浄済み炭素材料(5C)0.5179gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。なお、焼成方法Aは、窒素流通による置換のみを実施する焼成方法である。
昇温時に窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(16B)0.4254gを得た。
(Example 16)
<Refiring and acid treatment of carbon material of FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture (16C)>
(Infusibilization and carbonization treatment firing method A)
0.5179 g of the acid-cleaned carbon material (5C) of Example 5 was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace. The mixture was circulated for 200 minutes for 30 minutes at room temperature. In addition, the baking method A is a baking method which implements only substitution by nitrogen circulation.
Nitrogen was lowered to 20 mL / min during the temperature increase, and the temperature was increased from 30 ° C. to 1000 ° C. at 5 ° C./min and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (16B) 0.4254g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(16B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(16C)0.3645gを得た。得られた酸洗浄済み炭素材料(16C)を実施例16の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (16B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.3645 g of acid-washed carbon material (16C). The obtained acid cleaned carbon material (16C) was used as the nitrogen-containing carbon alloy of Example 16. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例16の含窒素カーボンアロイ材料25mgに、バインダーとしてナフィオン溶液(5%アルコール水溶液)220mgと溶媒としての水2.4mL、1−プロパノール(IPA)1.6mLを加え、実施例1と同様にして、含窒素カーボンアロイ分散液を調整し、含窒素カーボンアロイ分散液を含窒素カーボンアロイが0.5mg/cm2になるようにカーボン電極上に塗布し、室温で乾燥させて、カーボンアロイ塗付電極を製造した以外は実施例1と同様にして、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
To 25 mg of the nitrogen-containing carbon alloy material obtained in Example 16, 220 mg of Nafion solution (5% alcohol aqueous solution) as a binder, 2.4 mL of water as a solvent, and 1.6 mL of 1-propanol (IPA) were added. In the same manner as above, a nitrogen-containing carbon alloy dispersion was prepared, and the nitrogen-containing carbon alloy dispersion was applied onto the carbon electrode so that the nitrogen-containing carbon alloy was 0.5 mg / cm 2 , and dried at room temperature. The ORR activity value was measured in the same manner as in Example 1 except that a carbon alloy-coated electrode was produced. The results are shown in Table 1 below.

(実施例17)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料の再焼成および酸処理(17C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換)
実施例5の酸洗浄済み炭素材料(5C)0.5095gを石英ボートに測り取り、真空ガス置換炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。なお、焼成方法Bは真空ポンプで脱気した後、窒素置換する操作を3回繰り返す焼成方法である。
その後、昇温時に窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(17B)0.3915gを得た。
(Example 17)
<FeAA2, iron (II) chloride tetrahydrate added (4-Py) 3 -TAz mixture carbon material refiring and acid treatment (17C)>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement)
0.5095 g of the acid-washed carbon material (5C) of Example 5 was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement furnace, and nitrogen was added. Was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. In addition, the firing method B is a firing method in which the operation of deaeration with a vacuum pump and then nitrogen replacement is repeated three times.
Thereafter, nitrogen was lowered to 20 mL / min during the temperature rise, and the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (17B) 0.3915g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(17B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(17C)0.3677gを得た。得られた酸洗浄済み炭素材料(17C)を実施例17の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (17B) was pulverized with an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until no coloration occurred. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.3677 g of acid-washed carbon material (17C). The obtained acid-washed carbon material (17C) was used as the nitrogen-containing carbon alloy of Example 17. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例17の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 17 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例18)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料の再焼成および酸処理(18C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例5の酸洗浄済み炭素材料(5C)0.21658gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。なお、焼成方法Cは真空ポンプで脱気した後、窒素置換する操作を3回繰り返し、回転炉で焼成時に1.3rpmで試料管を回転させる焼成方法である。
その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(18B)0.1704gを得た。
(Example 18)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture carbon material refiring and acid treatment (18C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
Weighing 0.21658 g of the acid-cleaned carbon material of Example 5 (5C) into a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. The firing method C is a firing method in which after degassing with a vacuum pump, the operation of replacing nitrogen is repeated three times, and the sample tube is rotated at 1.3 rpm during firing in a rotary furnace.
Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (18B) 0.1704g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(18B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(18C)0.1462gを得た。得られた酸洗浄済み炭素材料(18C)を実施例18の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (18B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant liquid were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.1462 g of acid-washed carbon material (18C). The obtained acid-washed carbon material (18C) was used as the nitrogen-containing carbon alloy of Example 18. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例18の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 18 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例19)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料の再焼成および酸処理(19C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例6の酸洗浄済み炭素材料(6C)0.2327gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(19B)0.2121gを得た。
(Example 19)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture carbon material refiring and acid treatment (19C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
Weigh out 0.2327 g of the acid-cleaned carbon material (6C) of Example 6 in a quartz boat and install it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (19B) 0.2121g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(19B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(19C)0.1677gを得た。得られた酸洗浄済み炭素材料(19C)を実施例19の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (19B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.1677 g of acid-washed carbon material (19C). The obtained acid cleaned carbon material (19C) was used as the nitrogen-containing carbon alloy of Example 19. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例19の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 19 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例20)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料の再焼成および酸処理(20C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例8の酸洗浄済み炭素材料(8C)0.3761gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(20B)0.3210gを得た。
(Example 20)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture carbon material refiring and acid treatment (20C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
0.3761 g of the acid-cleaned carbon material (8C) of Example 8 was measured on a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (20B) 0.3210g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(20B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(20C)0.2887gを得た。得られた酸洗浄済み炭素材料(20C)を実施例20の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (20B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight as it was to obtain 0.2887 g of the acid-washed carbon material (20C). The obtained acid-washed carbon material (20C) was used as the nitrogen-containing carbon alloy of Example 20. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例20の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 20 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例21)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料の再焼成および酸処理(21C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例9の酸洗浄済み炭素材料(9C)0.3588gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(21B)0.3486gを得た。
(Example 21)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture carbon material refiring and acid treatment (21C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
The acid-cleaned carbon material (9C) of Example 9 (0.3588 g) was weighed into a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (21B) 0.3486g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(21B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(21C)0.3264gを得た。得られた酸洗浄済み炭素材料(21C)を実施例21の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (21B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.3264 g of acid-washed carbon material (21C). The obtained acid cleaned carbon material (21C) was used as the nitrogen-containing carbon alloy of Example 21. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例21の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 21 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例22)
<FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の炭素材料の再焼成および酸処理(22C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例10の酸洗浄済み炭素材料(10C)0.4830gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(22B)0.4743gを得た。
(Example 22)
<FeAA2, iron chloride (II) tetrahydrate added (3-Py) 3 -TAz mixture carbon material refiring and acid treatment (22C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
0.4830 g of the acid-cleaned carbon material (10C) of Example 10 was measured in a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (22B) 0.4743g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(22B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(22C)0.3832gを得た。得られた酸洗浄済み炭素材料(22C)を実施例22の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (22B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.3832 g of acid-cleaned carbon material (22C). The obtained acid cleaned carbon material (22C) was used as the nitrogen-containing carbon alloy of Example 22. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例22の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 22 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例23)
<FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の炭素材料の再焼成および酸処理(23C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例11の酸洗浄済み炭素材料(11C)0.4239gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(23B)0.3752gを得た。
(Example 23)
<Refiring and acid treatment of carbon material of FeAA2, iron chloride (II) tetrahydrate added (3-Py) 3 -TAz mixture (23C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
0.4239 g of the acid-cleaned carbon material (11C) of Example 11 was weighed into a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (23B) 0.3752g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(23B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(23C)0.3481gを得た。得られた酸洗浄済み炭素材料(23C)を実施例23の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (23B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight as it was to obtain 0.3481 g of acid-washed carbon material (23C). The obtained acid-washed carbon material (23C) was used as the nitrogen-containing carbon alloy of Example 23. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例23の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 23 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例24)
<FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の炭素材料の再焼成および酸処理(24C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例12の酸洗浄済み炭素材料(12C)0.3881gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(24B)0.3848gを得た。
(Example 24)
<Refiring and acid treatment of carbon material of FeAA2, iron chloride (II) tetrahydrate added (3-Py) 3 -TAz mixture (24C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
0.3881 g of the acid-cleaned carbon material (12C) of Example 12 was weighed into a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (24B) 0.3848g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(24B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(24C)0.3104gを得た。得られた酸洗浄済み炭素材料(24C)を実施例24の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (24B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.3104 g of acid-cleaned carbon material (24C). The obtained acid-washed carbon material (24C) was used as the nitrogen-containing carbon alloy of Example 24. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例24の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 24 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例25)
<FeAA2、塩化鉄(II)4水和物添加(3−Py)3−TAz混合物の炭素材料の再焼成および酸処理(25C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例13の酸洗浄済み炭素材料(13C)0.4201gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(25B)0.3466gを得た。
(Example 25)
<FeAA2, iron chloride (II) tetrahydrate added (3-Py) 3 -TAz mixture carbon material refiring and acid treatment (25C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
0.4201 g of the acid-cleaned carbon material of Example 13 (13C) was weighed into a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (25B) 0.3466g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(25B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(25C)0.3019gを得た。得られた酸洗浄済み炭素材料(25C)を実施例25の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (25B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then allowed to stand overnight to obtain 0.3019 g of an acid cleaned carbon material (25C). The obtained acid cleaned carbon material (25C) was used as the nitrogen-containing carbon alloy of Example 25. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例25の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 25 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例26)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−Py混合物の炭素材料の再焼成および酸処理(26C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例14の酸洗浄済み炭素材料(14C)0.2360gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(26B)0.1924gを得た。
(Example 26)
<FeAA2, iron (II) chloride tetrahydrate added (4-Py) 3 -Py mixture carbon material refiring and acid treatment (26C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
Weighing 0.2360 g of the acid-cleaned carbon material of Example 14 (14C) into a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (26B) 0.1924g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(26B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(26C)0.1370gを得た。得られた酸洗浄済み炭素材料(26C)を実施例26の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (26B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.1370 g of acid-washed carbon material (26C). The obtained acid-washed carbon material (26C) was used as the nitrogen-containing carbon alloy of Example 26. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例26の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 26 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例27)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料の二酸化炭素賦活および酸処理(27C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例8の酸洗浄済み炭素材料(8C)0.4060gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃に到達したところで石英管を毎分1.3rpmで回転させた。1000℃で40分間保持したのち、窒素から、10%CO2を混合した窒素(毎分20mL)に切り替え20分間保持した。その後、3時間かけて室温まで冷却し、炭素材料(27B)0.3053gを得た。
(Example 27)
<FeAA2, Fe (II) chloride tetrahydrate added (4-Py) 3- TAz mixture carbon material activation and acid treatment (27C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
0.460 g of acid-cleaned carbon material (8C) of Example 8 was weighed into a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, the nitrogen was reduced to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and when the temperature reached 1000 ° C., the quartz tube was rotated at 1.3 rpm. After holding at 1000 ° C. for 40 minutes, the nitrogen was switched to nitrogen mixed with 10% CO 2 (20 mL per minute) and held for 20 minutes. Then, it cooled to room temperature over 3 hours, and obtained 0.3053g of carbon materials (27B).

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(27B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(27C)0.2793gを得た。得られた酸洗浄済み炭素材料(27C)を実施例27の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (27B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then allowed to stand overnight to obtain 0.2793 g of acid-cleaned carbon material (27C). The obtained acid cleaned carbon material (27C) was used as the nitrogen-containing carbon alloy of Example 27. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例27の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 27 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例28)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−TAz混合物の炭素材料のアンモニア賦活および酸処理(28C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例8の酸洗浄済み炭素材料(8C)0.2093gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃に到達したところで石英管を毎分1.3rpmで回転させた。1000℃で40分間保持したのち、窒素から、10%NH3を混合した窒素(毎分20mL)に切り替え20分間保持した。その後、3時間かけて室温まで冷却し、炭素材料(28B)0.1176gを得た。
(Example 28)
<Ammonia activation and acid treatment (28C) of carbon material of FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -TAz mixture>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
Weigh out 0.2093 g of the acid-cleaned carbon material (8C) of Example 8 in a quartz boat and install it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, the nitrogen was reduced to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and when the temperature reached 1000 ° C., the quartz tube was rotated at 1.3 rpm. After holding at 1000 ° C. for 40 minutes, the nitrogen was changed to nitrogen mixed with 10% NH 3 (20 mL / min) and held for 20 minutes. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (28B) 0.1176g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(28B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(28C)0.1053gを得た。得られた酸洗浄済み炭素材料(28C)を実施例28の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (28B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.1053 g of acid-washed carbon material (28C). The obtained acid-washed carbon material (28C) was used as the nitrogen-containing carbon alloy of Example 28. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例28の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 28 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(実施例30)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)2−TAz混合物の炭素材料合成(30C)>
((4−Py)2−TAzの調製)

Figure 2015027934
(Example 30)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py) 2- TAz mixture carbon material synthesis (30C)>
(Preparation of (4-Py) 2 -TAz)
Figure 2015027934

Tetrahedron, 1976, 32, 615.を参考に(4−Py)2−TAzを合成した。2.60gの4−シアノピリジン、59mgのNaOMeを7.5mLのMeOHに溶解し、室温で4時間撹拌後、2.03gのホルムアミジン塩酸塩のDMF溶液を滴下し、16時間攪拌した。溶媒を留去後、125℃で16時間攪拌した後、水25mLを加え、析出した固体を、水洗、トルエンで洗浄し、2.5gの(4−Py)2−TAzを得た。 Tetrahedron, 1976, 32, 615. (4-Py) 2 -TAz was synthesized with reference to FIG. 2.60 g of 4-cyanopyridine and 59 mg of NaOMe were dissolved in 7.5 mL of MeOH. After stirring at room temperature for 4 hours, 2.03 g of formamidine hydrochloride in DMF was added dropwise and stirred for 16 hours. After distilling off the solvent, the mixture was stirred at 125 ° C. for 16 hours, 25 mL of water was added, and the precipitated solid was washed with water and toluene to obtain 2.5 g of (4-Py) 2 -TAz.

Figure 2015027934
Figure 2015027934

分子式:C1395、分子量:235.24
元素分析(計算値):C, 66.37, H, 3.86, N, 29.77
Molecular formula: C 13 H 9 N 5, molecular weight: 235.24
Elemental analysis (calculated values): C, 66.37, H, 3.86, N, 29.77

(FeAA2、塩化鉄(II)4水和物添加(4−Py)2−TAz混合物の調製)
上述の(4−Py)2−TAz6.30g,FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(4−Py)2−TAz混合物(30A)を得た。
(FeAA2, iron (II) chloride tetrahydrate added (4-Py) 2 -TAz mixture preparation)
After adding the above-mentioned (4-Py) 2 -TAz 6.30 g, FeAA2 0.403 g and iron (II) chloride tetrahydrate 6.30 g, mechanically pulverized and mixed to obtain FeAA2 and iron (II) chloride tetrahydrate. Product addition (4-Py) 2- TAz mixture (30A) was obtained.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(4−Py)2−TAz混合物(30A)3.3.1916gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から800℃まで毎分5℃昇温、800℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(30B)0.6708gを得た。
(Infusibilization and carbonization treatment)
FeAA2, iron chloride (II) tetrahydrate added (4-Py) 2 -TAz mixture (30A) (3.31916 g) was weighed into a quartz boat and inserted into a tubular furnace at 4.0 cmφ (inner diameter 3. 6 cmφ) was placed in the center of the quartz tube, and nitrogen was circulated at 200 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 800 ° C. by 5 ° C. per minute and held at 800 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (30B) 0.6708g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(30B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(30C)0.4573gを得た。得られた酸洗浄済み炭素材料(30C)を実施例30の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (30B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then allowed to stand overnight to obtain 0.4573 g of acid-cleaned carbon material (30C). The obtained acid-washed carbon material (30C) was used as the nitrogen-containing carbon alloy of Example 30. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例30の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 30 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例40)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)2−TAz混合物の炭素材料の再焼成および酸処理(40C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例30の酸洗浄済み炭素材料(30C)0.2536gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分1.3rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(40B)0.2617gを得た。
(Example 40)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py) 2 -TAz mixture carbon material refiring and acid treatment (40C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
Weighing 0.2536 g of the acid-cleaned carbon material (30C) of Example 30 into a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas-substitution rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 1.3 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (40B) 0.2617g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(40B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(40C)0.1837gを得た。得られた酸洗浄済み炭素材料(40C)を実施例40の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (40B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight to obtain 0.1837 g of acid-cleaned carbon material (40C). The obtained acid-washed carbon material (40C) was used as the nitrogen-containing carbon alloy of Example 40. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例40の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 40 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例31)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)2Ph−TAz混合物の炭素材料合成(31C)>
((4−Py)2Ph−TAzの調製)

Figure 2015027934
(Example 31)
<FeAA2, Fe (II) chloride tetrahydrate added (4-Py) 2 Ph-TAz mixture carbon material synthesis (31C)>
(Preparation of (4-Py) 2 Ph-TAz)
Figure 2015027934

Chem. Commun., 2002, 1356.を参考に、窒素気流下、27.3mLのHNMe2(2M THF溶液)を500mLのジエチルエーテルに溶解し、−78℃で21mLのn−BuLi(2.6M ヘキサン溶液)を滴下した。0℃に昇温後、ベンゾニトリルを滴下、室温に戻し、15時間攪拌した。水を加え、析出した固体をろ過し、水、MeOHで洗浄乾燥後、(4−Py)2Ph−TAzを8.5g得た。 Chem. Commun. , 2002, 1356. , 27.3 mL of HNMe 2 (2M THF solution) was dissolved in 500 mL of diethyl ether under a nitrogen stream, and 21 mL of n-BuLi (2.6M hexane solution) was added dropwise at −78 ° C. After raising the temperature to 0 ° C., benzonitrile was added dropwise, the temperature was returned to room temperature, and stirring was continued for 15 hours. Water was added, the precipitated solid was filtered, washed with water and MeOH, and dried to obtain 8.5 g of (4-Py) 2 Ph-TAz.

Figure 2015027934
Figure 2015027934

分子式:C19135、分子量:311.34
元素分析(計算値):C, 73.30, H, 4.21, N, 22.49
Molecular formula: C 19 H 13 N 5 , molecular weight: 311.34
Elemental analysis (calculated values): C, 73.30, H, 4.21, N, 22.49

(FeAA2、塩化鉄(II)4水和物添加(4−Py)2Ph−TAz混合物の調製)
上述の(4−Py)2Ph−TAz6.30g,FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(4−Py)2Ph−TAz混合物(31A)を得た。
(FeAA2, iron (II) chloride tetrahydrate added (4-Py) 2 Ph-TAz mixture preparation)
After adding the above (4-Py) 2 Ph-TAz 6.30 g, FeAA2 0.403 g and iron (II) chloride tetrahydrate 6.30 g, mechanically pulverized and mixed, FeAA2 and iron (II) chloride 4 water A Japanese addition (4-Py) 2 Ph-TAz mixture (31A) was obtained.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(4−Py)2Ph−TAz混合物(31A)3.2291gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(31B)0.6304gを得た。
(Infusibilization and carbonization treatment)
FeAA2, iron chloride (II) tetrahydrate added (4-Py) 2 Ph-TAz mixture (31A) 3.2291 g was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ). ) And was circulated at room temperature for 200 minutes per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C. per minute and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (31B) 0.6304g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(31B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(31C)0.4526gを得た。得られた酸洗浄済み炭素材料(31C)を実施例31の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (31B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.4526 g of acid-washed carbon material (31C). The obtained acid-washed carbon material (31C) was used as the nitrogen-containing carbon alloy of Example 31. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例31の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 31 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例41)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)2Ph−TAz混合物の炭素材料の再焼成および酸処理(41C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換)
実施例31の酸洗浄済み炭素材料(31C)0.1872gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(41B)0.1685gを得た。
(Example 41)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py) 2 Ph-TAz mixture carbon material refiring and acid treatment (41C)>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement)
0.1872 g of the acid-cleaned carbon material (31C) of Example 31 was weighed into a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (41B) 0.1685g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(41B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(41C)0.1496gを得た。得られた酸洗浄済み炭素材料(41C)を実施例41の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (41B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.1496 g of acid-cleaned carbon material (41C). The obtained acid cleaned carbon material (41C) was used as the nitrogen-containing carbon alloy of Example 41. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例41の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 41 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例32)
<FeAA2、塩化鉄(II)4水和物添加(4−Py−≡−)3−TAz混合物の炭素材料合成(32C)>
(4−Py−≡−OHの調製)

Figure 2015027934
(Example 32)
<FeAA2, Fe (II) chloride tetrahydrate added (4-Py-≡-) 3 -TAz mixture carbon material synthesis (32C)>
(Preparation of 4-Py-≡-OH)
Figure 2015027934

JOC, 2001, 66, 7402.を参考に、4−Py−≡−OHを合成した。5.01gの4−bromopyridine hydrochloride, 180mgのPd(PPh32Cl2, 29mgのCuI、43mLのTHFに溶解し、17mLのNHEt2を添加後、窒素気流下45℃で4.5時間攪拌した。溶媒を減圧留去後、クロロホルム、水で抽出洗浄し、有機層を硫酸ナトリウムで乾燥、溶媒を減圧留去した。カラムクロマトグラフィー(クロロホルム:酢酸エチル=1:1)にて精製し、クロロホルム、ヘキサンで再結晶し、4−Py−≡−OHを3.80g得た。 JOC, 2001, 66, 7402. As a reference, 4-Py-≡-OH was synthesized. Dissolve in 5.01 g of 4-bromopyridine hydrochloride, 180 mg of Pd (PPh 3 ) 2 Cl 2 , 29 mg of CuI, 43 mL of THF, add 17 mL of NHEt 2 and stir at 45 ° C. under nitrogen flow for 4.5 hours. did. The solvent was distilled off under reduced pressure, extracted and washed with chloroform and water, the organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. Purification by column chromatography (chloroform: ethyl acetate = 1: 1) and recrystallization from chloroform and hexane gave 3.80 g of 4-Py-≡-OH.

(4−Py−≡の調製)

Figure 2015027934
(Preparation of 4-Py-≡)
Figure 2015027934

JOC, 2001, 66, 7402.を参考に、4−Py−≡を合成した。3.00gの4−Py−≡−OH、0.80gのNaOH(粉砕)を 90mLのトルエンに溶解し、3時間加熱還流した。残渣を除いた後、溶媒を減圧留去し、昇華精製により4−Py−≡を1.22g得た。   JOC, 2001, 66, 7402. As a reference, 4-Py-≡ was synthesized. 3.00 g of 4-Py-≡-OH and 0.80 g of NaOH (ground) were dissolved in 90 mL of toluene and heated to reflux for 3 hours. After removing the residue, the solvent was distilled off under reduced pressure, and 1.22 g of 4-Py-≡ was obtained by sublimation purification.

((4−Py−≡−)3−TAzの調製)

Figure 2015027934
(Preparation of (4-Py-≡-) 3 -TAz)
Figure 2015027934

2.41gの4−Py−≡を200mLのTHFに溶解し、窒素気流下−78℃で、9.9mLのn−BuLi(2.6Mヘキサン溶液)を滴下、30分撹拌した後、1.08g塩化シアヌルの60mLTHF溶液を滴下し、7時間攪拌後、水、酢酸エチルを加え、室温に戻し、析出した固体を濾過し、水、酢酸エチル、MeOHで洗浄後乾燥後、2.4gの(4−Py−≡−)3−TAz(黒色固体)を得た。 2.41 g of 4-Py-≡ was dissolved in 200 mL of THF, 9.9 mL of n-BuLi (2.6 M hexane solution) was added dropwise at −78 ° C. under a nitrogen stream, and the mixture was stirred for 30 minutes. 08 g of cyanuric chloride in 60 mL of THF was added dropwise, and after stirring for 7 hours, water and ethyl acetate were added, the mixture was returned to room temperature, the precipitated solid was filtered, washed with water, ethyl acetate and MeOH, dried and 2.4 g of ( 4-Py-≡-) 3- TAz (black solid) was obtained.

Figure 2015027934
Figure 2015027934

分子式:C24126、分子量:384.39
元素分析(計算値):C, 74.99, H, 3.15, N, 21.86
Molecular formula: C 24 H 12 N 6 , molecular weight: 384.39
Elemental analysis (calculated values): C, 74.99, H, 3.15, N, 21.86

(FeAA2、塩化鉄(II)4水和物添加(4−Py−≡−)3−TAz混合物の調製)
上述の(4−Py−≡−)3−TAz6.30g,FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(4−Py−≡−)3−TAz混合物(32A)を得た。
(FeAA2, iron (II) chloride tetrahydrate added (4-Py-≡-) 3 -TAz mixture preparation)
After adding the above (4-Py-≡-) 3 -TAz 6.30 g, FeAA2 0.403 g and iron (II) chloride tetrahydrate 6.30 g, mechanically pulverized and mixed to obtain FeAA2 and iron (II) chloride. A tetrahydrate added (4-Py-≡-) 3 -TAz mixture (32A) was obtained.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(4−Py−≡−)3−TAz混合物(32A)3.1443gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から900℃まで毎分5℃昇温、900℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(32B)1.1595gを得た。
(Infusibilization and carbonization treatment)
FeAA2, iron chloride (II) tetrahydrate added (4-Py-≡-) 3 -TAz mixture (32A) 3.1443 g was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3 .6 cmφ) at the center of the quartz tube and nitrogen was circulated at 200 mL / min for 30 minutes at room temperature.
The temperature was raised from 30 ° C to 900 ° C at 5 ° C per minute and held at 900 ° C for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (32B) 1.1595g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(32B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(32C)0.7823gを得た。得られた酸洗浄済み炭素材料(32C)を実施例32の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (32B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant liquid were repeated until there was no coloration. After washing with water, it was filtered and air dried. Furthermore, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.7823 g of acid-washed carbon material (32C). The obtained acid cleaned carbon material (32C) was used as the nitrogen-containing carbon alloy of Example 32. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例32の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 32 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例42)
<FeAA2、塩化鉄(II)4水和物添加(4−Py−≡−)3−TAz混合物の炭素材料の再焼成および酸処理(42C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換)
実施例32の酸洗浄済み炭素材料(32C)0.3465gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(42B)0.3331gを得た。
(Example 42)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py-≡-) 3 -TAz mixture carbon material refiring and acid treatment (42C)>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement)
The acid-cleaned carbon material (32C) 0.3465 g of Example 32 was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (42B) 0.3331g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(42B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(42C)0.3109gを得た。得られた酸洗浄済み炭素材料(42C)を実施例42の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (42B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.3109 g of acid-washed carbon material (42C). The obtained acid cleaned carbon material (42C) was used as the nitrogen-containing carbon alloy of Example 42. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例42の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 42 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例33)
<FeAA2、塩化鉄(II)4水和物添加4,4’−Py−Py混合物の炭素材料合成(33C)>
(Example 33)
<Synthesis of carbon material of FeAA2, iron chloride (II) tetrahydrate added 4,4'-Py-Py mixture (33C)>

(FeAA2、塩化鉄(II)4水和物添加4,4’−Py−Py混合物の調製)
上述の4,4’−Py−Py6.30g(和光純薬工業社製),FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加4,4’−Py−Py混合物(33A)を得た。
(Preparation of FeAA2, iron chloride (II) tetrahydrate added 4,4'-Py-Py mixture)
After adding the above 4,4′-Py-Py 6.30 g (manufactured by Wako Pure Chemical Industries, Ltd.), 0.403 g of FeAA2, and 6.30 g of iron (II) chloride tetrahydrate, mechanically pulverized and mixed, FeAA2, An iron (II) chloride tetrahydrate-added 4,4′-Py-Py mixture (33A) was obtained.

Figure 2015027934
Figure 2015027934

分子式:C1082、分子量:156.18
元素分析(計算値):C, 76.90, H, 5.16, N, 17.94
Molecular formula: C 10 H 8 N 2 , molecular weight: 156.18
Elemental analysis (calculated value): C, 76.90, H, 5.16, N, 17.94

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加4,4’−Py−Py混合物(33A)3.1826gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(33B)0.7579gを得た。
(Infusibilization and carbonization treatment)
We measured 3.1826 g of FeAA2, iron chloride (II) tetrahydrate added 4,4'-Py-Py mixture (33A) in a quartz boat and inserted it into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) In the center of the quartz tube, nitrogen was circulated at 200 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (33B) 0.7579g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(33B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(33C)0.4257gを得た。得られた酸洗浄済み炭素材料(33C)を実施例33の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (33B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant liquid were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then allowed to stand overnight to obtain 0.4257 g of acid-washed carbon material (33C). The obtained acid cleaned carbon material (33C) was used as the nitrogen-containing carbon alloy of Example 33. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例33の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 33 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例43)
<FeAA2、塩化鉄(II)4水和物添加4,4’−Py−Py混合物の炭素材料の再焼成および酸処理(43C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換)
実施例33の酸洗浄済み炭素材料(33C)0.3116gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(43B)0.2692gを得た。
(Example 43)
<Refiring and Acid Treatment of Carbon Material of FeAA2, Iron (II) Chloride Tetrahydrate Added 4,4'-Py-Py Mixture (43C)>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement)
Weighing 0.3116 g of the acid-cleaned carbon material (33C) of Example 33 into a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (43B) 0.2692g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(43B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(43C)0.2123gを得た。得られた酸洗浄済み炭素材料(43C)を実施例43の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (43B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then allowed to stand overnight to obtain 0.2123 g of acid-cleaned carbon material (43C). The obtained acid cleaned carbon material (43C) was used as the nitrogen-containing carbon alloy of Example 43. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例43の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 43 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例34)
<FeAA2、塩化鉄(II)4水和物添加3,3’−Py−Py混合物の炭素材料合成(34C)>
(Example 34)
<Synthesis of Carbon Material of FeAA2, Iron Chloride Tetrahydrate Added 3,3′-Py-Py Mixture (34C)>

(FeAA2、塩化鉄(II)4水和物添加3,3’−Py−Py混合物の調製)
3,3’−Py−Py6.30g(東京化成社製),FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加3,3’−Py−Py混合物(34A)を得た。
(Preparation of FeAA2, iron (II) chloride tetrahydrate added 3,3′-Py-Py mixture)
3,3′-Py-Py 6.30 g (manufactured by Tokyo Chemical Industry Co., Ltd.), FeAA2 0.403 g, iron chloride (II) tetrahydrate 6.30 g were added, and then mechanically pulverized and mixed to obtain FeAA2, iron chloride (II ) A tetrahydrate-added 3,3′-Py-Py mixture (34A) was obtained.

Figure 2015027934
Figure 2015027934

分子式:C1082、分子量:156.18
元素分析(計算値):C, 76.90, H, 5.16, N, 17.94
Molecular formula: C 10 H 8 N 2 , molecular weight: 156.18
Elemental analysis (calculated value): C, 76.90, H, 5.16, N, 17.94

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加3,3’−Py−Py混合物(34A)1.2000gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(34B)0.2014gを得た。
(Infusibilization and carbonization treatment)
1.2000 g of FeAA2, iron chloride (II) tetrahydrate added 3,3′-Py-Py mixture (34A) was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) In the center of the quartz tube, nitrogen was circulated at 200 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (34B) 0.2014g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(34B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(34C)0.1562gを得た。得られた酸洗浄済み炭素材料(34C)を実施例34の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (34B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant liquid were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.1562 g of acid-washed carbon material (34C). The obtained acid-washed carbon material (34C) was used as the nitrogen-containing carbon alloy of Example 34. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例34の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 34 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例44)
<FeAA2、塩化鉄(II)4水和物添加3,3’−Py−Py混合物の炭素材料の再焼成および酸処理(44C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換)
実施例34の酸洗浄済み炭素材料(34C)0.0886gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(44B)0.0689gを得た。
(Example 44)
<Refiring and acid treatment of carbon material of FeAA2, iron chloride (II) tetrahydrate added 3,3'-Py-Py mixture (44C)>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement)
0.0886 g of the acid-cleaned carbon material (34C) of Example 34 was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (44B) 0.0689g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(44B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(44C)0.0554gを得た。得られた酸洗浄済み炭素材料(44C)を実施例44の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (44B) was pulverized with an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until no coloration occurred. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then allowed to stand overnight to obtain 0.0554 g of an acid cleaned carbon material (44C). The obtained acid cleaned carbon material (44C) was used as the nitrogen-containing carbon alloy of Example 44. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例44の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 44 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例35)
<FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethylene混合物の炭素材料合成(35C)>
(Example 35)
<Carbon material synthesis of FeAA2, iron (II) chloride tetrahydrate added 1,2- (4-Py) 2-Ethylene mixture (35C)>

(FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethylene混合物の調製)
1,2−(4−Py)2−Ethylene6.30g(ALDRICH社製),FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethylene混合物(35A)を得た。
(Preparation of FeAA2, iron (II) chloride tetrahydrate added 1,2- (4-Py) 2-Ethylene mixture)
1,2- (4-Py) 2-Ethylene 6.30 g (manufactured by ALDRICH), FeAA2 0.403 g, iron (II) chloride tetrahydrate 6.30 g were added, and then mechanically pulverized and mixed to obtain FeAA2, chloride. An iron (II) tetrahydrate-added 1,2- (4-Py) 2-Ethylene mixture (35A) was obtained.

Figure 2015027934
Figure 2015027934

分子式:C12102、分子量:182.22
元素分析(計算値):C, 79.10, H, 5.53, N, 15.37
Molecular formula: C 12 H 10 N 2 , molecular weight: 182.22
Elemental analysis (calculated values): C, 79.10, H, 5.53, N, 15.37

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethylene混合物(35A)3.1772gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(35B)0.8691gを得た。
(Infusibilization and carbonization treatment)
Feal 2 and iron chloride (II) tetrahydrate added 1,2- (4-Py) 2-Ethylene (35A) 3.1772 g was weighed into a quartz boat and inserted into a tubular furnace at 4.0 cmφ (inner diameter) It was installed at the center of a quartz tube of 3.6 cmφ, and nitrogen was circulated at 200 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (35B) 0.8691g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(35B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(35C)0.4752gを得た。得られた酸洗浄済み炭素材料(35C)を実施例35の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (35B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant liquid were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.4752 g of acid-washed carbon material (35C). The obtained acid-washed carbon material (35C) was used as the nitrogen-containing carbon alloy of Example 35. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例35の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 35 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例45)
<FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethylene混合物の炭素材料の再焼成および酸処理(45C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換炉)
実施例35の酸洗浄済み炭素材料(35C)0.2146gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(45B)0.1867gを得た。
(Example 45)
<Refiring and acid treatment (45C) of carbon material of FeAA2, iron (II) chloride tetrahydrate added 1,2- (4-Py) 2-Ethylene mixture>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement furnace)
Weighing 0.2146 g of the acid-cleaned carbon material of Example 35 (35C) into a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (45B) 0.1867g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(45B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(45C)0.1604gを得た。得られた酸洗浄済み炭素材料(45C)を実施例45の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (45B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.1604 g of an acid cleaned carbon material (45C). The obtained acid-washed carbon material (45C) was used as the nitrogen-containing carbon alloy of Example 45. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例45の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 45 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例36)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)(2−Py)2−TAz混合物の炭素材料合成(36C)>
((4−Py)(2−Py)2−TAzの調整)
Chem.Comm,2002,1356−1357.を参考に、(4−Py)(2−Py)2−TAzを調整した。
4−シアノピリジン 5g、2−シアノピリジン 5gにNaH 200mgを添加し、180℃で30分間加熱後、室温まで冷却し、トルエン 500mLに加熱溶解して、ろ過した。得られたトルエンン溶液を脱イオン水 200mLにNiCl2・6H2O 3gを溶解した水溶液で抽出し、これにKCN 5gを添加し、得られた沈殿をろ過・乾燥し、エタノールで再結晶し、(4−Py)(2−Py)2TAzを2g得た。
(Example 36)
<Carbon material synthesis of FeAA2, iron chloride (II) tetrahydrate added (4-Py) (2-Py) 2 -TAz mixture (36C)>
(Adjustment of (4-Py) (2-Py) 2 -TAz)
Chem. Comm, 2002, 1356-1357. (4-Py) (2-Py) 2- TAz was adjusted with reference to FIG.
200 mg of NaH was added to 5 g of 4-cyanopyridine and 5 g of 2-cyanopyridine, heated at 180 ° C. for 30 minutes, cooled to room temperature, dissolved in 500 mL of toluene by heating, and filtered. The obtained toluene solution was extracted with an aqueous solution obtained by dissolving 3 g of NiCl 2 .6H 2 O in 200 mL of deionized water, 5 g of KCN was added thereto, the resulting precipitate was filtered and dried, recrystallized with ethanol, (4-Py) and (2-Py) 2 TAz give 2g.

Figure 2015027934
Figure 2015027934

分子式:C20144、分子量:310.35
元素分析(計算値):C, 77.40, H, 4.55, N, 18.05
Molecular formula: C 20 H 14 N 4 , molecular weight: 310.35
Elemental analysis (calculated value): C, 77.40, H, 4.55, N, 18.05

(FeAA2、塩化鉄(II)4水和物添加(4−Py)(2−Py)2−TAz混合物の調製)
上述の(4−Py)(2−Py)2−TAz6.30g、FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(4−Py)(2−Py)2−TAz混合物(36A)を得た。
(FeAA2, iron (II) chloride tetrahydrate added (4-Py) (2-Py) 2 -TAz mixture preparation)
After adding the above-mentioned (4-Py) (2-Py) 2 -TAz 6.30 g, FeAA2 0.403 g and iron (II) chloride tetrahydrate 6.30 g, mechanically pulverizing and mixing, FeAA2 and iron chloride ( II) Tetrahydrate added (4-Py) (2-Py) 2 -TAz mixture (36A) was obtained.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(4−Py)(2−Py)2−TAz混合物(36A)3.1877gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(36B)1.2970gを得た。
(Infusibilization and carbonization treatment)
3.1877 g of FeAA2, iron chloride (II) tetrahydrate added (4-Py) (2-Py) 2 -TAz mixture (36A) was weighed into a quartz boat and inserted into a tubular furnace at 4.0 cmφ ( It was installed in the center of a quartz tube having an inner diameter of 3.6 cmφ, and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (36B) 1.2970g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(36B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(36C)0.6788gを得た。得られた酸洗浄済み炭素材料(36C)を実施例36の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (36B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.6788 g of acid-washed carbon material (36C). The obtained acid cleaned carbon material (36C) was used as the nitrogen-containing carbon alloy of Example 36. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例36の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 36 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例46)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)(2−Py)2−TAz混合物の炭素材料の再焼成および酸処理(46C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換炉)
実施例36の酸洗浄済み炭素材料(36C)0.5099gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(46B)0.4191gを得た。
(Example 46)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py) (2-Py) 2- TAz mixture carbon material refiring and acid treatment (46C)>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement furnace)
Weighing 0.5099 g of the acid-cleaned carbon material (36C) of Example 36 into a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (46B) 0.4191g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(46B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(46C)0.3840gを得た。得られた酸洗浄済み炭素材料(46C)を実施例46の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (46B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.3840 g of acid-washed carbon material (46C). The obtained acid cleaned carbon material (46C) was used as the nitrogen-containing carbon alloy of Example 46. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例46の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 46 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例50)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3Ph−TAz混合物の炭素材料合成(50C)>
((4−Py)3−Phの調製)

Figure 2015027934
(Example 50)
<Carbon material synthesis of FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 Ph-TAz mixture (50C)>
(Preparation of (4-Py) 3 -Ph)
Figure 2015027934

Organic Lett.,2008,10,2513.を参考に(4−Py)3−Phを合成した。157mgの1,3,5−トリブロモベンゼン、250mgの4‐ピリジンボロン酸、80mgのPd(dppf)Cl2・CH2Cl2 1.60gの炭酸ナトリウムを、20mLの1,4−ジオキサン、20mLの純水に溶解し、窒素バブリングで脱気した後、30時間加熱還流した。ジクロロメタンで抽出し溶媒留去した後、アルミナカラムクロマトグラフィー(クロロホルム)で精製した。最後に、MeOH炊き洗いによって、4.9gの(4−Py)3−Phを得た。 Organic Lett. , 2008, 10, 2513. (4-Py) 3 -Ph was synthesized with reference to FIG. 157 mg 1,3,5-tribromobenzene, 250 mg 4-pyridineboronic acid, 80 mg Pd (dppf) Cl 2 .CH 2 Cl 2 , 1.60 g of sodium carbonate was dissolved in 20 mL of 1,4-dioxane and 20 mL of pure water, degassed by nitrogen bubbling, and then heated to reflux for 30 hours. After extraction with dichloromethane and evaporation of the solvent, the residue was purified by alumina column chromatography (chloroform). Finally, 4.9 g of (4-Py) 3 -Ph was obtained by MeOH cooking.

Figure 2015027934
Figure 2015027934

分子式:C21153、分子量:309.36
元素分析(計算値):C, 81.53, H, 4.89, N, 13.58
Molecular formula: C 21 H 15 N 3 , molecular weight: 309.36
Elemental analysis (calculated values): C, 81.53, H, 4.89, N, 13.58

(FeAA2、塩化鉄(II)4水和物添加(4−Py)3−Ph混合物の調製)
上述の(4−Py)3−Ph6.30g,FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(4−Py)3−Ph混合物(50A)を得た。
(FeAA2, iron (II) chloride tetrahydrate added (4-Py) 3 -Ph mixture preparation)
After adding the above-mentioned (4-Py) 3 -Ph 6.30 g, FeAA2 0.403 g and iron (II) chloride tetrahydrate 6.30 g, mechanically pulverized and mixed to obtain FeAA2 and iron (II) chloride tetrahydrate. Product addition (4-Py) 3- Ph mixture (50A) was obtained.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(4−Py)3−Ph混合物(50A)2.0432gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から900℃まで毎分5℃昇温、900℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(50B)0.8524gを得た。
(Infusibilization and carbonization treatment)
FeAA2, iron (II) chloride tetrahydrate added (4-Py) 3 -Ph mixture (50A) 2.0432 g was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) In the center of the quartz tube, nitrogen was circulated at 200 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C to 900 ° C at 5 ° C per minute and held at 900 ° C for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (50B) 0.8524g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(50B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(50C)0.5957gを得た。得られた酸洗浄済み炭素材料(50C)を実施例50の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (50B) was pulverized with an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until no coloration occurred. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and then left overnight to obtain 0.5957 g of acid-washed carbon material (50C). The obtained acid cleaned carbon material (50C) was used as the nitrogen-containing carbon alloy of Example 50. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例50の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 50 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例60)
<FeAA2、塩化鉄(II)4水和物添加(4−Py)3−Ph混合物の炭素材料の再焼成および酸処理(60C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換)
実施例50の酸洗浄済み炭素材料(50C)0.3017gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(60B)0.2975gを得た。
(Example 60)
<FeAA2, iron chloride (II) tetrahydrate added (4-Py) 3 -Ph mixture carbon material refiring and acid treatment (60C)>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement)
Weighing 0.3017 g of the acid-cleaned carbon material (50C) of Example 50 into a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (60B) 0.2975g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(60B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(60C)0.2314gを得た。得られた酸洗浄済み炭素材料(60C)を実施例60の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (60B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight as it was to obtain 0.2314 g of acid-cleaned carbon material (60C). The obtained acid cleaned carbon material (60C) was used as the nitrogen-containing carbon alloy of Example 60. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例60の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 60 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例51)
<FeAA2、塩化鉄(II)4水和物添加(HIm)3−TAz混合物の炭素材料合成(51C)>
((HIm)3−TAzの調製)

Figure 2015027934
(Example 51)
<Carbon Material Synthesis of FeAA2, Iron Chloride (II) Tetrahydrate Addition (HIm) 3 -TAz Mixture (51C)>
(Preparation of (HIm) 3 -TAz)
Figure 2015027934

Heterocycles,2004,63,1897.を参考にして合成した。1.84gのC yanuric chloride、4.08gのimidazoleを入れ70℃で2分攪拌した。固 体をクロロホルムと蒸留水で抽出洗浄した。有機層を硫酸ナトリウムで乾燥し、溶媒を留去し、得られた 固体を酢酸エチルで再結晶し、2.4gの(HIm)3−TAzを得た。 Heterocycles, 2004, 63, 1897. Was synthesized with reference to FIG. 1.84 g of cyclic chlorolide and 4.08 g of imidazole were added and stirred at 70 ° C. for 2 minutes. The solid was extracted and washed with chloroform and distilled water. The organic layer was dried over sodium sulfate, the solvent was distilled off, and the obtained solid was recrystallized from ethyl acetate to obtain 2.4 g of (HIm) 3 -TAz.

Figure 2015027934
Figure 2015027934

分子式:C1299、分子量:279.26
元素分析(計算値):C, 51.61, H, 3.25, N, 45.14
Molecular formula: C 12 H 9 N 9 , molecular weight: 279.26
Elemental analysis (calculated values): C, 51.61, H, 3.25, N, 45.14

(FeAA2、塩化鉄(II)4水和物添加(HIm)3−TAz混合物の調製)
上述の(HIm)3−TAz6.30g,FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(HIm)3−TAz混合物(51A)を得た。
(FeAA2, iron (II) chloride tetrahydrate added (HIm) 3 -TAz mixture preparation)
After adding (HIm) 3 -TAz 6.30 g, FeAA2 0.403 g, and iron (II) chloride tetrahydrate 6.30 g, mechanically pulverized and mixed to add FeAA2 and iron (II) chloride tetrahydrate. A (HIm) 3 -TAz mixture (51A) was obtained.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(HIm)3−TAz混合物(51A)3.1936gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(51B)0.8524gを得た。
(Infusibilization and carbonization treatment)
FeA2 and iron chloride (II) tetrahydrate added (HIm) 3 -TAz mixture (51A) 3.1936 g was weighed into a quartz boat and inserted into a tubular furnace with 4.0 cmφ (inner diameter 3.6 cmφ) quartz It was installed in the center of the tube and nitrogen was circulated at 200 mL / min for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (51B) 0.8524g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(51B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(51C)0.5107gを得た。得られた酸洗浄済み炭素材料(51C)を実施例51の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (51B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight as it was to obtain 0.5107 g of acid-washed carbon material (51C). The obtained acid cleaned carbon material (51C) was used as the nitrogen-containing carbon alloy of Example 51. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例51の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 51 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例61)
<FeAA2、塩化鉄(II)4水和物添加(HIm)3−TAz混合物の炭素材料の再焼成および酸処理(61C)>
(不融化及び炭素化処理 焼成方法C 真空ガス置換回転炉)
実施例51の酸洗浄済み炭素材料(51C)0.3101gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持し、その際に石英管を毎分2.0rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(61B)0.2077gを得た。
(Example 61)
<FeAA2, iron chloride (II) tetrahydrate added (HIm) 3 -TAz mixture carbon material refiring and acid treatment (61C)>
(Infusibilization and carbonization treatment, firing method C, vacuum gas displacement rotary furnace)
Weighing 0.3101 g of the acid-cleaned carbon material of Example 51 (51C) into a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour, and the quartz tube was rotated at 2.0 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon material (61B) 0.2077g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(61B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(61C)0.1959gを得た。得られた酸洗浄済み炭素材料(61C)を実施例61の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (61B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and then left overnight to obtain 0.1959 g of an acid cleaned carbon material (61C). The obtained acid cleaned carbon material (61C) was used as the nitrogen-containing carbon alloy of Example 61. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例61の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 61 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例52)
<FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethane混合物の炭素材料合成(52C)>
(Example 52)
<Carbon Material Synthesis of FeAA2, Iron (II) Chloride Tetrahydrate Added 1,2- (4-Py) 2-Ethane Mixture (52C)>

(FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethane混合物の調製)
1,2−(4−Py)2−Ethane6.30g(ALDRICH社製),FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethane混合物(52A)を得た。
(Preparation of FeAA2, iron (II) chloride tetrahydrate added 1,2- (4-Py) 2-Ethane mixture)
1,2- (4-Py) 2-Ethane 6.30 g (manufactured by ALDRICH), FeAA2 0.403 g, iron (II) chloride tetrahydrate 6.30 g were added, and then mechanically pulverized and mixed to obtain FeAA2, chloride. An iron (II) tetrahydrate-added 1,2- (4-Py) 2-Ethane mixture (52A) was obtained.

Figure 2015027934
Figure 2015027934

分子式:C12102、分子量:182.22
元素分析(計算値):C, 79.10, H, 5.53, N, 15.37
Molecular formula: C 12 H 10 N 2 , molecular weight: 182.22
Elemental analysis (calculated values): C, 79.10, H, 5.53, N, 15.37

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethane混合物(52A)3.1984gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(52B)0.6158gを得た。
(Infusibilization and carbonization treatment)
3. 1984 g of FeAA2, iron chloride (II) tetrahydrate added 1,2- (4-Py) 2-Ethane mixture (52A) was weighed into a quartz boat and inserted into a tubular furnace at 4.0 cmφ (inner diameter) It was installed at the center of a quartz tube of 3.6 cmφ, and nitrogen was circulated at 200 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (52B) 0.6158g.

(粉砕・水洗浄処理・比表面積測定)
炭素材料(52B)をメノウ乳鉢で粉砕し、水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、未酸洗浄炭素材料(52C)を得た。得られた未酸洗浄炭素材料(52C)を実施例52の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄前の欄に記載した。
(Crushing, water washing treatment, specific surface area measurement)
The carbon material (52B) was pulverized in an agate mortar, washed with water, filtered and air-dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then allowed to stand overnight to obtain a non-acid cleaned carbon material (52C). The obtained non-acid cleaned carbon material (52C) was used as the nitrogen-containing carbon alloy of Example 52. The specific surface area was measured by the BET method. The results are shown in the column before acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例52の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 52 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例53)
<FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethane混合物の炭素材料合成(53C)>
(Example 53)
<Carbon Material Synthesis of FeAA2, Iron (II) Chloride Tetrahydrate Added 1,2- (4-Py) 2-Ethane Mixture (53C)>

(粉砕・酸洗浄処理・比表面積測定)
上述の未酸洗浄炭素材料(52C)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(53C)0.4505gを得た。得られた酸洗浄済み炭素材料(53C)を実施例53の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The above-mentioned non-acid-cleaned carbon material (52C) was pulverized in an agate mortar, and concentrated hydrochloric acid cleaning, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight as it was to obtain 0.4505 g of acid-cleaned carbon material (53C). The obtained acid cleaned carbon material (53C) was used as the nitrogen-containing carbon alloy of Example 53. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例53の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 53 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例62)
<FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethane混合物の炭素材料の再焼成および酸処理(62C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換炉)
実施例53の酸洗浄済み炭素材料(53C)0.1546gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(62B)0.1338gを得た。
(Example 62)
<Refiring and acid treatment of carbon material of FeAA2, iron (II) chloride tetrahydrate added 1,2- (4-Py) 2-Ethane mixture (62C)>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement furnace)
0.1546 g of the acid-cleaned carbon material (53C) of Example 53 was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement rotary furnace. Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (62B) 0.1338g.

(粉砕・水洗浄処理・比表面積測定)
炭素材料(62B)をメノウ乳鉢で粉砕し、水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、未酸洗浄炭素材料(62C)を得た。得られた未酸洗浄炭素材料(62C)を実施例62の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, water washing treatment, specific surface area measurement)
The carbon material (62B) was pulverized with an agate mortar, washed with water, filtered and air-dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and left as it was overnight to obtain a non-acid cleaned carbon material (62C). The obtained non-acid cleaned carbon material (62C) was used as the nitrogen-containing carbon alloy of Example 62. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例62の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 62 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例63)
<FeAA2、塩化鉄(II)4水和物添加1,2−(4−Py)2−Ethane混合物の炭素材料の再焼成および酸処理(63C)>
(Example 63)
<Refiring and acid treatment (63C) of carbon material of FeAA2, iron (II) chloride tetrahydrate added 1,2- (4-Py) 2-Ethane mixture>

(粉砕・酸洗浄処理・比表面積測定)
上述の未酸洗浄炭素材料(62C)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(63C)0.1109gを得た。得られた酸洗浄済み炭素材料(63C)を実施例63の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The above-mentioned non-acid-cleaned carbon material (62C) was pulverized in an agate mortar, and concentrated hydrochloric acid cleaning, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then allowed to stand overnight to obtain 0.1109 g of an acid cleaned carbon material (63C). The obtained acid cleaned carbon material (63C) was used as the nitrogen-containing carbon alloy of Example 63. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例63の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 63 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例54)
<FeAA2、塩化鉄(II)4水和物添加Poly(4−VinylPyridine)混合物の炭素材料合成(54C)>
(Example 54)
<Carbon Material Synthesis of Poly (4-VinylPyridine) Mixture with FeAA2, Iron Chloride (II) Tetrahydrate Addition (54C)>

(FeAA2、塩化鉄(II)4水和物添加Poly(4−VinylPyridine)混合物の調製)
Poly(4−VinylPyridine)6.30g(ALDRICH社製、メーカーコード523291),FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加Poly(4−VinylPyridine)混合物(54A)を得た。
(Preparation of a mixture of FeAA2 and iron (II) chloride tetrahydrate added Poly (4-VinylPyridine))
Poly (4-VinylPyridine) 6.30 g (manufactured by ALDRICH, manufacturer code 523291), FeAA2 0.403 g, iron (II) chloride tetrahydrate 6.30 g were added, then mechanically pulverized and mixed, FeAA2, iron chloride (II) A tetrahydrate-added poly (4-vinylpyridine) mixture (54A) was obtained.

Figure 2015027934
Figure 2015027934

分子式:(C771n、式量:105.14
分子量:Mw(重量平均分子量)5000, Mn(数平均分子量)4800, 分子量分布(分散度=重量平均分子量/数平均分子量)1.04.
元素分析(計算値):C, 79.97, H, 6.71, N, 13.32
Molecular formula: (C 7 H 7 N 1 ) n , formula weight: 105.14
Molecular weight: Mw (weight average molecular weight) 5000, Mn (number average molecular weight) 4800, molecular weight distribution (dispersity = weight average molecular weight / number average molecular weight) 1.04.
Elemental analysis (calculated values): C, 79.97, H, 6.71, N, 13.32.

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加Poly(4−VinylPyridine)混合物(54A)3.1925gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(54B)1.3570gを得た。
(Infusibilization and carbonization treatment)
Fea2 and iron chloride (II) tetrahydrate added Poly (4-VinylPyridine) mixture (54A) 3.1925 g was measured into a quartz boat and inserted into a tube furnace with 4.0 cmφ (inner diameter 3.6 cmφ) quartz. It was installed in the center of the tube, and nitrogen was circulated at 200 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (54B) 1.3570g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(54B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(54C)0.6881gを得た。得られた酸洗浄済み炭素材料(54C)を実施例54の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (54B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight to obtain 0.6881 g of acid-washed carbon material (54C). The obtained acid cleaned carbon material (54C) was used as the nitrogen-containing carbon alloy of Example 54. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例54の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Example 54 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

(実施例64)
<FeAA2、塩化鉄(II)4水和物添加Poly(4−VinylPyridine)混合物の炭素材料の再焼成および酸処理(64C)>
(不融化及び炭素化処理 焼成方法B 真空ガス置換炉)
実施例54の酸洗浄済み炭素材料(54C)0.3244gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分200mL、1分間室温で流通させた。次に、真空ポンプで管内を排気し、窒素置換を3度繰返した。その後、窒素を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(64B)0.2626gを得た。
(Example 64)
<Refiring and acid treatment (64C) of carbon material of a mixture of FeAA2, iron chloride (II) tetrahydrate added Poly (4-VinylPyridine)>
(Infusibilization and carbonization treatment, firing method B, vacuum gas replacement furnace)
Weighing 0.3244 g of the acid-cleaned carbon material of Example 54 (54C) into a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace, Nitrogen was circulated at 200 mL per minute for 1 minute at room temperature. Next, the inside of the tube was evacuated with a vacuum pump, and nitrogen substitution was repeated three times. Thereafter, nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (64B) 0.2626g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(64B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(64C)0.2116gを得た。得られた酸洗浄済み炭素材料(64C)を実施例64の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表2の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (64B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight to obtain 0.2116 g of acid-cleaned carbon material (64C). The obtained acid cleaned carbon material (64C) was used as the nitrogen-containing carbon alloy of Example 64. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 2 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた実施例64の含窒素カーボンアロイ材料を用いた以外は実施例16と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表2に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 16 except that the obtained nitrogen-containing carbon alloy material of Example 64 was used, and the ORR activity value was measured. The results are shown in Table 2 below.

なお、高分子量(Mw60×103,160×103)、2%DivinylBenzeneまたは10%EthylVinylBenzeneを架橋剤として用いたPoly(4−VinylPyridine) (いずれもALDRICH社製)場合、同様に、BET法による比表面積が800m2/g以上、0.5mg/cm2塗布した電極を用いたORR測定で−1mA/cm2のときの電圧がいずれも0.7V以上であることを確認した。 In the case of high molecular weight (Mw 60 × 10 3 , 160 × 10 3 ), Poly (4-VinylPyridine) using 2% Divine Benzene or 10% Ethyl Vinyl Benzene as a cross-linking agent (both manufactured by ALDRICH), similarly, by the BET method It was confirmed by ORR measurement using an electrode coated with a specific surface area of 800 m 2 / g or more and 0.5 mg / cm 2 that the voltage at -1 mA / cm 2 was 0.7 V or more.

(比較例1)
<塩化鉄(II)4水和物添加PhCN混合物の炭素材料合成(C1C)>
(塩化鉄(II)4水和物添加PhCN混合物の調製)
PhCN6.30g(東京化成工業社製),塩化鉄(II)4水和物6.30gを混合し、塩化鉄(II)4水和物添加PhCN混合物を焼成したが、炭化物は得られなかった。
(Comparative Example 1)
<Synthesis of carbon material of iron chloride (II) tetrahydrate added PhCN mixture (C1C)>
(Preparation of PhCN mixture containing iron (II) chloride tetrahydrate)
6.30 g of PhCN (manufactured by Tokyo Chemical Industry Co., Ltd.) and 6.30 g of iron (II) chloride tetrahydrate were mixed and the PhCN mixture added with iron (II) chloride tetrahydrate was calcined, but no carbide was obtained. .

(比較例2)
<塩化鉄(II)4水和物添加2−PyCN混合物の炭素材料合成(C2C)>
(塩化鉄(II)4水和物添加2−PyCN混合物の調製)
2−PyCN 1.60g(東京化成工業社製),塩化鉄(II)4水和物1.60gを添加・混合し、塩化鉄(II)4水和物添加2−PyCN混合物(C2A)を得た。
(Comparative Example 2)
<Synthesis of carbon material of iron (II) chloride tetrahydrate added 2-PyCN mixture (C2C)>
(Preparation of 2-PyCN mixture containing iron (II) chloride tetrahydrate)
1.60 g of 2-PyCN (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1.60 g of iron (II) chloride tetrahydrate are added and mixed, and then the iron (II) chloride tetrahydrate added 2-PyCN mixture (C2A) is added. Obtained.

Figure 2015027934
Figure 2015027934

分子式:C642、分子量:104.11
元素分析(計算値):C, 69.22, H, 3.87, N, 26.91
Molecular formula: C 6 H 4 N 2 , molecular weight: 104.11.
Elemental analysis (calculated value): C, 69.22, H, 3.87, N, 26.91

(不融化及び炭素化処理)
塩化鉄(II)4水和物添加2−PyCN混合物(C2A)3.0820gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(C2B)0.4897gを得た。
(Infusibilization and carbonization treatment)
3.0820 g of iron (II) chloride tetrahydrate added 2-PyCN mixture (C2A) was weighed into a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace. Then, nitrogen was circulated at 300 mL / min for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (C2B) 0.4897g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(C2B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(C2C)0.0709gを得た。得られた酸洗浄済み炭素材料(C2C)を比較例2の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (C2B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.0709 g of acid-cleaned carbon material (C2C). The obtained acid cleaned carbon material (C2C) was used as the nitrogen-containing carbon alloy of Comparative Example 2. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた比較例2の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Comparative Example 2 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(比較例3)
<塩化鉄(II)4水和物添加4−PyCN混合物の炭素材料合成(C3C)>
(塩化鉄(II)4水和物添加4−PyCN混合物の調製)
4−PyCN 1.60g(東京化成工業社製),塩化鉄(II)4水和物 1.60
gを添加後、機械粉砕・混合し、塩化鉄(II)4水和物添加4−PyCN混合物(C3A)を得た。
(Comparative Example 3)
<Synthesis of carbon material of iron (II) tetrahydrate added 4-PyCN mixture (C3C)>
(Preparation of iron (II) chloride tetrahydrate added 4-PyCN mixture)
4-PyCN 1.60 g (manufactured by Tokyo Chemical Industry Co., Ltd.), iron (II) chloride tetrahydrate 1.60
After adding g, it was mechanically pulverized and mixed to obtain an iron (II) chloride tetrahydrate added 4-PyCN mixture (C3A).

Figure 2015027934
Figure 2015027934

分子式:C642、分子量:104.11
元素分析(計算値):C, 69.22, H, 3.87, N, 26.91
Molecular formula: C 6 H 4 N 2 , molecular weight: 104.11.
Elemental analysis (calculated value): C, 69.22, H, 3.87, N, 26.91

(不融化及び炭素化処理)
塩化鉄(II)4水和物添加4−PyCN混合物(C3A)3.0242gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(C3B)2.9133gを得た。
(Infusibilization and carbonization treatment)
Weighing 3.0242 g of iron (II) chloride tetrahydrate added 4-PyCN mixture (C3A) in a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace. Then, nitrogen was circulated at 300 mL / min for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon material (C3B) 2.9133g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(C3B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(C3C)0.0696gを得た。得られた酸洗浄済み炭素材料(C3C)を比較例3の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (C3B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and left overnight as it was to obtain 0.0696 g of acid-cleaned carbon material (C3C). The obtained acid cleaned carbon material (C3C) was used as the nitrogen-containing carbon alloy of Comparative Example 3. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた比較例3の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Comparative Example 3 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(比較例4)
<FeAA2、塩化鉄(II)4水和物添加Ph3−TAz混合物の炭素材料合成(C4C)>
(FeAA2、塩化鉄(II)4水和物添加Ph3−TAz混合物の調製)
Ph3−TAz 6.30g(シグマアルドリッチ社製),FeAA2 0.403g、
塩化鉄(II)4水和物 6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加Ph3−TAz混合物(C4A)を得た。
(Comparative Example 4)
<Synthesis of carbon material of FeAA2, iron (II) chloride tetrahydrate added Ph 3 -TAz mixture (C4C)>
(Preparation of FeAA2, iron (II) chloride tetrahydrate added Ph 3 -TAz mixture)
Ph 3 -TAz 6.30 g (manufactured by Sigma-Aldrich), FeAA2 0.403 g,
After adding 6.30 g of iron (II) chloride tetrahydrate, it was mechanically pulverized and mixed to obtain a FeAA2 and iron (II) chloride tetrahydrate added Ph 3 -TAz mixture (C4A).

Figure 2015027934
Figure 2015027934

分子式:C21153、分子量:309.36
元素分析(計算値):C, 81.53, H, 4.89, N, 13.58
Molecular formula: C 21 H 15 N 3 , molecular weight: 309.36
Elemental analysis (calculated values): C, 81.53, H, 4.89, N, 13.58

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加Ph3−TAz混合物(C4A)3.1811gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(C4B)0.2199gを得た。
(Infusibilization and carbonization treatment)
We measured 3.1811 g of FeAA2, iron chloride (II) tetrahydrate added Ph 3 -TAz mixture (C4A) in a quartz boat and inserted it into a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace. It was installed in the center and nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (C4B) 0.2199g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(C4B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(C4C)0.0107gを得た。得られた酸洗浄済み炭素材料(C4C)を比較例4の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (C4B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.0107 g of acid-washed carbon material (C4C). The obtained acid cleaned carbon material (C4C) was used as the nitrogen-containing carbon alloy of Comparative Example 4. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた比較例4の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Comparative Example 4 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(比較例5)
<塩化鉄(II)4水和物添加(4−HN2Ph)3−TAz混合物の炭素材料合成(C5C)>
((4−HN2Ph)3−TAzの調製)
国際公開2004/106311A2を参考に、(4−HN2Ph)3−TAzを調整した。トリフルオロ酢酸31.7gをクロロフォルム50mLに溶解し、4−アミノフェニルベンゾニトリル25gに滴下し、室温で24時間撹拌した。分液し、下層を氷水に滴下し、生成した固体をろ過し、水で洗浄・乾燥し(4−HN2Ph)3−TAzを9.8g得た。
(塩化鉄(II)4水和物添加(4−HN2Ph)3−TAz混合物の調製)(4−HN2
Ph)3−TAz 6.30g(,塩化鉄(II)4水和物 6.30gを添加後、機械
粉砕・混合し、塩化鉄(II)4水和物添加(4−HN2Ph)3−TAz混合物(C5A)を得た。
(Comparative Example 5)
<Carbon Material Synthesis of Iron (II) Chloride Tetrahydrate Addition (4-HN 2 Ph) 3 -TAz Mixture (C5C)>
(Preparation of (4-HN 2 Ph) 3 -TAz)
(4-HN 2 Ph) 3 -TAz was adjusted with reference to International Publication No. 2004 / 106311A2. 31.7 g of trifluoroacetic acid was dissolved in 50 mL of chloroform, added dropwise to 25 g of 4-aminophenylbenzonitrile, and stirred at room temperature for 24 hours. Liquid separation was performed, and the lower layer was added dropwise to ice water. The produced solid was filtered, washed with water and dried to obtain 9.8 g of (4-HN 2 Ph) 3 -TAz.
(Addition of iron (II) chloride tetrahydrate (4-HN 2 Ph) 3 -TAz mixture) (4-HN 2
Ph) 3 -TAz 6.30 g (added iron chloride (II) tetrahydrate 6.30 g, mechanically pulverized and mixed, added iron chloride (II) tetrahydrate (4-HN 2 Ph) 3 A TAz mixture (C5A) was obtained.

Figure 2015027934
Figure 2015027934

分子式:C21186、分子量:354.41
元素分析(計算値):C, 71.17, H, 5.12, N, 23.71
Molecular formula: C 21 H 18 N 6 , molecular weight: 354.41
Elemental analysis (calculated values): C, 71.17, H, 5.12, N, 23.71

(不融化及び炭素化処理)
塩化鉄(II)4水和物添加(4−HN2Ph)3−TAz混合物(C5A)2.5315gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(C5B)0.9188gを得た。
(Infusibilization and carbonization treatment)
2.5315 g of iron (II) chloride tetrahydrate added (4-HN 2 Ph) 3 -TAz mixture (C5A) was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) In the center of the quartz tube, nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (C5B) 0.9188g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(C5B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(C5C)を得た。得られた酸洗浄済み炭素材料(C5C)を比較例5の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (C5B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain an acid cleaned carbon material (C5C). The obtained acid-washed carbon material (C5C) was used as the nitrogen-containing carbon alloy of Comparative Example 5. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた比較例5の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Comparative Example 5 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

(比較例6)
<FeAA2、塩化鉄(II)4水和物添加(2−Py)3−TAz混合物の炭素材料合成(C6C)>
(Comparative Example 6)
<Synthesis of carbon material of FeAA2, iron chloride (II) tetrahydrate added (2-Py) 3 -TAz mixture (C6C)>

(FeAA2、塩化鉄(II)4水和物添加(2−Py)3−TAz混合物の調製)
(2−Py)3−TAz6.30g(SIGMA ALDRICH社製),FeAA2 0.403g、塩化鉄(II)4水和物6.30gを添加後、機械粉砕・混合し、FeAA2、塩化鉄(II)4水和物添加(2−Py)3−TAz混合物(C6A)を得た。
(FeAA2, iron chloride (II) tetrahydrate added (2-Py) 3 -TAz mixture preparation)
(2-Py) 3 -TAz 6.30 g (manufactured by SIGMA ALDRICH), FeAA2 0.403 g and iron (II) chloride tetrahydrate 6.30 g were added and then mechanically pulverized and mixed to obtain FeAA2 and iron chloride (II ) Tetrahydrate added (2-Py) 3 -TAz mixture (C6A) was obtained.

Figure 2015027934
Figure 2015027934

分子式:C18126、分子量:312.33
元素分析(計算値):C, 69.22, H, 3.87, N, 26.91
Molecular formula: C 18 H 12 N 6 , molecular weight: 312.33
Elemental analysis (calculated value): C, 69.22, H, 3.87, N, 26.91

(不融化及び炭素化処理)
FeAA2、塩化鉄(II)4水和物添加(2−Py)3−TAz混合物(C6A)3.1901gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素を毎分300mL、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温、700℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(C6B)1.6200gを得た。
(Infusibilization and carbonization treatment)
FeAA2, iron chloride (II) tetrahydrate added (2-Py) 3 -TAz mixture (C6A) 3.1901 g was weighed into a quartz boat and inserted into a tubular furnace, 4.0 cmφ (inner diameter 3.6 cmφ) In the center of the quartz tube, nitrogen was circulated at 300 mL per minute for 30 minutes at room temperature.
The temperature was raised from 30 ° C. to 700 ° C. at a rate of 5 ° C. per minute and held at 700 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (C6B) 1.6200g.

(粉砕・酸洗浄処理・比表面積測定)
炭素材料(C6B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。さらに得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(C6C)1.1290gを得た。得られた酸洗浄済み炭素材料(C6C)を比較例6の含窒素カーボンアロイとした。その比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後の欄に記載した。
(Crushing, acid cleaning treatment, specific surface area measurement)
The carbon material (C6B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. Further, the obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and allowed to stand overnight to obtain 1.1290 g of acid-washed carbon material (C6C). The obtained acid cleaned carbon material (C6C) was used as the nitrogen-containing carbon alloy of Comparative Example 6. The specific surface area was measured by the BET method. The results are shown in the column after acid cleaning in Table 1 below.

(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
得られた比較例6の含窒素カーボンアロイ材料を用いた以外は実施例1と同様にしてカーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the obtained nitrogen-containing carbon alloy material of Comparative Example 6 was used, and the ORR activity value was measured. The results are shown in Table 1 below.

Figure 2015027934
Figure 2015027934

Figure 2015027934
Figure 2015027934

上記表1より、実施例1〜28、実施例30〜36、実施例40〜46、実施例50〜54及び実施例60〜64の含窒素カーボンアロイは、比表面積が十分に大きく触媒性能を示すORR電圧が十分に高いことがわかった。さらに、含窒素カーボンアロイの収率も良好であることがわかった。また、製造時に、有機金属錯体を添加した含窒素カーボンアロイにおいては、より高いORR電圧が得られていることがわかった。
また、再焼成工程を設けることにより、より高いORR電圧が得られていることがわかる。さらに再焼成工程を設けることにより、収率についてもより良化している。
一方、比較例は比表面積の増大が不十分で、触媒性能を示す電圧が低く、不十分であることがわかった。
From Table 1 above, the nitrogen-containing carbon alloys of Examples 1-28, Examples 30-36, Examples 40-46, Examples 50-54 and Examples 60-64 have a sufficiently large specific surface area and show catalyst performance. It was found that the ORR voltage shown was sufficiently high. Furthermore, it was found that the yield of nitrogen-containing carbon alloy was also good. Further, it was found that a higher ORR voltage was obtained in the nitrogen-containing carbon alloy to which the organometallic complex was added during the production.
It can also be seen that a higher ORR voltage is obtained by providing a re-baking step. Furthermore, the yield is improved by providing a re-baking step.
On the other hand, it was found that the comparative example had an insufficient increase in specific surface area and had a low voltage indicating catalyst performance, which was insufficient.

(燃料電池発電性能評価)
(1)触媒インクの調整
(1)−1 カソード用触媒インク(28E)の調製
0.1gの実施例28の含窒素カーボンアロイ材料(28C)、1.0gの5質量%ナフィオン(登録商標)溶液(溶媒:水と低級アルコールの混合物、WAKO 番号321−86703)、0.25mLの水(イオン交換水)、及び0.5mLの1−プロパノールを、超音波分散機で2.5時間分散し、カソード用非白金触媒インク(28E)を得た。
(Fuel cell power generation performance evaluation)
(1) Preparation of catalyst ink (1) -1 Preparation of cathode catalyst ink (28E) 0.1 g of nitrogen-containing carbon alloy material (28C) of Example 28, 1.0 g of 5% by mass Nafion (registered trademark) Disperse the solution (solvent: mixture of water and lower alcohol, WAKO number 321-86703), 0.25 mL of water (ion-exchanged water), and 0.5 mL of 1-propanol for 2.5 hours with an ultrasonic disperser. A non-platinum catalyst ink for cathode (28E) was obtained.

(1)−2 アノード用触媒インクの調製
50質量%白金が担持された白金担持カーボン(TEC10V50E、田中貴金属工業(株)社製)0.5gをガラス容器に秤取り、0.8mLの水を加えた後、セプタムシールでガラス容器を封管し、容器内を窒素置換した。上述した5質量%ナフィオン4.3mLと1−プロパノール1mLをガラス容器内に注入し、超音波を2.5時間照射することでアノード用触媒インクを得た。
(1) -2 Preparation of anode catalyst ink 0.5 g of platinum-supported carbon (TEC10V50E, manufactured by Tanaka Kikinzoku Co., Ltd.) carrying 50% by mass of platinum was weighed in a glass container, and 0.8 mL of water was added. After the addition, the glass container was sealed with a septum seal, and the inside of the container was purged with nitrogen. The catalyst ink for anode was obtained by inject | pouring 4.3 mL of 5 mass% Nafion mentioned above and 1 mL of 1-propanol in a glass container, and irradiating an ultrasonic wave for 2.5 hours.

(2)転写用触媒塗布膜の作製
(2)−1 カソード用触媒膜の調製
(1)−1で調製したカソード用触媒インクをテフロン(登録商標)シートベース上に、200μmクリアランスのアプリケータで塗布し、24時間かけてゆっくり乾燥させた。乾燥後、5cm×5cmサイズの正方形にカットした。この塗布膜の重量からベース重量を差し引いた塗布物重量は、47.6mg(1.9mg/cm2)であった。
(2) Preparation of transfer catalyst coating film (2) -1 Preparation of cathode catalyst film (1) Cathode catalyst ink prepared in (1) -1 was applied on a Teflon (registered trademark) sheet base with a 200 μm clearance applicator. It was applied and slowly dried over 24 hours. After drying, it was cut into a 5 cm × 5 cm size square. The coating weight obtained by subtracting the base weight from the weight of the coating film was 47.6 mg (1.9 mg / cm 2 ).

(2)−2 アノード用触媒膜の調製
(1)−2で調製したアノード用触媒インクをテフロン(登録商標)シートベース上に、300μmクリアランスのアプリケータで塗布し、24時間かけてゆっくり乾燥させた。乾燥後、5cm×5cmサイズの正方形にカットした。この塗布膜の重量からベース重量を差し引いた塗布物重量は、21.5mg(0.86mg/cm2)であった。
(2) -2 Preparation of anode catalyst membrane The anode catalyst ink prepared in (1) -2 was applied on a Teflon (registered trademark) sheet base with a 300 μm clearance applicator and slowly dried over 24 hours. It was. After drying, it was cut into a 5 cm × 5 cm size square. The weight of the coated product obtained by subtracting the base weight from the weight of the coated film was 21.5 mg (0.86 mg / cm 2 ).

(3)転写用プロトン伝導膜の調製
ナフィオン膜(NR211、デュポン社製)を8cm×8cmサイズの正方形にカットしたものを、1mol/LのCsCl水溶液に10時間浸漬し、イオン交換水で水洗した後、乾燥し、転写用プロトン伝導膜を得た。
(3) Preparation of transfer proton conducting membrane A Nafion membrane (NR211, manufactured by DuPont) cut into a square of 8 cm x 8 cm size was immersed in a 1 mol / L CsCl aqueous solution for 10 hours and washed with ion-exchanged water. Thereafter, it was dried to obtain a proton conductive membrane for transfer.

(4)電極複合膜の調製
10cm×10cmサイズの正方形にカットした2枚のポリイミド膜(ユーピレックス75:宇部興産社製)の間に、(2)−1で調製した触媒膜、(3)で調製したプロトン伝導膜、(2)−2で調製した触媒膜の順に重ね合わせた。この際、触媒膜がプロトン伝導膜の中央で、塗布面がプトロン伝導膜に接する向きとした。この重ね合わせたシートを210℃、15MPaで10分間プレスした。2枚のポリイミド膜から、熱圧着された膜を取り出し、カソード塗布膜とアノード塗布膜のベースであるテフロン(登録商標)シートを剥離することにより、プロトン伝導膜の両面に触媒層が転写された電極複合膜を得た。この電極複合膜を0.5mol/Lの硫酸水溶液に10時間浸漬した後、イオン交換水で水洗し、乾燥後、目的の電極複合膜を得た。
(4) Preparation of electrode composite membrane Between two polyimide membranes (UPILEX 75: manufactured by Ube Industries Co., Ltd.) cut into 10 cm x 10 cm squares, the catalyst membrane prepared in (2) -1; (3) The prepared proton conducting membrane and the catalyst membrane prepared in (2) -2 were superposed in this order. At this time, the catalyst membrane was at the center of the proton conducting membrane, and the coating surface was in contact with the ptrone conducting membrane. The laminated sheet was pressed at 210 ° C. and 15 MPa for 10 minutes. The thermocompression-bonded film was taken out from the two polyimide films, and the catalyst layer was transferred to both sides of the proton conducting film by peeling off the Teflon (registered trademark) sheet which is the base of the cathode coating film and the anode coating film. An electrode composite membrane was obtained. This electrode composite membrane was immersed in a 0.5 mol / L sulfuric acid aqueous solution for 10 hours, washed with ion-exchanged water, and dried to obtain the desired electrode composite membrane.

(5)評価用燃料電池の組立て
(4)で得た電極複合膜を、5cm×5cmサイズの正方形にカットした2枚のカーボンクロス(ガス拡散層ELAT BASF社製)で挟み、200μm厚みのガスケット(テプロン製)を使用して、JARI標準セル(エフシー開発(株)社製)に組み込み、触媒有効面積25cm2の燃料電池セル(Cell−1)を得た。
(5) Assembly of fuel cell for evaluation The electrode composite membrane obtained in (4) is sandwiched between two carbon cloths (made by gas diffusion layer ELAT BASF) cut into a square of 5 cm × 5 cm size, and a gasket having a thickness of 200 μm (Made by Tepron) was incorporated into a JARI standard cell (manufactured by FC Development Co., Ltd.) to obtain a fuel cell (Cell-1) having a catalyst effective area of 25 cm 2 .

(6)発電性能評価
この燃料電池セルを80℃に保ちながら、アノードに加湿水素、カソードに加湿空気を供給した。水素及び空気の加湿は、水を貯めたバブラーに各ガスを通すことで行った。水素用バブラーの水温は80℃、空気用バブラーの水温は80℃とした。ここで、水素のガス流量は1000ml/分、空気のガス流量は2500ml/分とし、常圧下で測定した。
燃料電池セルの電流値を0Aから7.5Aまで、30秒毎に変化させ、各電流での安定した電圧を計測することにより、電流−電圧曲線を得た。
(6) Power generation performance evaluation While keeping the fuel cell at 80 ° C., humidified hydrogen was supplied to the anode and humidified air was supplied to the cathode. Hydrogen and air were humidified by passing each gas through a bubbler containing water. The water temperature of the hydrogen bubbler was 80 ° C, and the water temperature of the air bubbler was 80 ° C. Here, the hydrogen gas flow rate was 1000 ml / min, the air gas flow rate was 2500 ml / min, and measurement was performed under normal pressure.
A current-voltage curve was obtained by changing the current value of the fuel cell from 0 A to 7.5 A every 30 seconds and measuring a stable voltage at each current.

上記(1)から(5)と同様の手順で、(1)−1で用いた変性物(28E)の代わりに、本発明の含窒素カーボンアロイ材料から調整したカソード用非白金触媒インク(21E)、(24E)、(27E)および、比較例のカソード用炭素材料インク(C3E)、(C5E)を用い、評価用電池(Cell−2)〜(Cell−6)を組立て、(6)と同様に電流−電圧計測を行なった。電流値2Aにおける電圧を表2に示した。   Non-platinum catalyst ink for cathode (21E) prepared from the nitrogen-containing carbon alloy material of the present invention in place of the modified product (28E) used in (1) -1 in the same procedure as (1) to (5) above. ), (24E), (27E), and comparative carbon material inks for cathodes (C3E) and (C5E), and assembling evaluation batteries (Cell-2) to (Cell-6), and (6) Similarly, current-voltage measurement was performed. The voltage at a current value of 2A is shown in Table 2.

Figure 2015027934
Figure 2015027934

本発明によれば、十分に高い酸素還元活性を有する含窒素カーボンアロイを得ることができる。このため、本発明の製造方法により得られた含窒素カーボンアロイは、炭素触媒として使用することができる。また、本発明の製造方法によれば、含窒素カーボンアロイの収量を高めることができ、生産性を高めることができる。このような炭素触媒は、燃料電池や環境触媒に好ましく用いられ産業上の利用可能性が高い。   According to the present invention, a nitrogen-containing carbon alloy having a sufficiently high oxygen reduction activity can be obtained. For this reason, the nitrogen-containing carbon alloy obtained by the production method of the present invention can be used as a carbon catalyst. Moreover, according to the manufacturing method of this invention, the yield of a nitrogen-containing carbon alloy can be raised and productivity can be improved. Such a carbon catalyst is preferably used for a fuel cell or an environmental catalyst and has high industrial applicability.

10 燃料電池、
12 セパレータ、
13 アノード電極触媒、
14 固体高分子電解質、
15 カソード電極触媒、
16 セパレータ、
20 電気二重層キャパシタ、
21 第1の電極、
22 第2の電極、
23 セパレータ、
24a 外装蓋、
24b 外装ケース、
25 集電体、
26 ガスケット
10 Fuel cell,
12 separator,
13 Anode electrocatalyst,
14 solid polymer electrolyte,
15 cathode catalyst,
16 separator,
20 electric double layer capacitor,
21 first electrode;
22 second electrode,
23 separator,
24a exterior lid,
24b exterior case,
25 Current collector,
26 Gasket

Claims (25)

下記一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物、その塩及びその水和物から選択される少なくとも一種と、無機金属塩を含む前駆体を焼成する工程を含む含窒素カーボンアロイの製造方法;
Figure 2015027934
一般式(1)中、Aは5〜11員の非縮合複素芳香環から構成される原子団を表し、Lは単結合または(x+1)価の連結基を表し、Bは水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基を表し、少なくとも1つのBは、置換または無置換の含窒素芳香族基であり、含窒素芳香族基の少なくとも1つにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。Aの非縮合複素芳香環におけるヘテロ原子数は、Bの含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。また、xおよびyはそれぞれ独立に1以上の整数を表す。
Including a step of firing a precursor containing an inorganic metal salt and at least one selected from a heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the following general formula (1), a salt thereof and a hydrate thereof A method for producing a nitrogen-containing carbon alloy;
Figure 2015027934
In general formula (1), A represents an atomic group composed of a 5- to 11-membered non-fused heteroaromatic ring, L represents a single bond or a (x + 1) -valent linking group, and B represents a hydrogen atom, a substituted or Represents an unsubstituted aromatic group, or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one B is a substituted or unsubstituted nitrogen-containing aromatic group, and at least one of the nitrogen-containing aromatic groups , Any one or both of the ring skeleton constituent atoms at the 3-position and the 4-position with respect to the bonding site with L are nitrogen atoms. The number of heteroatoms in the non-fused heteroaromatic ring of A is the same as or more than the number of heteroatoms per one nitrogen-containing aromatic group of B. X and y each independently represents an integer of 1 or more.
前記一般式(1)において、xは1〜3の整数を表し、yは1〜5の整数を表す請求項1に記載の含窒素カーボンアロイの製造方法。   In the said General formula (1), x represents the integer of 1-3, y represents the integer of 1-5, The manufacturing method of the nitrogen-containing carbon alloy of Claim 1. 前記一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物は、下記一般式(2)で表される請求項1または2に記載の含窒素カーボンアロイの製造方法;
Figure 2015027934
一般式(2)中、Q1〜Q3はそれぞれ独立にヘテロ原子又は炭素原子を表し、Q1〜Q3のうち少なくとも1つは窒素原子であり、b1〜b3はそれぞれ独立に水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基を表し、b1〜b3の少なくともいずれか1つは置換または無置換の含窒素芳香族基であり、含窒素芳香族基の少なくとも1つにおいて、結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。Q1〜Q3を含む非縮合複素芳香環におけるヘテロ原子数は、b1〜b3の含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。
The method for producing a nitrogen-containing carbon alloy according to claim 1 or 2, wherein the heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the general formula (1) is represented by the following general formula (2);
Figure 2015027934
In General Formula (2), Q 1 to Q 3 each independently represents a hetero atom or a carbon atom, at least one of Q 1 to Q 3 is a nitrogen atom, b1 to b3 are each independently a hydrogen atom, Represents a substituted or unsubstituted aromatic group, or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one of b1 to b3 is a substituted or unsubstituted nitrogen-containing aromatic group, and a nitrogen-containing aromatic group In at least one of the groups, one or both of the ring skeleton constituent atoms at the 3-position and the 4-position with respect to the binding site are nitrogen atoms. Q Number heteroatoms in non-fused heteroaromatic ring containing 1 to Q 3 is or greater identical to the number of heteroatoms in the nitrogen-containing aromatic group per one of b1 to b3.
前記一般式(2)において、Q1〜Q3は窒素原子である請求項3に記載の含窒素カーボンアロイの製造方法。 In the general formula (2), Q 1 ~Q 3 the method of manufacturing the nitrogen-containing carbon alloy of claim 3 is a nitrogen atom. 前記一般式(2)において、b1〜b3は6員の置換または無置換の含窒素芳香族基である請求項3または4に記載の含窒素カーボンアロイの製造方法。   In the said General formula (2), b1-b3 is a 6-membered substituted or unsubstituted nitrogen-containing aromatic group, The manufacturing method of the nitrogen-containing carbon alloy of Claim 3 or 4. 前記一般式(2)において、b1〜b3はピリジル基またはピリミジル基である請求項3〜5のいずれか1項に記載の含窒素カーボンアロイの製造方法。   In the said General formula (2), b1-b3 is a pyridyl group or a pyrimidyl group, The manufacturing method of the nitrogen-containing carbon alloy of any one of Claims 3-5. 前記含窒素芳香族基を有する複素芳香環化合物は、下記式(3)または(4)で表される化合物である請求項1〜6のいずれか1項に記載の含窒素カーボンアロイの製造方法。
Figure 2015027934
The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 6, wherein the heteroaromatic ring compound having a nitrogen-containing aromatic group is a compound represented by the following formula (3) or (4). .
Figure 2015027934
前記一般式(1)で表される含窒素芳香族基を有する複素芳香環化合物は、下記一般式(5)で表される請求項1または2に記載の含窒素カーボンアロイの製造方法;
Figure 2015027934
一般式(5)中、Aは5〜11員の非縮合複素芳香環から構成される原子団を表し、Lは単結合、または(x+1)価の連結基を表し、Bは水素原子、置換または無置換の芳香族基、又は置換または無置換の含窒素芳香族基であり、少なくとも1つのBは、置換または無置換の含窒素芳香族基であり、含窒素芳香族基の少なくとも1つにおいて、Lとの結合部位に対して3位及び4位の環骨格構成原子のいずれか一方又は両方は窒素原子である。Aの非縮合複素芳香環におけるヘテロ原子数は、Bの含窒素芳香族基1つ当たりにおけるヘテロ原子数と同じであるか又は多い。また、xは1以上の整数を表す。
The method for producing a nitrogen-containing carbon alloy according to claim 1 or 2, wherein the heteroaromatic ring compound having a nitrogen-containing aromatic group represented by the general formula (1) is represented by the following general formula (5);
Figure 2015027934
In general formula (5), A represents an atomic group composed of a 5- to 11-membered non-condensed heteroaromatic ring, L represents a single bond or a (x + 1) -valent linking group, B represents a hydrogen atom, substituted Or an unsubstituted aromatic group or a substituted or unsubstituted nitrogen-containing aromatic group, and at least one B is a substituted or unsubstituted nitrogen-containing aromatic group, and at least one of the nitrogen-containing aromatic groups In the above, any one or both of the ring skeleton constituting atoms at the 3rd and 4th positions relative to the bonding site with L are nitrogen atoms. The number of heteroatoms in the non-fused heteroaromatic ring of A is the same as or more than the number of heteroatoms per one nitrogen-containing aromatic group of B. X represents an integer of 1 or more.
前記一般式(5)において、xは1〜5の整数を表す請求項8に記載の含窒素カーボンアロイの製造方法。   In the said General formula (5), x represents the integer of 1-5, The manufacturing method of the nitrogen-containing carbon alloy of Claim 8. 前記含窒素芳香族基を有する複素芳香環化合物は、下記化合物群より選択される化合物である請求項1または2に記載の含窒素カーボンアロイの製造方法。
Figure 2015027934
The method for producing a nitrogen-containing carbon alloy according to claim 1 or 2, wherein the heteroaromatic ring compound having a nitrogen-containing aromatic group is a compound selected from the following compound group.
Figure 2015027934
前記無機金属塩は、無機金属塩化物である請求項1〜10のいずれか1項に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 10, wherein the inorganic metal salt is an inorganic metal chloride. 前記無機金属塩の金属種が、FeまたはCoである請求項1〜11のいずれか1項に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 11, wherein the metal species of the inorganic metal salt is Fe or Co. 前記無機金属塩は、含水塩である請求項1〜12のいずれか1項に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 12, wherein the inorganic metal salt is a hydrate salt. 有機金属錯体をさらに含む請求項1〜13のいずれか1項に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 13, further comprising an organometallic complex. 前記有機金属錯体は、金属アセタート錯体、またはβ−ジケトン金属錯体である請求項14に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to claim 14, wherein the organometallic complex is a metal acetate complex or a β-diketone metal complex. 前記有機金属錯体は、アセチルアセトン鉄(II)錯体である請求項14または15に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to claim 14 or 15, wherein the organometallic complex is an acetylacetone iron (II) complex. 前記焼成する工程は、前記前駆体を400℃以上で焼成する工程である請求項1〜16のいずれか1項に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 16, wherein the firing step is a step of firing the precursor at 400 ° C or higher. 前記焼成する工程は、前記前駆体を700〜1000℃で焼成する工程である請求項1〜17のいずれか1項に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 17, wherein the firing step is a step of firing the precursor at 700 to 1000 ° C. 前記焼成する工程の前に、前記前駆体を粉砕する工程をさらに含む請求項1〜18のいずれか1項に記載の含窒素カーボンアロイの製造方法。   The manufacturing method of the nitrogen-containing carbon alloy of any one of Claims 1-18 which further includes the process of grind | pulverizing the said precursor before the said baking process. 前記焼成する工程の後に、焼成された含窒素カーボンアロイを酸で洗浄する酸洗浄工程を含む請求項1〜19のいずれか1項に記載の含窒素カーボンアロイの製造方法。   The manufacturing method of the nitrogen-containing carbon alloy of any one of Claims 1-19 including the acid washing | cleaning process of wash | cleaning the baked nitrogen-containing carbon alloy with an acid after the said baking process. 前記焼成する工程の後に、焼成された含窒素カーボンアロイを粉砕する工程と、再焼成する工程とをさらに含む請求項1〜20のいずれか1項に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 20, further comprising a step of pulverizing the baked nitrogen-containing carbon alloy and a step of re-baking after the calcination step. 前記再焼成する工程は、1000〜1500℃で焼成する工程である請求項21に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to claim 21, wherein the re-baking step is a step of baking at 1000 to 1500 ° C. 前記再焼成する工程の前に、脱気及び窒素置換する工程をさらに含む請求項21または22に記載の含窒素カーボンアロイの製造方法。   The method for producing a nitrogen-containing carbon alloy according to claim 21 or 22, further comprising a step of deaeration and nitrogen substitution before the re-firing step. 請求項1〜23のいずれか1項に記載の方法で製造された含窒素カーボンアロイ。   The nitrogen-containing carbon alloy manufactured by the method of any one of Claims 1-23. 請求項24に記載の含窒素カーボンアロイを用いた燃料電池触媒。   A fuel cell catalyst using the nitrogen-containing carbon alloy according to claim 24.
JP2014133151A 2013-06-28 2014-06-27 Manufacturing method of nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst Abandoned JP2015027934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133151A JP2015027934A (en) 2013-06-28 2014-06-27 Manufacturing method of nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013136547 2013-06-28
JP2013136547 2013-06-28
JP2014133151A JP2015027934A (en) 2013-06-28 2014-06-27 Manufacturing method of nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst

Publications (2)

Publication Number Publication Date
JP2015027934A true JP2015027934A (en) 2015-02-12
JP2015027934A5 JP2015027934A5 (en) 2016-01-21

Family

ID=52142063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133151A Abandoned JP2015027934A (en) 2013-06-28 2014-06-27 Manufacturing method of nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst

Country Status (2)

Country Link
JP (1) JP2015027934A (en)
WO (1) WO2014208740A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692852B1 (en) * 2015-07-02 2017-01-06 인하대학교 산학협력단 Catalyst for oxygen reduction reaction based cobalt and the preparation method thereof
JP2017043499A (en) * 2015-08-24 2017-03-02 旭化成株式会社 Nitrogen-containing carbon material and method for producing the same, precursor composition for nitrogen-containing carbon material and electrode for fuel cell
CN111909132A (en) * 2019-05-07 2020-11-10 北京鼎材科技有限公司 Organic material and organic electroluminescent device using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186208B (en) * 2020-10-14 2022-05-27 天津工业大学 Nitrogen and sulfur co-doped carbon-based oxygen reduction catalyst and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064555A1 (en) * 2008-12-02 2010-06-10 日清紡ホールディングス株式会社 Carbon catalyst, method for manufacturing the carbon catalyst, and electrode and battery using the carbon catalyst
JP2011251285A (en) * 2011-07-19 2011-12-15 Nisshinbo Holdings Inc Carrier for carrying catalyst, catalyst carrier, electrode, and battery
WO2012096023A1 (en) * 2011-01-14 2012-07-19 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and application thereof
WO2013021698A1 (en) * 2011-08-08 2013-02-14 昭和電工株式会社 Method for producing redox catalyst and use of redox catalyst
WO2013125503A1 (en) * 2012-02-20 2013-08-29 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for manufacturing same, carbon alloy catalyst and fuel cell
JP2013212970A (en) * 2012-04-03 2013-10-17 M & S Kenkyu Kaihatsu Kk Polytriazine terephthalamide resin carbide and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064555A1 (en) * 2008-12-02 2010-06-10 日清紡ホールディングス株式会社 Carbon catalyst, method for manufacturing the carbon catalyst, and electrode and battery using the carbon catalyst
WO2012096023A1 (en) * 2011-01-14 2012-07-19 昭和電工株式会社 Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and application thereof
JP2011251285A (en) * 2011-07-19 2011-12-15 Nisshinbo Holdings Inc Carrier for carrying catalyst, catalyst carrier, electrode, and battery
WO2013021698A1 (en) * 2011-08-08 2013-02-14 昭和電工株式会社 Method for producing redox catalyst and use of redox catalyst
WO2013125503A1 (en) * 2012-02-20 2013-08-29 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for manufacturing same, carbon alloy catalyst and fuel cell
JP2013212970A (en) * 2012-04-03 2013-10-17 M & S Kenkyu Kaihatsu Kk Polytriazine terephthalamide resin carbide and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014037508; R. KOBAYASHI et al.: 'Novel N-Doped Carbon Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells Formed on Carbon B' Chemistry Letters , 2009, 38, 396-397. *
JPN6014037509; M. LEFEVRE et al.: 'ACTIVITY FOR O2 REDUCTION OF HEAT-TREATED FE/N/C CATALYSTS PREPARED WITH CARBON BLACK MODIFIED BY NI' ECS Transactions , 2006, 3(1), 201-210. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692852B1 (en) * 2015-07-02 2017-01-06 인하대학교 산학협력단 Catalyst for oxygen reduction reaction based cobalt and the preparation method thereof
JP2017043499A (en) * 2015-08-24 2017-03-02 旭化成株式会社 Nitrogen-containing carbon material and method for producing the same, precursor composition for nitrogen-containing carbon material and electrode for fuel cell
CN111909132A (en) * 2019-05-07 2020-11-10 北京鼎材科技有限公司 Organic material and organic electroluminescent device using same

Also Published As

Publication number Publication date
WO2014208740A1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
JP5820408B2 (en) Nitrogen-containing carbon alloy and production method thereof, carbon alloy catalyst and fuel cell
JP6320333B2 (en) Composite, composite manufacturing method, and fuel cell catalyst
JP5608595B2 (en) Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same
JP6454350B2 (en) Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst
JP2016102037A (en) Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst
US9350025B2 (en) Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
JP5325355B2 (en) Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
JP2012124164A (en) Lithium-air battery
KR102014985B1 (en) Composite, electrode catalyst including the same, manufacturing method thereof, and fuel cell using the same
WO2013008501A1 (en) Oxygen reduction catalyst, process for producing same, and polymer electrolyte membrane fuel cell
WO2014208740A1 (en) Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst
US20150376218A1 (en) Method for manufacturing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst
JP5918156B2 (en) Carbon alloy material, carbon alloy catalyst, and fuel cell manufacturing method
WO2015199125A1 (en) Method for manufacturing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel-cell catalyst
KR101768121B1 (en) Lithium air battery
JP2009231049A (en) Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell
JP5837356B2 (en) Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
JP5837355B2 (en) Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
JP2016026245A (en) Manufacturing method of aromatic amine modified product
JP2021063246A (en) Electrode for reductive reaction, method for manufacturing electrode for reductive reaction, and reaction device using electrode for reductive reaction

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20160829