JP2015027695A - Column-beam welding joint and method of manufacturing the same - Google Patents

Column-beam welding joint and method of manufacturing the same Download PDF

Info

Publication number
JP2015027695A
JP2015027695A JP2013158336A JP2013158336A JP2015027695A JP 2015027695 A JP2015027695 A JP 2015027695A JP 2013158336 A JP2013158336 A JP 2013158336A JP 2013158336 A JP2013158336 A JP 2013158336A JP 2015027695 A JP2015027695 A JP 2015027695A
Authority
JP
Japan
Prior art keywords
weld
column
build
web
scallop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013158336A
Other languages
Japanese (ja)
Other versions
JP5973968B2 (en
Inventor
励一 鈴木
Reiichi Suzuki
励一 鈴木
哲男 菅
Tetsuo Suga
哲男 菅
龍 河西
Ryu Kasai
龍 河西
哲哉 橋本
Tetsuya Hashimoto
哲哉 橋本
中込 忠男
Tadao Nakagome
忠男 中込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013158336A priority Critical patent/JP5973968B2/en
Priority to CN201410360182.3A priority patent/CN104339096B/en
Publication of JP2015027695A publication Critical patent/JP2015027695A/en
Application granted granted Critical
Publication of JP5973968B2 publication Critical patent/JP5973968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/28Beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a column-beam welding joint and method of manufacturing the same, being excellent in vibration resistance performance, capable of repairing even a site joint type, including an existing building, with ease and at a low cost.SOLUTION: A column-beam welding joint 1A includes a post member 31A, a beam member 2 including web 3 and an upper flange 4 and a lower flange 5, an upper scallop 6 formed by partially cutting out the web 3, a lower scallop 7 formed by partially cutting out the web 3, an upper part total melting welding part 8A formed by butt-welding of the post member 31A and the upper flange 4, a lower part total melting welding part 9A formed by butt-welding of the post member 31A and the end surface of the lower flange 5, and a lower clad welding part 13 formed by clad welding on the post member 31A side, on the side opposite to the post member 31A, on both sides in thickness direction of the web 3 from the lower scallop bottom. At the upper part total melting welding part 8A, a lining metal 11 is on the upper scallop 6 side.

Description

本発明は、建築構造物の柱梁溶接継手およびその製造方法に関する。   The present invention relates to a beam-to-column welded joint for a building structure and a manufacturing method thereof.

ビルディングなどの建築構造物の構造材料にはコンクリートや鋼が用いられている。そして、建築構造物の構造様式としては、柱部材に角形あるいは円形の鋼管、梁部材にH型鋼を用いて、柱部材と梁部材の直交部を溶接あるいはボルトによって強固に接合する鉄骨ラーメン構造形式が最も多く普及している。   Concrete and steel are used as the structural material for building structures such as buildings. And as the structural style of the building structure, the steel frame structure structure that uses a square or circular steel pipe for the column member and H-shaped steel for the beam member, and joins the orthogonal part of the column member and the beam member firmly by welding or bolts Is the most popular.

地震国では建築構造物の耐震性能の向上は大きな課題であり、阪神淡路大震災で見られたような揺れによる構造崩壊は人命を守るために最も避けなければならない現象である。したがって、耐震性能向上のために、様々な研究が行われており、地震エネルギーを吸収する制震・免震ダンパーの採用や、高い衝撃吸収エネルギー性能を有する柱・梁用鋼材や梁端溶接用溶接材料の採用などが挙げられる(例えば、特許文献1参照)。
また、柱部材と梁部材を直交部で接合する様式では、不連続面として直交接合部が応力集中箇所になり、早期に破壊しやすい事が知られている。そのため、ボトルネックである直交接合部の耐震性能向上も多く研究されている。
Improving the seismic performance of building structures is a major issue in earthquake-prone countries, and structural collapse caused by shaking as seen in the Great Hanshin-Awaji Earthquake is a phenomenon that must be avoided most in order to protect human lives. Therefore, various studies have been conducted to improve seismic performance, including the use of vibration control and seismic isolation dampers that absorb seismic energy, as well as column and beam steel materials and beam end welding that have high shock absorption energy performance. For example, use of a welding material can be mentioned (for example, see Patent Document 1).
Further, it is known that, in a mode in which the column member and the beam member are joined at the orthogonal portion, the orthogonal junction portion becomes a stress concentration portion as a discontinuous surface, and is easily destroyed at an early stage. For this reason, many studies have been made on improving the seismic performance of the orthogonal joint, which is the bottleneck.

図21に示すように、柱梁溶接継手100Bにおいて、柱部材31Aに梁部材2を溶接接合するための工法としては、梁部材2のウエブ3にスカラップ6、7と呼ばれる空孔が設けられるスカラップ工法が一般的である。スカラップ6、7を設ける目的は、梁部材2の上下フランジ4、5と柱部材31Aを溶接接合して、溶接金属部10と裏当て金11とからなる上部完全溶け込み溶接部8Aおよび下部完全溶け込み溶接部9Bを形成する際に、作業的にウエブ3が邪魔になるため、ウエブ3を部分的にくり抜く必要があるからである。しかし、スカラップ6、7は最も耐震性能を劣化させる要因になっていることが知られている。そして、地震時にかかる繰り返し応力によって、スカラップ6、7と上下フランジ4、5、特に下フランジ5とスカラップ7との境界部、いわゆるスカラップ底が最も高い応力集中箇所となり、早期に下フランジ5に亀裂発生し、梁部材2全体に伝播して崩壊に至らせる。   As shown in FIG. 21, in the column beam welded joint 100B, a method for welding the beam member 2 to the column member 31A is a scallop in which holes called scallops 6 and 7 are provided in the web 3 of the beam member 2. The construction method is common. The purpose of providing the scallops 6 and 7 is to weld and join the upper and lower flanges 4 and 5 of the beam member 2 and the column member 31A, so that the upper complete penetration weld portion 8A and the lower complete penetration are composed of the weld metal portion 10 and the backing metal 11. This is because, when forming the welded portion 9B, the web 3 is in the way of work, so the web 3 must be partially cut out. However, it is known that scallops 6 and 7 are the factors that most deteriorate the seismic performance. Due to the repeated stress applied during the earthquake, the boundary between the scallops 6 and 7 and the upper and lower flanges 4 and 5, especially the lower flange 5 and the scallop 7, the so-called scallop bottom becomes the highest stress concentration point, and the lower flange 5 is cracked early. Occurs and propagates throughout the beam member 2 to cause collapse.

この問題を改善するために幾つもの研究がなされてきた。例えば、スカラップの形状改善である。以前はフランジに対してスカラップ底が直角に侵入する形状であったが、応力集中を緩和するため、現在は複合円型スカラップと言われる接触角をある程度小さくした形状が採用されている。また、スカラップ形状のさらなる改良も行われている(非特許文献1参照)。しかし、いずれもさほどの耐震性能向上効果は得られていない。   A number of studies have been done to remedy this problem. For example, scallop shape improvement. Previously, the scallop bottom had a shape that penetrated at a right angle to the flange, but in order to relieve stress concentration, a shape called a composite circular scallop with a small contact angle is now used. Moreover, the further improvement of the scallop shape is also performed (refer nonpatent literature 1). However, no significant improvement in seismic performance has been obtained.

これに対して、応力集中箇所を存在させない理想的ディテールとして、スカラップを用いない、いわゆるノンスカラップ工法の採用も進みつつある(非特許文献1参照)。通常のスカラップ工法では裏当て金として長尺一枚板を溶接部底に取付けるところを、ノンスカラップ工法ではウエブを挟んで短尺二枚を両側に取付けることでウエブを残したままにする工法である。しかし、ノンスカラップ工法は、梁部材の外側からしか溶接できない短所がある。   On the other hand, the adoption of a so-called non-scallop method that does not use scallops, which is an ideal detail that does not have stress-concentrated portions, is also in progress (see Non-Patent Document 1). In the normal scallop method, a long single plate is attached to the bottom of the welded portion as a backing metal. In the non-scallop method, two short sheets are attached to both sides with the web interposed therebetween, leaving the web remaining. However, the non-scallop method has a disadvantage that it can be welded only from the outside of the beam member.

特許第3199656号公報Japanese Patent No. 3199656

「鉄骨工事技術指針・工場製作編」,2007年改定版,日本建築学会“Steel Construction Technical Guidelines / Factory Production”, revised version 2007, Architectural Institute of Japan

図22に示すように、鉄骨の柱梁接合を部分的なブロック(柱梁溶接継手100B)として工場内で製造する工場接合形式と呼ばれるディテールでは、(1)フランジの片側(上フランジ4)を梁部材2外側から柱部材31Aに下向溶接した後、(2)ブロック(柱梁溶接継手100B)をクレーンなどで天地反転して、(3)逆側のフランジ(下フランジ5)を同じく梁部材2の外側から柱部材31Aに下向溶接することが可能である。そのため、図25に示すように、両フランジ4、5の接合ディテールは、ウエブ3の中央線を挟んで上下対称となる。具体的には、上フランジ4の溶接接合部である上部完全溶け込み溶接部8Aと、下フランジ5の溶接接合部である下部完全溶け込み溶接部9Bにおいては、両溶接部共に、裏当て金11がスカラップ6、7側に接合された形態となる。また、図22に示すように、この工場接合形式と呼ばれるディテールでは、両フランジ4、5の溶接接合をノンスカラップ工法で施工することが可能である。   As shown in FIG. 22, in a detail called a factory joint type in which a steel column beam connection is manufactured in a factory as a partial block (column beam welded joint 100B), (1) one side of the flange (upper flange 4) is After welding downward from the outside of the beam member 2 to the column member 31A, (2) the block (column beam welded joint 100B) is turned upside down with a crane or the like, and (3) the opposite flange (lower flange 5) is It is possible to perform downward welding from the outside of the member 2 to the column member 31A. Therefore, as shown in FIG. 25, the joining details of both flanges 4 and 5 are vertically symmetric with respect to the center line of the web 3. Specifically, in the upper fully-penetrating weld 8A that is the weld joint of the upper flange 4 and the lower fully-penetrated weld 9B that is the weld joint of the lower flange 5, the backing metal 11 is provided for both welds. It becomes the form joined to the scallops 6 and 7 side. Moreover, as shown in FIG. 22, in the detail called this factory joint type, it is possible to construct the weld joint of both flanges 4 and 5 by a non-scallop method.

一方、耐震性能向上のニーズとは別に、鉄骨にはコストダウンのニーズも大きい。工場で柱部材と梁部材を溶接接合してブロック(柱梁溶接継手)とし、トラックで運搬して建築現場で組み上げる工場接合形式は、現場でも梁部材同士の接合が必要となり、接合作業が二度手間になる事、また、占有体積が大きいのでトラックへの積載量が少なくなることで、コストが高くなりがちである。   On the other hand, apart from the need to improve seismic performance, steel frames also have great needs for cost reduction. In the factory, the beam and beam members are welded and joined to form blocks (column-beam welded joints), which are transported by truck and assembled on the construction site. The cost is likely to increase due to the time and labor, and because the volume occupied is small, the load on the truck is reduced.

そこで、梁部材の付いていないシンプルな柱部材を大量にトラックに乗せ、現場で柱部材と梁部材をボルト接合と組合せて計1回溶接することで柱梁溶接継手を得る現場混用接合形式(以下、現場接合形式)の採用がコスト低減目的で増えている(非特許文献1参照)。しかし、現場接合形式の場合、柱梁溶接継手の天地反転作業ができない。したがって、下側のフランジの溶接は梁部材内側から下向姿勢で溶接せざるを得ない。上向姿勢で梁部材外側から溶接することも原理的には可能であるが、開先内の上向姿勢溶接は視認性が悪く、重力によって溶接金属が垂れ落ちてしまい易いことから、極めて能率が悪く、実用的とは言えない。図23に示すように、梁部材2の内側からの下向溶接姿勢では上述のとおり、ウエブ3が邪魔になって、溶接困難となる。   Therefore, on-site mixed joint type that obtains column beam welded joints by placing a large number of simple column members without beam members on the track and welding them once in combination with the column members and beam members in combination with bolt joints ( In the following, the use of on-site bonding formats) is increasing for the purpose of cost reduction (see Non-Patent Document 1). However, in the case of the on-site connection type, the top-and-bottom reversal work of the column beam welded joint cannot be performed. Accordingly, the lower flange must be welded in a downward posture from the inside of the beam member. Although it is possible in principle to weld from the outside of the beam member in an upward posture, the upward posture welding in the groove is poor in visibility and the weld metal tends to sag due to gravity, so it is extremely efficient. But it's not practical. As shown in FIG. 23, in the downward welding posture from the inside of the beam member 2, as described above, the web 3 becomes an obstacle and it becomes difficult to weld.

以上の理由により、現場接合形式では、図24に示すように、両フランジ4、5の接合ディテールは梁部材2の中央線を挟んで上下非対称なディテールとなる。具体的には、上部完全溶け込み溶接部8Aでは裏当て金11がスカラップ6側に接合され、下部完全溶け込み溶接部9Aでは溶接金属部10がスカラップ7側に接合される形態となる。したがって、製造コストの安い現場接合形式では、下側のフランジに梁部材外側から溶接するノンスカラップ工法が適用できず、耐震性能が劣るという問題を抱える。   For the above reason, in the on-site joining type, as shown in FIG. 24, the joining details of both flanges 4 and 5 are vertically asymmetric details across the center line of the beam member 2. Specifically, the backing metal 11 is joined to the scallop 6 side in the upper complete penetration weld 8A, and the weld metal part 10 is joined to the scallop 7 side in the lower complete penetration weld 9A. Therefore, in the field joining method with low manufacturing cost, the non-scallop method of welding from the outside of the beam member to the lower flange cannot be applied, and there is a problem that the seismic performance is inferior.

その他のニーズとして、これから建築する建築物だけでなく、既に建築済み、建築途中の建築物(以下、あわせて既存建築物)の柱梁溶接継手に対しても、耐震性能向上を目的とした改良(補修)工事を要求されることも多くなってきている。したがって、大がかりな工事とならない、容易で安価な補修で耐震性能が向上した柱梁溶接継手を製造できる工法も望まれていた。   As other needs, not only for buildings to be built in the future, but also for beam-to-column welded joints of buildings that have already been built and are in the middle of construction (hereinafter referred to as existing buildings) in order to improve seismic performance. (Repair) Construction is often required. Therefore, there has been a demand for a construction method that can manufacture a beam-to-column welded joint that has improved seismic performance with easy and inexpensive repair, which is not a large-scale construction.

そこで、本発明は、このような問題を解決すべく創案されたもので、その課題は、耐震性能に優れ、また、現場接合形式であっても既存建築物も含め容易で安価に補修できる柱梁溶接継手およびその製造方法を提供することにある。   Therefore, the present invention was created to solve such problems, and the problem is that it has excellent seismic performance and can be easily and inexpensively repaired even on-site junctions, including existing buildings. It is to provide a beam welded joint and a manufacturing method thereof.

本発明者らはスカラップ有を前提とした耐震性能向上法を研究し、本発明に至った。スカラップの問題はスカラップ底の応力集中および接する梁部材のフランジ厚の板厚が薄く剛性が低いことに帰結する。そこで、スカラップ底周囲に適切に管理した肉盛溶接を施すことで、前記課題を解決した。   The inventors of the present invention have studied the seismic performance improvement method based on the assumption that scallop is present, and have reached the present invention. The problem of scallops is that the stress concentration at the bottom of the scallop and the flange thickness of the contacting beam member are thin and the rigidity is low. Then, the said subject was solved by performing overlay welding appropriately managed around the scallop bottom.

本発明に係る柱梁溶接継手は、柱部材と、ウエブとそのウエブの上端部側および下端部側に設けられた上フランジおよび下フランジとでH型の断面が形成された梁部材と、前記ウエブの上端部を前記柱部材側で一部切り欠いて形成された上スカラップと、前記ウエブの下端部を前記柱部材側で一部切り欠いて形成された下スカラップと、前記柱部材の側面と前記上フランジの端面との突合せ溶接によって形成され、溶接金属部と裏当て金とからなる上部完全溶け込み溶接部と、前記柱部材の側面と前記下フランジの端面との突合せ溶接によって形成され、溶接金属部と裏当て金とからなる下部完全溶け込み溶接部と、前記下スカラップの前記下フランジに当接する下スカラップ底から前記柱部材側、前記柱部材と反対側および前記ウエブの厚さ方向の両側に、肉盛溶接によって形成された下部肉盛溶接部とを備え、前記上部完全溶け込み溶接部では、前記裏当て金が前記上スカラップ側にあることを特徴とする。   A column beam welded joint according to the present invention includes a column member, a beam member in which an H-shaped cross section is formed by a web and an upper flange and a lower flange provided on an upper end side and a lower end side of the web, An upper scallop formed by partially cutting the upper end portion of the web on the column member side, a lower scallop formed by partially cutting the lower end portion of the web on the column member side, and a side surface of the column member Is formed by butt welding between the end face of the upper flange and the upper complete penetration welded portion consisting of a weld metal part and a backing metal, and butt welding of the side face of the column member and the end face of the lower flange, Lower fully-penetrating welded portion comprising a weld metal portion and a backing metal, and the bottom scallop bottom contacting the lower flange of the lower scallop from the pillar member side, the side opposite to the pillar member, and the thickness of the web On both sides of the direction, and a lower overlay weld part formed by overlay welding, the upper full penetration welds, characterized in that the backing strip is in the upper scallop side.

また、本発明の柱梁溶接継手は、前記下部完全溶け込み溶接部において、前記溶接金属部が前記下スカラップ側にある現場接合形式では、前記下部肉盛溶接部の前記ウエブ側への脚長(La)が、前記ウエブの厚さ(Tw)以上の長さであって、かつ、前記下部肉盛溶接部の前記下フランジ側への脚長(Ld)が、前記ウエブの厚さ(Tw)以上の長さであり、前記下部肉盛溶接部の前記下スカラップ底から前記柱部材側への長さ(Lc)が、前記溶接金属部の頂上部を越える長さであって、かつ、前記下部肉盛溶接部の前記下スカラップ底から前記柱部材と反対側への長さ(Lb)が、前記ウエブの厚さ(Tw)の3倍以上の長さであることが好ましい。   Further, in the beam-to-column welded joint of the present invention, the leg length (La) of the lower build-up welded portion in the lower full penetration welded portion in the in-situ joint type in which the welded metal portion is on the lower scallop side. ) Is a length equal to or greater than the thickness (Tw) of the web, and a leg length (Ld) toward the lower flange of the lower overlay weld is equal to or greater than the thickness (Tw) of the web. A length (Lc) from the bottom scallop bottom of the lower build-up weld to the column member side exceeds the top of the weld metal portion, and the lower wall It is preferable that the length (Lb) from the bottom scallop bottom of the prime weld to the side opposite to the column member is three times or more the thickness (Tw) of the web.

また、本発明の柱梁溶接継手は、前記下部完全溶け込み溶接部において、前記裏当て金が前記下スカラップ側にある工場接合形式では、前記下部肉盛溶接部の前記ウエブ側への脚長(La)が、前記ウエブの厚さ(Tw)以上の長さであって、かつ、前記下部肉盛溶接部の前記下フランジ側への脚長(Ld)が、前記ウエブの厚さ(Tw)以上の長さであり、前記下部肉盛溶接部の前記下スカラップ底から前記柱部材側への長さ(Lc)が、前記裏当て金の幅中央部を越える長さであって、かつ、前記下部肉盛溶接部の前記下スカラップ底から前記柱部材と反対側への長さ(Lb)が、前記ウエブの厚さ(Tw)の3倍以上の長さであることが好ましい。   Further, in the column beam welded joint of the present invention, the leg length (La) of the lower build-up welded portion to the web side in the lower full penetration welded portion in the factory joint type in which the backing metal is on the lower scallop side. ) Is a length equal to or greater than the thickness (Tw) of the web, and a leg length (Ld) toward the lower flange of the lower overlay weld is equal to or greater than the thickness (Tw) of the web. The length (Lc) from the bottom scallop bottom to the column member side of the lower build-up weld is a length that exceeds the width central portion of the backing metal, and the lower portion It is preferable that the length (Lb) from the bottom scallop bottom to the side opposite to the column member of the overlay welded portion is three times or more the thickness (Tw) of the web.

前記構成によれば、本発明の柱梁溶接継手は、下部肉盛溶接部を備えることによって、その形状的作用により、下スカラップに作用する応力集中を周囲に分散させる。また、柱梁溶接継手は、既存建築物の柱梁溶接継手に下部肉盛溶接部をさらに加えるだけで得ることができるため、補修が容易で安価となる。   According to the said structure, the column beam welded joint of this invention disperses the stress concentration which acts on a lower scallop to the circumference | surroundings by the shape effect | action by providing a lower build-up weld part. Further, since the beam-to-column welded joint can be obtained simply by adding a lower build-up weld to the beam-to-beam welded joint of an existing building, the repair is easy and inexpensive.

なお、スカラップ底への応力に対する抵抗力を増すという点では、単に、従来のH型鋼梁部材のフランジの設計厚さを高めれば、ある程度効果はある。しかしながら、梁部材としてのコストが大幅に増すこと、完全溶け込み溶接部の厚みも増して溶接材料の使用量が増加して能率低下に繋がること、応力分散効果が全く働かないので大きな地震力が作用した際にはフランジの脆性的破壊が起きやすいこと、かつ、建築済みや途中の建物(既存建築物)には適用できないことから、本発明の柱梁溶接継手に対して劣るものである。   In terms of increasing the resistance to stress on the scalloped bottom, there is some effect if the design thickness of the flange of the conventional H-shaped steel beam member is simply increased. However, the cost of the beam member is greatly increased, the thickness of the fully-penetrated weld is increased, the amount of welding material used is increased, leading to a reduction in efficiency, and the stress distribution effect does not work at all, so a large seismic force acts. In this case, brittle fracture of the flange is liable to occur, and it is inferior to the beam-to-column welded joint of the present invention because it cannot be applied to a built or existing building (existing building).

また、柱梁溶接継手は、下部肉盛溶接部のウエブ側の脚長(La)および下フランジ側の脚長(Ld)に、ウエブの厚さ(Tw)と同じ以上のすみ肉脚長の肉厚を増すことで、上下曲げ応力に対しての剛性を高めて破壊抵抗を大きくすることができる。   Also, in the beam-to-column welded joint, the thickness of the fillet leg length equal to or greater than the thickness (Tw) of the web is added to the leg length (La) on the web side and the leg length (Ld) on the lower flange side of the lower build-up weld. By increasing, it is possible to increase the resistance to vertical bending stress and increase the fracture resistance.

また、柱梁溶接継手は、下部肉盛溶接部の柱部材側への長さ(Lc)を、現場接合形式では溶接金属部の頂上部よりも柱部材側に延長すること、工場接合形式では裏当て金の幅中央部より柱部材側に延長することによって、接触角を小さくして応力集中を緩和するだけでなく、下部完全溶け込み溶接部における溶接金属部の余盛および裏当て金を応力緩和の有効厚として利用して、応力集中箇所の剛性を高めて破壊抵抗を大きくすることができる。さらに、現場接合形式では、下フランジやダイアフラムと裏当て金との間に不可避的に発生し、スカラップ底と共に亀裂発生源となりやすい狭隘なスリット部への応力集中を緩和することができる。   In addition, the column beam welded joint extends the length (Lc) of the lower overlay welded part to the column member side from the top of the weld metal part to the column member side in the field joining type, Extending the backing metal from the center of the backing to the column member side not only reduces the contact angle and relieves stress concentration, but also stresses the overlay of the weld metal and the backing metal at the lower full penetration weld. By using this as an effective thickness for relaxation, the rigidity of the stress concentration point can be increased and the fracture resistance can be increased. Further, in the on-site joining type, stress concentration is unavoidably generated between the lower flange or the diaphragm and the backing metal, and the stress concentration on the narrow slit portion which tends to be a crack generation source together with the scallop bottom can be reduced.

なお、柱梁溶接継手は、溶接金属部(現場接合形式の場合)あるいは裏当て金(工場接合形式の場合)を越えてさらに柱部材側に下部肉盛溶接部が延長された場合には、溶接金属部の余盛部や裏当て金の厚さが有効厚とはならないが、代わりに一般的にフランジ厚よりも厚いダイアフラム厚が有効厚として作用し、接触角もまたさらに小さくなって応力集中の緩和効果を高めることから、破壊を十分抑制することができる。   In addition, the column beam welded joint exceeds the weld metal part (in the case of on-site joining type) or backing metal (in the case of factory joining type), and when the lower overlay welded part is further extended to the column member side, The thickness of the weld metal part and the backing metal does not become the effective thickness, but instead, the diaphragm thickness that is generally thicker than the flange thickness acts as the effective thickness, and the contact angle is further reduced to reduce the stress. Since the concentration relaxation effect is enhanced, destruction can be sufficiently suppressed.

また、柱梁溶接継手は、下部肉盛溶接部の柱部材と反対側、つまり梁部材の長さ方向中央に向けての長さ(Lb)を、ウエブの厚さ(Tw)の3倍以上の長さとすることによって、応力集中を適度に分散させ、下部肉盛溶接部とウエブ界面に生じやすい亀裂の発生を抑制することができる。   In addition, the beam-to-column welded joint has a length (Lb) opposite to the column member of the lower build-up weld, that is, the length (Lb) toward the center in the length direction of the beam member is at least three times the web thickness (Tw). By setting the length to, the stress concentration can be dispersed moderately, and the occurrence of cracks that are likely to occur at the lower overlay weld and the web interface can be suppressed.

本発明に係る柱梁溶接継手は、前記上スカラップの前記上フランジに当接する上スカラップ底から前記柱部材側、前記柱部材と反対側および前記ウエブの厚さ方向の両側に、肉盛溶接によって形成された上部肉盛溶接部をさらに備えることが好ましい。   The column beam welded joint according to the present invention is formed by overlay welding on the column member side, the side opposite to the column member, and both sides in the thickness direction of the web from the upper scallop bottom contacting the upper flange of the upper scallop. It is preferable to further include an upper overlay weld formed.

また、本発明の柱梁溶接継手は、前記上部肉盛溶接部の前記ウエブ側への脚長(La)が、前記ウエブの厚さ(Tw)以上の長さであって、かつ、前記上部肉盛溶接部の前記上フランジ側への脚長(Ld)が、前記ウエブの厚さ(Tw)以上の長さであり、前記上部肉盛溶接部の前記上スカラップ底から前記柱部材側への長さ(Lc)が、前記裏当て金の幅中央部を越える長さであって、かつ、前記上部肉盛溶接部の前記上スカラップ底から前記柱部材と反対側への長さ(Lb)が、前記ウエブの厚さ(Tw)の3倍以上の長さであることが好ましい。   In the column beam welded joint of the present invention, a leg length (La) to the web side of the upper build-up welded portion is not less than a thickness (Tw) of the web, and the upper meat The leg length (Ld) to the upper flange side of the welded portion is a length equal to or greater than the thickness (Tw) of the web, and the length from the upper scallop bottom of the upper welded portion to the column member side (Lc) is a length exceeding the width center portion of the backing metal, and a length (Lb) from the upper scallop bottom of the upper overlay welded portion to the side opposite to the column member is It is preferable that the length is three times or more the thickness (Tw) of the web.

前記構成によれば、本発明の柱梁溶接継手は、上部肉盛溶接部をさらに備え、その上部肉盛溶接部の脚長、柱部材側への長さおよび柱部材と反対側への長さが所定範囲であることによって、上スカラップにおける応力集中を周囲に分散させると共に、応力集中箇所での剛性を高めて破壊抵抗を大きくすることできる。   According to the said structure, the column beam welded joint of this invention is further equipped with an upper build-up weld part, The leg length of the upper build-up weld part, the length to the column member side, and the length to the opposite side to a column member Is within the predetermined range, the stress concentration in the upper scallop can be dispersed to the surroundings, and the rigidity at the stress concentration point can be increased to increase the fracture resistance.

本発明に係る柱梁溶接継手は、柱部材と、ウエブとそのウエブの上端部側および下端部側に設けられた上フランジおよび下フランジとでH型の断面が形成された梁部材と、前記ウエブの下端部を前記柱部材側で一部切り欠いて形成された下スカラップと、前記柱部材の側面と前記上フランジの端面との突合せ溶接によって形成され、溶接金属部と2つの裏当て金とからなる上部完全溶け込み溶接部と、前記柱部材の側面と前記下フランジの端面との突合せ溶接によって形成され、溶接金属部と裏当て金とからなる下部完全溶け込み溶接部と、前記下スカラップの前記下フランジに当接する下スカラップ底から前記柱部材側、前記柱部材と反対側および前記ウエブの厚さ方向の両側に、肉盛溶接によって形成された下部肉盛溶接部とを備え、前記上部完全溶け込み溶接部では、2つの前記裏当て金が前記ウエブの上端部を挟むように接合されていることを特徴とする。   A column beam welded joint according to the present invention includes a column member, a beam member in which an H-shaped cross section is formed by a web and an upper flange and a lower flange provided on an upper end side and a lower end side of the web, A lower scallop formed by partially cutting the lower end portion of the web on the column member side, a butt weld of a side surface of the column member and an end surface of the upper flange, a weld metal portion and two backing metal An upper fully-penetrating welded portion formed by butt welding between a side surface of the column member and an end surface of the lower flange, and a lower fully-penetrating welded portion comprising a weld metal portion and a backing metal, and the lower scallop A lower build-up weld portion formed by build-up welding on the column member side, the opposite side of the column member, and both sides in the thickness direction of the web from the bottom scallop bottom contacting the lower flange; The upper full penetration welds, characterized in that two of said backing strip are joined so as to sandwich the upper portion of the web.

また、本発明の柱梁溶接継手は、前記下部完全溶け込み溶接部において、裏当て金に接合した溶接金属部は、前記下スカラップ側にあり、前記下部肉盛溶接部の前記ウエブ側への脚長(La)が、前記ウエブの厚さ(Tw)以上の長さであって、かつ、前記下部肉盛溶接部の前記下フランジ側への脚長(Ld)が、前記ウエブの厚さ(Tw)以上の長さであり、前記下部肉盛溶接部の前記下スカラップ底から前記柱部材側への長さ(Lc)が、前記溶接金属の頂上部を越える長さであって、かつ、前記下部肉盛溶接部の前記下スカラップ底から前記柱部材と反対側への長さ(Lb)が、前記ウエブの厚さ(Tw)の3倍以上の長さであることが好ましい。   Further, in the column beam welded joint of the present invention, the weld metal part joined to the backing metal in the lower full penetration weld part is on the lower scallop side, and the leg length of the lower overlay weld part to the web side is (La) is a length equal to or greater than the thickness (Tw) of the web, and the leg length (Ld) to the lower flange side of the lower build-up weld is the thickness (Tw) of the web. The length (Lc) from the lower scallop bottom to the column member side of the lower build-up weld is a length exceeding the top of the weld metal, and the lower portion It is preferable that the length (Lb) from the bottom scallop bottom to the side opposite to the column member of the overlay welded portion is three times or more the thickness (Tw) of the web.

前記構成によれば、本発明の柱梁溶接継手は、梁部材として上スカラップが形成されず下スカラップのみのウエブを使用し、そのウエブと上フランジとの溶接接合部である上部完全溶け込み溶接部が2つの裏当て金がウエブの上端部を挟むように接合されるノンスカラップ工法で作製されていることによって、上フランジ側全体に分散作用する地震応力に対してエネルギーを弾性変形、さらに大きな場合は塑性変形として吸収することが出来て、壊れにくくすることができる。また、下フランジ側では、下部肉盛溶接部を備えることによって、下スカラップ底での応力集中を周囲に分散させると共に、応力集中箇所での剛性を高めて破壊抵抗を大きくすることができる。   According to the above-described configuration, the beam-to-column welded joint of the present invention uses the upper scalloped web as the beam member, and uses only the lower scalloped web, and the upper fully-penetrating weld is the welded joint between the web and the upper flange. Is produced by a non-scallop method in which the two backing metal members are joined so as to sandwich the upper end of the web, so that the energy is elastically deformed against the seismic stress distributed over the entire upper flange side. It can be absorbed as plastic deformation and can be made difficult to break. Further, on the lower flange side, by providing the lower build-up welded portion, the stress concentration at the bottom of the lower scallop can be dispersed to the surroundings, and the rigidity at the stress concentration location can be increased to increase the fracture resistance.

本発明に係る柱梁溶接継手の製造方法は、前記の柱梁溶接継手の製造方法であって、前記柱部材の側面と前記上フランジの端面、および、前記柱部材の側面と前記下フランジの側面とを突合せ溶接して、前記上部完全溶け込み溶接部および前記下部完全溶け込み溶接部を形成する梁端部突合せ溶接工程と、前記梁端部突合せ溶接工程の終了後、下フランジ側に肉盛溶接を行って、前記下部肉盛溶接部を形成する肉盛溶接工程と、を含むことを特徴とする。   A method for manufacturing a column beam welded joint according to the present invention is a method for manufacturing the above column beam welded joint, including the side surface of the column member and the end surface of the upper flange, and the side surface of the column member and the side surface of the lower flange. Beam end butt welding process for butt welding the side surfaces to form the upper complete penetration weld and the lower full penetration weld, and overlay welding on the lower flange side after the beam end butt welding process And performing a build-up welding process for forming the lower build-up weld.

本発明に係る柱梁溶接継手の製造方法は、前記の柱梁溶接継手の製造方法であって、前記柱部材の側面と前記上フランジの端面、および、前記柱部材の側面と前記下フランジの側面とを突合せ溶接して、前記上部完全溶け込み溶接部および前記下部完全溶け込み溶接部を形成する梁端部突合せ溶接工程と、前記梁端部突合せ溶接工程の終了後、上フランジ側および下フランジ側に肉盛溶接を行って、前記上部肉盛溶接部および前記下部肉盛溶接部を形成する肉盛溶接工程と、を含むことを特徴とする。   A method for manufacturing a column beam welded joint according to the present invention is a method for manufacturing the above column beam welded joint, including the side surface of the column member and the end surface of the upper flange, and the side surface of the column member and the side surface of the lower flange. A beam end butt welding process in which a side butt weld is performed to form the upper complete penetration weld and the lower complete penetration weld, and after the beam end butt welding process, the upper flange side and the lower flange side A build-up welding process in which build-up welding is performed to form the upper build-up weld and the lower build-up weld.

前記手順によれば、本発明の柱梁溶接継手の製造方法では、梁端部突合せ溶接工程を行うことによって、柱部材に梁部材が溶接接合され、肉盛溶接工程を行うことによって、下フランジ側の下スカラップを補強する下部肉盛溶接部、または、下スカラップと上フランジ側の上スカラップの両者を補強する下部肉盛溶接部および上部肉盛溶接部が形成される。   According to the above procedure, in the method for manufacturing a beam-to-column welded joint of the present invention, the beam end butt welding process is performed, the beam member is welded to the column member, and the overlay welding process is performed. A lower build-up weld that reinforces the lower scallop on the side, or a lower build-up weld and an upper build-up weld that reinforces both the lower scallop and the upper scallop on the upper flange side are formed.

本発明に係る柱梁溶接継手の製造方法は、前記の柱梁溶接継手の製造方法であって、既存建築物から前記下部完全溶け込み溶接部を露出させる準備工程と、前記準備工程の終了後、下フランジ側に肉盛溶接を行って、前記下部肉盛溶接部を形成する肉盛溶接工程と、を含むことを特徴とする。   A method for manufacturing a beam-to-column welded joint according to the present invention is a method for manufacturing the beam-to-column welded joint, wherein a preparation step for exposing the lower complete penetration weld from an existing building, and after completion of the preparation step, A build-up welding process in which build-up welding is performed on the lower flange side to form the lower build-up weld.

本発明に係る柱梁溶接継手の製造方法は、前記の柱梁溶接継手の製造方法であって、既存建築物から前記上部完全溶け込み溶接部および前記下部完全溶け込み溶接部を露出させる準備工程と、前記準備工程の終了後、上フランジ側および下フランジ側に肉盛溶接を行って、前記上部肉盛溶接部および前記下部肉盛溶接部を形成する肉盛溶接工程と、を含むことを特徴とする。   A method for manufacturing a beam-to-column welded joint according to the present invention is a method for manufacturing the beam-to-column welded joint, and a preparation step for exposing the upper complete penetration weld and the lower complete penetration weld from an existing building, After the completion of the preparation step, it includes overlay welding step of performing overlay welding on the upper flange side and the lower flange side to form the upper overlay weld and the lower overlay weld To do.

前記手順によれば、本発明の柱梁溶接継手の製造方法では、準備工程と肉盛溶接工程を行うことによって、既存建築物の下フランジ側の下スカラップを補強する下部肉盛溶接部、または、下スカラップと上フランジ側の上スカラップの両者を補強する下部肉盛溶接部および上部肉盛溶接部が形成される。   According to the above procedure, in the method for manufacturing a beam-to-column welded joint of the present invention, a lower overlay weld that reinforces a lower scallop on the lower flange side of an existing building by performing a preparation process and an overlay welding process, or A lower build-up weld and an upper build-up weld that reinforce both the lower scallop and the upper scallop on the upper flange side are formed.

本発明に係る柱梁溶接継手の製造方法は、前記肉盛溶接工程では、C≧0.15質量%、Mn≧2.0質量%、Ni≧3.0質量%、Cr≧3.0質量%のうち1つ以上を含有する溶接材料を用いて、肉盛溶接を行うことが好ましい。   In the method of manufacturing a column beam welded joint according to the present invention, C ≧ 0.15 mass%, Mn ≧ 2.0 mass%, Ni ≧ 3.0 mass%, Cr ≧ 3.0 mass in the build-up welding process. It is preferable to perform overlay welding by using a welding material containing one or more of%.

前記手順によれば、本発明の柱梁溶接継手の溶接方法は、所定の溶接材料を用いて肉盛溶接工程を行うことによって、下部肉盛溶接部、または、下部肉盛溶接部および上部肉盛溶接部の強度が増加する。   According to the above procedure, the welding method for a column beam welded joint according to the present invention performs a build-up welding process using a predetermined welding material, so that a lower build-up weld or a lower build-up weld and an upper build-up are performed. The strength of the welded area increases.

本発明の柱梁溶接継手によれば、優れた耐震性能を奏することができると共に、現場接合形式であっても既存建築物も含め容易で安価に補修できる。また、本発明の柱梁溶接継手の製造方法によれば、耐震性能に優れ、補修性にも優れた柱梁溶接継手を製造できる。   According to the beam-to-column welded joint of the present invention, excellent seismic performance can be achieved, and even an on-site joining type can be repaired easily and inexpensively including existing buildings. In addition, according to the method for manufacturing a beam-to-column welded joint of the present invention, a beam-to-column welded joint having excellent seismic performance and excellent repairability can be manufactured.

特に、本発明の柱梁溶接継手によれば、鉄骨柱梁継手特有の接合ディテールを利用して、すなわち、完全溶け込み溶接部の溶接金属部の余盛と裏当て金、あるいは、ダイアフラム厚を有効厚として利用することによって、スカラップ底への応力集中に対する抵抗力を増加させて、耐震性能を向上させることができる。さらに、本発明の柱梁溶接継手によれば、現場接合形式であってもスカラップ底での強度(剛性)を確保できるため、柱部材と梁部材の現場への搬送を効率よく行うことができる。   In particular, according to the beam-to-column welded joint of the present invention, it is possible to make use of the welding details peculiar to steel beam-to-column joints, that is, the surplus and backing metal of the weld metal part and the diaphragm thickness of the full penetration welded part. By using it as a thickness, the resistance to stress concentration on the scallop bottom can be increased and the seismic performance can be improved. Furthermore, according to the beam-to-column welded joint of the present invention, the strength (rigidity) at the scalloped bottom can be ensured even in the case of on-site joining, so that the column member and the beam member can be efficiently conveyed to the site. .

本発明に係る柱梁溶接継手(現場接合形式)の構成を示し、(a)は斜視図、(b)は(a)のX−X線断面図、(c)は(a)の他の形態を示すX−X線断面図である。The structure of the beam-to-column welded joint (field joining type) according to the present invention is shown, (a) is a perspective view, (b) is a cross-sectional view taken along line XX of (a), and (c) is another view of (a). It is XX sectional drawing which shows a form. (a)、(b)は本発明に係る柱梁溶接継手の下部肉盛溶接部、(c)は柱梁溶接継手の上部肉盛溶接部の断面図、(d)は(a)、(b)のX−X線断面図、(e)は(c)のX−X線断面図である。(A), (b) is a lower build-up weld of a beam-to-column welded joint according to the present invention, (c) is a cross-sectional view of an upper build-up weld of a beam-to-column welded joint, and (d) is a view of (a), ( (b) XX sectional drawing, (e) is XX sectional drawing of (c). 本発明に係る柱梁溶接継手の下部肉盛溶接部(現場接合形式)の作用を説明する説明図である。It is explanatory drawing explaining the effect | action of the lower build-up weld part (field joining type) of the column beam welded joint which concerns on this invention. 本発明に係る柱梁溶接継手の下部肉盛溶接部(現場接合形式)の作用を説明する説明図である。It is explanatory drawing explaining the effect | action of the lower build-up weld part (field joining type) of the column beam welded joint which concerns on this invention. 本発明に係る柱梁溶接継手の下部肉盛溶接部の作用を説明する説明図で、(a)は現場接合形式、(b)は工場接合形式である。It is explanatory drawing explaining the effect | action of the lower build-up weld part of the column beam welded joint which concerns on this invention, (a) is a field joining format, (b) is a factory joining format. 本発明に係る柱梁溶接継手の下部肉盛溶接部の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the lower build-up weld part of the column beam welded joint which concerns on this invention. 本発明に係る柱梁溶接継手(工場接合形式)の構成を示し、(a)は斜視図、(b)は(a)のX−X線断面図、(c)は(a)の他の形態を示すX−X線断面である。The structure of the beam-beam welded joint (factory joining type) which concerns on this invention is shown, (a) is a perspective view, (b) is XX sectional drawing of (a), (c) is other of (a). It is a XX line section showing a form. 本発明に係る柱梁溶接継手(現場接合形式)の他の形態の構成を示し、(a)は斜視図、(b)は(a)のX−X線断面図である。The structure of the other form of the column beam welded joint (field joining type) concerning this invention is shown, (a) is a perspective view, (b) is XX sectional drawing of (a). 本発明に係る柱梁溶接継手(現場接合形式)の他の形態を示す斜視図である。It is a perspective view which shows the other form of the column beam welded joint (site joining type) which concerns on this invention. 本発明に係る柱梁溶接継手(現場接合形式)の他の形態を示す斜視図である。It is a perspective view which shows the other form of the column beam welded joint (site joining type) which concerns on this invention. 本発明に係る柱梁溶接継手の製造方法を示す工程フローである。It is a process flow which shows the manufacturing method of the column beam welded joint which concerns on this invention. 本発明に係る柱梁溶接継手の他の製造方法を示す工程フローである。It is a process flow which shows the other manufacturing method of the column beam welded joint which concerns on this invention. 上下スカラップ工法で作製する溶接接合前の柱梁接合模擬構造体(現場接合形式)の構成を示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は梁部材内に挿入されたスティフナの側面図である。The structure of the column beam joint simulated structure (field joining type) before welding joining produced by the upper and lower scallop method is shown, (a) is a plan view, (b) is a front view, (c) is a side view, and (d). FIG. 4 is a side view of a stiffener inserted into a beam member. 上下スカラップ工法で作製する溶接接合前の柱梁接合模擬構造体(工場接合形式)の構成を示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は梁部材内に挿入されたスティフナの側面図である。The structure of the column beam joint simulated structure (factory joint type) before welding joining produced by the upper and lower scallop method is shown, (a) is a plan view, (b) is a front view, (c) is a side view, and (d). FIG. 4 is a side view of a stiffener inserted into a beam member. 上下ノンスカラップ工法で作製する溶接接合前の柱梁接合模擬構造体(工場接合形式)の構成を示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は梁部材内に挿入されたスティフナの側面図である。The structure of the column beam joint simulated structure (factory joint type) before welding joining produced by the upper and lower non-scallop method is shown, (a) is a plan view, (b) is a front view, (c) is a side view, and (d). FIG. 4 is a side view of a stiffener inserted into a beam member. 上ノンスカラップ工法、下スカラップ工法で作製する溶接接合前の柱梁接合模擬構造体(現場接合形式)の構成を示し、(a)は平面図、(b)は正面図、(c)は側面図、(d)は梁部材内に挿入されたスティフナの側面図である。The structure of a column beam joint simulated structure (on-site joining type) before welding joining produced by the upper non-scallop method and the lower scallop method is shown, (a) is a plan view, (b) is a front view, and (c) is a side view. (D) is a side view of the stiffener inserted in the beam member. (a)〜(h)は本発明に係る柱梁溶接継手の下部肉盛溶接部の積層要領を示す図である。(A)-(h) is a figure which shows the lamination | stacking point of the lower build-up weld part of the column beam welded joint which concerns on this invention. 柱梁溶接継手の積荷実験方法を示す側面図である。It is a side view which shows the loading test method of a column beam welded joint. 積荷実験における荷重履歴を示す図である。It is a figure which shows the load log | history in a loading experiment. (a)は積荷実験におけるスケルトン曲線を示し、(b)は累積荷重変形の定義を示す図である。(A) shows the skeleton curve in a load experiment, (b) is a figure which shows the definition of accumulation load deformation | transformation. スカラップ工法で作製した従来の柱梁溶接継手(工場接合形式)の問題点を示す斜視図である。It is a perspective view which shows the problem of the conventional column beam welded joint (factory joining form) produced with the scallop method. 従来の柱梁溶接継手(工場接合形式)をノンスカラップ工法で作製する手順を示す斜視図である。It is a perspective view which shows the procedure which produces the conventional column beam welded joint (factory joining type) by the non-scallop method. 従来の柱梁溶接継手(現場接合形式)をノンスカラップ工法で作製する際のも問題点を示す斜視図である。It is a perspective view which shows a problem also at the time of producing the conventional column beam welded joint (field joining type) by the non-scallop method. 従来の柱梁溶接継手(現場接合形式)の構成を示す斜視図である。It is a perspective view which shows the structure of the conventional column beam welded joint (field joining type). 従来の柱梁溶接継手(工場接合形式)の構成を示す斜視図である。It is a perspective view which shows the structure of the conventional column beam welded joint (factory joining form).

本発明に係る柱梁溶接継手の実施形態について、図面を参照して詳細に説明する。
柱梁溶接継手は、柱部材と梁部材とを溶接接合することによって作製される。そして、柱梁溶接継手は、溶接接合が行われる場所によって、建築現場で溶接接合を行う現場接合形式と、工場で溶接接合が行われる工場接合形式との2形式がある。
An embodiment of a beam-to-column welded joint according to the present invention will be described in detail with reference to the drawings.
A column beam welded joint is manufactured by welding and joining a column member and a beam member. And, there are two types of column beam welded joints, that is, an on-site joining type in which welding joining is performed at a building site and a factory joining type in which welding joining is performed at a factory, depending on the place where the welding joining is performed.

<柱梁溶接継手(現場接合形式)>
図1(a)、(b)に示すように、第1の実施形態の柱梁溶接継手1Aは、柱部材31Aと、梁部材2と、上スカラップ6と、下スカラップ7と、上部完全溶け込み溶接部8Aと、下部完全溶け込み溶接部9Aと、下部肉盛溶接部13と、を備える。
<Column beam welded joint (on-site joint type)>
As shown in FIGS. 1A and 1B, a column beam welded joint 1A according to the first embodiment includes a column member 31A, a beam member 2, an upper scallop 6, a lower scallop 7, and an upper complete melt. A welded portion 8A, a lower complete penetration welded portion 9A, and a lower overlay welded portion 13 are provided.

(柱部材)
柱部材31Aは、既存建築物のブロックである柱梁溶接継手に使用される柱部材が用いられる。そして、柱部材の構造形式は特に限定されないが、鋼管33と、その鋼管33との間に応力伝達を担う鋼板からなるダイアフラム32を水平方向に挿入した外ダイアフラム構造(梁貫通方式とも呼ばれる)が好ましい。また、鋼管33およびダイアフラム32の水平方向の断面形状は、特に限定されないが、角形または円形が一般的である。なお、鋼管33およびダイアフラム32を構成する材料は、建築物の強度を保証できれば特に限定されず、例えば、490MPa級鋼、耐火鋼またはステンレス鋼が使用される。
(Column member)
As the column member 31A, a column member used for a column beam welded joint which is a block of an existing building is used. The structure of the column member is not particularly limited, but there is an outer diaphragm structure (also called a beam penetration method) in which a steel pipe 33 and a diaphragm 32 made of a steel plate that bears stress transmission between the steel pipe 33 are inserted in the horizontal direction. preferable. The horizontal cross-sectional shapes of the steel pipe 33 and the diaphragm 32 are not particularly limited, but are generally square or circular. In addition, the material which comprises the steel pipe 33 and the diaphragm 32 will not be specifically limited if the intensity | strength of a building can be guaranteed, For example, 490MPa class steel, fireproof steel, or stainless steel is used.

(梁部材)
梁部材2は、鋼板からなるウエブ3と、そのウエブ3の上端部側および下端部側に設けられた上フランジ4および下フランジ5とでH型の断面が形成された、いわゆるH型鋼である。また、梁部材2に使用されるH型鋼には、圧延(ロールフォーミング)によってH型に一体設計される通称ロールHと、フランジとウエブの平板同士をサブマージアーク溶接などの手段によってH型に組み立てられる通称ビルドHとがある。本発明の梁部材2は、ロールH、ビルトHのいずれでもよい。なお、梁部材2(ウエブ3、上下フランジ4、5)を構成する材料は、建築物の強度を保証できれば特に限定されず、例えば、490MPa級鋼、耐火鋼またはステンレス鋼が使用される。
(Beam member)
The beam member 2 is a so-called H-shaped steel in which an H-shaped cross section is formed by a web 3 made of a steel plate and an upper flange 4 and a lower flange 5 provided on the upper end side and the lower end side of the web 3. . In addition, the H-shaped steel used for the beam member 2 is assembled into an H-shape by means such as submerged arc welding of a commonly known roll H that is integrally designed into an H-shape by rolling (roll forming) and a flat plate of a flange and a web. Known as Build H. The beam member 2 of the present invention may be either a roll H or a built-in H. In addition, the material which comprises the beam member 2 (web 3, the upper and lower flanges 4 and 5) will not be specifically limited if the intensity | strength of a building can be guaranteed, For example, 490 MPa class steel, fireproof steel, or stainless steel is used.

(上スカラップ、下スカラップ)
上スカラップ6および下スカラップ7は、ダイアフラム32の側面と上フランジ4および下フランジ5の端面とを溶接接合する際に、ウエブ3が溶接作業の邪魔にならないように形成されるもので、ウエブ3の上端部および下端部を柱部材31A(ダイアフラム32)側で一部切り欠いて形成されたものである。また、上スカラップ6および下スカラップ7の形状は、溶接作業の邪魔にならないように形成されたものであれば特に限定されないが、非特許文献1に記載されたスカラップ形状が好ましい。なお、上スカラップ6および下スカラップ7の形状は、上下フランジ4、5に当接するスカラップ底での接触角が略直角の形状(非特許文献1、211頁、図4.8.6(c)参照)、スカラップ底の接触角が小さい形状(非特許文献1、211頁、図4.8.6(b)〜(e)参照)のいずれでもよいが、複合円型スカラップ(非特許文献1、211頁、図4.8.6(b)参照)が好ましい。
(Upper scallop, Lower scallop)
The upper scallop 6 and the lower scallop 7 are formed so that the web 3 does not interfere with the welding operation when the side surface of the diaphragm 32 and the end surfaces of the upper flange 4 and the lower flange 5 are welded. The upper end portion and the lower end portion are partially cut out on the column member 31A (diaphragm 32) side. Moreover, the shape of the upper scallop 6 and the lower scallop 7 is not particularly limited as long as it is formed so as not to interfere with the welding operation, but the scallop shape described in Non-Patent Document 1 is preferable. In addition, the shape of the upper scallop 6 and the lower scallop 7 is a shape in which the contact angle at the bottom of the scallop contacting the upper and lower flanges 4 and 5 is substantially a right angle (Non-Patent Document 1, page 211, FIG. 4.8.6 (c)). Reference) and a shape with a small contact angle of the scallop bottom (see Non-Patent Documents 1, 211, FIGS. 4.8.6 (b) to (e)) may be used, but a composite circular scallop (Non-Patent Document 1) 211, see FIG. 4.8.6 (b)).

(上部完全溶け込み溶接部、下部完全溶け込み溶接部)
上部完全溶け込み溶接部8Aおよび下部完全溶け込み溶接部9Aは、ダイアフラム32の側面と上フランジ4および下フランジ5の端面との突合せ溶接によって、ダイアフラム32と上フランジ4および下フランジ5との間に形成されるものである。また、上部完全溶け込み溶接部8Aおよび下部完全溶け込み溶接部9Aは、それぞれ溶接金属部10と裏当て金11とからなる。
(Upper complete penetration weld, lower complete penetration weld)
The upper full penetration weld 8A and the lower full penetration weld 9A are formed between the diaphragm 32 and the upper flange 4 and the lower flange 5 by butt welding of the side face of the diaphragm 32 and the end faces of the upper flange 4 and the lower flange 5. It is what is done. The upper complete penetration weld 8A and the lower complete penetration weld 9A are each composed of a weld metal portion 10 and a backing metal 11.

そして、柱梁溶接継手1Aの接合形式が現場接合形式の場合には、上部完全溶け込み溶接部8Aは、梁部材2の外側からの下向溶接によって形成されるため、上スカラップ6側には裏当て金11が接合されている。また、下部完全溶け込み溶接部9Aは、後記する工場接合形式の場合のように上フランジ4が接合された柱梁溶接継手1Aを天地反転できず、梁部材2の内側からの下向溶接によって形成されるため、上部完全溶け込み溶接部8Aとは異なり下スカラップ7側には溶接金属部10が接合されている。したがって、上部完全溶け込み溶接部8Aと下部完全溶け込み溶接部9Aとは、ウエブ中央線を挟んで非対称なディテールとなる。また、裏当て金11は、ウエブ3に形成された上スカラップ6または下スカラップ7を貫通して上フランジ4または下フランジ5の幅方向に沿って延びる長尺板からなる。   And when the joining form of the column beam welded joint 1A is the on-site joining form, the upper complete penetration welded portion 8A is formed by downward welding from the outside of the beam member 2, so The stopper 11 is joined. Further, the lower full penetration weld portion 9A cannot be turned upside down on the column beam welded joint 1A to which the upper flange 4 is joined as in the case of the factory joint type described later, and is formed by downward welding from the inside of the beam member 2. Therefore, the weld metal part 10 is joined to the lower scallop 7 side unlike the upper complete penetration weld part 8A. Accordingly, the upper complete penetration weld 8A and the lower complete penetration weld 9A have asymmetric details across the web center line. Further, the backing metal 11 is made of a long plate that extends along the width direction of the upper flange 4 or the lower flange 5 through the upper scallop 6 or the lower scallop 7 formed on the web 3.

なお、上部完全溶け込み溶接部8Aおよび下部完全溶け込み溶接部9Aのそれぞれの強度は、建築物の強度を保証できれば特に限定されず、例えば、490MPa以上が好ましい。また、上部完全溶け込み溶接部8Aおよび下部完全溶け込み溶接部9Aの強度の制御は、突合せ溶接の溶接条件を制御することによって行われる。   In addition, each intensity | strength of the upper complete penetration weld part 8A and the lower complete penetration weld part 9A will not be specifically limited if the intensity | strength of a building can be guaranteed, For example, 490 Mpa or more is preferable. The strength of the upper complete penetration weld 8A and the lower complete penetration weld 9A is controlled by controlling the welding conditions for butt welding.

(下部肉盛溶接部)
図2(a)、(d)に示すように、下部肉盛溶接部13は、下スカラップ7の下フランジ5に当接する下スカラップ底SLから柱部材側(ダイアフラム32側)、柱部材(ダイアフラム32)と反対側およびウエブ3の厚さ方向の両側に、肉盛溶接によって形成された溶接金属部13aからなるものである。なお、下部肉盛溶接部13は、単層の溶接金属部13aからなるものであってもよいが、多層の溶接金属部13aが積層されたものであることが好ましい。
(Lower overlay weld)
As shown in FIGS. 2A and 2D, the lower build-up welded portion 13 has a column member side (diaphragm 32 side), a column member (diaphragm) from the lower scallop bottom SL that contacts the lower flange 5 of the lower scallop 7. 32) and a weld metal portion 13a formed by overlay welding on both sides in the thickness direction of the web 3 and the opposite side. In addition, although the lower build-up weld part 13 may consist of the single layer weld metal part 13a, it is preferable that the multilayer weld metal part 13a is laminated | stacked.

図3に示すように、柱梁溶接継手1Aは、下部肉盛溶接部13を備えることによって、下スカラップ7に作用する応力が下スカラップ7と下部肉盛溶接部13との接点で周囲に分散し、接点から鉛直下方への応力伝達が小さくなり、耐震性能が向上する。
また、下部完全溶け込み溶接部9Aの裏当て金11が梁部材(下フランジ5)の外側にある現場接合形式の柱梁溶接継手1Aにおいては、下部肉盛溶接部13を備えることによって、図示しないが、裏当て金11と、ダイアフラム32や下フランジ5との間に不可避的に形成されるスリット部への応力集中が防止され、亀裂発生が抑制される。
As shown in FIG. 3, the beam-to-column welded joint 1 </ b> A includes the lower build-up weld portion 13, so that the stress acting on the lower scallop 7 is dispersed around the contact point between the lower scallop 7 and the lower build-up weld portion 13. In addition, the transmission of stress from the contact point vertically downward is reduced, and the seismic performance is improved.
In addition, the column beam welded joint 1A of the on-site joining type in which the backing metal 11 of the lower complete penetration welded portion 9A is outside the beam member (lower flange 5) is not illustrated by including the lower buildup welded portion 13. However, stress concentration on the slit portion inevitably formed between the backing metal 11 and the diaphragm 32 or the lower flange 5 is prevented, and crack generation is suppressed.

下部肉盛溶接部13は、ウエブ3の厚さ方向の両側、すなわち、ウエブ3側および下フランジ5側の脚長(LaおよびLd)、下スカラップ底SLから柱部材側(ダイアフラム32側)への長さ(Lc)、および、下スカラップ底SLから柱部材(ダイアフラム32)と反対側への長さ(Lb)が、以下の範囲であることが好ましい。なお、下部肉盛溶接部13の脚長(LaおよびLd)、柱部材側への長さおよび柱部材と反対側への長さの制御は、肉盛溶接の溶接条件を制御することによって行われる。   The lower build-up welds 13 are formed on both sides of the web 3 in the thickness direction, that is, the leg lengths (La and Ld) on the web 3 side and the lower flange 5 side, from the lower scallop bottom SL to the column member side (diaphragm 32 side). The length (Lc) and the length (Lb) from the lower scallop bottom SL to the side opposite to the column member (diaphragm 32) are preferably in the following ranges. In addition, control of the leg length (La and Ld), the length to the column member side, and the length to the opposite side to the column member is performed by controlling the welding conditions of the build-up welding. .

図2(d)、図3、図4に示すように、下部肉盛溶接部13では、下部肉盛溶接部13のウエブ3側への脚長(La)は、ウエブ3の厚さ(Tw)以上の長さであって、かつ、下部肉盛溶接部13の下フランジ5側への脚長(Ld)がウエブ3の厚さ(Tw)以上の長さであること、すなわち、La≧TwかつLd≧Twであることが好ましい。   As shown in FIGS. 2D, 3, and 4, in the lower overlay welded portion 13, the leg length (La) to the web 3 side of the lower overlay welded portion 13 is the thickness (Tw) of the web 3. The leg length (Ld) to the lower flange 5 side of the lower build-up weld 13 is equal to or greater than the thickness (Tw) of the web 3, that is, La ≧ Tw and It is preferable that Ld ≧ Tw.

柱梁溶接継手1Aは、ウエブ3側の脚長(La)が所定範囲であることによって、下スカラップ7と下部肉盛溶接部13との接点から鉛直下方に作用する応力に対向する破壊抵抗(剛性)が大きくなって、耐震性能がさらに向上する。また、柱梁溶接継手1Aは、下フランジ5側の脚長(Ld)が所定範囲であることによって、下スカラップ7と下部肉盛溶接部13との接点から鉛直下方に作用する応力が分散されて逃げるため、下フランジ5に亀裂が発生するのを防止できる。   Since the leg length (La) on the web 3 side is within a predetermined range, the column beam welded joint 1A has a fracture resistance (rigidity) that opposes the stress acting vertically downward from the contact point between the lower scallop 7 and the lower build-up weld 13. ) Will increase, and the seismic performance will be further improved. Further, in the beam-to-column welded joint 1A, when the leg length (Ld) on the lower flange 5 side is within a predetermined range, the stress acting downward from the contact point between the lower scallop 7 and the lower build-up weld 13 is dispersed. In order to escape, it is possible to prevent the lower flange 5 from cracking.

梁部材では、原材料としてのロールH型鋼、ビルドH型鋼のいずれでもウエブ3と下フランジ5の交点には元々小脚長のすみ肉形状部3aが存在する。本発明の下部肉盛溶接部13は、断面として、このすみ肉形状部3aに上盛りする形となる。下部肉盛溶接部13のうち、高さ方向、すなわちウエブ3側の脚長(La)は、ウエブ3の厚さ(Tw)未満の長さであると、下スカラップ7と下部肉盛溶接部13との接点から鉛直下方に作用する応力に対抗できる剛性(破壊抵抗)が確保できない。一方、下部肉盛溶接部13のうち、横方向、すなわち下フランジ5側の脚長(Ld)は、ウエブ3の厚さ(Tw)未満の長さであると、下スカラップ7と下部肉盛溶接部13との接点から鉛直下方に作用する応力を分散させて逃がす効果が小さく、下フランジ5に亀裂を容易に発生させる可能性がある。なお、ウエブ3側の脚長(La),下フランジ5側の脚長(Ld)は、どちらも上限を設ける必要性は無いが、ウエブ3側の脚長(La)と下フランジ5側の脚長(Ld)は同じ長さとするのが最も理想的である。   In the beam member, a fillet-shaped portion 3a having a small leg length originally exists at the intersection of the web 3 and the lower flange 5 in both the roll H-shaped steel and the build H-shaped steel as raw materials. The lower build-up welded portion 13 of the present invention has a shape that is raised on the fillet-shaped portion 3a as a cross section. Of the lower build-up welds 13, the lower scallop 7 and the lower build-up weld 13 have a height direction, that is, the leg length (La) on the web 3 side is less than the thickness (Tw) of the web 3. The rigidity (breaking resistance) that can resist the stress acting vertically downward from the contact point cannot be secured. On the other hand, when the leg length (Ld) in the lateral direction, that is, the lower flange 5 side in the lower overlay welded portion 13 is less than the thickness (Tw) of the web 3, the lower scallop 7 and the lower overlay weld are formed. The effect of dispersing and releasing stress acting vertically downward from the contact point with the portion 13 is small, and there is a possibility that a crack is easily generated in the lower flange 5. The leg length (La) on the web 3 side and the leg length (Ld) on the lower flange 5 side do not need to have upper limits, but the leg length (La) on the web 3 side and the leg length (Ld) on the lower flange 5 side are not required. ) Are ideally the same length.

図2(a)、図5(a)に示すように、下部肉盛溶接部13では、下スカラップ底SLから柱部材(ダイアフラム32)側への長さ(Lc)は、下部完全溶け込み溶接部9Aの溶接金属部10の頂上部を越える長さであることが好ましい。これによって、柱梁溶接継手1Aは、溶接金属部10の余盛部10aの厚さと裏当て金11の厚さを応力に対向する有効厚Tとして使うことができるため、剛性が大きくなる。また、柱梁溶接継手1Aは、下部肉盛溶接部13の接触角θも小さくなるため、応力集中が緩和される。その結果、柱梁溶接継手1Aは、耐震性能がさらに向上する。   As shown in FIGS. 2 (a) and 5 (a), in the lower build-up weld portion 13, the length (Lc) from the lower scallop bottom SL to the column member (diaphragm 32) side is the lower full penetration weld portion. It is preferable that the length exceeds the top of the 9A weld metal part 10. As a result, the beam-to-column welded joint 1 </ b> A can increase the rigidity because the thickness of the surplus portion 10 a of the weld metal portion 10 and the thickness of the backing metal 11 can be used as the effective thickness T facing the stress. Further, in the column beam welded joint 1 </ b> A, the contact angle θ of the lower build-up weld portion 13 is also reduced, so that stress concentration is reduced. As a result, the seismic performance of the column beam welded joint 1A is further improved.

柱部材側への長さ(Lc)が、溶接金属部10の頂上部に届かない、すなわち、下スカラップ底SLから溶接金属部10の頂上部までの距離未満であると、下部肉盛溶接部13の接触角θが大きくなり、かつ、溶接金属部10の余盛部10aの厚さを有効厚Tとして最大限に利用することができない。その結果、下部肉盛溶接部13と下部完全溶け込み溶接部9Aあるいは下フランジ5との接点で応力集中が高くなり、また、有効厚Tの肉厚不足によって剛性が不足して、応力によって破断が発生しやすくなり、十分な耐震性能の向上効果が得られない。   If the length (Lc) to the column member side does not reach the top of the weld metal part 10, that is, less than the distance from the lower scallop bottom SL to the top of the weld metal part 10, the lower overlay weld part The contact angle θ of 13 becomes large, and the thickness of the surplus portion 10a of the weld metal portion 10 cannot be utilized to the maximum as the effective thickness T. As a result, the stress concentration at the contact point between the lower build-up welded portion 13 and the lower fully-welded welded portion 9A or the lower flange 5 is increased, and the rigidity is insufficient due to the insufficient thickness of the effective thickness T. It becomes easy to occur, and sufficient effect of improving seismic performance cannot be obtained.

下部肉盛溶接部13は、その柱部材側への長さ(Lc)が溶接金属部10を越えてさらに延長され、ダイアフラム32に達した場合でも、溶接金属部10の余盛部10aや裏当て金11は有効厚Tとして作用しないが、一般的に下フランジ5の厚さよりも大きいダイアフラム32の厚さが有効厚Tとして作用し、かつ、接触角θもさらに小さくなるため、応力集中が緩和され、耐震性能の向上効果は高くなる。柱部材側への長さ(Lc)をさらに延長すると最終的には柱部材31Aの鋼管33(図1(b)参照)の側面に達するが、耐震性能としての短所は生じない。   Even when the length (Lc) to the column member side is further extended beyond the weld metal portion 10 and reaches the diaphragm 32, the lower build-up weld portion 13 has a surplus portion 10a and a back surface of the weld metal portion 10. Although the stopper 11 does not act as the effective thickness T, the thickness of the diaphragm 32 that is generally larger than the thickness of the lower flange 5 acts as the effective thickness T, and the contact angle θ is further reduced. The effect of improving seismic performance is enhanced. If the length (Lc) to the column member side is further extended, it finally reaches the side surface of the steel pipe 33 (see FIG. 1B) of the column member 31A, but there is no disadvantage in terms of earthquake resistance.

図2(a)、図6に示すように、下部肉盛溶接部13は、下スカラップ底SLから柱部材(ダイアフラム32)と反対側への長さ(Lb)が、ウエブ3の厚さ(Tw)の3倍以上の長さであることが好ましい(Lb≧3×Tw)。これによって、柱梁溶接継手1Aは、下部肉盛溶接部13と下スカラップ7との接点からの応力ベクトルが、下部肉盛溶接部13(ウエブ3)の長さ方向に向かって作用し、進む間にエネルギーが十分吸収されて減衰し、ウエブ3や下フランジ5の破断を防止できるため、結果として大きな耐震性能向上効果が得られる。   As shown in FIGS. 2A and 6, the lower build-up weld 13 has a length (Lb) from the lower scallop bottom SL to the side opposite to the column member (diaphragm 32), and the thickness of the web 3 ( It is preferable that the length is three times or more of (Tw) (Lb ≧ 3 × Tw). As a result, in the column beam welded joint 1A, the stress vector from the contact point between the lower build-up weld 13 and the lower scallop 7 acts and advances in the length direction of the lower build-up weld 13 (web 3). The energy is sufficiently absorbed in the meantime and is attenuated, so that the web 3 and the lower flange 5 can be prevented from being broken.

柱部材と反対側への長さ(Lb)が、ウエブ3の厚さ(Tw)の3倍未満(Lb<3×Tw)であると、下部肉盛溶接部13と下スカラップ7の接点からの応力ベクトルの一部は減衰せずに下部肉盛溶接部13の止端部に沿って鉛直下方に回り込むように作用し、ウエブ3や下フランジ5を破断が発生しやすくなる。したがって、耐震性能の改善効果は小さい。柱部材と反対側への長さ(Lb)は、大きいほど効果が高く、Lb≧5×Twであれば、さらに耐震性能は向上する。柱部材と反対側への長さ(Lb)はさらに長くても良いが、施工労力と費用がかかること、耐震性能の向上効果の上がり方が飽和することから、実用的では無くなる。柱部材と反対側への長さ(Lb)は、3×Tw≦Lb≦10×Twで十分である。   When the length (Lb) to the side opposite to the column member is less than three times the thickness (Tw) of the web 3 (Lb <3 × Tw), the contact between the lower overlay weld 13 and the lower scallop 7 A part of the stress vector does not attenuate and acts so as to wrap around the toe portion of the lower build-up weld 13 so that the web 3 and the lower flange 5 are easily broken. Therefore, the effect of improving seismic performance is small. The larger the length (Lb) to the opposite side of the column member, the higher the effect. If Lb ≧ 5 × Tw, the seismic performance is further improved. Although the length (Lb) to the side opposite to the column member may be longer, it is not practical because it takes construction labor and cost and the effect of improving the seismic performance is saturated. The length (Lb) to the side opposite to the column member is sufficient as 3 × Tw ≦ Lb ≦ 10 × Tw.

<柱梁溶接継手(工場接合形式)>
図7(a)、(b)に示すように、第2の実施形態の柱梁溶接継手1Bは、柱部材31Aと、梁部材2と、上スカラップ6と、下スカラップ7と、上部完全溶け込み溶接部8Aと、下部完全溶け込み溶接部9Bと、下部肉盛溶接部13と、を備える。
なお、柱部材31A、梁部材2、上スカラップ6および下スカラップ7は、前記第1の実施形態の柱梁溶接継手1A(図1(a)、(b)参照)の場合と同様である。
<Column beam welded joint (factory joint type)>
As shown in FIGS. 7A and 7B, the column beam welded joint 1B of the second embodiment includes a column member 31A, a beam member 2, an upper scallop 6, a lower scallop 7, and an upper complete melt. 8 A of welding parts, the lower complete penetration welding part 9B, and the lower build-up welding part 13 are provided.
The column member 31A, the beam member 2, the upper scallop 6 and the lower scallop 7 are the same as those in the column beam welded joint 1A of the first embodiment (see FIGS. 1A and 1B).

(上部完全溶け込み溶接部、下部完全溶け込み溶接部)
上部完全溶け込み溶接部8Aと、下部完全溶け込み溶接部9Bとは、ダイアフラム32の側面と上フランジ4および下フランジ5の端面との突合せ溶接によって形成され、ウエブ中央線を挟んで上下対称的なディテールとなること以外は、前記第1の実施形態の柱梁溶接継手1Aの場合と同様である。具体的には、上部完全溶け込み溶接部8Aは、梁部材2の外側からの下向溶接によって形成されるため、上スカラップ6側には裏当て金11が接合されている。また、下部完全溶け込み溶接部9Bは、工場接合形式の場合には上フランジ4が接合された柱梁溶接継手1Bを天地反転でき、梁部材2の外側からの下向溶接によって形成されるため、上部完全溶け込み溶接部8Aと同様に下スカラップ7側には裏当て金11が接合されている。
(Upper complete penetration weld, lower complete penetration weld)
The upper full penetration weld 8A and the lower full penetration weld 9B are formed by butt welding of the side face of the diaphragm 32 and the end faces of the upper flange 4 and the lower flange 5, and are vertically symmetrical details across the web center line. Except that, it is the same as the case of the column beam welded joint 1A of the first embodiment. Specifically, since the upper complete penetration weld 8A is formed by downward welding from the outside of the beam member 2, the backing metal 11 is joined to the upper scallop 6 side. Further, the lower full penetration weld portion 9B can be turned upside down on the column beam welded joint 1B to which the upper flange 4 is joined in the case of the factory joint type, and is formed by downward welding from the outside of the beam member 2, A backing metal 11 is joined to the lower scallop 7 side in the same manner as the upper complete penetration weld 8A.

(下部肉盛溶接部)
図2(b)、(d)に示すように、下部肉盛溶接部13は、下スカラップ底SLから柱部材側(ダイアフラム32側)、柱部材(ダイアフラム32)と反対側およびウエブ3の厚さ方向の両側に肉盛溶接によって形成され、柱部材側への長さ(Lc)の好ましい範囲が異なること以外は、前記第1の実施形態の柱梁溶接継手1Aの場合と同様である。
(Lower overlay weld)
As shown in FIGS. 2 (b) and 2 (d), the lower build-up weld 13 includes the column member side (diaphragm 32 side) from the lower scallop bottom SL, the side opposite to the column member (diaphragm 32), and the thickness of the web 3. It is the same as that of the column beam welded joint 1A of the first embodiment except that it is formed by overlay welding on both sides in the vertical direction and the preferred range of the length (Lc) to the column member side is different.

図2(b)、図5(b)に示すように、下部肉盛溶接部13では、下スカラップ底SLから柱部材(ダイアフラム32)側への長さ(Lc)が、裏当て金11の幅中央部を越える長さであることが好ましい。これによって、柱梁溶接継手1Bは、溶接金属部10の余盛部10aの厚さと裏当て金11の厚さを応力に対向する有効厚Tとして使うことができるため、剛性が大きくなる。また、柱梁溶接継手1Bは、下部肉盛溶接部13の接触角θも小さくなるため、応力集中が緩和される。その結果、柱梁溶接継手1Bは、耐震性能がさらに向上する。   As shown in FIGS. 2B and 5B, in the lower build-up welded portion 13, the length (Lc) from the lower scallop bottom SL to the column member (diaphragm 32) side is that of the backing metal 11. It is preferable that the length exceeds the width central portion. As a result, the beam-to-column welded joint 1 </ b> B can increase the rigidity because the thickness of the surplus portion 10 a of the weld metal portion 10 and the thickness of the backing metal 11 can be used as the effective thickness T facing the stress. Moreover, since the column beam welded joint 1B has a smaller contact angle θ of the lower overlay welded portion 13, the stress concentration is alleviated. As a result, the column beam welded joint 1B further improves the seismic performance.

柱部材側への長さ(Lc)が、裏当て金11の幅中央部に届かない、すなわち、下スカラップ底SLから裏当て金11の幅中央部までの距離未満であると、溶接金属部10の余盛部10aの厚さの有効厚Tとしての効果を最大限得ることができない。裏当て金11は一般的に平板形状なので、幅中央部に届かなくても一見良さそうであるが、通常の突き合わせ溶接で形成される下部完全溶け込み溶接部9Bのディテールでは、裏当て金11の幅中央部がほぼ逆サイドの余盛部10aの頂上部に一致する。したがって、余盛部10aの厚さを最大限活用するには、間接的管理として、裏当て金11の幅中央部を目安にできる。また、裏当て金11の幅中央部に届かなければ、下部肉盛溶接部13の接触角θが大きいので、下部肉盛溶接部13と裏当て金11あるいは下フランジ5との接点で高い応力集中と、有効厚Tの肉厚不足による剛性不足により、応力によって破断しやすく、十分な耐震性能向上効果が得られない。   When the length (Lc) to the column member side does not reach the center of the width of the backing metal 11, that is, less than the distance from the lower scallop bottom SL to the center of the width of the backing metal 11, the weld metal part The effect as the effective thickness T of the thickness of the ten extra portions 10a cannot be obtained to the maximum extent. Since the backing metal 11 is generally a flat plate shape, it looks good even if it does not reach the center of the width. However, in the detail of the lower fully-penetrating weld 9B formed by normal butt welding, the backing metal 11 The center of the width substantially coincides with the top of the reverse-side extra portion 10a. Therefore, in order to make the best use of the thickness of the surplus portion 10a, the center of the width of the backing metal 11 can be used as a guide as indirect management. Moreover, since the contact angle (theta) of the lower overlay welding part 13 is large if it does not reach the width center part of the backing metal 11, a high stress is generated at the contact point between the lower overlay welding part 13 and the backing metal 11 or the lower flange 5. Due to lack of rigidity due to concentration and lack of effective thickness T, it is easy to break due to stress, and sufficient seismic performance improvement effect cannot be obtained.

下部肉盛溶接部13は、裏当て金11を越えてさらに延長して、柱部材のダイアフラム32に達した場合でも、裏当て金11や溶接金属部10の余盛部10aは有効厚Tとして作用しないが、一般的に下フランジ5の厚さよりも大きいダイアフラム32の厚さが有効厚Tとして作用し、かつ、さらに接触角θが小さくなるので、応力集中が緩和されて、耐震性能向上効果が高くなる。また、下部肉盛溶接部13は、さらに延長すると最終的には柱部材31Aの鋼管33(図7(b)参照)の側面に達するが耐震性能として短所は生じない。   Even when the lower build-up weld 13 extends further beyond the backing metal 11 and reaches the diaphragm 32 of the column member, the back metal 11 and the surfacing portion 10a of the weld metal portion 10 have an effective thickness T. Although not acting, in general, the thickness of the diaphragm 32 larger than the thickness of the lower flange 5 acts as the effective thickness T, and the contact angle θ is further reduced. Becomes higher. Further, when the lower build-up weld 13 is further extended, it finally reaches the side surface of the steel pipe 33 (see FIG. 7B) of the column member 31A, but there is no disadvantage in terms of earthquake resistance.

図1(c)、図2(c)、(e)に示すように、現場接合形式の柱梁溶接継手1Aは、ウエブ3の上フランジ4側に上部肉盛溶接部12をさらに備えることが好ましい。同様に、図2(c)、(e)、図7(c)に示すように、工場接合形式の柱梁溶接継手1Bにおいても、ウエブ3の上フランジ4側に上部肉盛溶接部12をさらに備えることが好ましい。   As shown in FIGS. 1C, 2 </ b> C, and 2 </ b> E, the on-site-jointed column beam welded joint 1 </ b> A further includes an upper overlay weld 12 on the upper flange 4 side of the web 3. preferable. Similarly, as shown in FIGS. 2 (c), 2 (e), and 7 (c), in the column beam welded joint 1 </ b> B of the factory connection type, the upper overlay welded portion 12 is provided on the upper flange 4 side of the web 3. It is preferable to further provide.

(上部肉盛溶接部)
上部肉盛溶接部12は、上スカラップ6の上フランジ4に当接する上スカラップ底SUから柱部材31A(ダイアフラム32)側、柱部材31A(ダイアフラム32)と反対側およびウエブ3の厚さ方向の両側に、肉盛溶接によって形成された溶接金属部12aからなるものである。なお、上部肉盛溶接部12は、単層の溶接金属部12aからなるものであってもよいが、多層の溶接金属部12aを積層したものであることが好ましい。
(Upper overlay weld)
The upper build-up weld 12 extends from the upper scallop bottom SU contacting the upper flange 4 of the upper scallop 6 to the column member 31A (diaphragm 32) side, the side opposite to the column member 31A (diaphragm 32), and the thickness direction of the web 3. It consists of weld metal parts 12a formed on both sides by overlay welding. In addition, although the upper build-up weld part 12 may consist of a single layer weld metal part 12a, it is preferable that the multilayer weld metal part 12a is laminated | stacked.

また、図2(c)、(e)に示すように、上部肉盛溶接部12は、下部肉盛溶接部13と同様に(図2(b)参照)、ウエブ3の厚さ方向の両側、すなわち、ウエブ3側および上フランジ4側への脚長(LaおよびLd)がウエブ3の厚さ(Tw)以上の長さ、La≧TwかつLd≧Twであって、上スカラップ底SUから柱部材(ダイアフラム32)側への長さ(Lc)が裏当て金11の幅中央部を越える長さであって、かつ、上スカラップ底SUから柱部材(ダイアフラム32)と反対側への長さ(Lb)がウエブ3の厚さ(Tw)の3倍以上の長さ、Lb≧3×Twであることが好ましい。   Moreover, as shown in FIGS. 2C and 2E, the upper build-up weld 12 is the same as the lower build-up weld 13 (see FIG. 2B) on both sides of the web 3 in the thickness direction. That is, the leg lengths (La and Ld) to the web 3 side and the upper flange 4 side are longer than the thickness (Tw) of the web 3, La ≧ Tw and Ld ≧ Tw, and the column from the upper scalloped bottom SU The length (Lc) to the member (diaphragm 32) side exceeds the center of the width of the backing metal 11, and the length from the upper scalloped bottom SU to the side opposite to the column member (diaphragm 32) (Lb) is preferably at least three times the thickness (Tw) of the web 3 and Lb ≧ 3 × Tw.

現場接合形式の柱梁溶接継手1Aおよび工場接合形式の柱梁溶接継手1Bにおいては、上部肉盛溶接部12を備えることによって、上スカラップ6にかかる応力に対する抵抗力が増加し、耐震性能がさらに向上する。具体的には、柱梁溶接継手1A、1Bは、上部肉盛溶接部12が所定形状を有することにより、上スカラップ6に作用する応力が上スカラップ6と上部肉盛溶接部12との接点で周囲に分散し、接点から鉛直上方への応力伝達が小さくなり、耐震性能が向上する。   In the field-joint-type column beam welded joint 1A and the factory-joint type column-beam welded joint 1B, the resistance to the stress applied to the upper scallop 6 is increased by providing the upper cladding welded portion 12, and the seismic performance is further improved. improves. Specifically, in the column beam welded joints 1 </ b> A and 1 </ b> B, the upper build-up weld 12 has a predetermined shape, so that the stress acting on the upper scallop 6 is a contact point between the upper scallop 6 and the upper build-up weld 12. Dispersed to the surroundings, the stress transmission from the contact point vertically upward is reduced, and the seismic performance is improved.

また、柱梁溶接継手1A、1Bは、上部肉盛溶接部12のウエブ3側への脚長(La)が所定範囲であることによって、上スカラップ6と上部肉盛溶接部12との接点から鉛直上方に作用する応力に対抗する破壊抵抗(剛性)が大きくなって、耐震性能が向上する。また、柱梁溶接継手1A、1Bは、上部肉盛溶接部12の上フランジ4側への脚長(Ld)が所定範囲であることによって、上スカラップ6と上部肉盛溶接部12との接点から鉛直上方に作用する応力が分散されて逃げるため、上フランジ4に亀裂が発生するのを防止できる。   Further, the column beam welded joints 1A and 1B have a vertical length from the contact point between the upper scallop 6 and the upper build-up weld 12 because the leg length (La) to the web 3 side of the upper build-up weld 12 is within a predetermined range. The puncture resistance (rigidity) against the stress acting upward is increased, and the seismic performance is improved. Further, the column beam welded joints 1A and 1B have a leg length (Ld) to the upper flange 4 side of the upper built-up welded portion 12 within a predetermined range, so that the contact between the upper scallop 6 and the upper built-up welded portion 12 is reduced. Since stress acting vertically upward is dispersed and escapes, it is possible to prevent the upper flange 4 from cracking.

また、柱梁溶接継手1A、1Bは、上部肉盛溶接部12の柱部材側への長さ(Lc)が所定範囲であることによって、溶接金属部10の余盛部10aの厚さと裏当て金11の厚さを応力に対抗する有効厚として使うことができるため、剛性が高くなる。また、柱梁溶接継手1A、1Bは、上部肉盛溶接部12の接触角も小さくなるため、応力集中が緩和される。その結果、柱梁溶接継手1A、1Bは、耐震性能がさらに向上する。   In addition, the column beam welded joints 1A and 1B have a predetermined range of the length (Lc) of the upper overlay welded portion 12 toward the column member, so that the thickness and backing of the surplus portion 10a of the weld metal portion 10 are supported. Since the thickness of the gold 11 can be used as an effective thickness against the stress, the rigidity is increased. Moreover, since the contact angle of the upper build-up weld 12 becomes small in the column beam welded joints 1A and 1B, the stress concentration is alleviated. As a result, the seismic performance of the column beam welded joints 1A and 1B is further improved.

また、柱梁溶接継手1A、1Bは、上部肉盛溶接部12の柱部材と反対側への長さ(Lb)が所定範囲であることによって、上部肉盛溶接部12と上スカラップ6との接点からの応力ベクトルが上部肉盛溶接部12の長さ方向に向って作用し、進む間にエネルギーが十分吸収されて減衰し、ウエブ3や上フランジ4の破断を防止できるため、結果として大きな耐震性能向上効果が得られる。   Moreover, the column beam welded joints 1 </ b> A and 1 </ b> B have a predetermined range of the length (Lb) to the opposite side of the column member of the upper build-up weld 12, so that the upper build-up weld 12 and the upper scallop 6 are Since the stress vector from the contact acts in the length direction of the upper build-up weld 12, energy is sufficiently absorbed and attenuated during the process, and breakage of the web 3 and the upper flange 4 can be prevented. The effect of improving seismic performance can be obtained.

<柱梁溶接継手の他の実施形態>
次に、本発明に係る柱梁溶接継手の他の実施形態について、説明する。
図8(a)、(b)に示すように、第3の実施形態の柱梁溶接継手1C(現場接合形式)は、柱部材31Aと、梁部材2と、下スカラップ7と、上部完全溶け込み溶接部8Bと、下部完全溶け込み溶接部9Aと、下部肉盛溶接部13と、を備える。
<Other Embodiments of Column Beam Welded Joint>
Next, another embodiment of the column beam welded joint according to the present invention will be described.
As shown in FIGS. 8 (a) and 8 (b), the beam-to-column welded joint 1C (in-situ bonding type) of the third embodiment includes a column member 31A, a beam member 2, a lower scallop 7, and an upper complete penetration. The welding part 8B, the lower complete penetration welding part 9A, and the lower build-up welding part 13 are provided.

柱梁溶接継手1Cは、その柱部材31A、下スカラップ7および下部肉盛溶接部13は、前記第1の実施形態の柱梁溶接継手1A(図1(a)、(b)参照)と同様であるが、梁部材2および上部完全溶け込み溶接部8Bは、前記第1の実施形態の柱梁溶接継手1Aと異なる。   The column beam welded joint 1C is the same as the column beam welded joint 1A of the first embodiment (see FIGS. 1A and 1B). However, the beam member 2 and the upper complete penetration welded portion 8B are different from the column beam welded joint 1A of the first embodiment.

(梁部材)
梁部材2は、前記柱梁溶接継手1Aと同様に、ウエブ3とそのウエブ3の上端部側および下端部側に設けられた上フランジ4および下フランジ5とでH型の断面が形成されたH型鋼である。しかしながら、梁部材2のウエブ3は、前記柱梁溶接継手1Aとは異なり、下端部の柱部材31A(ダイアフラム32)側の一部には切り欠きによって下スカラップ7が形成されているが、上端部側にはスカラップが形成されていないものである。
(Beam member)
In the beam member 2, an H-shaped cross section is formed by the web 3 and the upper flange 4 and the lower flange 5 provided on the upper end side and the lower end side of the web 3 in the same manner as the column beam welded joint 1A. H-shaped steel. However, unlike the beam-to-column welded joint 1A, the web 3 of the beam member 2 has a lower scallop 7 formed by a notch at a part of the lower end portion on the column member 31A (diaphragm 32) side. The scallop is not formed on the part side.

(上部完全溶け込み溶接部)
上部完全溶け込み溶接部8Bは、前記柱梁溶接継手1Aと同様に、柱部材31Aの側面と梁部材2(上フランジ4)の端面との突き合わせ溶接によって形成されたものである。しかしながら、柱梁溶接継手1Cは、ウエブ3の上端部側にスカラップが形成されていないため、いわゆるノンスカラップ工法で上部完全溶け込み溶接部8Bが形成される。したがって、上部完全溶け込み溶接部8Bは、前記柱梁溶接継手1Aの上部完全溶け込み溶接部8Aと異なり、溶接金属部10と、その溶接金属部10の底部にウエブ3の上端部を挟むように接合された2つの裏当て金11とからなる。そして、柱梁溶接継手1Cの2つの裏当て金11は、上フランジ4の幅方向に沿って延びる短尺板からなり、前記柱梁溶接継手1Aの上スカラップ6を貫通して上フランジ4の幅方向に沿って延びる1つの長尺板からなる裏当て金11と長さが異なる。
(Upper full penetration weld)
The upper complete penetration welded portion 8B is formed by butt welding the side surface of the column member 31A and the end surface of the beam member 2 (upper flange 4) in the same manner as the column beam welded joint 1A. However, in the column beam welded joint 1C, since the scallop is not formed on the upper end side of the web 3, the upper complete penetration weld 8B is formed by a so-called non-scallop method. Therefore, the upper complete penetration weld 8B is different from the upper complete penetration weld 8A of the beam-to-column welded joint 1A, and is joined so that the upper end of the web 3 is sandwiched between the weld metal 10 and the bottom of the weld metal 10. It consists of two backing metal 11 made. The two backing metal members 11 of the beam-to-column welded joint 1C are made of a short plate extending along the width direction of the upper flange 4 and penetrate the upper scallop 6 of the beam-to-column welded joint 1A. The length is different from the backing metal 11 made of one long plate extending in the direction.

柱梁溶接継手1Cは、ウエブ3の上端部に応力集中箇所となりやすいスカラップが形成されていないため、上フランジ4側全体に分散作用する地震応力に対してエネルギーを弾性変形、さらに大きな場合は塑性変形として吸収することが出来て、壊れにくくすることができる。また、柱梁溶接継手1Cは、下フランジ5側には下部肉盛溶接部13を備えるため、下フランジ5側の応力集中を周囲に分散させると共に、応力集中箇所の剛性を高めて破壊抵抗を大きくすることができる。その結果、柱梁溶接継手1Cは、耐震性能がさらに向上する。   The beam-to-column welded joint 1C is not formed with a scallop that tends to be a stress concentration location at the upper end of the web 3, so that the energy is elastically deformed against seismic stress that acts in a distributed manner on the entire upper flange 4 side. It can be absorbed as a deformation and made hard to break. Further, since the column beam welded joint 1C is provided with the lower build-up welded portion 13 on the lower flange 5 side, the stress concentration on the lower flange 5 side is dispersed to the surroundings, and the rigidity of the stress concentration portion is increased to provide a fracture resistance. Can be bigger. As a result, the seismic performance of the column beam welded joint 1C is further improved.

図1、図7、図8に示すように、本発明に係る現場接合形式の柱梁溶接継手1A、工場接合形式の柱梁溶接継手1B、ノンスカラップ工法で上フランジ4の溶接接合した柱梁溶接継手1Cは、ウエブ3のスカラップが形成されていない端面を、柱部材31Aの鋼管33の側面にすみ肉溶接等で接合することが好ましい。なお、すみ肉溶接等の代わりにアタッチメントを取付け、ボルトで締結することもできる。また、柱梁溶接継手1A、1B、1Cは、上部完全溶け込み溶接部8Aおよび下部完全溶け込み溶接部9A、9Bにおいて、上フランジ4および下フランジ5の幅方向の両側にエンドタブ14を設けることが好ましい。   As shown in FIGS. 1, 7, and 8, a beam-to-column welded joint 1 </ b> A of the field connection type according to the present invention, a beam-to-beam welded joint 1 </ b> B of the factory-joined type, and a beam welded by welding the upper flange 4 by the non-scallop method. In the joint 1C, it is preferable to join the end surface of the web 3 where the scallop is not formed to the side surface of the steel pipe 33 of the column member 31A by fillet welding or the like. An attachment can be attached instead of fillet welding or the like and fastened with a bolt. Further, the column beam welded joints 1A, 1B, 1C are preferably provided with end tabs 14 on both sides in the width direction of the upper flange 4 and the lower flange 5 in the upper complete penetration weld 8A and the lower complete penetration welds 9A, 9B. .

本発明に係る柱梁溶接継手1A、1B、1Cは、図9、図10に示すように、鋼管33内にダイアフラム32に設けた内ダイアフラム構造(柱貫通方式とも呼ばれる)の柱部材31B、または、H型鋼からなる柱部材31Cを用いてもよい。この場合、梁部材2は、ダイアフラム32ではなく、鋼管33の側面またはH型鋼側面に直接溶接接合される。   As shown in FIGS. 9 and 10, the column beam welded joints 1A, 1B, and 1C according to the present invention include a column member 31B having an inner diaphragm structure (also referred to as a column penetration method) provided in a diaphragm 32 in a steel pipe 33, or Alternatively, a column member 31C made of H-shaped steel may be used. In this case, the beam member 2 is directly welded to the side surface of the steel pipe 33 or the side surface of the H-shaped steel instead of the diaphragm 32.

本発明に係る柱梁溶接継手1A、1B、1Cは、既存建築物に使用されている柱梁溶接継手、例えば、図24、図25の柱梁溶接継手100A、柱梁溶接継手100Bの下フランジ5(下スカラップ7)、または、上フランジ4(上スカラップ6)と下フランジ5(下スカラップ7)の両フランジ(両スカラップ)に、肉盛溶接によって肉盛溶接部(下部肉盛溶接部13、または、上部肉盛溶接部12と下部肉盛溶接部13)を設けることで作製できる。したがって、本発明の柱梁溶接継手1A、1B、1Cは、既存建築物から容易で安価な補修で作製できる。   The column beam welded joints 1A, 1B, and 1C according to the present invention are column beam welded joints used in existing buildings, for example, the lower flange of the column beam welded joint 100A and the column beam welded joint 100B shown in FIGS. 5 (lower scallop 7), or both flanges (both scallops) of the upper flange 4 (upper scallop 6) and the lower flange 5 (lower scallop 7) by overlay welding (lower overlay weld 13) Or it can produce by providing the upper build-up weld part 12 and the lower build-up weld part 13). Therefore, the column beam welded joints 1A, 1B, and 1C of the present invention can be manufactured from an existing building with easy and inexpensive repair.

<柱梁溶接継手の製造方法>
次に、本発明に係る柱梁溶接継手の製造方法について、詳細に説明する。なお、柱梁溶接継手の構成については、図1、図7、図8、図9、図10を参照する。
図11に示すように、本発明の柱梁溶接継手の第1の製造方法は、梁端部突合せ溶接工程S1と、肉盛溶接工程S2とを含み、前記工程S1、S2を行うことによって、図1、図7、図8、図9、図10に示す耐震性能に優れた柱梁溶接継手1A、1B、1Cを製造することができる。以下、各工程について説明する。
<Method of manufacturing column beam welded joint>
Next, the manufacturing method of the column beam welded joint according to the present invention will be described in detail. In addition, about the structure of a column beam welded joint, FIG.1, FIG.7, FIG.8, FIG.9, FIG.10 is referred.
As shown in FIG. 11, the first method for manufacturing a beam-to-column welded joint of the present invention includes a beam end butt welding step S1 and a build-up welding step S2, and by performing the steps S1 and S2, The column beam welded joints 1A, 1B, and 1C having excellent earthquake resistance shown in FIGS. 1, 7, 8, 9, and 10 can be manufactured. Hereinafter, each step will be described.

(梁端部突合せ溶接工程)
梁端部突合せ溶接工程S1は、柱部材31A、31B、31Cの側面に、梁部材2の上フランジ4の端面および梁部材2の下フランジ5の端面を突合せ溶接して、上部完全溶け込み溶接部8A、8Bおよび下部完全溶け込み溶接部9A、9Bを形成する工程である。
(Beam end butt welding process)
In the beam end butt welding step S1, the end face of the upper flange 4 of the beam member 2 and the end face of the lower flange 5 of the beam member 2 are butt welded to the side surfaces of the column members 31A, 31B, 31C, and the upper complete penetration weld portion 8A, 8B and lower fully-penetrating welds 9A, 9B.

梁端部突合せ溶接工程S1において、現場接合形式では、梁部材2の上フランジ4側は、梁部材2の外側からスカラップ工法で下向溶接することによって上部完全溶け込み溶接部8Aを形成する。また、梁部材2の下フランジ5側は、梁部材2の内側からスカラップ工法で下向溶接することで下部完全溶け込み溶接部9Aが形成される。上部完全溶け込み溶接部8Aと下部溶け込み溶接部9Aとは、裏当て金11の配置が梁部材中央線を挟んで上下非対称なディテールとなる(図1(b)参照)。なお、梁部材2の上フランジ4側は、ノンスカラップ工法で下向溶接することで上部完全溶け込み溶接部8Bを形成してもよい(図8(b)参照)。   In the beam end butt welding process S <b> 1, in the on-site joining method, the upper flange 4 side of the beam member 2 is welded downward from the outside of the beam member 2 by a scallop method to form an upper complete penetration weld 8 </ b> A. Further, the lower flange 5 side of the beam member 2 is welded downward from the inside of the beam member 2 by a scallop method, whereby a lower complete penetration weld 9A is formed. The upper complete penetration welded portion 8A and the lower penetration welded portion 9A have details in which the arrangement of the backing metal 11 is vertically asymmetric across the beam member center line (see FIG. 1B). In addition, the upper flange 4 side of the beam member 2 may form an upper complete penetration weld portion 8B by performing downward welding by a non-scallop method (see FIG. 8B).

梁端部突合せ溶接工程S1において、工場接合形式では、梁部材2の上フランジ4側は、梁部材2の外側からスカラップ工法で下向溶接することによって上部完全溶け込み溶接部8Aを形成する。また、梁部材2の下フランジ5側は、溶接接合前の柱梁溶接継手1Bを天地反転(図22参照)して、梁部材2の外側からスカラップ工法で下向溶接することで下部完全溶け込み溶接部9Bが形成される。上部完全溶け込み溶接部8Aと下部完全溶け込み溶接部9Bとは、裏当て金11の配置が梁部材中央線を挟んで上下対称なディテールとなる(図7(b)参照)。   In the beam end butt welding process S <b> 1, in the factory joint type, the upper flange 4 side of the beam member 2 is welded downward from the outside of the beam member 2 by a scallop method to form the upper complete penetration weld 8 </ b> A. Further, the lower flange 5 side of the beam member 2 is completely melted by completely reversing the column beam welded joint 1B before welding (see FIG. 22) and welding downward from the outside of the beam member 2 by the scallop method. A weld 9B is formed. The upper complete penetration welded portion 8A and the lower complete penetration welded portion 9B have details in which the arrangement of the backing metal 11 is vertically symmetrical across the beam member center line (see FIG. 7B).

突合せ溶接において、溶接方法については、特に限定されず、ソリッドワイヤあるいはフラックス入りワイヤを用いたガスシールドアーク溶接法、被覆アーク溶接法、ティグ溶接法、セルフシールドアーク溶接法等が適用可能である。また、溶接材料についても、柱梁溶接継手1A、1B、1C(特に梁部材2)の強度として所定値以上(例えば、490MPa以上)を保障できれば特に限定されず、従来公知の溶接材料を用いる。さらに、溶接条件についても、前記強度が保障できるように、入熱、最大パス間温度等を制御して行う。   In the butt welding, the welding method is not particularly limited, and a gas shield arc welding method using a solid wire or a flux-cored wire, a covering arc welding method, a TIG welding method, a self-shielding arc welding method, and the like are applicable. Also, the welding material is not particularly limited as long as the strength of the column beam welded joints 1A, 1B, and 1C (particularly the beam member 2) can ensure a predetermined value or more (for example, 490 MPa or more), and a conventionally known welding material is used. Further, the welding conditions are controlled by controlling the heat input, the maximum interpass temperature, etc. so as to ensure the strength.

梁端部突合せ溶接工程S1では、柱部材31A、31B、31Cの側面に上下フランジ4、5の端面を突合せ溶接すると共に、ウエブ3のスカラップが形成されていない端面を、柱部材31A、31B、31Cの側面にすみ肉溶接等で接合することが好ましい。また、すみ肉溶接等の代わりにアタッチメントを取付け、ボルトで締結することもできる。なお、すみ肉溶接の溶接方法、溶接材料、溶接条件等は、前記突合せ溶接と同様である。   In the beam end butt welding step S1, the end surfaces of the upper and lower flanges 4 and 5 are butt welded to the side surfaces of the column members 31A, 31B, and 31C, and the end surfaces on which the scallops of the web 3 are not formed are connected to the column members 31A, 31B, It is preferable to join the side surface of 31C by fillet welding or the like. Further, instead of fillet welding or the like, an attachment can be attached and fastened with a bolt. The fillet welding method, welding material, welding conditions, and the like are the same as in the butt welding.

(肉盛溶接工程)
肉盛溶接工程S2は、梁端部突合せ溶接工程S1の終了後、下フランジ5側、または、上フランジ4側と下フランジ5側の両側に肉盛溶接を行って、下部肉盛溶接部13、または、上部肉盛溶接部12と下部肉盛溶接部13の両肉盛溶接部を形成する工程である。
(Overlay welding process)
In the build-up welding step S2, after the beam end butt welding step S1, the build-up welding is performed on the lower flange 5 side or on both sides of the upper flange 4 side and the lower flange 5 side to form the lower build-up weld portion 13. Or it is the process of forming both the build-up welds of the upper build-up weld 12 and the lower build-up weld 13.

肉盛溶接において、溶接方法については、特に限定されず、ソリッドワイヤあるいはフラックス入りワイヤを用いたガスシールドアーク溶接法、被覆アーク溶接法、ティグ溶接法、セルフシールドアーク溶接法等が適用可能である。   In overlay welding, the welding method is not particularly limited, and a gas shielded arc welding method using a solid wire or a flux-cored wire, a covered arc welding method, a TIG welding method, a self-shielded arc welding method, etc. can be applied. .

溶接条件については、下部肉盛溶接部13、または、上部肉盛溶接部12と下部肉盛溶接部13の両肉盛溶接部が、図2(a)、(c)、(d)に示すように、スカラップ底(下スカラップ底SL、上スカラップ底SU)から柱部材(ダイアフラム32)側、柱部材(ダイアフラム32)と反対側およびウエブ3の厚さ方向の両側に形成されるように、入熱、最大パス間温度等を制御して行う。   As for welding conditions, the lower build-up weld 13 or both the build-up welds of the upper build-up weld 12 and the lower build-up weld 13 are shown in FIGS. 2 (a), 2 (c), and 2 (d). As described above, the scallop bottom (lower scallop bottom SL, upper scallop bottom SU) is formed on the column member (diaphragm 32) side, on the opposite side of the column member (diaphragm 32) and on both sides in the thickness direction of the web 3, This is done by controlling heat input, maximum interpass temperature, etc.

肉盛溶接は、肉盛溶接部(下部肉盛溶接部13、上部肉盛溶接部12)の柱部材(ダイアフラム32)側への長さ(Lc)、柱部材(ダイアフラム32)と反対側への長さ(Lb)、ウエブ3側およびフランジ(下フランジ5、上フランジ4)側への脚長(La、Ld)が、所定範囲となるように、入熱、最大パス間温度等を制御して行うことが好ましい。また、肉盛溶接は、多パス積層で行うことがさらに好ましい。   In the build-up welding, the length (Lc) of the build-up weld (the lower build-up weld 13 and the upper build-up weld 12) to the column member (diaphragm 32) side, to the side opposite to the column member (diaphragm 32). The heat input, the maximum inter-pass temperature, etc. are controlled so that the length (Lb) and the leg length (La, Ld) to the web 3 side and the flange (lower flange 5, upper flange 4) side are within a predetermined range. It is preferable to carry out. Further, it is more preferable that the overlay welding is performed by multi-pass lamination.

肉盛溶接は、図17(a)〜(h)に示すような積層要領で行うことが好ましい。図17(a)に示すように、ウエブ3の下スカラップ底から柱部材31A側に肉盛溶接を行い、積層した下部肉盛溶接部13を形成する。図17(b)に示すように、下スカラップ底からウエブ3の厚さ方向の両側に肉盛溶接を行い、積層した下部肉盛溶接部13を形成する。図17(c)に示すように、下スカラップ底から柱部材31Aと反対側に肉盛溶接を行い、積層した下部肉盛溶接部13を形成する。図17(d)に示すように、下スカラップ底から柱部材31A側に肉盛溶接を行い、積層した下部肉盛溶接部13を形成する。図17(e)に示すように、下スカラップ底からウエブ3の厚さ方向の両側に肉盛溶接を行い、積層した下部肉盛溶接部13を形成する。図17(f)に示すように、下スカラップ底から柱部材31Aと反対側に肉盛溶接を行い、積層した下部肉盛溶接部13を形成する。図17(g)に示すように、下スカラップ底から柱部材31A側に肉盛溶接を行い、積層した下部肉盛溶接部13を形成する。図17(h)に示すように、下スカラップ底からウエブ3の厚さ方向の両側に肉盛溶接を行い、積層した下部肉盛溶接部13を形成し、下フランジ5側に積層した下部肉盛溶接部13を形成する。なお、図17(a)〜(h)は、積層要領の一例を示すもので、本発明の積層要領は図17(a)〜(h)に限定されない。また、上部肉盛溶接部12の積層要領は、前記した下部肉盛溶接部13と同様である。   The overlay welding is preferably performed according to the stacking procedure as shown in FIGS. As shown in FIG. 17A, build-up welding is performed from the lower scallop bottom of the web 3 to the column member 31 </ b> A side to form a stacked lower build-up weld 13. As shown in FIG. 17B, build-up welding is performed on both sides of the web 3 in the thickness direction from the bottom of the lower scallop to form the stacked lower build-up welds 13. As shown in FIG. 17C, build-up welding is performed from the bottom of the lower scallop to the side opposite to the column member 31 </ b> A to form a stacked lower build-up weld portion 13. As shown in FIG. 17D, build-up welding is performed from the bottom of the lower scallop to the column member 31 </ b> A to form the stacked lower build-up weld 13. As shown in FIG. 17 (e), build-up welding is performed on both sides of the web 3 in the thickness direction from the bottom of the lower scallop to form the stacked lower build-up welds 13. As shown in FIG. 17 (f), build-up welding is performed from the bottom of the lower scallop to the side opposite to the column member 31 </ b> A to form a stacked lower build-up weld portion 13. As shown in FIG. 17 (g), build-up welding is performed from the bottom of the lower scallop to the column member 31 </ b> A to form the stacked lower build-up weld 13. As shown in FIG. 17 (h), build-up welding is performed on both sides in the thickness direction of the web 3 from the bottom of the lower scallop to form a laminated lower build-up weld 13 and the lower meat laminated on the lower flange 5 side. A prime weld 13 is formed. FIGS. 17A to 17H show an example of the stacking procedure, and the stacking procedure of the present invention is not limited to FIGS. 17A to 17H. Moreover, the lamination | stacking procedure of the upper build-up weld part 12 is the same as that of the above-mentioned lower build-up weld part 13. FIG.

溶接材料については、特に限定されないが、梁部材2と同等以上の強度を有するものを用いることが好ましい。例えば、梁部材2(H型鋼)が490MPa級であれば、溶接材料も490MPa級以上、H型鋼が590MPa級であれば、溶接材料も590MPa級以上という具合である。その理由としては、肉盛溶接によって応力に対する剛性を高める目的があるが、肉盛溶接部(下部肉盛溶接部13、上部肉盛溶接部12)の溶接金属部13a、12aが低強度では剛性を高める効果が小さくなるからである。材質面も同じであり、梁部材2として耐火鋼を用いれば、溶接材料も耐火鋼用溶接材料を、梁部材2としてステンレス鋼を用いれば、溶接材料も同等成分系のステンレス鋼用溶接材料を用いるのが好ましい。   The welding material is not particularly limited, but it is preferable to use a welding material having a strength equal to or higher than that of the beam member 2. For example, if the beam member 2 (H-shaped steel) is 490 MPa class, the welding material is 490 MPa class or higher, and if the H-shaped steel is 590 MPa class, the welding material is 590 MPa class or higher. The reason for this is to increase the rigidity against stress by overlay welding, but the weld metal parts 13a and 12a of the overlay welds (lower overlay weld 13 and upper overlay weld 12) are rigid if the strength is low. This is because the effect of increasing the resistance becomes small. The material surface is the same. If refractory steel is used as the beam member 2, the welding material is also a refractory steel welding material. If stainless steel is used as the beam member 2, the welding material is a stainless steel welding material of the same component system. It is preferable to use it.

以上の通り、溶接材料としては、一般的にはH型鋼と同等以上の材料を適用するのが普通であるが、さらに耐震性能向上あるいは風などによる長周期疲労亀裂への耐性を高めるために、特殊な溶接材料を積極的に用いることもできる。鋼のマルテンサイト変態による体積膨張効果を積極的に利用して、溶接部の引張残留応力を低減、あるいはさらに圧縮方向に変えることで、これらの性能を向上させる機能性溶接材料が開発されており、これを肉盛溶接部(下部肉盛溶接部13、上部肉盛溶接部12)に適用すればより高い耐震性能向上、耐疲労性向上が見込まれる。具体的には、溶接材料として、C≧0.15質量%、Mn≧2.0質量%、Ni≧3.0質量%、Cr≧3.0質量%の一つ以上を有する溶接材料を用いれば、溶接金属部13a、12aのマルテンサイト変態開始温度Ms点が500℃以下となり、引張残留応力の低減効果が起きる。   As described above, as a welding material, it is common to apply a material equal to or higher than that of H-shaped steel in general, but in order to further improve seismic performance or to improve resistance to long-period fatigue cracks due to wind, Special welding materials can also be actively used. Actively utilizing the volume expansion effect of martensitic transformation of steel to reduce the tensile residual stress of the welded part or further change the compression direction, functional welding materials that improve these performances have been developed. If this is applied to the build-up weld (the lower build-up weld 13 and the upper build-up weld 12), higher seismic performance and fatigue resistance are expected. Specifically, a welding material having one or more of C ≧ 0.15 mass%, Mn ≧ 2.0 mass%, Ni ≧ 3.0 mass%, Cr ≧ 3.0 mass% is used as the welding material. For example, the martensitic transformation start temperature Ms point of the weld metal parts 13a and 12a becomes 500 ° C. or lower, and the effect of reducing the tensile residual stress occurs.

現場接合形式で溶接接合した肉盛溶接前の柱梁溶接継手に肉盛溶接を行う場合には、肉盛溶接前の柱梁溶接継手を天地反転することができないため、上フランジ4側への肉盛溶接は上向溶接となって肉盛溶接の難易度が高まるが、全姿勢溶接に適した溶接材料を用いることで難易度は低下する。   When overlay welding is performed on a beam-to-column welded joint before build-up welding that has been welded in the field, the beam-to-beam welded joint before build-up welding cannot be reversed upside down. Overlay welding is upward welding and the difficulty of overlay welding is increased, but the difficulty is reduced by using a welding material suitable for all-position welding.

図12に示すように、本発明に係る柱梁溶接継手の第2の製造方法は、準備工程S11と、肉盛溶接工程S12とを含み、前記工程S11、S12を行うことによって、既存建築物から容易かつ安価な補修で耐震性能に優れた柱梁溶接継手1A、1B、1Cを製造することができる。以下、各工程について説明する。   As shown in FIG. 12, the second method for manufacturing a beam-to-column welded joint according to the present invention includes a preparation step S11 and a build-up welding step S12. By performing the steps S11 and S12, an existing building is obtained. Therefore, it is possible to manufacture column beam welded joints 1A, 1B and 1C which are easily and inexpensively repaired and have excellent earthquake resistance. Hereinafter, each step will be described.

(準備工程)
準備工程S11は、建築済みの建築物、または、建築中の建築物、すなわち、既存建築物から下部完全溶け込み溶接部9A、9B、または、上部完全溶け込み溶接部8A、8Bと下部完全溶け込み溶接部9A、9Bを露出させる工程である。ここで、露出させるとは、建築済みの建築物にあっては、補修箇所の建築物の外壁等の一部を壊して、建築物(柱梁溶接継手)の完全溶け込み溶接部を露出させることを意味し、また、建築中の建築物にあっては、建築物(柱梁溶接継手)の中から補修すべき完全溶け込み溶接部を特定することを意味する。
(Preparation process)
The preparation step S11 is a built building or a building under construction, that is, the lower full penetration welds 9A and 9B or the upper full penetration welds 8A and 8B and the lower full penetration weld from an existing building. In this step, 9A and 9B are exposed. Here, in the case of an already built building, it is necessary to break a part of the outer wall of the building at the repair location and expose the complete penetration weld of the building (column beam welded joint). In addition, in the case of a building under construction, this means that a completely-penetrating weld to be repaired is specified from the building (column beam welded joint).

(肉盛溶接工程)
肉盛溶接工程S12は、第1の製造方法の肉盛溶接工程S2と同様である。
(Overlay welding process)
The overlay welding step S12 is the same as the overlay welding step S2 of the first manufacturing method.

次に、本発明の実施例について、説明する。
まず、図13〜16に示すような柱梁接合模擬構造体を作製した。梁部材には490MPa級炭素鋼(SN490)からなるウエブ3(212×1025×16mm、厚さTw=16mm)と、SN490からなる上下フランジ4、5(19×995×200mm)とをすみ肉溶接したビルドH型鋼を用いた。柱部材には490MPa級であるBCR295の角形鋼管33(16×250□×205mm)に、490MPa級炭素鋼(SN490)からなるダイアフラム32(25×300□mm)を周溶接した外ダイアフラム構造の柱部材を用いた。ウエブ3の上下スカラップ6、7は、非特許文献1(P227,図4.8.20(1)参照)に従った形状とした(r=35mm、r=10mm、L=10mm)。また、SS400またはSN400からなる2枚のスティフナ21(19×212×92、半径15mmで切欠き)を梁部材の端部(柱部材と反対側)から155mmの位置にすみ肉溶接した。なお、図13は上下スカラップ工法で作製する柱梁接合模擬構造体(現場接合形式)、図14は上下スカラップ工法で作製する柱梁接合模擬構造体(工場接合形式)、図15は上下ノンスカラップ工法で作製する柱梁接合模擬構造体(工場接合形式)、図16は上ノンスカラップ工法、下スカラップ工法で作製する柱梁接合模擬構造体(現場接合形式)である。
Next, examples of the present invention will be described.
First, a column beam joint simulated structure as shown in FIGS. The beam member includes a web 3 (212 t × 1025 L × 16 W mm, thickness Tw = 16 mm) made of 490 MPa class carbon steel (SN490), and upper and lower flanges 4, 5 (19 t × 995 L × 200) made of SN490. (W mm) and fillet welded build H-shaped steel. The RHS 33 of the pillar member is 490MPa grade BCR295 (16 t × 250 □ × 205 t mm), was 490MPa grade carbon steel diaphragm 32 consisting of (SN490) (25 t × 300 w □ mm) peripheral welding A column member having an outer diaphragm structure was used. The upper and lower scallops 6 and 7 of the web 3 were shaped according to Non-Patent Document 1 (see P227, FIG. 4.8.20 (1)) (r 1 = 35 mm, r 2 = 10 mm, L = 10 mm). Also, two stiffeners 21 (19 t × 212 W × 92 L , notched with a radius of 15 mm) made of SS400 or SN400 were fillet welded to a position of 155 mm from the end of the beam member (opposite to the column member). . 13 shows a column beam joint simulation structure (on-site connection type) manufactured by an upper and lower scallop method, FIG. 14 shows a column beam connection simulation structure (factory connection type) manufactured by an upper and lower scallop method, and FIG. 15 shows an upper and lower non-scallop method. FIG. 16 shows a column beam joint simulation structure (on-site joint form) produced by the upper non-scallop method and the lower scallop method.

次に、上下フランジ4、5の端部に形成されたレ型開先(開先角度:35°)を炭酸ガスシールドアーク溶接法で、溶接材料として490MPa級のソリッドワイヤ(JISZ3312、YGW11、1.2mm径)を使って、入熱25〜30kJ/cm、最大パス間温度250℃に熱管理してスカラップ工法またはノンスカラップ工法で施工し、完全溶け込み溶接部を形成した。また、裏当て金11は、図13、図14、図16のスカラップ工法ではSS400からなる長尺の鋼板(9×25×250)を用い、図15、図16のノンスカラップ工法ではウエブ3を挟むようにSS400からなる短尺の鋼板(9×25×120)を2枚用いた。 Next, a ladle groove (groove angle: 35 °) formed at the ends of the upper and lower flanges 4 and 5 is formed by a carbon dioxide gas shielded arc welding method, and a 490 MPa class solid wire (JISZ3312, YGW11, 1) as a welding material. .2 mm diameter), heat was controlled at 25 to 30 kJ / cm, and the maximum interpass temperature was 250 ° C., and the scallop method or the non-scallop method was used to form a complete penetration weld. The backing metal 11 is a long steel plate (9 t × 25 W × 250 L ) made of SS400 in the scallop method shown in FIGS. 13, 14 and 16, and the web is used in the non-scallop method shown in FIGS. Two short steel plates (9 t × 25 W × 120 L ) made of SS400 were used so as to sandwich 3.

次に、表1に示すように肉盛溶接のパラメータを変えて、スカラップ底周囲の肉盛溶接を行い、試料No.1〜26(柱梁溶接継手)を作製した。スカラップ底周囲の肉盛溶接は一部を除き、前記完全溶け込み溶接部と同じく、炭酸ガスシールドアーク溶接法を適用し、図17(a)〜(h)の要領で多層積層した。そして、図13、図14、図16の柱梁接合構造体の下向溶接には490MPa級のソリッドワイヤ(JISZ3312、YGW11、1.2mm径)を使って、図13、図16の柱梁接合構造体(現場接合形式)の上フランジ4側の肉盛溶接については、ビードが垂れにくく、全姿勢溶接性に優れた炭酸ガスフラックス入りワイヤ(JISZ3313、T49J0T1−1CA−U、1.2mm径)を使った。また、一部特殊なものとして水平すみ肉溶接用フラックス入ワイヤ(JISZ3313、T49J0T1−0CA−U)、さらには、マルテンサイト変態を凝固過程で起こして体積膨張を起こし、引張残留応力を軽減する低変態温度溶接材料2種(表1のLTT(1)、LTT(2))を用いた。いずれの溶接材料でも施工管理として、入熱30kJ/cm以下、最大パス間温度250℃以下に管理した。   Next, as shown in Table 1, the overlay welding parameters were changed and overlay welding around the scallop bottom was performed. 1-26 (column beam welded joints) were produced. The overlay welding around the scallop bottom, except for a part, applied the carbon dioxide shielded arc welding method in the same manner as the complete penetration weld, and multilayered as shown in FIGS. 17 (a) to 17 (h). 13, 14, and 16, the 490 MPa class solid wire (JISZ3312, YGW11, 1.2 mm diameter) is used for the downward welding of the beam-column joint structure shown in FIGS. 13, 14, and 16. For build-up welding on the upper flange 4 side of the structure (on-site joint type), a bead is hard to drip and has a carbon dioxide flux-cored wire with excellent weldability in all positions (JISZ3313, T49J0T1-1CA-U, 1.2 mm diameter) Was used. Moreover, as a special part, a flux fill wire for horizontal fillet welding (JISZ3313, T49J0T1-0CA-U), and further, a martensite transformation is caused in the solidification process to cause volume expansion, thereby reducing tensile residual stress. Two kinds of transformation temperature welding materials (LTT (1) and LTT (2) in Table 1) were used. In any welding material, as a construction management, the heat input was controlled to 30 kJ / cm or less and the maximum interpass temperature was 250 ° C. or less.

作製した試料No.1〜29に対して、以下の手順で積荷実験を行い、耐震性能について評価した。また、既存建築物からの作製の可否についても評価した。それらの結果を表1に示す。   The prepared sample No. For 1 to 29, a loading experiment was performed according to the following procedure, and the seismic performance was evaluated. We also evaluated the possibility of production from existing buildings. The results are shown in Table 1.

(積荷実験)
図18に示すように、試料に対して、2つの梁部材2の端部(スティフナ21挿入部)を固定し、柱部材31Aの中央に油圧プレスで鉛直下方向の応力を付与した。図18では試料No.1(比較例)の積荷実験を示したが、試料No.2〜26の積荷実験でも同様である。応力付与を毎回天地反転させて行うことで、正負交番変形を起こさせた。具体的な載荷方法としては、梁部材2の端部での全塑性時の変形変位δpを基準に取り、載荷振幅を1δp、2δp、4δp、6δp・・・と漸増させ正負交番とし、1δp以外の各振幅で2サイクル繰り返し、梁部材2が破断した時点で実験終了とした。載荷回数と振幅のイメージ(荷重履歴)を図19に示す。
(Loading test)
As shown in FIG. 18, the ends of the two beam members 2 (stiffener 21 insertion portions) were fixed to the sample, and a vertical downward stress was applied to the center of the column member 31A by a hydraulic press. In FIG. 1 (Comparative Example) loading experiment was shown. The same applies to the loading tests of 2 to 26. Positive and negative alternating deformation was caused by reversing the top and bottom each time stress was applied. As a specific loading method, taking the deformation displacement δp at the end of the beam member 2 at the time of full plasticity as a reference, the loading amplitude is gradually increased to 1δp, 2δp, 4δp, 6δp,... The experiment was completed when the beam member 2 was broken by repeating two cycles at each amplitude. FIG. 19 shows an image of the number of times of loading and the amplitude (load history).

繰り返し曲げを受ける梁部材2の荷重変位関係は図20(a)のように表すことができ、梁部材2が発揮した最大耐力を上回る負荷領域をつなぎ合わせたものは骨格曲線(スケルトンカーブ、図20(b))と呼ばれる。この曲線から得られる塑性エネルギーWを弾性エネルギー(Pp・δp)で除した値は累積荷重変形倍率ηsと呼ばれ、地震時の変形能力を評価するために、良く用いられる指数である。本発明における耐震性能の評価もこのηsを算出して定量化比較した。具体的には、ηsが9以上であれば非常に耐震性能に優れる(表1では◎と記載)、ηsが7以上9未満であれば耐震性能が良好(表1では○と記載)、ηsが5以上7未満であれば耐震性能がやや良好(表1では△と記載)、ηsが5未満であれば耐震性能が劣る(表1では×と記載)とした。 The load displacement relationship of the beam member 2 subjected to repeated bending can be expressed as shown in FIG. 20A, and the skeleton curve (skeleton curve, diagram) is obtained by connecting the load regions exceeding the maximum proof stress exhibited by the beam member 2. 20 (b)). Divided by the plastic energy W S elastic energy obtained from the curve (Pp · δp) is called the cumulative load deformation magnification .eta.s, in order to assess the deformation capacity of the earthquake is an index often used. In the evaluation of the seismic performance in the present invention, this ηs was also calculated and compared. Specifically, if ηs is 9 or more, the seismic performance is extremely excellent (indicated as “◎” in Table 1), and if ηs is 7 or more and less than 9, the seismic performance is good (indicated as “◯” in Table 1). Is 5 or less and less than 7, the seismic performance is slightly good (denoted as Δ in Table 1), and ηs is less than 5, the seismic performance is inferior (denoted as x in Table 1).

表1に示すように、試料No.1〜4は、本発明の要件を満たさない比較例である。
具体的には、試料No.1(比較例)は、上下スカラップが設けられた現場接合形式の柱梁溶接継手である。施工能率が良く、コスト的に安いが、上部および下部肉盛溶接部を備えていないため、スカラップ底と裏当て金の両応力集中部から早期破断し、ηsが5未満で耐震性能は最も低い。既存建築物の形式の一種である。
As shown in Table 1, sample no. 1-4 are comparative examples which do not satisfy the requirements of the present invention.
Specifically, Sample No. Reference numeral 1 (comparative example) is a column beam welded joint of an on-site joining type provided with upper and lower scallops. The construction efficiency is good and the cost is low, but it does not have the upper and lower overlay welds, so it breaks early from both stress concentrated parts of the scalloped bottom and backing metal, and ηs is less than 5 and the seismic performance is the lowest . A type of existing building.

試料No.2(比較例)は、上下スカラップが設けられた工場接合形式の柱梁継手である。梁部材の接合ディテールが上下対称となり、裏当て金が内側になるため、やや現場接合形式(試料No.1)よりも耐震性能は良いものの、上部および下部肉盛溶接部を備えていないため、スカラップ底の応力集中部から早期破断する事には変わりなく、ηsが5未満で耐震性能は低い。既存建築物の形式の一種である。   Sample No. Reference numeral 2 (comparative example) is a column beam joint of a factory joint type provided with upper and lower scallops. The joint details of the beam members are vertically symmetric and the backing metal is on the inside, so the seismic performance is slightly better than the on-site joint type (sample No. 1), but the upper and lower overlay welds are not provided. It does not change from the stress concentration part at the bottom of the scallop, and ηs is less than 5 and the seismic performance is low. A type of existing building.

試料No.3(比較例)は、上フランジ側をノンスカラップとし、下フランジ側をスカラップとした現場接合形式の柱梁溶接継手である。上フランジ側のスカラップに起因した応力集中が消失するものの、下部肉盛溶接部を備えていないため、下フランジ側のスカラップ底がボトルネックとなるため、ηsが5未満で全く耐震性能は改善していない。なお、既存建築物からの作製は不可能である。   Sample No. 3 (comparative example) is a column beam welded joint of an on-site joining type in which the upper flange side is non-scalloped and the lower flange side is scalloped. Although stress concentration due to scallop on the upper flange side disappears, the bottom scallop bottom on the lower flange side becomes a bottleneck because it does not have a lower welded portion. Not. In addition, it is impossible to make from existing buildings.

試料No.4(比較例)は、上下フランジ側をノンスカラップとした工場接合形式の柱梁溶接継手である。スカラップ底の応力集中が無いため、耐震性能は大幅に向上する。しかし、工場でしか作製できず、現場で高能率に施工することはできない。また、下フランジ側にスカラップが設けられている既存建築物をノンスカラップ化することは不可能である。   Sample No. 4 (Comparative Example) is a column-beam welded joint of factory joint type in which the upper and lower flange sides are non-scalloped. Since there is no stress concentration at the bottom of the scallop, the seismic performance is greatly improved. However, it can only be produced at the factory, and it cannot be constructed at the site with high efficiency. In addition, it is impossible to non-scallop an existing building having a scallop on the lower flange side.

表1、表2に示すように、試料No.5〜26は、本発明の要件を満足する実施例である。
具体的には、試料No.5(実施例)は、上下スカラップが設けられた現場接合形式に対して、上部および下部肉盛溶接部を備えた柱梁溶接継手である。ただし、上部および下部肉盛溶接部の脚長(LaおよびLd)が好適範囲であるウエブの厚さ(Tw)よりも小さいため、ηsが5以上7未満で耐震性能はやや良好で、やや耐震性能が向上した程度であった。また、既存建築物からの作製は可能である。
As shown in Tables 1 and 2, Sample No. Examples 5 to 26 are examples that satisfy the requirements of the present invention.
Specifically, Sample No. 5 (Example) is a beam-to-column welded joint having upper and lower build-up welds with respect to a field joining type provided with upper and lower scallops. However, since the leg lengths (La and Ld) of the upper and lower overlay welds are smaller than the web thickness (Tw), which is a preferable range, ηs is 5 or more and less than 7, and the seismic performance is somewhat good, and the seismic performance is somewhat Was improved. Moreover, it is possible to make from existing buildings.

試料No.6(実施例)は、上下スカラップが設けられた工場接合形式に対して、上部および下部肉盛溶接部を施した柱梁溶接継手である。ただし、上部および下部肉盛溶接部の柱部材側への長さ(Lc)が好適範囲である裏当て金幅中央部に満たないため、ηsが5以上7未満で耐震性能はやや良好で、やや耐震性能が向上した程度であった。また、既存建築物からの作製は可能である。   Sample No. 6 (Example) is a beam-to-column welded joint in which upper and lower build-up welds are applied to a factory joint type provided with upper and lower scallops. However, since the length (Lc) to the column member side of the upper and lower overlay welds is less than the center portion of the backing metal width in the preferred range, the earthquake resistance is somewhat good with ηs of 5 or more and less than 7, Slightly improved seismic performance. Moreover, it is possible to make from existing buildings.

試料No.7(実施例)は、上下スカラップが設けられた現場接合形式に対して、上部および下部肉盛溶接部を施した柱梁溶接継手である。ただし、上部および下部肉盛溶接部の柱部材と反対側への長さ(Lb)が好適範囲である3×Tw(ウエブの厚さ:16mm)=48mmに満たないため、ηsが5以上7未満で耐震性能はやや良好で、やや耐震性能が向上した程度であった。また、既存建築物からの作製は可能である。   Sample No. 7 (Example) is a beam-to-column welded joint in which upper and lower build-up welds are applied to an on-site joining type provided with upper and lower scallops. However, since the length (Lb) to the opposite side of the column member of the upper and lower overlay welds is less than 3 × Tw (web thickness: 16 mm) = 48 mm, which is a preferable range, ηs is 5 or more and 7 Less than that, the seismic performance was slightly better, and the seismic performance was slightly improved. Moreover, it is possible to make from existing buildings.

試料No.8(実施例)は、上フランジ側をノンスカラップ形式にして、下フランジ側にスカラップが設けられた現場接合形式に対して、下部肉盛溶接部を施した柱梁溶接継手である。ただし、下部肉盛溶接部のウエブ側(高さ方向)脚長(La)が好適範囲であるウエブの厚さ(Tw=16mm)より不足しているため、ηsが5以上7未満で耐震性能はやや良好で、やや耐震性能が向上した程度であった。また、既存建築物からの作製は可能である。   Sample No. 8 (Example) is a column beam welded joint in which a lower build-up weld portion is applied to a field joining type in which the upper flange side is a non-scallop type and the scallop is provided on the lower flange side. However, since the web side (height direction) leg length (La) of the lower overlay welded part is less than the web thickness (Tw = 16 mm) in the preferred range, the aseismic performance is ηs of 5 or more and less than 7. Slightly good and slightly improved seismic performance. Moreover, it is possible to make from existing buildings.

試料No.9(実施例)は、上フランジ側をノンスカラップ形式にして、下フランジ側にスカラップが設けられた現場接合形式に対して、下部肉盛溶接部を施した柱梁溶接継手である。ただし、下部肉盛溶接部の柱部材側への長さ(Lc)が好適範囲である溶接金属部の頂上部に満たないため、ηsが5以上7未満で耐震性能はやや良好で、やや耐震性能が向上した程度であった。また、既存建築物からの作製は可能である。   Sample No. 9 (Example) is a column beam welded joint in which a lower build-up weld portion is applied to a field joining type in which an upper flange side is a non-scalloped type and a scallop is provided on a lower flange side. However, since the length (Lc) to the column member side of the lower overlay welded part is less than the top of the welded metal part, ηs is 5 or more and less than 7, and the seismic performance is somewhat good. The performance was improved. Moreover, it is possible to make from existing buildings.

試料No.10(実施例)は、上下スカラップが設けられた工場接合形式に対して、上部および下部肉盛溶接部を施した柱梁溶接継手である。ただし、上フランジ側の上部肉盛溶接部の柱部材側への長さ(Lc)が好適範囲である裏当て金幅中央部に満たないため、ηsが5以上7未満で耐震性能はやや良好で、やや耐震性能が向上した程度であった。また、既存建築物からの作製は可能である。   Sample No. 10 (Example) is a beam-to-column welded joint in which upper and lower build-up welds are applied to a factory joint type provided with upper and lower scallops. However, since the length (Lc) of the upper welded portion on the upper flange side to the column member side is less than the center portion of the backing metal width, which is in the preferred range, ηs is 5 or more and less than 7, and the seismic performance is somewhat good. However, the degree of earthquake resistance was slightly improved. Moreover, it is possible to make from existing buildings.

試料No.11(実施例)は、上下スカラップが設けられた工場接合形式に対して、下フランジ側のみに下部肉盛溶接部を施した柱梁溶接継手である。ただし、下部肉盛溶接部のフランジ側(幅方向)脚長(Ld)が好適範囲であるウエブの厚さ(Tw=16mm)より不足しているため、ηsが5以上7未満で耐震性能はやや良好で、やや耐震性能が向上した程度であった。また、既存建築物からの作製は可能である。   Sample No. 11 (Example) is a beam-to-column welded joint in which a lower welded portion is provided only on the lower flange side with respect to a factory joint type provided with upper and lower scallops. However, since the flange side (width direction) leg length (Ld) of the lower overlay weld is less than the web thickness (Tw = 16 mm) in the preferred range, the seismic performance is somewhat less than 5 and less than 7. It was good and the degree of earthquake resistance was slightly improved. Moreover, it is possible to make from existing buildings.

試料No.12(実施例)は、上下スカラップが設けられた工場接合形式に対して、下フランジ側のみに下部肉盛溶接部を施した柱梁溶接継手である。試料No.11(実施例)に対して下部肉盛溶接部のフランジ側(幅方向)脚長(Ld)が大きく、好適範囲を満足するため、ηsが7以上9未満で耐震性能が良好であった。これより下部肉盛溶接部のフランジ側(幅方向)脚長(Ld)が大きい程、耐震性能が向上することがわかる。また、既存建築物からの作製は可能である。   Sample No. 12 (Example) is a beam-to-column welded joint in which a lower welded portion is provided only on the lower flange side with respect to a factory joint type provided with upper and lower scallops. Sample No. 11 (Example), the flange side (width direction) leg length (Ld) of the lower overlay welded portion was large and satisfied a suitable range, so ηs was 7 or more and less than 9, and the seismic performance was good. From this, it can be seen that the greater the flange side (width direction) leg length (Ld) of the lower overlay welded portion, the greater the seismic performance. Moreover, it is possible to make from existing buildings.

試料No.13(実施例)は、上下スカラップが設けられた現場接合形式に対して、下フランジ側のみに下部肉盛溶接部を施した柱梁溶接継手である。本発明の要件を満足する下部肉盛溶接部を施したため、ηsが7以上9未満で耐震性能が良好であった。また、既存建築物からの作製は可能である。   Sample No. 13 (Example) is a beam-to-column welded joint in which a lower overlay welding portion is provided only on the lower flange side with respect to an on-site joining type in which upper and lower scallops are provided. Since the lower overlay weld satisfying the requirements of the present invention was applied, ηs was 7 or more and less than 9, and the seismic performance was good. Moreover, it is possible to make from existing buildings.

試料No.14(実施例)は、上下にスカラップが設けられた現場接合形式に対して、上部および下部肉盛溶接部を施した柱梁溶接継手である。本発明の要件を満足する上部および下部肉盛溶接部を施したため、ηsが9以上で耐震性能が優れていた。試料No.7(実施例)に対して上部および下部肉盛溶接部の柱部材と反対側への長さ(Lb)が増しており、これより上部および下部肉盛溶接部の柱部材と反対側への長さ(Lb)が長い程、耐震性能が向上することがわかる。   Sample No. 14 (Example) is a beam-to-column welded joint in which upper and lower build-up welds are applied to an on-site joining type in which scallops are provided on the upper and lower sides. Since the upper and lower overlay welds satisfying the requirements of the present invention were applied, ηs was 9 or more and the earthquake resistance was excellent. Sample No. 7 (Example), the length (Lb) to the opposite side to the column member of the upper and lower overlay welds is increased. It can be seen that the longer the length (Lb), the better the seismic performance.

試料No.15〜17(実施例)は、試料No.14(実施例)に対して、上部および下部肉盛溶接部の柱部材側への長さ(Lc)を長くした柱梁溶接継手である。上部および下部肉盛溶接部の柱部材側への長さ(Lc)が長くなるにつれて、耐震性能が向上することがわかる。   Sample No. Samples Nos. 15 to 17 (Examples) 14 (Example), it is a column beam welded joint in which the length (Lc) to the column member side of the upper and lower overlay welds is increased. It can be seen that the seismic performance improves as the length (Lc) of the upper and lower overlay welds toward the column member increases.

試料No.18(実施例)は、上下スカラップが設けられた工場接合形式に対して、上部および下部肉盛溶接部を施した柱梁溶接継手である。本発明の要件を満足する上部および下部肉盛溶接部を施したため、ηsが9以上で耐震性能が優れていた。試料No.6(実施例)に対して上部および下部肉盛溶接部の柱部材側への長さ(Lc)が増しており、これより上部および下部肉盛溶接部の柱部材側への長さ(Lc)が長い程、耐震性能が向上することがわかる。   Sample No. 18 (Example) is a beam-to-column welded joint in which upper and lower build-up welds are applied to a factory joint type provided with upper and lower scallops. Since the upper and lower overlay welds satisfying the requirements of the present invention were applied, ηs was 9 or more and the earthquake resistance was excellent. Sample No. 6 (Example), the length (Lc) of the upper and lower overlay welds to the column member side is increased, and the length of the upper and lower overlay welds to the column member side (Lc) It can be seen that the longer the), the better the seismic performance.

試料No.19〜20(実施例)は、試料No.18(実施例)に対して、上部および下部肉盛溶接部の柱部材と反対側への長さ(Lb)を長くした柱梁溶接継手である。上部および下部肉盛溶接部の柱部材と反対側への長さ(Lb)が長くなるにつれて耐震性能が向上することがわかる。   Sample No. 19-20 (Examples) are sample Nos. 18 (Example) is a column beam welded joint in which the length (Lb) to the opposite side of the column member of the upper and lower overlay welds is increased. It can be seen that the seismic performance improves as the length (Lb) of the upper and lower overlay welds to the opposite side of the column member increases.

試料No.21(実施例)は、上下スカラップが設けられた工場接合形式に対して、上部および下部肉盛溶接部を施した柱梁溶接継手である。溶接材料としてソリッドワイヤYGW11の代わりに水平すみ肉溶接の作業性が優れるフラックス入りワイヤT49J0T1−0CA−Uを用いているが、本発明の要件を満足する上部および下部肉盛溶接部を施したため、ηsが9以上で耐震性能が優れていた。   Sample No. 21 (Example) is a beam-to-column welded joint in which upper and lower build-up welds are applied to a factory joint type provided with upper and lower scallops. As the welding material, instead of the solid wire YGW11, the flux-cored wire T49J0T1-0CA-U, which is excellent in workability of horizontal fillet welding, is used, but because the upper and lower overlay welds satisfying the requirements of the present invention were applied, ηs was 9 or more and the seismic performance was excellent.

試料No.14〜21(実施例)は、上下フランジ側のスカラップに上部および下部肉盛溶接部を施した柱梁溶接継手であり、試料No.4(比較例)の上下ノンスカラップとした柱梁溶接継手と同等の耐震性能が得られている。しかも、上下ノンスカラップとした試料No.4(比較例)はスカラップ有りで製造された柱梁溶接継手からは作製が不可能であるが、試料No.14〜21(実施例)はスカラップ有りで製造された柱梁溶接継手から補修によって作製可能であるという長所を有している。   Sample No. Nos. 14 to 21 (Examples) are column beam welded joints in which upper and lower overlay welds are provided on the scallops on the upper and lower flange sides. Seismic performance equivalent to that of 4 (comparative example) upper and lower non-scalloped column beam welded joints is obtained. In addition, the sample No. No. 4 (comparative example) cannot be prepared from a column beam welded joint manufactured with scallops. Nos. 14 to 21 (Examples) have the advantage that they can be produced by repairing from column beam welded joints manufactured with scallops.

試料No.22〜24(実施例)は、上フランジ側をノンスカラップとし、下フランジ側にスカラップを設けた現場接合形式に対して、下フランジ側に下部肉盛溶接部を施した柱梁溶接継手である。本発明の要件を満足する下部肉盛溶接部を施したため、ηsが9以上で耐震性能が優れていた。試料No.8、22、23、24(実施例)となるに従い、下部肉盛溶接部の脚長(La、Ld)が大きくなっており、それに従い耐震性能が向上することがわかる。また、既存建築物からの作製は可能である。   Sample No. 22 to 24 (Examples) are column beam welded joints in which the lower flange side is provided with a lower build-up weld portion with respect to the field joining type in which the upper flange side is non-scalloped and the scallop is provided on the lower flange side. Since the lower overlay weld satisfying the requirements of the present invention was applied, ηs was 9 or more and the earthquake resistance was excellent. Sample No. As shown in 8, 22, 23, and 24 (Examples), the leg length (La, Ld) of the lower overlay welded portion increases, and it can be seen that the seismic performance is improved accordingly. Moreover, it is possible to make from existing buildings.

試料No.22〜24(実施例)は片側ノンスカラップであるが、両側ノンスカラップの試料No.4(比較例)と同等の耐震性能が得られている。しかも、試料No.4(比較例)の上下ノンスカラップは、柱部材と梁部材との溶接接合が工場にて天地反転作業を伴って施工する手間があるが、試料No.22〜24(実施例)は建築される現場で直接柱部材と梁部材とを溶接接合することができ、効率的という長所がある。   Sample No. Nos. 22 to 24 (Examples) are one-side non-scallops, but both-side non-scalloped sample Nos. Seismic performance equivalent to 4 (comparative example) is obtained. In addition, Sample No. The upper and lower non-scallops of No. 4 (Comparative Example) have the trouble of constructing the welded joint between the column member and the beam member with the upside down work at the factory. Nos. 22 to 24 (Examples) have the advantage that the column members and the beam members can be directly welded and joined at the construction site, which is efficient.

試料No.25(実施例)は、試料No.22〜24(実施例)と同じく、上フランジ側をノンスカラップとし、下フランジ側にスカラップを設けた現場接合形式に対して、下フランジ側に下部肉盛溶接部を施した柱梁溶接継手である。肉盛溶接材料としてC:0.10質量%、Si:0.50質量%、Mn:3.20質量%、Ni:1.2質量%の低変態温度溶接ワイヤを用いている。肉盛溶接の止端部の残留応力が低減され、亀裂破壊しにくくなり、ηsが9以上で耐震性能が優れていた。また、既存建築物からの作製は可能である。   Sample No. 25 (Example) is Sample No. Similar to 22-24 (Examples), it is a column beam welded joint in which the lower flange side is subjected to a lower welded portion with respect to a field joining type in which the upper flange side is non-scalloped and the scallop is provided on the lower flange side. . As the overlay welding material, a low transformation temperature welding wire of C: 0.10% by mass, Si: 0.50% by mass, Mn: 3.20% by mass, and Ni: 1.2% by mass is used. Residual stress at the toe portion of overlay welding was reduced, crack fracture was difficult, ηs was 9 or more, and seismic performance was excellent. Moreover, it is possible to make from existing buildings.

試料No.26(実施例)は、試料No.22〜25(実施例)と同じく、上フランジ側をノンスカラップとし、下フランジ側にスカラップを設けた現場接合形式に対して、下フランジ側に下部肉盛溶接部を施した柱梁溶接継手である。肉盛溶接材料としてC:0.10質量%、Si:0.70質量%、Mn:2.20質量%、Ni:10.5質量%、Cr:9.4質量%の低変態温度溶接ワイヤを用いている。その変態温度は試料No.25(実施例)よりも低い。肉盛溶接の止端部の残留応力が低減され、亀裂破壊しにくくなり、ηsが9以上で耐震性能が優れていた。また、既存建築物からの作製は可能である。   Sample No. No. 26 (Example) is sample no. Similar to 22-25 (Examples), it is a column beam welded joint in which the lower flange side is provided with a lower build-up weld portion with respect to a field joining type in which the upper flange side is non-scalloped and the scallop is provided on the lower flange side. . Low transformation temperature welding wire of C: 0.10% by mass, Si: 0.70% by mass, Mn: 2.20% by mass, Ni: 10.5% by mass, Cr: 9.4% by mass as overlay welding material Is used. The transformation temperature was determined as Sample No. It is lower than 25 (Example). Residual stress at the toe portion of overlay welding was reduced, crack fracture was difficult, ηs was 9 or more, and seismic performance was excellent. Moreover, it is possible to make from existing buildings.

1A、1B、1C 柱梁溶接継手
2 梁部材
3 ウエブ
4 上フランジ
5 下フランジ
6 上スカラップ
7 下スカラップ
8A、8B 上部完全溶け込み溶接部
9A、9B 下部完全溶け込み溶接部
10 溶接金属部
11 裏当て金
12 上部肉盛溶接部
13 下部肉盛溶接部
31A、31B、31C 柱部材
SL 下スカラップ底
SU 上スカラップ底
S1 梁端部突合せ溶接工程
S11 準備工程
S2、S12 肉盛溶接工程
1A, 1B, 1C Column beam welded joint 2 Beam member 3 Web 4 Upper flange 5 Lower flange 6 Upper scallop 7 Lower scallop 8A, 8B Upper full penetration weld 9A, 9B Lower full penetration weld 10 Weld metal 11 Backing metal 12 Upper build-up weld 13 Lower build-up weld 31A, 31B, 31C Column member SL Lower scallop bottom SU Upper scallop bottom S1 Beam end butt welding process S11 Preparatory process S2, S12 Overlay welding process

Claims (12)

柱部材と、
ウエブとそのウエブの上端部側および下端部側に設けられた上フランジおよび下フランジとでH型の断面が形成された梁部材と、
前記ウエブの上端部を前記柱部材側で一部切り欠いて形成された上スカラップと、
前記ウエブの下端部を前記柱部材側で一部切り欠いて形成された下スカラップと、
前記柱部材の側面と前記上フランジの端面との突合せ溶接によって形成され、溶接金属部と裏当て金とからなる上部完全溶け込み溶接部と、
前記柱部材の側面と前記下フランジの端面との突合せ溶接によって形成され、溶接金属部と裏当て金とからなる下部完全溶け込み溶接部と、
前記下スカラップの前記下フランジに当接する下スカラップ底から前記柱部材側、前記柱部材と反対側および前記ウエブの厚さ方向の両側に、肉盛溶接によって形成された下部肉盛溶接部とを備え、
前記上部完全溶け込み溶接部では、前記裏当て金が前記上スカラップ側にあることを特徴とする柱梁溶接継手。
A column member;
A beam member having an H-shaped cross section formed by a web and an upper flange and a lower flange provided on the upper end side and the lower end side of the web;
An upper scallop formed by partially cutting off the upper end of the web on the column member side;
A lower scallop formed by partially cutting off the lower end of the web on the column member side;
Formed by butt welding of the side surface of the column member and the end surface of the upper flange, and an upper fully-penetrating weld portion comprising a weld metal portion and a backing metal;
Formed by butt welding of the side surface of the column member and the end surface of the lower flange, and a lower fully-penetrating weld portion comprising a weld metal portion and a backing metal;
Lower build-up welds formed by build-up welding from the bottom scallop bottom contacting the lower flange of the lower scallop to the pillar member side, the opposite side of the pillar member, and both sides in the thickness direction of the web. Prepared,
The beam-to-column welded joint, wherein, in the upper complete penetration weld, the backing metal is on the upper scallop side.
前記下部完全溶け込み溶接部では、前記溶接金属部が前記下スカラップ側にあり、
前記下部肉盛溶接部の前記ウエブ側への脚長(La)は、前記ウエブの厚さ(Tw)以上の長さであって、かつ、前記下部肉盛溶接部の前記下フランジ側への脚長(Ld)は、前記ウエブの厚さ(Tw)以上の長さであり、
前記下部肉盛溶接部の前記下スカラップ底から前記柱部材側への長さ(Lc)は、前記溶接金属部の頂上部を越える長さであって、かつ、前記下部肉盛溶接部の前記下スカラップ底から前記柱部材と反対側への長さ(Lb)は、前記ウエブの厚さ(Tw)の3倍以上の長さであることを特徴とする請求項1に記載の柱梁溶接継手。
In the lower full penetration weld, the weld metal part is on the lower scallop side,
The leg length (La) to the web side of the lower build-up weld is equal to or greater than the thickness (Tw) of the web, and the leg length to the lower flange side of the lower build-up weld is (Ld) is a length equal to or greater than the thickness (Tw) of the web;
The length (Lc) from the bottom scallop bottom to the column member side of the lower build-up weld is a length exceeding the top of the weld metal part, and the length of the lower build-up weld is 2. The beam-to-column welding according to claim 1, wherein a length (Lb) from the bottom of the lower scallop to the side opposite to the column member is at least three times the thickness (Tw) of the web. Fittings.
前記下部完全溶け込み溶接部では、前記裏当て金が前記下スカラップ側にあり、
前記下部肉盛溶接部の前記ウエブ側への脚長(La)は、前記ウエブの厚さ(Tw)以上の長さであって、かつ、前記下部肉盛溶接部の前記下フランジ側への脚長(Ld)は、前記ウエブの厚さ(Tw)以上の長さであり、
前記下部肉盛溶接部の前記下スカラップ底から前記柱部材側への長さ(Lc)は、前記裏当て金の幅中央部を越える長さであって、かつ、前記下部肉盛溶接部の前記下スカラップ底から前記柱部材と反対側への長さ(Lb)は、前記ウエブの厚さ(Tw)の3倍以上の長さであることを特徴とする請求項1に記載の柱梁溶接継手。
In the lower full penetration weld, the backing metal is on the lower scallop side,
The leg length (La) to the web side of the lower build-up weld is equal to or greater than the thickness (Tw) of the web, and the leg length to the lower flange side of the lower build-up weld is (Ld) is a length equal to or greater than the thickness (Tw) of the web;
The length (Lc) from the bottom scallop bottom to the column member side of the lower build-up weld is a length exceeding the width center of the backing metal, and the length of the lower build-up weld is The column beam according to claim 1, wherein a length (Lb) from the bottom of the lower scallop to the side opposite to the column member is at least three times the thickness (Tw) of the web. Welded joints.
前記上スカラップの前記上フランジに当接する上スカラップ底から前記柱部材側、前記柱部材と反対側および前記ウエブの厚さ方向の両側に、肉盛溶接によって形成された上部肉盛溶接部をさらに備えることを特徴とする請求項1〜3のいずれか一項に記載の柱梁溶接継手。   Upper build-up welds formed by build-up welding are further formed on the pillar member side, the opposite side of the pillar member, and both sides in the thickness direction of the web from the upper scallop bottom contacting the upper flange of the upper scallop. The column beam welded joint according to any one of claims 1 to 3, further comprising: 前記上部肉盛溶接部の前記ウエブ側への脚長(La)は、前記ウエブの厚さ(Tw)以上の長さであって、かつ、前記上部肉盛溶接部の前記上フランジ側への脚長(Ld)は、前記ウエブの厚さ(Tw)以上の長さであり、
前記上部肉盛溶接部の前記上スカラップ底から前記柱部材側への長さ(Lc)は、前記裏当て金の幅中央部を越える長さであって、かつ、前記上部肉盛溶接部の前記上スカラップ底から前記柱部材と反対側への長さ(Lb)は、前記ウエブの厚さ(Tw)の3倍以上の長さであることを特徴とする請求項4に記載の柱梁溶接継手。
The leg length (La) to the web side of the upper build-up weld is equal to or greater than the thickness (Tw) of the web, and the leg length to the upper flange side of the upper build-up weld is (Ld) is a length equal to or greater than the thickness (Tw) of the web;
The length (Lc) from the upper scallop bottom to the column member side of the upper build-up weld is a length exceeding the width center of the backing metal, and the length of the upper build-up weld is The column beam according to claim 4, wherein a length (Lb) from the upper scalloped bottom to the side opposite to the column member is three times or more the thickness (Tw) of the web. Welded joints.
柱部材と、
ウエブとそのウエブの上端部側および下端部側に設けられた上フランジおよび下フランジとでH型の断面が形成された梁部材と、
前記ウエブの下端部を前記柱部材側で一部切り欠いて形成された下スカラップと、
前記柱部材の側面と前記上フランジの端面との突合せ溶接によって形成され、溶接金属部と2つの裏当て金とからなる上部完全溶け込み溶接部と、
前記柱部材の側面と前記下フランジの端面との突合せ溶接によって形成され、溶接金属部と裏当て金とからなる下部完全溶け込み溶接部と、
前記下スカラップの前記下フランジに当接する下スカラップ底から前記柱部材側、前記柱部材と反対側および前記ウエブの厚さ方向の両側に、肉盛溶接によって形成された下部肉盛溶接部とを備え、
前記上部完全溶け込み溶接部では、2つの前記裏当て金が前記ウエブの上端部を挟むように接合されていることを特徴とする柱梁溶接継手。
A column member;
A beam member having an H-shaped cross section formed by a web and an upper flange and a lower flange provided on the upper end side and the lower end side of the web;
A lower scallop formed by partially cutting off the lower end of the web on the column member side;
Formed by butt welding of the side surface of the column member and the end surface of the upper flange, and an upper fully-penetrating weld portion comprising a weld metal portion and two backing metals;
Formed by butt welding of the side surface of the column member and the end surface of the lower flange, and a lower fully-penetrating weld portion comprising a weld metal portion and a backing metal;
Lower build-up welds formed by build-up welding from the bottom scallop bottom contacting the lower flange of the lower scallop to the pillar member side, the opposite side of the pillar member, and both sides in the thickness direction of the web. Prepared,
In the upper complete penetration welded portion, the two backing metal members are joined so as to sandwich the upper end portion of the web.
前記下部完全溶け込み溶接部において、裏当て金に接合した溶接金属部は、前記下スカラップ側にあり、
前記下部肉盛溶接部の前記ウエブ側への脚長(La)は、前記ウエブの厚さ(Tw)以上の長さであって、かつ、前記下部肉盛溶接部の前記下フランジ側への脚長(Ld)は、前記ウエブの厚さ(Tw)以上の長さであり、
前記下部肉盛溶接部の前記下スカラップ底から前記柱部材側への長さ(Lc)は、前記溶接金属の頂上部を越える長さであって、かつ、前記下部肉盛溶接部の前記下スカラップ底から前記柱部材と反対側への長さ(Lb)は、前記ウエブの厚さ(Tw)の3倍以上の長さであることを特徴とする請求項6に記載の柱梁溶接継手。
In the lower full penetration weld, the weld metal part joined to the backing metal is on the lower scallop side,
The leg length (La) to the web side of the lower build-up weld is equal to or greater than the thickness (Tw) of the web, and the leg length to the lower flange side of the lower build-up weld is (Ld) is a length equal to or greater than the thickness (Tw) of the web;
The length (Lc) from the bottom scallop bottom to the column member side of the lower build-up weld is a length exceeding the top of the weld metal, and the lower build-up weld is below the lower build-up weld. 7. The beam-to-column welded joint according to claim 6, wherein a length (Lb) from the scallop bottom to the side opposite to the column member is at least three times the thickness (Tw) of the web. .
請求項1、2、3、6、7のいずれか一項に記載の柱梁溶接継手の製造方法であって、
前記柱部材の側面と前記上フランジの端面、および、前記柱部材の側面と前記下フランジの側面とを突合せ溶接して、前記上部完全溶け込み溶接部および前記下部完全溶け込み溶接部を形成する梁端部突合せ溶接工程と、
前記梁端部突合せ溶接工程の終了後、下フランジ側に肉盛溶接を行って、前記下部肉盛溶接部を形成する肉盛溶接工程と、を含むことを特徴とする柱梁溶接継手の製造方法。
A method for manufacturing a beam-to-column welded joint according to any one of claims 1, 2, 3, 6, and 7,
A beam end that butt welds the side surface of the column member and the end surface of the upper flange, and the side surface of the column member and the side surface of the lower flange to form the upper complete penetration weld and the lower complete penetration weld. Butt welding process,
After the end of the beam end butt welding process, it includes overlay welding that performs overlay welding on the lower flange side to form the lower overlay welding part, Method.
請求項4または5に記載の柱梁溶接継手の製造方法であって、
前記柱部材の側面と前記上フランジの端面、および、前記柱部材の側面と前記下フランジの側面とを突合せ溶接して、前記上部完全溶け込み溶接部および前記下部完全溶け込み溶接部を形成する梁端部突合せ溶接工程と、
前記梁端部突合せ溶接工程の終了後、上フランジ側および下フランジ側に肉盛溶接を行って、前記上部肉盛溶接部および前記下部肉盛溶接部を形成する肉盛溶接工程と、を含むことを特徴とする柱梁溶接継手の製造方法。
A method for manufacturing a beam-to-column welded joint according to claim 4 or 5,
A beam end that butt welds the side surface of the column member and the end surface of the upper flange, and the side surface of the column member and the side surface of the lower flange to form the upper complete penetration weld and the lower complete penetration weld. Butt welding process,
A build-up welding step of performing build-up welding on the upper flange side and the lower flange side after the end of the beam end butt welding step to form the upper build-up weld portion and the lower build-up weld portion. A method for manufacturing a column beam welded joint.
請求項1、2、3、6、7のいずれか一項に記載の柱梁溶接継手の製造方法であって、
既存建築物から前記下部完全溶け込み溶接部を露出させる準備工程と、
前記準備工程の終了後、下フランジ側に肉盛溶接を行って、前記下部肉盛溶接部を形成する肉盛溶接工程と、を含むことを特徴とする柱梁溶接継手の製造方法。
A method for manufacturing a beam-to-column welded joint according to any one of claims 1, 2, 3, 6, and 7,
A preparatory step of exposing the lower complete penetration weld from an existing building;
And a build-up welding step in which build-up welding is performed on the lower flange side to form the lower build-up weld after the preparation step is completed.
請求項4または5に記載の柱梁溶接継手の製造方法であって、
既存建築物から前記上部完全溶け込み溶接部および前記下部完全溶け込み溶接部を露出させる準備工程と、
前記準備工程の終了後、上フランジ側および下フランジ側に肉盛溶接を行って、前記上部肉盛溶接部および前記下部肉盛溶接部を形成する肉盛溶接工程と、を含むことを特徴とする柱梁溶接継手の製造方法。
A method for manufacturing a beam-to-column welded joint according to claim 4 or 5,
A preparation step of exposing the upper full penetration weld and the lower full penetration weld from an existing building;
After the completion of the preparation step, it includes overlay welding step of performing overlay welding on the upper flange side and the lower flange side to form the upper overlay weld and the lower overlay weld Manufacturing method of column beam welded joint.
前記肉盛溶接工程では、C≧0.15質量%、Mn≧2.0質量%、Ni≧3.0質量%、Cr≧3.0質量%のうち1つ以上を含有する溶接材料を用いて、肉盛溶接を行うことを特徴とする請求項8〜11のいずれか一項に記載の柱梁溶接継手の製造方法。   In the overlay welding process, a welding material containing one or more of C ≧ 0.15 mass%, Mn ≧ 2.0 mass%, Ni ≧ 3.0 mass%, and Cr ≧ 3.0 mass% is used. The method for manufacturing a column beam welded joint according to any one of claims 8 to 11, wherein overlay welding is performed.
JP2013158336A 2013-07-30 2013-07-30 Column beam welded joint and manufacturing method thereof Active JP5973968B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013158336A JP5973968B2 (en) 2013-07-30 2013-07-30 Column beam welded joint and manufacturing method thereof
CN201410360182.3A CN104339096B (en) 2013-07-30 2014-07-25 Post beam welding point and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158336A JP5973968B2 (en) 2013-07-30 2013-07-30 Column beam welded joint and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015027695A true JP2015027695A (en) 2015-02-12
JP5973968B2 JP5973968B2 (en) 2016-08-23

Family

ID=52491798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158336A Active JP5973968B2 (en) 2013-07-30 2013-07-30 Column beam welded joint and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5973968B2 (en)
CN (1) CN104339096B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110143255B (en) * 2019-05-14 2020-07-03 上海外高桥造船有限公司 Hull plate frame device and welding method thereof
CN110593484A (en) * 2019-06-28 2019-12-20 河南平高电气股份有限公司 H-shaped steel and reinforcing plate thereof
CN115430980B (en) * 2022-09-28 2024-05-28 深圳市丰瑞钢构工程有限公司 Welding process for ultra-long span steel structure beam

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105398U (en) * 1980-01-04 1981-08-17
JPS57142768A (en) * 1981-02-25 1982-09-03 Matsuo Kyoryo Kk Welding method for scallop part
JPH04129597U (en) * 1991-05-10 1992-11-26 小林工業株式会社 end tab device
JPH059782U (en) * 1991-07-17 1993-02-09 株式会社スノウチ H-type steel welding backing metal
JPH05138345A (en) * 1991-11-20 1993-06-01 Tomoe Corp Method for preventing partial deformation of molten galvanized steel structure
JPH10151510A (en) * 1996-11-20 1998-06-09 Eizo Nakade Cutting method for beveling of weld part having section steel fillet part left uncut and coping with arbitrary change of run-in size
JPH1177301A (en) * 1997-09-09 1999-03-23 Nkk Corp Cladding method by welding
JP2002018596A (en) * 2000-07-07 2002-01-22 Toshio Fujioka Backing strip for welding
US20020100229A1 (en) * 2001-01-26 2002-08-01 Siontech Engineering Consultants, Inc. Seismic-resistant beam-to-column moment connection
JP2010133217A (en) * 2008-11-10 2010-06-17 Arcreate:Kk Beam end reinforcing method at joint part of steel column and beam
JP2010253509A (en) * 2009-04-24 2010-11-11 Jfe Steel Corp Arc welding method
JP2010253508A (en) * 2009-04-24 2010-11-11 Jfe Steel Corp Arc welding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4999896B2 (en) * 2004-02-17 2012-08-15 株式会社アークリエイト Manufacturing method of building steel structure
JP4398782B2 (en) * 2004-02-17 2010-01-13 株式会社アークリエイト Manufacturing method of building steel structure
JP4734840B2 (en) * 2004-03-26 2011-07-27 Jfeスチール株式会社 Beam-column joint
JP5218919B2 (en) * 2008-11-10 2013-06-26 株式会社アークリエイト Beam-column joint structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105398U (en) * 1980-01-04 1981-08-17
JPS57142768A (en) * 1981-02-25 1982-09-03 Matsuo Kyoryo Kk Welding method for scallop part
JPH04129597U (en) * 1991-05-10 1992-11-26 小林工業株式会社 end tab device
JPH059782U (en) * 1991-07-17 1993-02-09 株式会社スノウチ H-type steel welding backing metal
JPH05138345A (en) * 1991-11-20 1993-06-01 Tomoe Corp Method for preventing partial deformation of molten galvanized steel structure
JPH10151510A (en) * 1996-11-20 1998-06-09 Eizo Nakade Cutting method for beveling of weld part having section steel fillet part left uncut and coping with arbitrary change of run-in size
JPH1177301A (en) * 1997-09-09 1999-03-23 Nkk Corp Cladding method by welding
JP2002018596A (en) * 2000-07-07 2002-01-22 Toshio Fujioka Backing strip for welding
US20020100229A1 (en) * 2001-01-26 2002-08-01 Siontech Engineering Consultants, Inc. Seismic-resistant beam-to-column moment connection
JP2010133217A (en) * 2008-11-10 2010-06-17 Arcreate:Kk Beam end reinforcing method at joint part of steel column and beam
JP2010253509A (en) * 2009-04-24 2010-11-11 Jfe Steel Corp Arc welding method
JP2010253508A (en) * 2009-04-24 2010-11-11 Jfe Steel Corp Arc welding method

Also Published As

Publication number Publication date
JP5973968B2 (en) 2016-08-23
CN104339096A (en) 2015-02-11
CN104339096B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6304074B2 (en) Method and structure for welding and joining steel members
JP5973968B2 (en) Column beam welded joint and manufacturing method thereof
JP5218919B2 (en) Beam-column joint structure
JP4668760B2 (en) Steel bridge repair and reinforcement structure and method
JP5978187B2 (en) Column beam welded joint and manufacturing method thereof
JP6283839B2 (en) Rigid connection method of large beam and small beam
JPWO2010103801A1 (en) Seismic steel structure and its design method
JP5935395B2 (en) Welding assembly groove part for square welding of four-sided box section
JP5953744B2 (en) Groove for corner welding of welded four-sided box-shaped cross-section members
JP5052976B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP2006291463A (en) Rigid connection structure of steel bridge pier and steel beam
JP6179757B2 (en) Column-to-column connection structure for different diameter column connections in buildings
JP6924609B2 (en) Joint structure of braces and columns and beams
JP2013024008A (en) Transverse rib structure for fatigue improvement, and steel floor slab using the same
JP2018172859A (en) Box section column and column-beam connection structure
JP6583598B1 (en) H-shaped cross-section member joining structure and manufacturing method thereof
WO2019215942A1 (en) Joint structure for h-shaped cross-sectioned member, and method for manufacturing same
WO2018012495A1 (en) Beam-column connection structure
JP6585528B2 (en) Reinforcing structure and reinforcing method
JP2004308168A (en) Beam-column connection core and beam-column connecting structure
KR102373167B1 (en) Connecting structure of composite beam and construction method thereof
JP7205205B2 (en) Welded joining method for steel members and welded joint structure
JP7138460B2 (en) Steel beam reinforcement method and steel beam
JP4657967B2 (en) Column / beam joint structure of H-shaped steel column
JP2002356811A (en) Joint structure of corrugated steel plate web girder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160715

R150 Certificate of patent or registration of utility model

Ref document number: 5973968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150