JP2011251285A - Carrier for carrying catalyst, catalyst carrier, electrode, and battery - Google Patents

Carrier for carrying catalyst, catalyst carrier, electrode, and battery Download PDF

Info

Publication number
JP2011251285A
JP2011251285A JP2011157904A JP2011157904A JP2011251285A JP 2011251285 A JP2011251285 A JP 2011251285A JP 2011157904 A JP2011157904 A JP 2011157904A JP 2011157904 A JP2011157904 A JP 2011157904A JP 2011251285 A JP2011251285 A JP 2011251285A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
metal
electrode
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011157904A
Other languages
Japanese (ja)
Other versions
JP5689379B2 (en
JP2011251285A5 (en
Inventor
Erina Kakimoto
恵里奈 柿本
Takeaki Kishimoto
武亮 岸本
Junichi Ozaki
純一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Gunma University NUC
Original Assignee
Nisshinbo Holdings Inc
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc, Gunma University NUC filed Critical Nisshinbo Holdings Inc
Priority to JP2011157904A priority Critical patent/JP5689379B2/en
Publication of JP2011251285A publication Critical patent/JP2011251285A/en
Publication of JP2011251285A5 publication Critical patent/JP2011251285A5/ja
Application granted granted Critical
Publication of JP5689379B2 publication Critical patent/JP5689379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carrier for carrying a catalyst, which can simultaneously achieve both the durability and the easiness of carrying the catalyst (catalyst carrying performance) at high levels.SOLUTION: The carrier for carrying a catalyst is obtained by carbonizing a raw material containing a nitrogen-containing organic substance and a metal. The carrier for carrying a catalyst may contain 20 to 45% of a graphite-resembling structural component and 55 to 80% of an amorphous component in a peak near a diffraction angle of 26° in an X-ray diffraction graphic. The carrier for carrying a catalyst may exhibit an intensity ratio (I/I) of a 1,360 cmband to 1,580 cmband of ≥0.3 and ≤1.0 in a Raman spectrum. The carrier for carrying a catalyst may be obtained by subjecting the carbonized material obtained by carbonizing the raw material to a metal removal treatment, and further to a thermal treatment. In this case, the metal may be a transition metal.

Description

本発明は、触媒担持用担体、触媒担持体、電極及び電池に関し、特に、炭素化材料からなる触媒担持用担体に関する。   The present invention relates to a catalyst support, catalyst support, electrode, and battery, and more particularly to a catalyst support made of a carbonized material.

固体高分子形燃料電池(PEFC)は、低温領域での運転が可能であり、エネルギー変換効率が高く、起動に要する時間が短く、そのシステムは小型で軽量とすることができる。このため、PEFCは、電気自動車の動力源、携帯用電源、家庭用コージェネレーション・システムへの応用が期待されている。   The polymer electrolyte fuel cell (PEFC) can be operated in a low temperature region, has high energy conversion efficiency, has a short time required for start-up, and the system can be small and light. For this reason, PEFC is expected to be applied to power sources for electric vehicles, portable power sources, and home cogeneration systems.

このPEFCでは、起動と停止の繰り返し運転中にカソード触媒層が一時的に高電位(例えば、0.8V以上)に曝される。この際にカソード触媒である白金(Pt)等の貴金属の作用により水の分解が起こり、酸素が発生すると、この酸素によって貴金属を担持している炭素材料が酸化腐食されて触媒担体が分解及び劣化する。触媒担体が劣化すれば、PEFCの発電性能は低下し、Pt等の貴金属の溶出やシンタリングが促進され、触媒活性は更に低下する。   In this PEFC, the cathode catalyst layer is temporarily exposed to a high potential (for example, 0.8 V or more) during repeated operation of starting and stopping. At this time, decomposition of water occurs due to the action of a noble metal such as platinum (Pt) as a cathode catalyst, and when oxygen is generated, the carbon material supporting the noble metal is oxidized and corroded by this oxygen, and the catalyst carrier is decomposed and deteriorated. To do. If the catalyst carrier deteriorates, the power generation performance of PEFC decreases, elution and sintering of precious metals such as Pt are promoted, and the catalytic activity further decreases.

そこで、高電位条件下においても耐久性が高く、Pt等の貴金属触媒が数nmオーダーの高分散状態で高効率に担持され、貴金属触媒の凝集等が起こらないような触媒担持用炭素材料の開発が進められている。   Therefore, development of a catalyst-supporting carbon material that is highly durable even under high potential conditions, and that supports noble metal catalysts such as Pt with high efficiency in a highly dispersed state on the order of several nanometers and does not cause aggregation of noble metal catalysts. Is underway.

黒鉛等の高結晶性炭素材料は、耐久性の点では優れているが、触媒担持量の点では好ましくない。これは黒鉛等の高結晶性炭素材料の比表面積が小さいためである。したがって、一般に、触媒担持用炭素材料の耐久性と触媒担持量とはトレードオフの関係にある。   Highly crystalline carbon materials such as graphite are excellent in terms of durability, but are not preferable in terms of the amount of catalyst supported. This is because the specific surface area of highly crystalline carbon materials such as graphite is small. Therefore, in general, the durability of the catalyst-supporting carbon material and the amount of catalyst supported are in a trade-off relationship.

従来、例えば、特許文献1において、カーボンブラック又は活性炭を1800〜2500℃にて加熱処理することにより、その黒鉛化度を高め、結晶化度の高い高結晶性炭素材料を得ることが記載されている。   Conventionally, for example, Patent Document 1 describes that carbon black or activated carbon is heat-treated at 1800 to 2500 ° C. to increase the degree of graphitization and obtain a highly crystalline carbon material having a high degree of crystallinity. Yes.

また、特許文献2においては、カーボンブラック及び黒鉛化促進物質(B、Si、Al、Fe又はこれらを含む化合物)を含む混合物を2000〜2500℃で加熱処理する方法や、さらに当該加熱処理の前又は後に賦活処理を行う方法により、耐食性に優れた黒鉛化カーボンブラックを得ることが記載されている。   Moreover, in patent document 2, the method of heat-processing the mixture containing carbon black and a graphitization acceleration | stimulation substance (B, Si, Al, Fe, or the compound containing these) at 2000-2500 degreeC, and also before the said heat processing Alternatively, it is described that graphitized carbon black having excellent corrosion resistance is obtained by a method of performing an activation treatment later.

また、特許文献3においては、カーボン系の触媒担体をあらかじめ電気化学的に酸化させることにより、その耐久性を向上させることが記載されている。また、特許文献4においては、貴金属触媒を担持した炭素材料(カーボンブラックやカーボンナノチューブ)を不活性ガス雰囲気下、300〜1200℃で熱処理することにより、当該炭素材料の腐食を抑制することが記載されている。   Patent Document 3 describes that a carbon-based catalyst carrier is electrochemically oxidized in advance to improve its durability. Patent Document 4 describes that a carbon material (carbon black or carbon nanotube) supporting a noble metal catalyst is heat-treated at 300 to 1200 ° C. in an inert gas atmosphere to suppress corrosion of the carbon material. Has been.

また、特許文献5,6においては、燃料電池用電極触媒の基材として、窒素化合物を含有する熱硬化性樹脂を400〜1500℃で熱処理することにより、窒素原子及び/又はホウ素原子がドープされたカーボンアロイ微粒子を得ることが記載されている。   In Patent Documents 5 and 6, as a base material for a fuel cell electrode catalyst, a thermosetting resin containing a nitrogen compound is heat-treated at 400 to 1500 ° C., so that nitrogen atoms and / or boron atoms are doped. Obtaining carbon alloy fine particles.

また、特許文献7においては、難黒鉛化性炭素を生成する原材料(ポリフルフリルアルコール、フラン樹脂又はフェノール樹脂を含む熱硬化性樹脂、褐炭、セルロース、ポリ塩化ビニリデン及びリグニンからなる群より選択される)に金属化合物(鉄、コバルト、ニッケル、クロム、マンガンのうち少なくとも一つ)を添加混合後、熱処理による炭素化により、貴金属粒子を担持する炭素材料を得ることが記載されている。   Moreover, in patent document 7, it selects from the raw material (The thermosetting resin containing polyfurfuryl alcohol, a furan resin, or a phenol resin, brown coal, a cellulose, a polyvinylidene chloride, and lignin which produces | generates a non-graphitizable carbon. ) Is added to and mixed with a metal compound (at least one of iron, cobalt, nickel, chromium, and manganese), and then carbonized by heat treatment to obtain a carbon material carrying noble metal particles.

特開2000−268828号公報JP 2000-268828 A 特開2000−273251号公報JP 2000-273251 A 特開2008−108495号公報JP 2008-108495 A 国際公開第2006/088194号International Publication No. 2006/088194 特開2004−362802号公報JP 2004-362802 A 特開2007−311026号公報JP 2007-311026 A 特開2005−019332号公報JP 2005-019332 A

しかしながら、特許文献1に記載の技術においては、高結晶性炭素材料を製造する際に、1800℃以上の非常に高い温度で加熱処理を行う必要があるため、エネルギーコストが高い。また、高結晶性炭素材料は黒鉛化が進行しているため比表面積が小さくなってしまい、Pt等の貴金属触媒が担持され難く、必ずしも優れた担体であるとは言えない。   However, in the technique described in Patent Document 1, when manufacturing a highly crystalline carbon material, it is necessary to perform heat treatment at a very high temperature of 1800 ° C. or higher, so that the energy cost is high. In addition, since highly graphitized carbon materials are being graphitized, the specific surface area is small, and it is difficult to support a noble metal catalyst such as Pt, which is not necessarily an excellent support.

また、特許文献2に記載の技術においては、黒鉛化カーボンブラックを製造する際に、2000℃以上の非常に高い温度での加熱処理や賦活処理が必要となるため、エネルギーコストが高く、操作が煩雑となり、実用化が容易でない。   In the technique described in Patent Document 2, when producing graphitized carbon black, heat treatment or activation treatment at a very high temperature of 2000 ° C. or higher is required. It becomes complicated and not practical.

また、特許文献3に記載の技術においては、いったん製造された炭素材料を、さらに電気化学的に酸化する処理が必要であるため、操作が煩雑となる。また、特許文献4に記載の技術においては、炭素材料に貴金属触媒を担持した後にさらに熱処理を行う必要があるため、操作が煩雑となる。また、熱処理によって、担持されている貴金属触媒の凝集やシンタリングが起こることも懸念される。   In addition, in the technique described in Patent Document 3, since a process for further electrochemically oxidizing the carbon material once manufactured is necessary, the operation becomes complicated. Moreover, in the technique described in Patent Document 4, since it is necessary to perform a heat treatment after the noble metal catalyst is supported on the carbon material, the operation becomes complicated. In addition, there is a concern that the precious metal catalyst supported may be aggregated or sintered due to the heat treatment.

また、特許文献5〜7には、白金等の貴金属触媒の使用量を低減できることは記載されているが、触媒担持体の耐久性と触媒の担持し易さ(以下、「触媒担持性能」という。)とを両立させることについては、何らの記載も示唆もない。   Patent Documents 5 to 7 describe that the amount of a noble metal catalyst such as platinum can be reduced, but the durability of the catalyst carrier and the ease of catalyst loading (hereinafter referred to as “catalyst carrying performance”). There is no description or suggestion about achieving both.

本発明は、上記課題に鑑みて為されたものであり、耐久性と触媒担持性能との両立を高いレベルで達成できる触媒担持用担体、触媒担持体、電極及び電池を提供することをその目的の一つとする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a catalyst-supporting carrier, a catalyst-supporting body, an electrode, and a battery that can achieve both durability and catalyst-supporting performance at a high level. One of them.

上記課題を解決するための本発明の一実施形態に係る触媒担持用担体は、窒素含有有機物と金属とを含む原料を炭素化して得られたことを特徴とする。本発明によれば、耐久性と触媒担持性能との両立を高いレベルで達成できる触媒担持用担体を提供することができる。   A carrier for supporting a catalyst according to an embodiment of the present invention for solving the above problems is obtained by carbonizing a raw material containing a nitrogen-containing organic substance and a metal. ADVANTAGE OF THE INVENTION According to this invention, the support | carrier for catalyst carrying | support which can achieve coexistence with durability and catalyst carrying | support performance at a high level can be provided.

また、前記触媒担持用担体は、X線回折図形における回折角26°付近のピークが、20〜45%の黒鉛類似構造成分と、55〜80%のアモルファス成分と、を含むこととしてもよい。また、前記触媒担持用担体は、ラマンスペクトルにおける1360cm−1バンドの1580cm−1バンドに対する強度比(I1360/I1580)が0.3以上、1.0以下であることとしてもよい。 Further, the catalyst-supporting carrier may have a peak at a diffraction angle of about 26 ° in an X-ray diffraction pattern containing 20 to 45% of a graphite-like structural component and 55 to 80% of an amorphous component. Further, the catalyst supporting carrier, the intensity ratio 1580 cm -1 band of 1360 cm -1 band in the Raman spectrum (I 1360 / I 1580) is 0.3 or more, may be 1.0 or less.

また、前記触媒担持用担体は、前記原料を炭素化して得られた炭素化材料に、金属除去処理を施し、さらに熱処理を施して得られたこととしてもよい。この場合、前記金属は、遷移金属であることとしてもよい。   The catalyst-supporting carrier may be obtained by subjecting the carbonized material obtained by carbonizing the raw material to metal removal treatment and further heat treatment. In this case, the metal may be a transition metal.

上記課題を解決するための本発明の一実施形態に係る触媒担持体は、前記いずれかの触媒担持用担体と、前記触媒担持用担体に担持された貴金属触媒と、を有することを特徴とする。本発明によれば、耐久性と触媒担持性能との両立を高いレベルで達成できる触媒担持体を提供することができる。   A catalyst carrier according to an embodiment of the present invention for solving the above-described problems includes any one of the catalyst-carrying carriers and a noble metal catalyst supported on the catalyst-carrying carrier. . ADVANTAGE OF THE INVENTION According to this invention, the catalyst carrier which can achieve coexistence with durability and catalyst carrying | support performance at a high level can be provided.

また、前記触媒担持体は、サイクリックボルタンメトリーにおいて、0〜1.6Vの範囲で電位を50サイクル連続的に掃引した場合に、5サイクル目の1.5V印加時の電流値に対する50サイクル目の1.5V印加時の電流値の割合が90%以上であることとしてもよい。   Further, in the cyclic voltammetry, when the potential is swept continuously for 50 cycles in the range of 0 to 1.6 V, the catalyst carrier is in the 50th cycle relative to the current value when 1.5V is applied in the 5th cycle. The ratio of the current value when 1.5 V is applied may be 90% or more.

上記課題を解決するための本発明の一実施形態に係る電極は、前記触媒担持体を含むことを特徴とする。本発明によれば、耐久性と触媒担持性能との両立を高いレベルで達成できる電極を提供することができる。   An electrode according to an embodiment of the present invention for solving the above problems includes the catalyst carrier. ADVANTAGE OF THE INVENTION According to this invention, the electrode which can achieve coexistence with durability and catalyst carrying | support performance at a high level can be provided.

上記課題を解決するための本発明の一実施形態に係る電池は、前記電極を含むことを特徴とする。本発明によれば、耐久性と触媒担持性能との両立を高いレベルで達成できる電池を提供することができる。   A battery according to an embodiment of the present invention for solving the above problems includes the electrode. ADVANTAGE OF THE INVENTION According to this invention, the battery which can achieve coexistence with durability and catalyst carrying | support performance at a high level can be provided.

本発明によれば、耐久性と触媒担持性能との両立を高いレベルで達成できる触媒担持用担体、触媒担持体、電極及び電池を提供することができる。   According to the present invention, it is possible to provide a catalyst-supporting carrier, a catalyst-supporting body, an electrode, and a battery that can achieve both durability and catalyst-supporting performance at a high level.

本発明の一実施形態に係る触媒担持用担体について得られたX線回折図形におけるピーク分離の一例を示す説明図である。It is explanatory drawing which shows an example of the peak separation in the X-ray diffraction pattern obtained about the support | carrier for catalyst support which concerns on one Embodiment of this invention. 本発明の一実施形態に係る触媒担持用担体の炭素構造、触媒担持体の耐久性及び触媒担持性能を評価した結果の一例を示す説明図である。It is explanatory drawing which shows an example of the result of having evaluated the carbon structure of the catalyst support carrier which concerns on one Embodiment of this invention, durability of a catalyst support body, and catalyst support performance. 本発明の一実施形態に係る触媒担持体の透過型電子顕微鏡写真の一例を示す説明図である。It is explanatory drawing which shows an example of the transmission electron micrograph of the catalyst carrier which concerns on one Embodiment of this invention. 本発明の一実施形態に係る触媒担持体の酸素還元活性を評価した結果の一例を示す説明図である。It is explanatory drawing which shows an example of the result of having evaluated the oxygen reduction activity of the catalyst carrier which concerns on one Embodiment of this invention. 本発明の一実施形態に係る触媒担持用担体の耐久性を評価した結果の一例を示す説明図である。It is explanatory drawing which shows an example of the result of having evaluated the durability of the catalyst support carrier which concerns on one Embodiment of this invention. 本発明の一実施形態に係る触媒担持体の耐久性を評価した結果の一例を示す説明図である。It is explanatory drawing which shows an example of the result of having evaluated the durability of the catalyst carrier which concerns on one Embodiment of this invention.

以下に、本発明の一実施形態について説明する。なお、本発明は本実施形態で示す例に限られない。   Hereinafter, an embodiment of the present invention will be described. The present invention is not limited to the example shown in the present embodiment.

本実施形態に係る触媒担持用担体(以下、本担体)は、貴金属触媒を担持するための担体であって、窒素含有有機物と金属とを含む原料を炭素化して得られる。   The catalyst supporting carrier according to the present embodiment (hereinafter referred to as the present carrier) is a carrier for supporting a noble metal catalyst, and is obtained by carbonizing a raw material containing a nitrogen-containing organic substance and a metal.

この原料に含まれる窒素含有有機物は、その分子内に窒素原子を含む有機化合物を含有し、炭素化できるもの(炭素源として使用できるもの)であれば特に限られず、任意の1種又は2種以上を使用することができる。   The nitrogen-containing organic substance contained in this raw material is not particularly limited as long as it contains an organic compound containing a nitrogen atom in its molecule and can be carbonized (can be used as a carbon source), and any one or two kinds The above can be used.

すなわち、窒素含有有機物としては、例えば、高分子量の有機化合物(例えば、熱可塑性樹脂や熱硬化性樹脂等の樹脂)及び低分子量の有機化合物の一方又は両方を使用することができる。また、例えば、植物廃材等のバイオマスを使用することもできる。   That is, as the nitrogen-containing organic substance, for example, one or both of a high molecular weight organic compound (for example, a resin such as a thermoplastic resin or a thermosetting resin) and a low molecular weight organic compound can be used. Further, for example, biomass such as plant waste material can be used.

窒素含有有機物としては、例えば、金属に配位可能な配位子を好ましく使用することができる。すなわち、この場合、その分子内に1又は複数個の配位原子を含む窒素含有有機化合物を使用する。より具体的に、例えば、配位原子として、その分子内に窒素原子、リン原子、酸素原子、硫黄原子からなる群より選択される1種又は2種以上を含む窒素含有有機化合物を使用することができる。また、例えば、配位基として、その分子内にアミノ基、フォスフィノ基、カルボキシル基、チオール基からなる群より選択される1種又は2種以上を含む窒素含有有機化合物を使用することもできる。   As the nitrogen-containing organic substance, for example, a ligand capable of coordinating with a metal can be preferably used. That is, in this case, a nitrogen-containing organic compound containing one or more coordination atoms in the molecule is used. More specifically, for example, using a nitrogen-containing organic compound containing one or more selected from the group consisting of a nitrogen atom, a phosphorus atom, an oxygen atom, and a sulfur atom in the molecule as a coordination atom. Can do. Further, for example, a nitrogen-containing organic compound containing one or more selected from the group consisting of an amino group, a phosphino group, a carboxyl group, and a thiol group in the molecule can also be used as a coordination group.

具体的に、窒素含有有機化合物としては、例えば、ピロール、ポリピロール、ポリビニルピロール、3−メチルポリピロール、ビニルピリジン、ポリビニルピリジン、イミダゾール、2−メチルイミダゾ−ル、アニリン、ポリアニリン、ポリアミノビスマレイミド、ポリイミド、ベンゾイミダゾ−ル、ポリベンゾイミダゾ−ル、ポリアミド、アクリロニトリル、ポリアクリロニトリル、キチン、キトサン、絹、毛、ポリアミノ酸、核酸、DNA、RNA、ヒドラジン、ヒドラジド、尿素、サレン、ポリカルバゾール、ポリビスマレイミド、トリアジン、メラミン、メラミン樹脂、ポリアミドイミド樹脂からなる群より選択される1種又は2種以上を使用することができる。   Specifically, as the nitrogen-containing organic compound, for example, pyrrole, polypyrrole, polyvinylpyrrole, 3-methylpolypyrrole, vinylpyridine, polyvinylpyridine, imidazole, 2-methylimidazole, aniline, polyaniline, polyaminobismaleimide, polyimide, Benzimidazole, polybenzimidazole, polyamide, acrylonitrile, polyacrylonitrile, chitin, chitosan, silk, hair, polyamino acid, nucleic acid, DNA, RNA, hydrazine, hydrazide, urea, salen, polycarbazole, polybismaleimide, One type or two or more types selected from the group consisting of triazine, melamine, melamine resin, and polyamideimide resin can be used.

また、廃材等のバイオマスとしては、例えば、コーヒー出し殻、お茶出し殻、ビール絞り粕、米ぬか等の食品産業廃棄物、林地残材、建築廃材等の木質系廃材、下水汚泥等の生活系廃材からなる群より選択される1種又は2種以上を使用することができる。窒素含有有機物は、例えば、ホウ素、リン、酸素、硫黄からなる群より選択される1種又は2種以上をさらに含有することもできる。   In addition, examples of biomass such as waste wood include food industry waste such as coffee grounds, tea grounds, beer squeezed rice bran, rice bran, etc., wood-based waste such as forest residue, building waste, and household waste such as sewage sludge. 1 type (s) or 2 or more types selected from the group which consists of can be used. The nitrogen-containing organic substance can further contain, for example, one or more selected from the group consisting of boron, phosphorus, oxygen, and sulfur.

原料に含まれる金属は、本担体の耐久性や触媒担持性能を阻害しないものであれば特に限られず、任意の1種又は2種以上を使用することができる。この金属は、例えば、周期表の3族〜16族からなる群より選択される1種又は2種以上とすることができる。すなわち、周期表の3A族(3族)元素、4A族(4族)元素、5A族(5族)元素、6A族(6族)元素、7A族(7族)元素、8族(8族、9族及び10族)元素、1B族(11族)元素、2B族(12族)元素、3B族(13族)元素、4B族(14族)元素、5B族(15族)元素及び6B族(16族)元素からなる群より選択される1種又は2種以上を使用することができる。   The metal contained in the raw material is not particularly limited as long as it does not impair the durability and catalyst support performance of the present support, and any one or more of them can be used. This metal can be made into 1 type, or 2 or more types selected from the group which consists of 3-16 groups of a periodic table, for example. That is, Group 3A (Group 3) element, Group 4A (Group 4) element, Group 5A (Group 5) element, Group 6A (Group 6) element, Group 7A (Group 7) element, Group 8 (Group 8) , Group 9 and 10) element, Group 1B (Group 11) element, Group 2B (Group 12) element, Group 3B (Group 13) element, Group 4B (Group 14) element, Group 5B (Group 15) element and 6B 1 type (s) or 2 or more types selected from the group which consists of a group (group 16) element can be used.

金属としては、例えば、遷移金属(周期表の3族から12族)を好ましく使用することができる。さらに、遷移金属としては、周期表の3族から12族の第4周期に属する金属を好ましく用いることができる。   As the metal, for example, a transition metal (Group 3 to Group 12 in the periodic table) can be preferably used. Further, as the transition metal, a metal belonging to Group 4 to Group 4 of the periodic table can be preferably used.

具体的には、例えば、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、ランタノイド(セリウム(Ce)等)及びアクチノイドからなる群より選択される1種又は2種以上を好ましく使用することができ、マンガン、鉄、コバルト、ニッケル、銅からなる群より選択される1種又は2種以上をより好ましく使用することができる。   Specifically, for example, scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu ), Zinc (Zn), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), palladium (Pd), lanthanoid (cerium (Ce), etc.) And one or more selected from the group consisting of actinoids can be preferably used, and one or more selected from the group consisting of manganese, iron, cobalt, nickel, copper are more preferably used be able to.

金属は、当該金属の単体又は当該金属の化合物として使用することができる。金属化合物としては、例えば、金属塩、金属酸化物、金属水酸化物、金属窒化物、金属硫化物、金属炭化物、金属錯体を使用することができ、金属塩、金属酸化物、金属硫化物、金属錯体を好ましく使用することができる。なお、上述の有機化合物として配位子を使用する場合には、原料中において金属錯体が形成されることとなる。   The metal can be used as a simple substance of the metal or a compound of the metal. Examples of the metal compound include metal salts, metal oxides, metal hydroxides, metal nitrides, metal sulfides, metal carbides, metal complexes, metal salts, metal oxides, metal sulfides, Metal complexes can be preferably used. In addition, when using a ligand as the above-mentioned organic compound, a metal complex is formed in the raw material.

また、本担体の原料は、導電性炭素材料をさらに含有することもできる。導電性炭素材料は、本担体に導電性を付与し、又は本担体の導電性を向上させるものであれば特に限られず、任意の1種又は2種以上を使用することができる。すなわち、導電性炭素材料としては、例えば、導電性を有し、それ自身では触媒活性を有しない炭素材料を使用することができる。   Moreover, the raw material of this support | carrier can further contain a conductive carbon material. The conductive carbon material is not particularly limited as long as it imparts conductivity to the carrier or improves the conductivity of the carrier, and any one or two or more types can be used. That is, as the conductive carbon material, for example, a carbon material having conductivity and having no catalytic activity by itself can be used.

具体的に、例えば、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノファイバー、カーボンファイバー、カーボンフィブリル、活性炭、黒鉛粉末からなる群より選択される1種又は2種以上を使用することができる。   Specifically, for example, one or more selected from the group consisting of carbon black, carbon nanotube, carbon nanohorn, carbon nanofiber, carbon fiber, carbon fibril, activated carbon, and graphite powder can be used.

原料の炭素化は、上述のような窒素含有有機物と金属とを少なくとも含有する原料を加熱して、当該原料を炭素化できる所定温度(炭素化温度)で保持することにより行う。炭素化温度は、原料を炭素化できる温度であれば特に限られず、例えば、300℃以上とすることができる。より具体的に、炭素化温度は、例えば、300℃以上、1500℃以下とすることができ、好ましくは400℃以上、1200℃以下とすることができ、より好ましくは500℃以上、1100℃以下とすることができる。   The carbonization of the raw material is performed by heating the raw material containing at least the nitrogen-containing organic substance and the metal as described above and maintaining the raw material at a predetermined temperature (carbonization temperature) at which the raw material can be carbonized. The carbonization temperature is not particularly limited as long as the raw material can be carbonized, and can be, for example, 300 ° C. or higher. More specifically, the carbonization temperature can be, for example, 300 ° C. or higher and 1500 ° C. or lower, preferably 400 ° C. or higher and 1200 ° C. or lower, more preferably 500 ° C. or higher and 1100 ° C. or lower. It can be.

原料を炭素化温度まで加熱する際の昇温速度は、特に限られず、例えば、0.5℃/分以上、300℃/分以下とすることができる。原料を炭素化温度で保持する時間(炭素化時間)は、原料を炭素化できる時間であれば特に限られず、例えば、5分以上とすることができる。より具体的に、炭素化時間は、例えば、5分以上、240分以下とすることができ、好ましくは20分以上、180分以下とすることができる。また、炭素化は、窒素等の不活性ガス下(例えば、不活性ガスの流通下)で行うことが好ましい。   The rate of temperature rise when heating the raw material to the carbonization temperature is not particularly limited, and can be, for example, 0.5 ° C./min or more and 300 ° C./min or less. The time for holding the raw material at the carbonization temperature (carbonization time) is not particularly limited as long as the raw material can be carbonized, and can be, for example, 5 minutes or longer. More specifically, the carbonization time can be, for example, 5 minutes or more and 240 minutes or less, preferably 20 minutes or more and 180 minutes or less. Carbonization is preferably performed under an inert gas such as nitrogen (for example, under the flow of an inert gas).

本担体は、このような原料の炭素化により生成された炭素化材料として得ることができる。また、本担体は、この炭素化材料を粉砕したものとすることもできる。炭素化材料を粉砕する方法は、特に限られず、例えば、ボールミルやビーズミル等の粉砕装置を使用することができる。粉砕後の本担体の平均粒径は、例えば、1000μm以下とすることができ、好ましくは150μm以下とすることができ、より好ましくは45μm以下とすることができる。   This support can be obtained as a carbonized material produced by carbonization of such raw materials. Moreover, this support | carrier can also grind | pulverize this carbonization material. The method for pulverizing the carbonized material is not particularly limited, and for example, a pulverizing apparatus such as a ball mill or a bead mill can be used. The average particle diameter of the carrier after pulverization can be, for example, 1000 μm or less, preferably 150 μm or less, and more preferably 45 μm or less.

本担体は、原料の炭素化により得られた炭素化材料に窒素原子を導入(ドープ)したものとすることもできる。窒素原子を導入する方法としては、例えば、アンモオキシデーション法やCVD法等の気相ドープ法、液相ドープ法又は気相-液相ドープ法を使用することができる。具体的に、例えば、アンモニア、メラミン、アセトニトリル等の窒素源を炭素化材料と混合し、得られた混合物を窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下で550℃以上、1200℃以下の温度で、5分以上、180分以下の時間保持することにより、当該炭素化材料の表面に窒素原子を導入することができる。また、得られた炭素化材料に、二酸化炭素賦活、リン酸賦活、アルカリ賦活、水素賦活、アンモニア賦活、酸化窒素による賦活、電解賦活等の賦活処理及び/又は硝酸酸化、混酸酸化、過酸化水素酸化等の液相酸化を施すこともできる。   This carrier can also be a carbonized material obtained by carbonization of a raw material into which nitrogen atoms are introduced (doped). As a method for introducing nitrogen atoms, for example, a vapor phase doping method such as an ammoxidation method or a CVD method, a liquid phase doping method, or a gas phase-liquid phase doping method can be used. Specifically, for example, a nitrogen source such as ammonia, melamine, or acetonitrile is mixed with a carbonized material, and the resulting mixture is heated to a temperature of 550 ° C. or higher and 1200 ° C. or lower in an inert gas atmosphere such as nitrogen, argon, or helium. By holding for 5 minutes or more and 180 minutes or less, nitrogen atoms can be introduced into the surface of the carbonized material. In addition, the obtained carbonized material is subjected to carbon dioxide activation, phosphoric acid activation, alkali activation, hydrogen activation, ammonia activation, activation by nitric oxide, electrolytic activation, and / or nitric acid oxidation, mixed acid oxidation, hydrogen peroxide Liquid phase oxidation such as oxidation can also be performed.

本担体は、例えば、上述の原料を炭素化して得られた炭素化材料に、金属除去処理を施し、さらに熱処理を施して得られた触媒担持用担体とすることもできる。   For example, the carrier can be a catalyst-supporting carrier obtained by subjecting the carbonized material obtained by carbonizing the above raw material to metal removal treatment and further heat treatment.

金属除去処理は、原料の炭素化により得られた炭素化材料に含まれる金属を除去する処理である。金属除去処理は、炭素化材料に含まれる金属を除去し、又は当該金属の量を低減できる処理であれば特に限られず、例えば、酸による洗浄処理や電解処理を実施することができる。   A metal removal process is a process which removes the metal contained in the carbonization material obtained by carbonization of a raw material. The metal removal treatment is not particularly limited as long as it can remove the metal contained in the carbonized material or reduce the amount of the metal, and for example, an acid cleaning treatment or an electrolytic treatment can be performed.

酸処理に使用する酸は、金属除去処理の効果が得られるものであれば特に限られず、任意の1種又は2種以上を使用することができる。すなわち、例えば、塩酸(例えば、濃塩酸)、硝酸(例えば、濃硝酸)及び硫酸(例えば、濃硫酸)からなる群より選択される1種又は2種以上を使用することができる。2種以上の酸を使用する場合には、例えば、濃塩酸と濃硝酸とを所定の体積比で混合して調製された混酸(例えば、王水)や、濃硝酸と濃硫酸とを所定の体積比で混合して調製された混酸を使用することができる。   The acid used for the acid treatment is not particularly limited as long as the effect of the metal removal treatment can be obtained, and any one kind or two or more kinds can be used. That is, for example, one or more selected from the group consisting of hydrochloric acid (for example, concentrated hydrochloric acid), nitric acid (for example, concentrated nitric acid), and sulfuric acid (for example, concentrated sulfuric acid) can be used. When two or more acids are used, for example, a mixed acid prepared by mixing concentrated hydrochloric acid and concentrated nitric acid at a predetermined volume ratio (for example, aqua regia), concentrated nitric acid and concentrated sulfuric acid A mixed acid prepared by mixing at a volume ratio can be used.

酸処理の方法は、例えば、酸を含有する溶液中に炭素化材料を浸漬して保持する方法を使用することができる。   As the acid treatment method, for example, a method of dipping and holding the carbonized material in a solution containing an acid can be used.

熱処理は、上述のように金属除去処理が施された炭素化材料を所定の温度(熱処理温度)で保持することにより行う。熱処理温度は、例えば、300℃以上とすることができ、400℃以上とすることもできる。より具体的に、熱処理温度は、例えば、300℃以上、1500℃以下とすることができ、好ましくは400℃以上、1400℃以下とすることができ、より好ましくは500℃以上、1300℃以下とすることができる。   The heat treatment is performed by holding the carbonized material that has been subjected to the metal removal treatment as described above at a predetermined temperature (heat treatment temperature). The heat treatment temperature can be, for example, 300 ° C. or higher, and can be 400 ° C. or higher. More specifically, the heat treatment temperature can be, for example, 300 ° C. or more and 1500 ° C. or less, preferably 400 ° C. or more and 1400 ° C. or less, more preferably 500 ° C. or more and 1300 ° C. or less. can do.

熱処理温度は、上述の炭素化温度と同一の温度とすることができ、異なる温度とすることもできる。すなわち、熱処理温度は、炭素化温度より低い温度とすることもできる。また、熱処理温度は、炭素化温度より高い温度とすることもできる。   The heat treatment temperature can be the same temperature as the carbonization temperature described above, or can be a different temperature. That is, the heat treatment temperature can be lower than the carbonization temperature. Further, the heat treatment temperature can be higher than the carbonization temperature.

具体的に、例えば、炭素化温度が400℃以上、1100℃以下であった場合には、熱処理温度は300℃以上、1000℃以下であって且つ当該炭素化温度以下とすることができる。   Specifically, for example, when the carbonization temperature is 400 ° C. or more and 1100 ° C. or less, the heat treatment temperature can be 300 ° C. or more and 1000 ° C. or less and the carbonization temperature or less.

炭素化材料を熱処理温度まで加熱する際の昇温速度や、炭素化材料を熱処理温度で保持する時間(熱処理時間)は、上述の炭素化の場合と同様とすることができる。熱処理は、窒素等の不活性ガス下(例えば、不活性ガスの流通下)で行うことが好ましい。金属除去処理及び熱処理は、2回以上繰り返すこともできる。本担体は、金属除去処理及び熱処理が施された炭素化材料を粉砕したものとすることもできる。   The rate of temperature increase when the carbonized material is heated to the heat treatment temperature and the time for which the carbonized material is held at the heat treatment temperature (heat treatment time) can be the same as in the above-described carbonization. The heat treatment is preferably performed under an inert gas such as nitrogen (for example, under the flow of an inert gas). The metal removal treatment and the heat treatment can be repeated twice or more. The carrier may be obtained by pulverizing a carbonized material that has been subjected to metal removal treatment and heat treatment.

本担体は、例えば、上述の原料を炭素化して得られた炭素化材料に、金属含浸処理を施し、さらに熱処理を施して得られた触媒担持用担体とすることもできる。   For example, the carrier can be a catalyst-supporting carrier obtained by subjecting a carbonized material obtained by carbonizing the above raw material to metal impregnation treatment and further heat treatment.

金属含浸処理は、上述のように原料の炭素化により得られた炭素化材料に金属を含浸させる処理である。炭素化材料に含浸させる金属は、本担体の耐久性や触媒担持能を阻害しないものであれば特に限られず、任意の1種又は2種以上を使用することができる。   The metal impregnation treatment is a treatment for impregnating a carbonized material obtained by carbonization of a raw material with a metal as described above. The metal to be impregnated into the carbonized material is not particularly limited as long as it does not impair the durability and catalyst supporting ability of the present support, and any one or more kinds can be used.

この金属は、例えば、周期表の3族〜16族からなる群より選択される1種又は2種以上とすることができる。また、金属としては、例えば、遷移金属(周期表の3族から12族)を好ましく使用することができる。さらに、遷移金属としては、周期表の3族から12族の第4周期、第5周期又は第6周期に属する金属を好ましく用いることができる。   This metal can be made into 1 type, or 2 or more types selected from the group which consists of 3-16 groups of a periodic table, for example. Moreover, as a metal, a transition metal (Group 3 to Group 12 of the periodic table) can be preferably used, for example. Further, as the transition metal, a metal belonging to the fourth period, the fifth period, or the sixth period of Groups 3 to 12 of the periodic table can be preferably used.

具体的に、例えば、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ジルコニウム、ニオブ、モリブデン、ルテニウム、パラジウム、ランタン、セリウム、タンタルからなる群より選択される1種又は2種以上を好ましく使用することができ、チタン、鉄、コバルト、ニッケル、銅、ジルコニウム、ルテニウム、パラジウム、セリウムからなる群より選択される1種又は2種以上をより好ましく使用することができる。   Specifically, for example, one or more selected from the group consisting of titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium, molybdenum, ruthenium, palladium, lanthanum, cerium, and tantalum Can be preferably used, and one or more selected from the group consisting of titanium, iron, cobalt, nickel, copper, zirconium, ruthenium, palladium, and cerium can be more preferably used.

また、金属含浸処理においては、上述の炭素化で使用した原料に含まれる金属とは異なる種類の金属を炭素化材料に含浸させることもできる。すなわち、例えば、アルミニウム、ケイ素、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、インジウム、スズ、ランタン、セリウム、タンタル、鉛からなる群又はチタン、鉄、ジルコニウム、ルテニウム、セリウムからなる群より選択され、且つ上記原料に含まれる金属とは異なる1種又は2種以上を炭素化材料に含浸させることができる。   In the metal impregnation treatment, the carbonized material can be impregnated with a different type of metal from the metal contained in the raw material used in the carbonization described above. That is, for example, the group consisting of aluminum, silicon, titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, ruthenium, indium, tin, lanthanum, cerium, tantalum, lead, or titanium The carbonized material can be impregnated with one or more selected from the group consisting of iron, zirconium, ruthenium and cerium, and different from the metal contained in the raw material.

金属は、当該金属の単体又は当該金属の化合物として使用することができる。金属化合物としては、例えば、金属塩、金属酸化物、金属水酸化物、金属窒化物、金属硫化物、金属炭化物、金属錯体を使用することができ、金属塩、金属酸化物、金属硫化物、金属錯体を好ましく使用することができる。   The metal can be used as a simple substance of the metal or a compound of the metal. Examples of the metal compound include metal salts, metal oxides, metal hydroxides, metal nitrides, metal sulfides, metal carbides, metal complexes, metal salts, metal oxides, metal sulfides, Metal complexes can be preferably used.

炭素化材料に金属を含浸させる方法は、当該炭素化材料の少なくとも表面に当該金属を含浸させることのできるものであれば特に限られず、例えば、当該炭素化材料を、当該金属を含有する溶液に接触させる方法を使用することができる。   The method of impregnating the carbonized material with the metal is not particularly limited as long as at least the surface of the carbonized material can be impregnated with the metal. For example, the carbonized material is put into a solution containing the metal. Contacting methods can be used.

すなわち、例えば、金属含有溶液中に炭素化材料を浸漬して保持することにより、当該炭素化材料に金属を含浸させることができる。また、金属含有溶液としては、酸性の溶液を使用することもできる。この場合、金属含有溶液のpHは、例えば、1以上、6以下とすることができる。   That is, for example, the carbonized material can be impregnated with the metal by immersing and holding the carbonized material in the metal-containing solution. Moreover, as a metal containing solution, an acidic solution can also be used. In this case, the pH of the metal-containing solution can be set to 1 or more and 6 or less, for example.

続く熱処理は、上述のように金属が含浸された炭素化材料を所定の温度で保持することにより行う。この金属含浸処理後の熱処理は、上述の金属除去処理後の熱処理と同様に行うことができる。金属含浸処理及び熱処理は2回以上繰り返すこともできる。本担体は、金属含浸処理及び熱処理が施された炭素化材料を粉砕したものとすることもできる。また、本担体は、金属含浸処理、及びその後の熱処理が施され、さらに、上述の金属除去処理、及びその後の熱処理が施されたものとすることができる。この場合も、最後の熱処理後の炭素化材料を粉砕したものを本担体とすることもできる。   The subsequent heat treatment is performed by maintaining the carbonized material impregnated with the metal at a predetermined temperature as described above. The heat treatment after the metal impregnation treatment can be performed in the same manner as the heat treatment after the metal removal treatment described above. The metal impregnation treatment and the heat treatment can be repeated twice or more. The carrier may be obtained by pulverizing a carbonized material that has been subjected to metal impregnation treatment and heat treatment. In addition, the carrier may be subjected to a metal impregnation treatment and a subsequent heat treatment, and further to the above-described metal removal treatment and a subsequent heat treatment. Also in this case, the support obtained by pulverizing the carbonized material after the final heat treatment can be used.

また、本担体は、X線回折図形における回折角26°付近のピークが、20〜45%の黒鉛類似構造成分と、55〜80%のアモルファス成分と、を含む触媒担持用担体とすることができる。   Further, the present support may be a support for supporting a catalyst in which a peak near a diffraction angle of 26 ° in an X-ray diffraction pattern includes 20 to 45% of a graphite-like structural component and 55 to 80% of an amorphous component. it can.

すなわち、後述する図1に示すように、本担体を構成する炭素化材料のX線回折(例えば、入射X線としてCuKαを使用)を行い、得られたX線回折図形において回折角(2θ)が26°付近(例えば、25°〜27°)のピ−クを分離すると、炭素構造の(002)面反射に対応する黒鉛類似構造成分に係るピークと、アモルファス成分に係るピークと、の面積比が、20〜45:55〜80となる。各成分の割合については、好ましくは、黒鉛類似構造成分の割合が30〜40%、アモルファス成分の割合が60〜70%とすることもできる。   That is, as shown in FIG. 1 to be described later, X-ray diffraction (for example, using CuKα as incident X-rays) of the carbonized material constituting the present support is performed, and a diffraction angle (2θ) in the obtained X-ray diffraction pattern is obtained. Is separated from the peak of 26 ° (for example, 25 ° to 27 °), the area of the peak related to the graphite-like structural component corresponding to the (002) plane reflection of the carbon structure and the peak related to the amorphous component The ratio is 20-45: 55-80. About the ratio of each component, Preferably, the ratio of a graphite similar structure component can also be 30 to 40%, and the ratio of an amorphous component can also be 60 to 70%.

ここで、本担体の黒鉛類似構造は、窒素含有有機物と金属とを含む原料を炭素化することにより得られるナノシェル構造を含む。このナノシェル構造は、後述する図3(A)及び(B)に示すように、原料に含まれていた金属の微粒子の周りに玉ねぎ状に積層発達した、グラファイト構造に類似の乱層構造である。   Here, the graphite-like structure of the support includes a nanoshell structure obtained by carbonizing a raw material containing a nitrogen-containing organic substance and a metal. As shown in FIGS. 3A and 3B, which will be described later, this nanoshell structure is a turbulent structure similar to a graphite structure, which is grown in an onion shape around metal fine particles contained in a raw material. .

そして、本担体は、その炭素構造が、上記のような適切な比率で、ナノシェル構造を含む黒鉛類似構造と、非晶質のアモルファス構造と、を含むことにより、高い耐久性と高い触媒担持性能とを兼ね備えることができる。   And this support | carrier has high durability and high catalyst support performance because the carbon structure contains a graphite-like structure including a nanoshell structure and an amorphous structure in an appropriate ratio as described above. Can be combined.

さらに、本担体が金属除去処理及び熱処理を施して得られた炭素化材料である場合には、耐久性と触媒担持性能とをより高いレベルで兼ね備えることができる。これは、金属除去処理と、これに続く熱処理とによって、本担体において新たな炭素構造が形成されることによるものと考えられる。   Furthermore, when this support | carrier is the carbonization material obtained by performing a metal removal process and heat processing, durability and catalyst carrying | support performance can be combined at a higher level. This is thought to be due to the formation of a new carbon structure in the support by the metal removal treatment and the subsequent heat treatment.

また、本担体は、ラマンスペクトルにおける1360cm−1バンドの1580cm−1バンドに対する強度比(I1360/I1580)が0.3以上、1.0以下である触媒担持用担体とすることができる。 The present carrier, the intensity ratio 1580 cm -1 band of 1360 cm -1 band in the Raman spectrum (I 1360 / I 1580) is 0.3 or more, may be used as a catalyst supporting carrier is 1.0 or less.

すなわち、本担体を構成する炭素化材料のラマン分光測定を行うと、得られたラマンスペクトルにおいては、ラマンシフトが1580cm−1付近のピーク(Gバンド)に加え、ラマンシフトが1360cm−1付近のピーク(Dバンド)が現れ、当該Gバンドの強度(I1580)に対するDバンドの強度(I1360)の比(I1360/I1580)が、0.3以上、1.0以下となる。このD/G強度比(I1360/I1580)は、好ましくは0.3以上、0.8以下とすることができる。 That is, when performing Raman spectrometry carbonized material constituting this support, in the resulting Raman spectrum, the Raman shift in addition to the peak (G band) near 1580 cm -1, the Raman shift of around 1360 cm -1 A peak (D band) appears, and the ratio (I 1360 / I 1580 ) of the intensity (I 1360 ) of the D band to the intensity (I 1580 ) of the G band becomes 0.3 or more and 1.0 or less. The D / G intensity ratio (I 1360 / I 1580 ) can be preferably 0.3 or more and 0.8 or less.

ここで、1360cm−1バンド(Dバンド)は、炭素材料における結晶構造の乱れを反映しているため、D/G強度比(I1360/I1580)は、炭素材料の構造の乱れや欠陥を示す指標となる。すなわち、炭素材料の構造の乱れや欠陥が多くなるほど、当該炭素材料のD/G強度比(I1360/I1580)が大きくなる。 Here, since the 1360 cm −1 band (D band) reflects the disorder of the crystal structure in the carbon material, the D / G intensity ratio (I 1360 / I 1580 ) indicates the disorder or defect of the structure of the carbon material. It becomes an indicator to show. That is, as the structural disorder or defect of the carbon material increases, the D / G intensity ratio (I 1360 / I 1580 ) of the carbon material increases.

そして、本担体は、その炭素構造が、構造の乱れや欠陥を、上記のようなD/G強度比(I1360/I1580)の範囲で示される適度なバランスで含むことにより、高い耐久性と高い触媒担持性能とを兼ね備えることができる。 And this support | carrier has high durability by the disorder | damage | failure and defect of a structure being included in the moderate balance shown by the range of the above D / G intensity ratios ( I1360 / I1580 ). And high catalyst carrying performance.

本実施形態に係る触媒担持体(以下、「本触媒体」という。)は、上述の触媒担持用担体と、当該触媒担持用担体に担持された貴金属触媒と、を有する触媒担持体である。   A catalyst carrier according to the present embodiment (hereinafter referred to as “the present catalyst body”) is a catalyst carrier having the above-mentioned catalyst carrier and the noble metal catalyst supported on the catalyst carrier.

本触媒体に担持される貴金属触媒は、触媒活性を有する貴金属であれば特に限られず、任意の1種又は2種以上を使用することができる。具体的に、貴金属触媒としては、例えば、白金、パラジウム、ルテニウム、ロジウム、イリジウムからなる群より選択される1種又は2種以上を使用することができる。   The noble metal catalyst supported on the catalyst body is not particularly limited as long as it has a catalytic activity, and any one kind or two or more kinds can be used. Specifically, as the noble metal catalyst, for example, one or more selected from the group consisting of platinum, palladium, ruthenium, rhodium and iridium can be used.

貴金属触媒を担持する方法は、特に限られない。すなわち、例えば、貴金属触媒を含有する溶液中に本担体を浸漬し、所定温度で所定時間保持することにより、本担体に当該貴金属触媒を担持することができる。   The method for supporting the noble metal catalyst is not particularly limited. That is, for example, the noble metal catalyst can be supported on the support by immersing the support in a solution containing the noble metal catalyst and holding the support at a predetermined temperature for a predetermined time.

本触媒体における貴金属触媒の担持量は、所望の触媒活性が得られる範囲であれば特に限られない。すなわち、本触媒体は、例えば、本担体に対して0.1〜80重量%(本担体100重量部に対して0.1〜80重量部)、好ましくは0.1〜60重量%の貴金属触媒を担持することができる。   The amount of the noble metal catalyst supported in the catalyst body is not particularly limited as long as a desired catalytic activity is obtained. That is, the catalyst body is, for example, 0.1 to 80% by weight with respect to the support (0.1 to 80 parts by weight with respect to 100 parts by weight of the support), preferably 0.1 to 60% by weight of noble metal. A catalyst can be supported.

また、本触媒体は、サイクリックボルタンメトリーにおいて、0〜1.6Vの範囲で電位を50サイクル連続的に掃引した場合に、5サイクル目の1.5V印加時の電流値に対する50サイクル目の1.5V印加時の電流値の割合が90%以上である触媒担持体とすることができる。   In addition, in the cyclic voltammetry, the present catalytic body is 1 in the 50th cycle relative to the current value when 1.5V is applied in the 5th cycle when the potential is swept continuously for 50 cycles in the range of 0 to 1.6V. A catalyst carrier having a current value ratio of 90% or more when 5 V is applied can be obtained.

すなわち、本触媒体を作用電極に使用したサイクリックボルタンメトリーにおいて、電位を0〜1.6Vの範囲で掃引するサイクルを50回連続的に行った場合には、5回目のサイクルで電圧1.5Vを印加した時点の当該作用電極に流れる電流値を100%とすると、50回目のサイクルで電圧1.5Vを印加した時点の当該作用電極に流れる電流値は90%以上に維持される。換言すれば、5サイクル目の1.5V印加時の電流値に対する50サイクル目の1.5V印加時の電流値は、10%以上減少しない。   That is, in cyclic voltammetry using this catalyst body as a working electrode, when a cycle in which the potential is swept in the range of 0 to 1.6 V is continuously performed 50 times, the voltage is 1.5 V in the fifth cycle. Assuming that the value of the current flowing through the working electrode at the time of applying 100% is 100%, the value of the current flowing through the working electrode when the voltage of 1.5 V is applied in the 50th cycle is maintained at 90% or more. In other words, the current value when 1.5V is applied in the 50th cycle does not decrease by more than 10% with respect to the current value when 1.5V is applied in the 5th cycle.

本実施形態に係る電極(以下、「本電極」という。)は、上述の触媒担持体を含む電極である。すなわち、本電極は、上述の本触媒体が担持された電極である。具体的に、本電極は、例えば、所定の電極基材と、当該電極基材に担持された本触媒体と、を有する電極である。   An electrode according to the present embodiment (hereinafter referred to as “main electrode”) is an electrode including the above-described catalyst carrier. That is, this electrode is an electrode carrying the above-mentioned catalyst body. Specifically, the present electrode is, for example, an electrode having a predetermined electrode base material and the present catalyst body supported on the electrode base material.

本電極は、例えば、燃料電池用電極とすることができ、好ましくは固体高分子形燃料電池(PEFC)用電極とすることができる。本電極が燃料電池用電極である場合には、当該本電極は、カソード電極とすることが好ましい。   The electrode can be, for example, a fuel cell electrode, preferably a polymer electrolyte fuel cell (PEFC) electrode. When the main electrode is a fuel cell electrode, the main electrode is preferably a cathode electrode.

すなわち、上述の本触媒体は、例えば、燃料電池用電極触媒とすることができ、好ましくはPEFC用電極触媒とすることができる。そして、本触媒体が燃料電池用電極触媒である場合には、当該本触媒体は、カソード電極触媒とすることが好ましい。   That is, the above-described catalyst body can be, for example, a fuel cell electrode catalyst, and preferably a PEFC electrode catalyst. When the catalyst body is a fuel cell electrode catalyst, the catalyst body is preferably a cathode electrode catalyst.

本実施形態に係る電池(以下、「本電池」という。)は、上述の電極を含む電池である。すなわち、本電池は、カソード電極及びアノード電極の一方又は両方として上述の本電極を備えた電池である。   The battery according to the present embodiment (hereinafter referred to as “the present battery”) is a battery including the above-described electrode. That is, this battery is a battery provided with the above-described main electrode as one or both of a cathode electrode and an anode electrode.

本電池は、例えば、燃料電池とすることができ、好ましくはPEFCとすることができる。すなわち、本電池は、例えば、本電極を含む膜/電極接合体を備えたPEFCとすることができる。   The battery can be, for example, a fuel cell, preferably PEFC. That is, this battery can be made into PEFC provided with the membrane / electrode assembly containing this electrode, for example.

具体的に、本電池は、例えば、高分子電解質膜と、当該高分子電解質膜の一方側及び他方側にそれぞれ形成されたカソード電極(正極、空気極)及びアノード電極(負極、燃料極)と、が一体化された膜/電極接合体を備え、当該カソード電極及びアノード電極の一方又は両方に本電極を備えたPEFCとすることができる。この場合、本電池は、少なくともカソード電極に本電極を備えることが好ましい。   Specifically, the battery includes, for example, a polymer electrolyte membrane, and a cathode electrode (positive electrode, air electrode) and an anode electrode (negative electrode, fuel electrode) formed on one side and the other side of the polymer electrolyte membrane, respectively. Can be a PEFC having a membrane / electrode assembly integrated with each other, and one or both of the cathode electrode and the anode electrode having this electrode. In this case, the battery preferably includes the electrode at least on the cathode electrode.

このように、本実施形態によれば、耐久性と触媒担持性能との両立を高いレベルで達成できる触媒担持用担体、触媒担持体、電極及び電池を提供することができる。すなわち、窒素含有有機物と金属とを含む原料を炭素化することにより、ナノシェル構造を含む特殊な黒鉛類似構造が適度に発達した本担体を製造することができる。   Thus, according to the present embodiment, it is possible to provide a catalyst-supporting carrier, a catalyst-supporting body, an electrode, and a battery that can achieve both durability and catalyst-supporting performance at a high level. That is, by carbonizing a raw material containing a nitrogen-containing organic substance and a metal, the present support in which a special graphite-like structure including a nanoshell structure is appropriately developed can be produced.

この特殊な炭素構造は、例えば、上述のようにX線回折において、黒鉛類似構造成分とアモルファス成分とを適度な比率で含む回折線が得られ、及び/又は上述のようにラマン分光測定において、適度な範囲のD/G強度比(I1360/I1580)が得られる炭素構造である。 This special carbon structure is obtained, for example, in X-ray diffraction as described above, whereby a diffraction line containing a graphite-like structural component and an amorphous component in an appropriate ratio is obtained, and / or in Raman spectroscopy as described above. It is a carbon structure in which an appropriate D / G intensity ratio (I 1360 / I 1580 ) can be obtained.

そして、この特殊な炭素構造を有する本担体は、酸化されにくく、腐食しにくい。また、本担体においては、多くの貴金属触媒の担持サイトが形成されていると考えられる。また、従来の高結晶性炭素材料のように高温での加熱処理が不要であるため、エネルギーコストを低く抑えることができる。   And this support | carrier which has this special carbon structure is hard to be oxidized, and is hard to corrode. Further, it is considered that many noble metal catalyst supporting sites are formed in the present support. In addition, since the heat treatment at a high temperature is unnecessary unlike the conventional highly crystalline carbon material, the energy cost can be kept low.

さらに、本担体が金属除去処理及び熱処理を経て得られた炭素化材料である場合には、当該本担体は、当該処理により形成された、より特殊な炭素構造を有し、その結果、耐久性及び触媒担持性能をより高いレベルで兼ね備えた触媒担持用担体となる。   Further, when the support is a carbonized material obtained through metal removal treatment and heat treatment, the support has a more specific carbon structure formed by the treatment, and as a result, durable. And a catalyst supporting carrier having a higher level of catalyst supporting performance.

また、このような本担体に白金等の貴金属触媒を担持してなる本触媒体は、高電位下での耐久性に優れ、当該貴金属触媒の溶出や凝集の発生が効果的に抑制される。すなわち、本触媒体においては、白金等の貴金属触媒を、粒子径が数nmオーダーの微粒子として、分散された状態で安定して保持することができ、当該貴金属触媒自体の劣化を効果的に抑制することができる。   In addition, the present catalyst body in which a noble metal catalyst such as platinum is supported on such a carrier is excellent in durability under a high potential, and the elution and aggregation of the noble metal catalyst are effectively suppressed. That is, in this catalyst body, a noble metal catalyst such as platinum can be stably held in a dispersed state as fine particles having a particle size of several nm order, and the deterioration of the noble metal catalyst itself is effectively suppressed. can do.

また、本担体自身が、ナノシェル構造を含む黒鉛類似構造に基づく酸素還元活性を有することにより、本触媒体は、高レベルの酸素還元活性を示す。したがって、本触媒体に担持する白金等の貴金属触媒の量を低減しても、実用上十分な活性を有する触媒担持体を提供することができる。   In addition, since the support itself has an oxygen reduction activity based on a graphite-like structure including a nanoshell structure, the catalyst body exhibits a high level of oxygen reduction activity. Therefore, even if the amount of noble metal catalyst such as platinum supported on the catalyst body is reduced, a catalyst carrier having a practically sufficient activity can be provided.

また、このような本触媒体を備えた電極及び電池においては、高電位等の負荷がかかった場合でも、本担体の劣化が起こりにくく、その結果、高い性能を安定して維持することができる。   In addition, in the electrode and battery equipped with such a catalyst body, even when a load such as a high potential is applied, the carrier is hardly deteriorated, and as a result, high performance can be stably maintained. .

すなわち、例えば、燃料電池において白金が劣化するとカソード電極において2電子反応が増えて過酸化水素が多く発生するという問題が生じるが、本電池を、本電極を備えた燃料電池として実現した場合には、当該本電極に含まれる本担体自体に酸素還元活性があるため、4電子反応の比率を高率で維持することができる。   That is, for example, when platinum deteriorates in a fuel cell, there is a problem that a two-electron reaction increases at the cathode electrode and a large amount of hydrogen peroxide is generated. When this battery is realized as a fuel cell equipped with this electrode, Since the carrier itself contained in the electrode has oxygen reduction activity, the ratio of the four-electron reaction can be maintained at a high rate.

次に、本実施形態に係る具体的な実施例について説明する。   Next, specific examples according to the present embodiment will be described.

[原料の調製]
30.93gのアクリロニトリルと4.07gのメタクリル酸とを、蒸留水中、窒素雰囲気下において70℃で4時間重合した。得られた反応溶液をロータリーエバポレーターで濃縮し真空乾燥機で乾燥し、ポリアクリロニトリル−ポリメタクリル酸共重合体を得た。
[Preparation of raw materials]
30.93 g of acrylonitrile and 4.07 g of methacrylic acid were polymerized in distilled water at 70 ° C. for 4 hours in a nitrogen atmosphere. The obtained reaction solution was concentrated with a rotary evaporator and dried with a vacuum dryer to obtain a polyacrylonitrile-polymethacrylic acid copolymer.

次いで、1.5gの共重合体に30gのジメチルホルムアミド、1.5gの2−メチルイミダゾール、1.5gの塩化コバルト六水和物(CoCl・6HO)を加えて乾燥した。 Next, 30 g of dimethylformamide, 1.5 g of 2-methylimidazole, and 1.5 g of cobalt chloride hexahydrate (CoCl 2 .6H 2 O) were added to 1.5 g of the copolymer and dried.

さらに、この混合物を大気中で加熱して、30分間で室温から150℃まで昇温し、続いて2時間かけて150℃から220℃まで昇温した。その後、混合物を220℃で3時間保持し、当該混合物の不融化を行った。こうして、炭素化材料の原料を調製した。   Further, this mixture was heated in the air, and the temperature was raised from room temperature to 150 ° C. in 30 minutes. Subsequently, the temperature was raised from 150 ° C. to 220 ° C. over 2 hours. Thereafter, the mixture was kept at 220 ° C. for 3 hours to infusibilize the mixture. Thus, the raw material for the carbonized material was prepared.

[炭素化]
次に、原料の炭素化を行った。すなわち、上述のように不融化処理した1.5gの原料を石英ボートに載せ、イメージ炉にて、20分間窒素パージし(窒素流量:0.7L/分)、加熱により50℃/分の昇温速度で室温から1000℃まで昇温した。その後、この原料を1000℃で1時間保持し、炭素化材料を得た。
[Carbonization]
Next, the raw material was carbonized. That is, 1.5 g of the infusible material as described above was placed on a quartz boat, purged with nitrogen for 20 minutes in an image furnace (nitrogen flow rate: 0.7 L / min), and heated to 50 ° C./min. The temperature was raised from room temperature to 1000 ° C. at a temperature rate. Thereafter, this raw material was held at 1000 ° C. for 1 hour to obtain a carbonized material.

さらに、炭素化材料を粉砕した。すなわち、炭素化材料を遊星ボールミル(P−7、フリッチュジャパン株式会社製)に入れ、直径が10mmのジルコニアボールをセットし、回転速度650rpmで50分間粉砕した。その後、粉砕した炭素化材料を取り出し、目開き106μmの篩いを通過した炭素化材料を回収した。   Further, the carbonized material was pulverized. That is, the carbonized material was put into a planetary ball mill (P-7, manufactured by Fritsch Japan Co., Ltd.), a zirconia ball having a diameter of 10 mm was set, and pulverized for 50 minutes at a rotational speed of 650 rpm. Thereafter, the pulverized carbonized material was taken out, and the carbonized material that passed through a sieve having an aperture of 106 μm was collected.

[金属除去処理]
次に、金属除去処理(酸処理)を行った。すなわち、上述のように粉砕した1gの炭素化材料に100mLの濃塩酸を加え、1時間攪拌した。次いで、炭素化材料を沈殿させ、溶液を除去した後、濃塩酸と蒸留水とを1:1(体積比)で混合した溶液を100mL加え、1時間攪拌した。炭素化材料を沈殿させ、溶液を除去した後、蒸留水を100mL加え、1時間攪拌した。こうして、炭素化材料から金属(Co)を除去した。その後、この炭素化材料を蒸留水で洗浄し、吸引ろ過し、真空乾燥機で乾燥した。
[Metal removal treatment]
Next, metal removal treatment (acid treatment) was performed. That is, 100 mL of concentrated hydrochloric acid was added to 1 g of the carbonized material crushed as described above and stirred for 1 hour. Next, after carbonized material was precipitated and the solution was removed, 100 mL of a solution in which concentrated hydrochloric acid and distilled water were mixed at 1: 1 (volume ratio) was added and stirred for 1 hour. After precipitating the carbonized material and removing the solution, 100 mL of distilled water was added and stirred for 1 hour. In this way, metal (Co) was removed from the carbonized material. Thereafter, the carbonized material was washed with distilled water, suction filtered, and dried with a vacuum dryer.

[熱処理]
次に、熱処理を行った。すなわち、上述のように酸処理を施した炭素化材料を石英ボートに載せ、イメージ炉にて、20分間窒素パージし(窒素流量:0.7L/分)、加熱により50℃/分の昇温速度で室温から700℃まで昇温した。その後、この炭素化材料を700℃で1時間保持した。
[Heat treatment]
Next, heat treatment was performed. That is, the carbonized material subjected to the acid treatment as described above is placed on a quartz boat, purged with nitrogen for 20 minutes in an image furnace (nitrogen flow rate: 0.7 L / min), and heated to 50 ° C./min. The temperature was raised from room temperature to 700 ° C. at a rate. Thereafter, the carbonized material was held at 700 ° C. for 1 hour.

さらに、炭素化材料を粉砕した。すなわち、炭素化材料を遊星ボールミル(P−7、フリッチュジャパン株式会社製)に入れ、直径が10mmのジルコニアボールをセットし、回転速度450rpmで20分間粉砕した。その後、粉砕した炭素化材料を取り出し、目開き106μmの篩いを通過した炭素化材料を、触媒担持用担体(IK(Co)1000℃AW)として得た。   Further, the carbonized material was pulverized. That is, the carbonized material was put into a planetary ball mill (P-7, manufactured by Fritsch Japan Co., Ltd.), a zirconia ball having a diameter of 10 mm was set, and pulverized at a rotation speed of 450 rpm for 20 minutes. Thereafter, the pulverized carbonized material was taken out, and a carbonized material that passed through a sieve having an aperture of 106 μm was obtained as a catalyst-supporting carrier (IK (Co) 1000 ° C. AW).

[触媒担持処理]
次に、担体に対して10重量%の白金(Pt)を使用して触媒担持処理を行った。すなわち、0.265gの塩化白金酸(白金を0.1g含有)を100gの蒸留水中に溶解し、白金含有溶液を調製した。次いで、この白金含有溶液に、上述のようにして得られた1gの炭素化材料からなる担体(IK(Co)1000℃AW)を加え、100℃で3時間還流した。その後、炭素化材料を蒸留水で洗浄し、吸引ろ過で回収した。さらに、真空乾燥後、水素雰囲気中で650℃にて還元処理した炭素化材料を、白金を担持した炭素化材料からなる触媒担持体(Pt/IK(Co)1000℃AW)として得た。
[Catalyst loading]
Next, 10% by weight of platinum (Pt) with respect to the support was used to carry out catalyst loading treatment. That is, 0.265 g of chloroplatinic acid (containing 0.1 g of platinum) was dissolved in 100 g of distilled water to prepare a platinum-containing solution. Next, 1 g of the support (IK (Co) 1000 ° C. AW) made of the carbonized material obtained as described above was added to the platinum-containing solution, and the mixture was refluxed at 100 ° C. for 3 hours. Thereafter, the carbonized material was washed with distilled water and collected by suction filtration. Further, a carbonized material reduced at 650 ° C. in a hydrogen atmosphere after vacuum drying was obtained as a catalyst support (Pt / IK (Co) 1000 ° C. AW) made of a carbonized material supporting platinum.

原料の調製時に、塩化コバルト六水和物(CoCl・6HO)に代えて、1.70gの塩化マンガン(II)四水和物(MnCl・4HO)を使用し、炭素化を800℃で行った以外は上述の実施例1と同様にして、触媒担持用担体(IK(Mn)800℃AW)及び触媒担持体(Pt/IK(Mn)800℃AW)を得た。 When preparing the raw material, instead of cobalt chloride hexahydrate (CoCl 2 · 6H 2 O), 1.70 g of manganese (II) chloride tetrahydrate (MnCl 2 · 4H 2 O) was used for carbonization. Was carried out at 800 ° C. in the same manner as in Example 1 to obtain a catalyst supporting carrier (IK (Mn) 800 ° C. AW) and a catalyst supporting body (Pt / IK (Mn) 800 ° C. AW).

原料の調製時に、塩化コバルト六水和物(CoCl・6HO)に代えて、1.25gの塩化鉄(III)六水和物(FeCl・6HO)を使用し、炭素化を800℃で行った以外は上述の実施例1と同様にして、触媒担持用担体(IK(Fe)800℃AW)及び触媒担持体(Pt/IK(Fe)800℃AW)を得た。 1.25 g of iron (III) chloride hexahydrate (FeCl 3 .6H 2 O) was used instead of cobalt chloride hexahydrate (CoCl 2 .6H 2 O) during the preparation of the raw material, and carbonization Was carried out at 800 ° C. in the same manner as in Example 1 to obtain a catalyst supporting carrier (IK (Fe) 800 ° C. AW) and a catalyst supporting body (Pt / IK (Fe) 800 ° C. AW).

金属除去処理(酸処理)及び熱処理を行わなかった以外は上述の実施例1と同様にして、炭素化により得られた炭素化材料を触媒担持用担体(IK(Co)1000℃(−))として得た。また、この炭素化材料に上述の実施例1と同様の触媒担持処理を施すことにより、白金を担持した当該炭素化材料からなる触媒担持体(Pt/IK(Co)1000℃(−))を得た。   The carbonized material obtained by carbonization was converted into a catalyst-supporting carrier (IK (Co) 1000 ° C. (−)) in the same manner as in Example 1 except that metal removal treatment (acid treatment) and heat treatment were not performed. Got as. Further, by subjecting this carbonized material to the catalyst supporting treatment similar to that of Example 1 described above, a catalyst supporting body (Pt / IK (Co) 1000 ° C. (−)) made of the carbonized material supporting platinum is obtained. Obtained.

比較例1Comparative Example 1

ケッチェンブラック(ECP600JD、ライオン株式会社製)を触媒担持用担体(KB)として準備した。また、炭素化材料(IK(Co)1000℃AW)に代えて、触媒担持用担体(KB)を使用した以外は上述の実施例1と同様の触媒担持処理を行い、白金を担持したケッチェンブラックからなる触媒担持体(Pt/KB)を得た。   Ketjen Black (ECP600JD, manufactured by Lion Corporation) was prepared as a catalyst-supporting carrier (KB). Further, a catalyst supporting treatment similar to that of Example 1 described above was used except that a catalyst supporting carrier (KB) was used in place of the carbonized material (IK (Co) 1000 ° C. AW), and Ketjen supporting platinum. A catalyst carrier (Pt / KB) made of black was obtained.

比較例2Comparative Example 2

高黒鉛化カーボンブラック(SCB−GF、SECカーボン株式会社製)を触媒担持用炭素材料(GCB)として準備した。また、炭素化材料(IK(Co)1000℃AW)に代えて、触媒担持用担体(GCB)を使用した以外は上述の実施例1と同様の触媒担持処理を行い、白金を担持した高黒鉛化カーボンブラックからなる触媒担持体(Pt/GCB)を得た。   Highly graphitized carbon black (SCB-GF, manufactured by SEC Carbon Co., Ltd.) was prepared as a catalyst-supporting carbon material (GCB). In addition, a catalyst supporting treatment similar to that of Example 1 described above was used except that a catalyst supporting carrier (GCB) was used instead of the carbonized material (IK (Co) 1000 ° C. AW), and high graphite supporting platinum was used. A catalyst carrier (Pt / GCB) made of activated carbon black was obtained.

比較例3Comparative Example 3

黒鉛(RC−VERS、ティムカル・グラファイト・アンド・カーボン社製)を触媒担持用炭素材料(Gr)として準備した。また、炭素化材料(IK(Co)1000℃AW)に代えて、触媒担持用担体(Gr)を使用した以外は上述の実施例1と同様の触媒担持処理を行い、白金を担持した黒鉛からなる触媒担持体(Pt/Gr)を得た。   Graphite (RC-VERS, manufactured by Timcal Graphite and Carbon) was prepared as a catalyst-supporting carbon material (Gr). Further, in place of the carbonized material (IK (Co) 1000 ° C. AW), a catalyst supporting treatment similar to that in Example 1 described above was performed except that a catalyst supporting carrier (Gr) was used. A catalyst carrier (Pt / Gr) was obtained.

比較例4Comparative Example 4

原料の調製時に、塩化コバルト六水和物(CoCl・6HO)を使用しなかった以外は上述の実施例1と同様にして、触媒担持用担体(IK(−)1000℃AW)及び触媒担持体(Pt/IK(−)1000℃AW)を得た。 In the same manner as in Example 1 except that cobalt chloride hexahydrate (CoCl 2 .6H 2 O) was not used at the time of preparing the raw material, a catalyst supporting carrier (IK (−) 1000 ° C. AW) and A catalyst carrier (Pt / IK (−) 1000 ° C. AW) was obtained.

比較例5Comparative Example 5

原料の調製時に、塩化コバルト六水和物(CoCl・6HO)を使用せず、また、金属除去処理(酸処理)及び熱処理を行わなかった以外は上述の実施例1と同様にして、触媒担持用担体(IK(−)1000℃(−))及び触媒担持体(Pt/IK(−)1000℃(−))を得た。 Except that cobalt chloride hexahydrate (CoCl 2 · 6H 2 O) was not used and the metal removal treatment (acid treatment) and heat treatment were not performed during the preparation of the raw materials, the same as in Example 1 above. Thus, a catalyst supporting carrier (IK (−) 1000 ° C. (−)) and a catalyst supporting body (Pt / IK (−) 1000 ° C. (−)) were obtained.

[X線回折]
上述の実施例1〜4及び比較例1〜5で得られた触媒担持用担体の各々について、粉末X線回折法による解析を行い、当該担体の炭素構造に含まれる黒鉛類似構造成分及びアモルファス成分の割合を評価した。
[X-ray diffraction]
Each of the catalyst-supporting carriers obtained in Examples 1 to 4 and Comparative Examples 1 to 5 is analyzed by powder X-ray diffraction, and the graphite-like structural component and the amorphous component contained in the carbon structure of the carrier. The percentage of was evaluated.

すなわち、X線回折装置(Rigaku RINT2100/PC、株式会社リガク)を用いてX線回折測定を行った。X線管球への印加電圧及び電流はそれぞれ50kV及び300mAとした。サンプリング間隔は0.01°、走査速度は0.5°/分、測定角度範囲(2θ)は5〜40°とした。入射X線としてはCuKαを用いた。   That is, X-ray diffraction measurement was performed using an X-ray diffractometer (Rigaku RINT2100 / PC, Rigaku Corporation). The applied voltage and current to the X-ray tube were 50 kV and 300 mA, respectively. The sampling interval was 0.01 °, the scanning speed was 0.5 ° / min, and the measurement angle range (2θ) was 5 to 40 °. CuKα was used as the incident X-ray.

そして、回折角2θが26°付近のピークを、炭素構造の(002)面反射に対応する黒鉛類似構造成分(構造発達成分)に起因するピ−クと、アモルファス成分(構造未発達成分)に起因するピ−クと、に分離し、それぞれのピーク面積より、各成分の割合を算出した。   Then, peaks with a diffraction angle 2θ of around 26 ° are peaked due to graphite-like structural components (structurally developed components) corresponding to (002) plane reflection of the carbon structure, and amorphous components (unstructured components). The resulting peak was separated, and the ratio of each component was calculated from the respective peak areas.

ピーク分離は、市販の解析ソフト(IGOR、Wave Metrics社製)を用いて行った。ピーク分離では、構造を評価するために、2θ=26°付近のメインピークを、黒鉛類似構造成分によるシャープなピーク(2θ=26.4°)とアモルファス成分によるブロードなピークとの二成分に分離した。ピークの分離方法としては、重なり合ったピークをローレンツ型の基本波形の重ね合わせにより近似し、偏光因子及び炭素の原子散乱因子の補正を行った回折図形に対して、ピーク強度、ピーク半値幅、ピーク位置を最適化し、各ピークをGaussianと仮定してカーブフィッティングすることによって行った。   Peak separation was performed using commercially available analysis software (IGOR, manufactured by Wave Metrics). In peak separation, in order to evaluate the structure, the main peak near 2θ = 26 ° is separated into two components, a sharp peak (2θ = 26.4 °) due to a graphite-like structural component and a broad peak due to an amorphous component. did. The peak separation method is to approximate the overlapped peaks by superimposing Lorentz-type basic waveforms and correct the polarization factor and carbon atom scattering factor for the peak intensity, peak half width, peak This was done by optimizing the position and curve fitting assuming each peak was Gaussian.

図1には、上述の実施例1で得られた触媒担持用担体(IK(Co)1000℃AW)の、回折角2θが26°付近のメインピークをピーク分離した結果の一例を示す。図1に示すように、ピーク分離によって、黒鉛類似構造成分のピークと、アモルファス成分のピークと、の2つのピークが得られた。   FIG. 1 shows an example of the result of peak separation of the main peak having a diffraction angle 2θ of around 26 ° of the catalyst supporting carrier (IK (Co) 1000 ° C. AW) obtained in Example 1 described above. As shown in FIG. 1, two peaks were obtained by peak separation: a peak of a graphite-like structural component and a peak of an amorphous component.

[ラマン分光]
上述の実施例1〜4及び比較例1〜5で得られた触媒担持用担体の各々について、ラマン分光法による解析を行い、炭素材料の構造の乱れや欠陥を評価した。すなわち、ラマンシフトが1580cm−1付近に現れるピーク(Gバンド)の強度に対する、1360cm−1付近に現れるピーク(Dバンド)の強度の比(I1360/I1580)を評価した。ラマンスペクトルは、HORIBA顕微レーザーラマン分光測定装置(LabRAM、HORIBA Jobin Yvon)を用いて、532nmの励起波長で、露光5秒×積算5回の条件で測定することにより得た。
[Raman spectroscopy]
Each of the catalyst-supporting carriers obtained in Examples 1 to 4 and Comparative Examples 1 to 5 was analyzed by Raman spectroscopy to evaluate the structural disorder and defects of the carbon material. That is, the ratio (I 1360 / I 1580 ) of the intensity of the peak (D band) appearing near 1360 cm −1 to the intensity of the peak (G band) appearing near 1580 cm −1 of the Raman shift was evaluated. The Raman spectrum was obtained by using a HORIBA microscopic laser Raman spectrometer (LabRAM, HORIBA Jobin Yvon) and measuring at an excitation wavelength of 532 nm under conditions of 5 seconds exposure × 5 integrations.

このD/G強度比(I1360/I1580)が小さいほど、構造の乱れや欠陥が少ないことを示す。なお、一般に、炭素材料の構造の乱れや欠陥が少なく黒鉛化度が高いほど、白金等の触媒を担持した当該炭素材料からなる触媒担持体の耐久性(耐食性)は高くなる。 A smaller D / G intensity ratio (I 1360 / I 1580 ) indicates that there are fewer structural disturbances and defects. In general, the durability (corrosion resistance) of a catalyst carrier made of a carbon material carrying a catalyst such as platinum increases as the structure of the carbon material is less disturbed or defective and the degree of graphitization is higher.

[触媒担持量]
上述の実施例1〜4及び比較例1〜5で得られた触媒担持体の各々について、触媒の担持量を評価した。すなわち、上述のとおり1gの担体に対して0.1gの白金(Pt)を使用して触媒担持処理を行うことにより、当該担体に対して実際に担持された白金の量(重量%)を触媒担持量とした。具体的には、10mgの触媒担持体をるつぼに入れ、マッフル炉を用いて、700℃で3時間空気中にて灰化した後、王水4mLを加えて加熱して白金を溶出し、蒸留水で希釈後ICP(Inductively Coupled Plasma)発光分光分析により白金を定量した。
[Catalyst loading]
For each of the catalyst carriers obtained in Examples 1 to 4 and Comparative Examples 1 to 5, the amount of catalyst supported was evaluated. That is, as described above, the amount of platinum actually supported on the carrier (% by weight) is reduced to the catalyst by performing the catalyst carrying treatment using 0.1 g of platinum (Pt) on 1 g of the carrier. The loading amount was used. Specifically, 10 mg of the catalyst support is placed in a crucible, and incinerated in the air at 700 ° C. for 3 hours using a muffle furnace. Then, 4 mL of aqua regia is added and heated to elute platinum and distilled. After dilution with water, platinum was quantified by ICP (Inductively Coupled Plasma) emission spectrometry.

[耐久性試験]
上述の実施例1〜4及び比較例1〜5で得られた触媒担持体の各々について、電圧を繰り返し印加する条件下における耐久性を評価した。まず、触媒担持体を含む触媒スラリーを調製した。具体的に、触媒担持体5mgに、5重量%Nafion(登録商標)溶液(Aldrich製)50μL、エタノール150μL、蒸留水150μLを加え、ガラスビーズを加え、10分間超音波処理し、均一な触媒スラリーを得た。
[Durability test]
Each of the catalyst carriers obtained in Examples 1 to 4 and Comparative Examples 1 to 5 described above was evaluated for durability under conditions where voltage was repeatedly applied. First, a catalyst slurry containing a catalyst carrier was prepared. Specifically, to 5 mg of catalyst support, 50 μL of 5 wt% Nafion (registered trademark) solution (manufactured by Aldrich), 150 μL of ethanol and 150 μL of distilled water are added, glass beads are added, and ultrasonic treatment is performed for 10 minutes to obtain a uniform catalyst slurry. Got.

次いで、この触媒スラリーをピペットにより4μL吸い取り、回転リングディスク電極装置(RRDE−1 SC−5、有限会社 日厚計測製)のディスク電極(直径6mm)に塗布し、乾燥させることにより、作用電極を作製した。電解質溶液としては、0.5M硫酸水溶液に窒素を常温で飽和させたものを用いた。また、参照電極としては銀−塩化銀電極(Ag/AgCl/飽和KCl)を用いた。そして、回転電極を電解質溶液中に浸漬し、触媒担持体を作用電極に使用したサイクリックボルタンメトリーにおいて、掃引速度0.5mV/秒で0〜1.6Vの範囲で電位を50サイクル連続的に掃引し、当該作用電極に流れる電流値を測定した。   Next, 4 μL of this catalyst slurry is sucked with a pipette, applied to a disk electrode (diameter 6 mm) of a rotating ring disk electrode device (RRDE-1 SC-5, manufactured by Nisatsu Kogyo Co., Ltd.), and dried to obtain a working electrode. Produced. As the electrolyte solution, a 0.5 M sulfuric acid aqueous solution saturated with nitrogen at room temperature was used. A silver-silver chloride electrode (Ag / AgCl / saturated KCl) was used as a reference electrode. Then, in cyclic voltammetry in which the rotating electrode is immersed in the electrolyte solution and the catalyst support is used as the working electrode, the potential is swept continuously for 50 cycles in the range of 0 to 1.6 V at a sweep rate of 0.5 mV / sec. Then, the value of the current flowing through the working electrode was measured.

そして、5サイクル目で測定された電圧1.5V印加時の電流値に対する、50サイクル目で測定された電圧1.5V印加時の電流値の割合を耐久率(%)として求めた。この耐久率が低いほど、触媒担持体の耐久性が劣り、腐食が起こり易いことを意味する。   And the ratio of the electric current value at the time of the voltage 1.5V application measured at the 50th cycle to the electric current value at the time of the voltage 1.5V application measured at the 5th cycle was determined as the durability (%). It means that the lower the durability, the lower the durability of the catalyst carrier and the more likely it is to corrode.

[評価結果]
図2には、実施例1〜4及び比較例1〜5で得られた触媒担持用担体及び触媒担持体を上述のように評価した結果を示す。すなわち、図2には、各実施例及び比較例で使用した触媒担持用担体の種類、当該触媒担持用担体のX線回折(XRD)により得られた黒鉛類似構造成分の割合(%)及びアモルファス成分の割合(%)、当該触媒担持用担体のラマン分光測定により得られたD/G強度比(I1360/I1580)、当該触媒担持体に触媒(Pt)を担持してなる触媒担持体の耐久率(%)、当該触媒担持体における触媒(Pt)担持量(重量%)を示す。
[Evaluation results]
In FIG. 2, the result of having evaluated the support | carrier for catalyst carrying | support obtained in Examples 1-4 and Comparative Examples 1-5 and a catalyst support body as mentioned above is shown. That is, FIG. 2 shows the types of catalyst-supporting carriers used in each Example and Comparative Example, the ratio (%) of graphite-like structural components obtained by X-ray diffraction (XRD) of the catalyst-supporting carriers, and amorphous Component ratio (%), D / G intensity ratio (I 1360 / I 1580 ) obtained by Raman spectroscopic measurement of the catalyst supporting carrier, catalyst supporting member formed by supporting catalyst (Pt) on the catalyst supporting member Of the catalyst (Pt) on the catalyst carrier (% by weight).

図2に示すように、実施例1〜4に係る担体は、XRDにより得られた黒鉛類似構造成分の割合が30〜40%、アモルファス成分の割合が60〜70%であり、ラマン分光により得られたD/G強度比(I1360/I1580)は0.6〜0.75であった。 As shown in FIG. 2, the carriers according to Examples 1 to 4 have a proportion of graphite-like structural components obtained by XRD of 30 to 40% and a proportion of amorphous components of 60 to 70%, and are obtained by Raman spectroscopy. The obtained D / G intensity ratio (I 1360 / I 1580 ) was 0.6 to 0.75.

これに対し、金属を含有しない原料を炭素化して得られた比較例4,5に係る担体は、黒鉛類似構造成分の割合が30%未満、アモルファス成分の割合が70%超であり、D/G強度比は0.8超であった。   On the other hand, in the carriers according to Comparative Examples 4 and 5 obtained by carbonizing a raw material not containing a metal, the ratio of the graphite-like structural component is less than 30% and the ratio of the amorphous component is more than 70%. The G intensity ratio was over 0.8.

また、黒鉛化度を高めたカーボンブラック又は黒鉛からなる比較例2,3に係る担体は、黒鉛類似構造成分の割合が50%超、アモルファス成分の割合が50%未満であり、D/G強度比は0.2未満であった。また、ケッチェンブラックからなる比較例1に係る担体は、黒鉛類似構造成分の割合が1%、アモルファス成分の割合が99%であり、D/G強度比は1.27であった。   The carrier according to Comparative Examples 2 and 3 made of carbon black or graphite having a high degree of graphitization has a ratio of the graphite-like structural component of more than 50% and an amorphous component of less than 50%, and has a D / G strength. The ratio was less than 0.2. The carrier according to Comparative Example 1 made of Ketjen Black had a graphite-like structural component ratio of 1%, an amorphous component ratio of 99%, and a D / G strength ratio of 1.27.

これらの結果より、実施例1〜4に係る担体は、比較例1,4,5に係る担体に比べて結晶性(黒鉛化度)が高く、比較例2,3に係る担体に比べて結晶性が低いことがわかった。   From these results, the carriers according to Examples 1 to 4 have higher crystallinity (degree of graphitization) than the carriers according to Comparative Examples 1, 4, and 5, and the crystals according to the carriers according to Comparative Examples 2 and 3 are crystallized. It was found that the nature is low.

そして、図2に示すように、実施例1〜4に係る触媒担持体の耐久率は、いずれも比較例1〜5に係る触媒担持体に比べて高かった。すなわち、実施例1〜4に係る触媒担持体を使用したサイクリックボルタンメトリーにおいては、50サイクルの電圧印加を繰り返しても、電流値は90%以上に維持された。中でも金属除去処理(酸処理)及び熱処理が施された担体を使用した実施例1〜3に係る触媒担持体の電流値は、95%以上に維持された。   And as shown in FIG. 2, the durability rate of the catalyst carrier which concerns on Examples 1-4 was all high compared with the catalyst carrier which concerns on Comparative Examples 1-5. That is, in cyclic voltammetry using the catalyst carrier according to Examples 1 to 4, the current value was maintained at 90% or more even when voltage application for 50 cycles was repeated. In particular, the current value of the catalyst carrier according to Examples 1 to 3 using the carrier subjected to the metal removal treatment (acid treatment) and the heat treatment was maintained at 95% or more.

これに対し、比較例1〜5に係る触媒担持体を使用した場合には、50サイクルの電圧印加によって、電流値は90%未満に低下した。特に、比較例1に係る触媒担持体については、電流値が45%まで低下した。   On the other hand, when the catalyst carrier according to Comparative Examples 1 to 5 was used, the current value decreased to less than 90% by 50 cycles of voltage application. In particular, for the catalyst carrier according to Comparative Example 1, the current value decreased to 45%.

さらに、実施例1〜4に係る触媒担持体の触媒担持量は、5.9〜8.4重量%(担体100重量%に対して担持された触媒量が5.9〜8.4重量%)といずれも高かった。これに対し、比較例1に係る触媒担持体の触媒担持量は6.3重量%であったものの、比較例2〜5に係る触媒担持体の触媒担持量は4.0重量%以下と低かった。   Furthermore, the catalyst loading of the catalyst carrier according to Examples 1 to 4 is 5.9 to 8.4 wt% (the amount of the catalyst supported with respect to 100 wt% of the support is 5.9 to 8.4 wt%). ) And both were high. In contrast, although the catalyst support amount of the catalyst support according to Comparative Example 1 was 6.3% by weight, the catalyst support amount of the catalyst support according to Comparative Examples 2 to 5 was as low as 4.0% by weight or less. It was.

このように、実施例1〜4に係る触媒担持体は、電圧印加条件下での高い耐久性と、高い触媒担持性能と、を兼ね備えており、その高い有用性が示された。   Thus, the catalyst carrier according to Examples 1 to 4 has both high durability under voltage application conditions and high catalyst carrying performance, and its high utility has been shown.

これら実施例1〜4に係る触媒担持体における耐久性と触媒担持性能との両立は、当該実施例1〜4に係る担体の炭素構造が、黒鉛類似構造とアモルファス構造とを適切なバランスで含んでおり、且つ当該黒鉛類似構造がナノシェル構造を含んでいることによるものと考えられた。   The coexistence of durability and catalyst supporting performance in the catalyst carriers according to Examples 1 to 4 is that the carbon structure of the carrier according to Examples 1 to 4 includes a graphite-like structure and an amorphous structure in an appropriate balance. And it was considered that the graphite-like structure included a nanoshell structure.

すなわち、比較例1〜5の結果にも示されるように、一般に、炭素材料に含まれる黒鉛構造又は黒鉛類似構造の割合が高くなる(黒鉛化度が高くなる)ほど、耐久性は高くなるが触媒は担持され難くなる(比較例2,3)。また逆に、炭素材料に含まれるアモルファス成分の割合が高くなるほど、触媒は担持され易くなるが耐久性は低くなる(比較例1)。   That is, as shown in the results of Comparative Examples 1 to 5, generally, the higher the ratio of the graphite structure or the graphite-like structure contained in the carbon material (the higher the degree of graphitization), the higher the durability. The catalyst becomes difficult to be supported (Comparative Examples 2 and 3). Conversely, the higher the proportion of the amorphous component contained in the carbon material, the easier the catalyst is supported, but the lower the durability (Comparative Example 1).

また、同様の製法で製造されながら、金属を含有しない原料の炭素化により得られた担体を使用した比較例4,5においては、黒鉛類似構造(特にナノシェル構造を含む黒鉛類似構造)の発達が不十分であるために、耐久性及び触媒担持量も不十分であった。   Further, in Comparative Examples 4 and 5 using a support obtained by carbonization of a raw material not containing a metal while being manufactured by the same manufacturing method, the development of a graphite-like structure (particularly, a graphite-like structure including a nanoshell structure) Since it was insufficient, durability and catalyst loading were also insufficient.

これに対し、実施例1〜4に係る担体においては、ナノシェル構造を含む黒鉛類似構造が十分に発達し、且つ適度な割合でアモルファス構造も含まれることにより、当該担体を使用した触媒担持体においては、高い耐久性と高い触媒担持性能とを両立させることができたと考えられる。   On the other hand, in the supports according to Examples 1 to 4, in the catalyst support using the support, the graphite-like structure including the nanoshell structure is sufficiently developed and the amorphous structure is also included at an appropriate ratio. It is considered that both high durability and high catalyst loading performance could be achieved.

また、金属除去処理(酸処理)及び熱処理が施された担体を使用した実施例1〜3に係る触媒担持体は、耐久性及び触媒担持性能が特に優れていた。すなわち、実施例1〜3に係る触媒担持体は、金属除去処理(酸処理)及び熱処理が施されていない担体を使用した実施例4に係る触媒担持体に比べても、耐久率がさらに高かった。   In addition, the catalyst carriers according to Examples 1 to 3 using the carrier subjected to metal removal treatment (acid treatment) and heat treatment were particularly excellent in durability and catalyst loading performance. That is, the catalyst carrier according to Examples 1 to 3 has a higher durability than the catalyst carrier according to Example 4 using a carrier that has not been subjected to metal removal treatment (acid treatment) and heat treatment. It was.

また、実施例1〜3に係る触媒担持体は、アモルファス成分の割合が99%と非常に高い比較例1に係る触媒担持体に比べても触媒担持量が多かった。すなわち、実施例1〜3に係る触媒担持体は、比較例1に係る触媒担持体よりアモルファス成分の割合が低いにも関わらず、触媒担持性能に優れていた。   Further, the catalyst carrier according to Examples 1 to 3 had a larger amount of catalyst even when compared with the catalyst carrier according to Comparative Example 1 in which the proportion of the amorphous component was very high at 99%. That is, although the catalyst carrier according to Examples 1 to 3 had a lower proportion of the amorphous component than the catalyst carrier according to Comparative Example 1, the catalyst carrier performance was excellent.

この触媒担持性能の高さには、実施例1〜3に係る担体において、金属除去処理(酸処理)により触媒の担持サイトが増加したことに加え、さらなる熱処理により新たに形成された特殊な炭素構造が寄与しているものと考えられた。   In addition to the increase in catalyst loading sites due to metal removal treatment (acid treatment) in the carriers according to Examples 1 to 3, the high catalyst loading performance includes special carbon newly formed by further heat treatment. It was thought that the structure contributed.

触媒担持体に担持された白金粒子の安定性を評価した。すなわち、触媒担持体を所定の条件で焼成し、当該焼成後の触媒担持体における白金粒子の凝集等を透過型電子顕微鏡(TEM)により評価した。   The stability of the platinum particles supported on the catalyst support was evaluated. That is, the catalyst carrier was calcined under predetermined conditions, and aggregation of platinum particles and the like in the catalyst carrier after the calcining were evaluated by a transmission electron microscope (TEM).

具体的に、実施例1で得られた触媒担持体及び比較例1で得られた触媒担持体を石英ボートに乗せ、イメージ炉にて、20分間窒素パージし(窒素流量:0.7L/分)、加熱により50℃/分の昇温速度で室温から700℃まで昇温した。その後、これらの触媒担持体を700℃で1時間保持した。そして、焼成後の各触媒担持体をTEMにより観察した。なお、実施例1に係る触媒担持体については、焼成前にもTEMにより観察した。   Specifically, the catalyst carrier obtained in Example 1 and the catalyst carrier obtained in Comparative Example 1 were placed on a quartz boat and purged with nitrogen in an image furnace for 20 minutes (nitrogen flow rate: 0.7 L / min. The temperature was raised from room temperature to 700 ° C. at a heating rate of 50 ° C./min. Thereafter, these catalyst carriers were held at 700 ° C. for 1 hour. And each catalyst carrier after baking was observed by TEM. The catalyst carrier according to Example 1 was observed with TEM before firing.

図3には、TEMによる観察結果を示す。図3(A)及び(B)は焼成前の実施例1に係る触媒担持体、図3(C)は焼成後の実施例1に係る触媒担持体、図3(D)は焼成後の比較例1に係る触媒担持体のTEM写真をそれぞれ示す。   In FIG. 3, the observation result by TEM is shown. 3 (A) and 3 (B) are catalyst carriers according to Example 1 before firing, FIG. 3 (C) is a catalyst carrier according to Example 1 after firing, and FIG. 3 (D) is a comparison after firing. The TEM photograph of the catalyst carrier according to Example 1 is shown.

図3(A)及び(B)に示すように、焼成前の実施例1に係る触媒担持体においては、白金(Pt)粒子が、粒子径約5〜10nmオーダーで高密度に分散されて担持されていた。また、ナノシェル構造、すなわち、玉ねぎ状に積層発達した、グラファイト構造に類似の乱層構造が発達していることも確認された。   As shown in FIGS. 3 (A) and 3 (B), in the catalyst carrier according to Example 1 before firing, platinum (Pt) particles are dispersed and supported in a high density with a particle size of about 5 to 10 nm. It had been. It was also confirmed that a nanoshell structure, that is, a turbostratic structure similar to a graphite structure developed in an onion-like manner was developed.

また、図3(C)に示すように、実施例1に係る触媒担持体においては、焼成後も白金の粒子径は10nm以下に維持されており、白金の凝集等の不具合は生じないことが確認された。   In addition, as shown in FIG. 3C, in the catalyst carrier according to Example 1, the platinum particle diameter is maintained at 10 nm or less even after calcination, and problems such as aggregation of platinum may not occur. confirmed.

一方、図3(D)に示すように、ケッチェンブラックに白金を担持した比較例1に係る触媒担持体においては、焼成後に白金の凝集が確認された。白金の凝集は、触媒活性の発現に必要な表面積の減少等の不具合を引き起こすこととなるため、好ましくない。   On the other hand, as shown in FIG. 3D, in the catalyst carrier according to Comparative Example 1 in which platinum was supported on ketjen black, aggregation of platinum was confirmed after firing. Aggregation of platinum is not preferable because it causes problems such as a reduction in surface area necessary for the expression of catalytic activity.

700℃で1時間焼成する際に白金にかかる負荷は、燃料電池のカソード電極における電位変動負荷を上回ると考えられる。したがって、実施例1に係る触媒担持体は、実際に燃料電池のカソード電極触媒として使用した場合においても、白金の凝集等の不具合は起こり難いと考えられた。   It is considered that the load applied to platinum when firing at 700 ° C. for 1 hour exceeds the potential fluctuation load at the cathode electrode of the fuel cell. Therefore, even when the catalyst carrier according to Example 1 was actually used as a cathode electrode catalyst of a fuel cell, it was considered that problems such as aggregation of platinum hardly occur.

触媒担持体の酸素還元活性を評価した。すなわち、まず、上述の実施例1で得られた触媒担持体又は比較例1で得られた触媒担持体のいずれかを含む触媒スラリーを調製した。具体的に、触媒担持体5mgに、5重量%Nafion(登録商標)溶液(Aldrich製)50μL、エタノール150μL、蒸留水150μL、ガラスビーズを加え、10分間超音波処理し、触媒スラリーを得た。   The oxygen reduction activity of the catalyst support was evaluated. That is, first, a catalyst slurry containing either the catalyst carrier obtained in Example 1 or the catalyst carrier obtained in Comparative Example 1 was prepared. Specifically, 50 μL of a 5 wt% Nafion (registered trademark) solution (manufactured by Aldrich), 150 μL of ethanol, 150 μL of distilled water, and glass beads were added to 5 mg of the catalyst support, and sonicated for 10 minutes to obtain a catalyst slurry.

次いで、酸素還元活性を評価した。すなわち、上述の触媒スラリーをピペットにより4μL吸い取り、回転リングディスク電極装置(RRDE−1 SC−5、有限会社 日厚計測製)のディスク電極(直径6mm)に塗布し、乾燥させることにより、作用電極を作製した。また、対極としては白金電極を、参照電極としては銀−塩化銀電極(Ag/AgCl/飽和KCl)を用いた。電解質溶液としては、0.5M硫酸水溶液に酸素を常温で溶解したものを用いた。   Subsequently, the oxygen reduction activity was evaluated. That is, 4 μL of the above catalyst slurry was sucked with a pipette, applied to a disk electrode (diameter 6 mm) of a rotating ring disk electrode device (RRDE-1 SC-5, manufactured by Nisatsu Kogyo Co., Ltd.), and dried to obtain a working electrode Was made. A platinum electrode was used as the counter electrode, and a silver-silver chloride electrode (Ag / AgCl / saturated KCl) was used as the reference electrode. As the electrolyte solution, a 0.5 M sulfuric acid aqueous solution in which oxygen was dissolved at room temperature was used.

そして、電極を電解質溶液中に浸漬し、回転速度1500rpmで回転させ、掃引速度0.5mV/秒で電位を掃引したときの電流密度を電位の関数として記録した。得られた分極曲線から、−10μA/cmの還元電流が流れた電圧を、酸素還元開始電位(EO2)として記録した。 Then, the electrode was immersed in the electrolyte solution, rotated at a rotation speed of 1500 rpm, and the current density when the potential was swept at a sweep speed of 0.5 mV / sec was recorded as a function of the potential. From the obtained polarization curve, the voltage at which a reduction current of −10 μA / cm 2 flowed was recorded as the oxygen reduction starting potential (E O2 ).

図4には、酸素還元活性を評価した結果を示す。図4に示すように、実施例1に係る触媒担持体の酸素還元開始電位は0.942Vであり、比較例1に係る触媒担持体の0.919Vを上回っていた。すなわち、実施例1に係る触媒担持体は、高い酸素還元活性能を有することが示された。   FIG. 4 shows the results of evaluating the oxygen reduction activity. As shown in FIG. 4, the oxygen reduction start potential of the catalyst carrier according to Example 1 was 0.942 V, which was higher than 0.919 V of the catalyst carrier according to Comparative Example 1. That is, it was shown that the catalyst carrier according to Example 1 has a high oxygen reduction activity ability.

これは、実施例1に係る触媒担持体を構成する担体が、白金を担持し易いナノシェル構造を含む炭素構造を有するため、比較例1に係る触媒担持体に比べて白金担持量が大きいことに加え、当該実施例1に係る担体自体が、当該ナノシェル構造に基づく酸素還元活性を有することによるものと考えられた。なお、比較例2,3に係る触媒担持体についても、同様に酸素還元活性の評価を試みたが、酸素還元開始電位が測定されなかった。   This is because the carrier constituting the catalyst carrier according to Example 1 has a carbon structure including a nanoshell structure that easily supports platinum, so that the amount of platinum supported is larger than that of the catalyst carrier according to Comparative Example 1. In addition, it was considered that the carrier according to Example 1 itself has oxygen reduction activity based on the nanoshell structure. For the catalyst carriers according to Comparative Examples 2 and 3, the oxygen reduction activity was similarly evaluated, but the oxygen reduction starting potential was not measured.

白金を担持していない担体自身の耐久性を評価した。すなわち、上述の実施例1に係る触媒担持用担体(IK(Co)1000℃AW)及び比較例1に係る触媒担持用担体(KB)について、上述の実施例5における耐久性試験と同様に、電圧を繰り返し印加する条件下における耐久性を評価した。   The durability of the carrier itself not carrying platinum was evaluated. That is, for the catalyst supporting carrier (IK (Co) 1000 ° C. AW) according to Example 1 and the catalyst supporting carrier (KB) according to Comparative Example 1, as in the durability test in Example 5 above, Durability under conditions where voltage was repeatedly applied was evaluated.

そして、5サイクル目で測定された電圧1.5V印加時の電流値を「1」とした場合における、50サイクル目で測定された電圧1.5V印加時の電流値を相対電流値として求めた。   Then, when the current value at the time of applying the voltage of 1.5 V measured at the fifth cycle is “1”, the current value at the time of applying the voltage of 1.5 V measured at the 50th cycle was obtained as a relative current value. .

図5には、各担体について測定された相対電流値の経時的な変化を示す。図5において、実線は実施例1に係る担体を使用して得られた結果を示し、破線は比較例1に係る担体を使用して得られた結果を示す。   FIG. 5 shows the change over time of the relative current value measured for each carrier. In FIG. 5, the solid line shows the result obtained using the carrier according to Example 1, and the broken line shows the result obtained using the carrier according to Comparative Example 1.

図5に示すように、実施例1に係る担体を使用した場合には、50サイクル目における相対電流値は約0.7に維持されていた。これに対し、比較例1に係る担体を使用した場合には、50サイクル目における相対電流値は約0.3まで低下した。   As shown in FIG. 5, when the carrier according to Example 1 was used, the relative current value at the 50th cycle was maintained at about 0.7. On the other hand, when the carrier according to Comparative Example 1 was used, the relative current value at the 50th cycle decreased to about 0.3.

実施例1に係る担体は、上述のとおり、その炭素構造がナノシェル構造を含む黒鉛類似構造を約30%含む(図2参照)ことにより、高い耐久性を有し、高電位条件下においても酸化反応による腐食が起こり難くなっていると考えられた。一方、比較例1に係る担体は、黒鉛類似構造成分を1%しか含まないために、耐久性が低く、繰り返しの電圧印加によって急激に劣化したと考えられた。   As described above, the carrier according to Example 1 has about 30% of a graphite-like structure including a nanoshell structure (see FIG. 2), so that the support has high durability and is oxidized even under high potential conditions. It was thought that corrosion due to reaction was less likely to occur. On the other hand, since the support according to Comparative Example 1 contains only 1% of a graphite-like structural component, it was considered that the support had low durability and deteriorated rapidly by repeated voltage application.

白金を担持した触媒担持体について、より厳しい条件下で、より長期の耐久性を評価した。すなわち、上述の実施例1に係る触媒担持体(Pt/IK(Co)1000℃AW)及び比較例1に係る触媒担持体(Pt/KB)について、高い電圧のみを、より多く繰り返し印加する条件下における耐久性を評価した。   The catalyst carrier carrying platinum was evaluated for longer-term durability under more severe conditions. That is, for the catalyst carrier (Pt / IK (Co) 1000 ° C. AW) according to Example 1 and the catalyst carrier (Pt / KB) according to Comparative Example 1, only a high voltage is repeatedly applied. The durability under was evaluated.

具体的に、まず、上述の実施例7と同様の方法で酸素還元開始電位(EO2)を測定した。次いで、窒素を飽和させた0.5M硫酸水溶液中で0.9〜1.3Vの範囲で、掃引速度200mV/秒で電位を掃引するサイクルを5000回連続的に行った。さらに、上述の実施例7と同様の方法で再び酸素還元開始電位(EO2)を測定した。 Specifically, first, the oxygen reduction starting potential (E O2 ) was measured by the same method as in Example 7 above. Next, a cycle of sweeping the potential in a 0.5 M sulfuric acid aqueous solution saturated with nitrogen in the range of 0.9 to 1.3 V at a sweep rate of 200 mV / sec was continuously performed 5000 times. Further, the oxygen reduction starting potential (E O2 ) was measured again by the same method as in Example 7 above.

図6には、各触媒担持体について測定された酸素還元開始電位(V)の経時的な変化を示す。図6において、実線は実施例1に係る触媒担持体を使用して得られた結果を示し、破線は比較例1に係る触媒担持体を使用して得られた結果を示す。   FIG. 6 shows changes with time of the oxygen reduction starting potential (V) measured for each catalyst carrier. In FIG. 6, the solid line shows the result obtained using the catalyst carrier according to Example 1, and the broken line shows the result obtained using the catalyst carrier according to Comparative Example 1.

図6に示すように、サイクル数の増加に伴う酸素還元開始電位の低下は、実施例1に係る触媒担持体を使用した場合のほうが、比較例1に係る触媒担持体を使用した場合に比べて緩やかであった。すなわち、実施例1に係る触媒担持体の触媒活性は、比較例1に係る触媒担持体のそれに比べて低下し難いことが示された。また、実施例1に係る触媒担持体を使用した場合の酸素還元開始電位は、比較例1に係る触媒担持体を使用した場合に比べて高かった。   As shown in FIG. 6, the decrease in the oxygen reduction starting potential with the increase in the number of cycles is greater when the catalyst carrier according to Example 1 is used than when the catalyst carrier according to Comparative Example 1 is used. It was moderate. That is, it was shown that the catalyst activity of the catalyst carrier according to Example 1 is less likely to be lower than that of the catalyst carrier according to Comparative Example 1. Moreover, the oxygen reduction start potential when the catalyst carrier according to Example 1 was used was higher than that when the catalyst carrier according to Comparative Example 1 was used.

Claims (7)

窒素含有有機物と金属とを含む原料を炭素化して得られた
ことを特徴とする触媒担持用担体。
A catalyst-supporting carrier obtained by carbonizing a raw material containing a nitrogen-containing organic substance and a metal.
X線回折図形における回折角26°付近のピークが、20〜45%の黒鉛類似構造成分と、55〜80%のアモルファス成分と、を含む
ことを特徴とする請求項1に記載された触媒担持用担体。
The catalyst support according to claim 1, wherein a peak near a diffraction angle of 26 ° in the X-ray diffraction pattern includes 20 to 45% of a graphite-like structural component and 55 to 80% of an amorphous component. Carrier.
ラマンスペクトルにおける1360cm−1バンドの1580cm−1バンドに対する強度比(I1360/I1580)が0.3以上、1.0以下である
ことを特徴とする請求項1又は2に記載された触媒担持用担体。
Strength ratio 1580 cm -1 band of 1360 cm -1 band in the Raman spectrum (I 1360 / I 1580) is 0.3 or more, the catalyst carrier according to claim 1 or 2, characterized in that more than 1.0 Carrier.
前記原料を炭素化して得られた炭素化材料に、金属除去処理を施し、さらに熱処理を施して得られた
ことを特徴とする請求項1乃至3のいずれかに記載された触媒担持用担体。
The catalyst-supporting carrier according to any one of claims 1 to 3, which is obtained by subjecting a carbonized material obtained by carbonizing the raw material to metal removal treatment and further heat treatment.
前記金属は、遷移金属である
ことを特徴とする請求項1乃至4のいずれかに記載された触媒担持用担体。
The catalyst-supporting carrier according to any one of claims 1 to 4, wherein the metal is a transition metal.
請求項1乃至5のいずれかに記載された触媒担持用担体と、
前記触媒担持用担体に担持された貴金属触媒と、
を有する
ことを特徴とする触媒担持体。
A catalyst-supporting carrier according to any one of claims 1 to 5,
A noble metal catalyst supported on the catalyst supporting carrier;
A catalyst carrier characterized by comprising:
サイクリックボルタンメトリーにおいて、0〜1.6Vの範囲で電位を50サイクル連続的に掃引した場合に、5サイクル目の1.5V印加時の電流値に対する50サイクル目の1.5V印加時の電流値の割合が90%以上である
ことを特徴とする請求項6に記載された触媒担持体。
In cyclic voltammetry, when the potential is swept continuously in the range of 0 to 1.6 V for 50 cycles, the current value when 1.5 V is applied at the 50th cycle relative to the current value when 1.5 V is applied at the 5th cycle The catalyst carrier according to claim 6, wherein the proportion of the catalyst is 90% or more.
JP2011157904A 2011-07-19 2011-07-19 Catalyst support carrier, catalyst support, electrode and battery Active JP5689379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157904A JP5689379B2 (en) 2011-07-19 2011-07-19 Catalyst support carrier, catalyst support, electrode and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157904A JP5689379B2 (en) 2011-07-19 2011-07-19 Catalyst support carrier, catalyst support, electrode and battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009277825A Division JP4964292B2 (en) 2009-12-07 2009-12-07 Electrode and battery

Publications (3)

Publication Number Publication Date
JP2011251285A true JP2011251285A (en) 2011-12-15
JP2011251285A5 JP2011251285A5 (en) 2013-01-31
JP5689379B2 JP5689379B2 (en) 2015-03-25

Family

ID=45415663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157904A Active JP5689379B2 (en) 2011-07-19 2011-07-19 Catalyst support carrier, catalyst support, electrode and battery

Country Status (1)

Country Link
JP (1) JP5689379B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027934A (en) * 2013-06-28 2015-02-12 富士フイルム株式会社 Manufacturing method of nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst
JP2016203133A (en) * 2015-04-28 2016-12-08 ダイハツ工業株式会社 Oxygen reduction catalyst
JP2017084730A (en) * 2015-10-30 2017-05-18 日産自動車株式会社 Electrode catalyst, catalyst layer using the same, and fuel cell
EP3419090A1 (en) 2017-06-23 2018-12-26 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144652B (en) * 2017-05-17 2020-08-21 广西壮族自治区药用植物园 Method for detecting rhizoma smilacis glabrae fumigated by sulfur and product thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112174A1 (en) * 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. Method for producing electrode for oxygen reduction, electrode for oxygen reduction, and electrochemical device using same
JP2007026746A (en) * 2005-07-13 2007-02-01 Gunma Univ Manufacturing method of electrocatalyst for fuel cell, electrocatalyst manufactured by its method, as well as fuel cell using that electrocatalyst
JP2008282725A (en) * 2007-05-11 2008-11-20 Gunma Univ Manufacturing method of carbon base electrode catalyst for fuel cell
JP2009133037A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Method for producing carbon nanofiber supporting metallic fine particle
WO2009098812A1 (en) * 2008-02-06 2009-08-13 National University Corporation Gunma University Carbon catalyst, slurry containing the carbon catalyst, process for producing carbon catalyst, and fuel cell, storage device, and environmental catalyst each employing carbon catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112174A1 (en) * 2003-06-11 2004-12-23 Matsushita Electric Industrial Co., Ltd. Method for producing electrode for oxygen reduction, electrode for oxygen reduction, and electrochemical device using same
JP2007026746A (en) * 2005-07-13 2007-02-01 Gunma Univ Manufacturing method of electrocatalyst for fuel cell, electrocatalyst manufactured by its method, as well as fuel cell using that electrocatalyst
JP2008282725A (en) * 2007-05-11 2008-11-20 Gunma Univ Manufacturing method of carbon base electrode catalyst for fuel cell
JP2009133037A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Method for producing carbon nanofiber supporting metallic fine particle
WO2009098812A1 (en) * 2008-02-06 2009-08-13 National University Corporation Gunma University Carbon catalyst, slurry containing the carbon catalyst, process for producing carbon catalyst, and fuel cell, storage device, and environmental catalyst each employing carbon catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014017792; 尾崎純一: 'カーボンアロイングによる固体高分子形燃料電池用カソード触媒の調製' 炭素 Vol.2005 No.218, 20050615, Pages178-184, 炭素材料学会 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027934A (en) * 2013-06-28 2015-02-12 富士フイルム株式会社 Manufacturing method of nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst
JP2016203133A (en) * 2015-04-28 2016-12-08 ダイハツ工業株式会社 Oxygen reduction catalyst
JP2017084730A (en) * 2015-10-30 2017-05-18 日産自動車株式会社 Electrode catalyst, catalyst layer using the same, and fuel cell
EP3419090A1 (en) 2017-06-23 2018-12-26 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cells
KR20190000791A (en) 2017-06-23 2019-01-03 도요타 지도샤(주) Electrode catalyst for fuel cells
US11139498B2 (en) 2017-06-23 2021-10-05 Toyota Jidosha Kabushiki Kaisha Electrode catalyst for fuel cells

Also Published As

Publication number Publication date
JP5689379B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP4964292B2 (en) Electrode and battery
JP5149364B2 (en) Carbon catalyst, method for producing the same, electrode and battery using the same
JP4979816B2 (en) Carbon catalyst and method for producing the same, electrode and battery using the same
JP6800608B2 (en) Battery electrode, composition for battery electrode catalyst layer and battery
WO2010064556A1 (en) Carbon catalyst, method for manufacturing the carbon catalyst, and electrode and battery using the carbon catalyst
WO2021024656A1 (en) Metal-loaded catalyst, battery electrode and battery
JP5689379B2 (en) Catalyst support carrier, catalyst support, electrode and battery
JP7077275B2 (en) Carbon catalyst, battery electrode and battery
WO2021024657A1 (en) Metal-supported catalyst, battery electrode, and battery
WO2023166752A1 (en) Carbon carrier and metal-supported catalyst containing same, electrode, and battery
JP6189197B2 (en) Carbon catalyst, method for producing the same, electrode and battery using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150128

R150 Certificate of patent or registration of utility model

Ref document number: 5689379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250