JP2015026949A - センサーデータ収集システム - Google Patents

センサーデータ収集システム Download PDF

Info

Publication number
JP2015026949A
JP2015026949A JP2013154783A JP2013154783A JP2015026949A JP 2015026949 A JP2015026949 A JP 2015026949A JP 2013154783 A JP2013154783 A JP 2013154783A JP 2013154783 A JP2013154783 A JP 2013154783A JP 2015026949 A JP2015026949 A JP 2015026949A
Authority
JP
Japan
Prior art keywords
station
slave
slave station
transmission
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013154783A
Other languages
English (en)
Other versions
JP5991280B2 (ja
Inventor
典之 前畑
Noriyuki Maehata
典之 前畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2013154783A priority Critical patent/JP5991280B2/ja
Publication of JP2015026949A publication Critical patent/JP2015026949A/ja
Application granted granted Critical
Publication of JP5991280B2 publication Critical patent/JP5991280B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Selective Calling Equipment (AREA)

Abstract

【課題】この発明は、センサーである子局が検出したセンシング情報を親局に送信するセンサーデータ収集システムにおいて、子局の消費電力を削減できるセンサーデータ収集システムを提供することを目的とする。
【解決手段】システム全体の基準時間に基づいて、子局のそれぞれが親局と通信可能な送受信可能時間を算出する。複数の子局はそれぞれ、自局に割り当てられた送受信可能時間にのみ送受信機に電力を供給し、自局に割り当てられた送受信可能時間中にポーリング要求パケットに自局が検出したセンシング情報を載せて親局に送信する逆ポーリングを実行する。
【選択図】図4

Description

この発明は、センサーデータ収集システムに係り、特に、センサーである子局の省電力に好適なセンサーデータ収集システムに関する。
従来の親局と子局とが連携動作するための通信方式として、親局から子局へのポーリングが知られている。親局から子局へのポーリングでは、親局からのポーリング要求パケットを受信するために子局は送受信機の電源を常に入れておかなければならず電力消費が大きかった。そのため、電力確保ができずバッテリによる駆動が必要な場所でのセンサーの長期間稼動が困難であるという課題があった。
このような課題を解決する提案として、例えば、送受信機に受信のみ可能なスタンバイモードを設けて、通常よりも消費電力を小さくする方法が提案されている。
また、子局の省電力に関して、例えば、特許第4858091号では、少なくとも1つの無線ボタン電話機と、無線ボタン電話機と主装置との間のパケットを中継する無線アクセスポイントとを有するボタン電話システムにおける省電力無線通信方式が提案されている。この方式は以下の方式である。親局から子局へ周期的に発信されるビーコン信号に受信希望子局情報を載せる。子局は、通常は無線送受信機の電源を切ったスリープ状態で待機しており、親局からビーコン信号が送られてくる前に、無線送受信機の電源を入れアウェイク状態に移行する。ビーコン信号を受信した子局は、ビーコン信号に載せられた受信希望子局情報を解析して、自局が受信希望子局の場合は、アウェイク状態を維持し然るべきタイミングで親局が送信するデータを受信する。一方、ビーコン信号に載せられた受信希望子局情報を解析して、自局が受信希望子局の場合でない場合は、即座にスリープ状態に移行する。特許第4858091号はこのようにして省電力を図る方式である。
特許第4858091号公報
しかしながら、上述のスタンバイモードを設けた送受信機においては、送受信機の電力の消費を少なくすることができるものの、電力を常時消費してしまう問題がある。
また、上述の特許第4858091号では、ビーコン信号を使い、次に送信するデータのあて先を子局に知らせ、次のデータを受信する子局のみアウェイク状態にし、次のデータを受信する必要がない子局はスリープ状態にするように工夫されている。しかしながら、子局は、ビーコン信号の次に然るべきタイミングで送られてくるパケットが自局あてか否かに関わらず、ビーコン信号を受信するために、すべての子局を定周期でアウェイク状態に移行させなければならない。結果として必要のないデータを受信するために、無線送受信機の電源を入れ無駄な電力を消費するという問題があった。
図11は、特許第4858091号において提案された通信方式を表した模式図である。図11において、Bはビーコン信号、MCはマルチキャストパケット、UCはユニキャストパケットである。図11に示すように、すべての子局は、ビーコン信号を受信するために、親局からビーコン信号が送信される前に無線送受信機の電源を入れてアウェイク状態に移行する必要がある。
さらに、上記特許第4858091号では、受信希望子局情報を管理する複雑な機能が必要となり、機能を実現するための装置が余計に必要となるという問題があった。また、これらの機能を実現するための装置を動作させるために、これらの機能が無い場合よりも電力を多く消費するという問題もあった。
この発明は、上述のような課題を解決するためになされたものであり、本発明の目的は、センサーである子局が検出したセンシング情報を親局に送信するセンサーデータ収集システムにおいて、子局の消費電力を削減できるセンサーデータ収集システムを提供することを目的とする。
この発明は、上記の目的を達成するため、送受信機を有する親局と、外部物理量や環境量を検出するセンシング手段と送受信機とを有する複数の子局とを備えるセンサーデータ収集システムであって、
システム全体の基準時間を管理する基準時計と、
前記基準時間に基づいて、前記子局のそれぞれが前記親局と通信可能な送受信可能時間を算出する子局送受信可能時間算出手段と、を備え、
前記子局はそれぞれ、
自局に割り当てられた送受信可能時間以外は送受信機に電力を供給せず、自局に割り当てられた送受信可能時間にのみ送受信機に電力を供給する電力供給制御装置と、
自局に割り当てられた送受信可能時間中にポーリング要求パケットに自局のセンシング手段が検出したセンシング情報を載せて前記親局に送信する逆ポーリング要求手段と、を備え、
前記親局は、前記ポーリング要求パケットに応答して、前記要求情報を載せたポーリング応答パケットを返信する逆ポーリング応答手段、を備えること、を特徴とする。
好ましくは、前記親局は、前記子局送受信可能時間算出手段を備え、
前記子局送受信可能時間算出手段は、予め定められた通信周期とシステム構成情報とに基づいて、前記子局のそれぞれが前記親局と通信可能な送受信可能時間を算出すること、を特徴とする。
好ましくは、前記子局送受信可能時間算出手段は、前記子局間で重複しない送受信可能時間を算出すること、を特徴とする。
好ましくは、前記ポーリング応答パケットには、前記基準時計が管理する基準時間が載せられ、
前記子局は、前記ポーリング応答パケットに載せられた基準時間に基づいて、自局の時計値を補正する補正機能を更に備えること、を特徴とする。
この発明によれば、自局に割り当てられた送受信可能時間にのみ送受信機に電力を供給するため、センサーである子局の消費電力を削減できる。特に、電源確保が難しくバッテリによる駆動が必要な場所において、センサーの長期間稼動が可能になる。
また、この発明によれば、センサーである子局は、自局に割り当てられた送受信可能時間中に子局から親局へのポーリング(逆ポーリング)を行う。この逆ポーリングに際し、子局は、親局へのポーリング要求パケットにセンシング情報を載せて送信する。したがって、センサーである子局は、親局からの要求を待つこと無く、自局に割り当てられた送受信可能時間の開始直後に、能動的にセンシング情報を親局に送信することが可能であり、要求待ちの時間分の消費電力を削減できる。
また、前記特許第4858091号で提案されたような、複雑な機能を実現するための装置が不要であり、センサー局としての単純な機能で省電力通信が可能である。
本発明の実施の形態1におけるセンサーデータ収集システムのシステム構成を示した概念図である。 親局100の機能ブロック図である。 子局200の機能ブロック図である。 実施の形態1の省電力通信方式による通信の様子を説明するためのタイミングチャートである。 実施の形態1のシステムが実行する制御ルーチンのフローチャートである。 実施の形態2のシステムが実行する制御ルーチンのフローチャートである。 物理局番号に基づいて論理局番号を決定する一例を示した図である。 実施の形態3のシステムが実行する制御ルーチンのフローチャートである。 実施の形態4のシステムが実行する制御ルーチンのフローチャートである。 親局100と子局20nの時刻同期方式について説明するための図である。 特許第4858091号において提案された通信方式を表した模式図である。
以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[実施の形態1のシステム構成]
図1は、本発明の実施の形態1におけるセンサーデータ収集システムのシステム構成を示した概念図である。
図1に示すように、センサーデータ収集システムは、親局100と、複数の子局200、201、202、203、204を備える。子局数はこれに限定されるものではない。以下、本明細書において、子局を区別しない場合には、子局20n(n=0,1,2,3,・・・)と記載する。子局20nはセンサーであり、例えば、産業プラントを制御する制御装置の状態を監視する。子局20nは外部物理量あるいは環境量を検出するセンシング手段を有する。子局20nが検出するセンシング情報としては、A(電流)、V(電圧)、P(電力)、Ta(温度)、H(湿度)がある。子局20nはセンシング情報を親局100に送信し、親局100は、それぞれの子局20nから送信されたセンシング情報を収集する。
なお、図1に示すセンサーデータ収集システムは、無線通信の場合のシステム構成例であるが、本明細書で提案するセンサーデータ収集システムは、無線通信に限らず、ツイストペアケーブルや同軸ケーブルなどの有線通信であってもよい。
図2は、親局100の機能ブロック図である。
親局100は、親局内部のアドレスバスやデータバスの役割を果たすバス160を備える。バス160は、システム全体の基準時間を管理する基準時計110と、送受信データを格納する記憶部120と、MM I/F(マンマシンインターフェース)130と、CPU140と、子局20nとデータを送受信するための送受信機150と接続する。送受信機150は伝送路170に接続する。伝送路170は無線であっても有線であってもよい。
CPU140は、各種演算、制御を実行する。例えば、CPU140は、MM I/F130から得られる通信周期やシステム構成情報などのパラメータに基づいて後述する子局送受信可能時間を算出する。また、CPU140は、送受信機150を制御したり、送信パケットを生成したり、受信パケットを解析して解析結果に従い処理を実行したりする。バス160は、CPU140が各種ペリフェラルにアクセスする際に使用される。
図3は、子局200の機能ブロック図である。
子局200は、子局内部のアドレスバスやデータバスの役割を果たすバス270を備える。バス270は、外部物理量あるいは環境量を検出するセンシング手段210と、センサー入力のアナログ/ディジタル変換を実施するA/D変換器220と、時計230と、演算結果やA/D変換結果や送受信データを格納する記憶部240と、電力供給制御機能250と、CPU260と、親局100とデータを送受信するための送受信機280と接続する。送受信機280は伝送路290に接続する。伝送路290は無線であっても有線であってもよい。
CPU260は、各種演算、制御を実行する。例えば、CPU260は、親局100から受信した基準時刻に従って時計230の時刻を修正したり、送受信機280を制御したり、電力供給制御機能250にON/OFF指示を出したり、送信パケットを生成したり、受信パケットを解析し解析結果に従い処理を実行したりする。バス270は、CPU260が各種ペリフェラルにアクセスする際に使用される。
[実施の形態1における特徴的制御]
(制御概要)
まず、実施の形態1における省電力通信方式の制御概要について説明する。
親局100は、予め定められた通信周期やシステム構成情報(図1)に基づいて、それぞれの子局20nが親局100と通信可能な送受信可能時期を算出する。親局100は、システム全体の通信開始時に行われる通信初期化処理において、各子局20nにこの送受信可能時間情報を送信する。各子局20nは、送受信可能時間情報を受信後、直ちに送受信機280に供給される電力を切ってスリープ状態に移行する。各子局20nは、自局に割り当てられた送受信可能時間にのみ送受信機280に電力を供給してアウェイク状態に移行する。それ以外の時間は送受信機280に供給される電力を切りスリープ状態となる。通信方式は子局20nから親局100に問い合わせる逆ポーリングを採用する。
一般的なポーリングは、親局100から各子局20nに対して順番に定期的に問い合わせを行い、一定の条件を満たした場合に送受信や処理を行う通信及び処理方式である。これに対し、本実施の形態では、子局20nから親局100に対して問い合わせを行う方式を採用する。本明細書では、これを「逆ポーリング」と称することとする。
逆ポーリングの場合、子局20nは、自局に割り当てられた送受信可能時間になると送受信機280に電力を供給しアウェイク状態に移行する。子局20nは、この時間中に自局のセンシング情報を載せたポーリング要求パケットを親局100へ送信する。これを親局100に対するポーリングとみなし、親局100は、子局20nへの要求情報、例えば、子局20nへのコマンドなどを、子局20nからのポーリングに対する応答として返信する。これを受信した子局20nは、親局100から受信した要求情報の中身を解析し、解析結果に対する処理を実施し、処理完了後ただちに送受信機280をスリープ状態とする。
具体的な通信の様子について図4を用いて説明する。図4は、実施の形態1の省電力通信方式による通信の様子を説明するためのタイミングチャートである。
図4には、親局100と子局20n(子局200〜子局203)との通信の様子が示されている。上述した逆ポーリングによれば、子局20nは、1回の通信周期のうち自局に割り当てられた送受信可能時間にのみ送受信機280に電力を供給して、アウェイク状態になる。子局20nは、この送受信可能時間中にセンシング情報を載せたポーリング要求パケット502を親局100に送信する。親局100は、ポーリング要求パケット502に応答して、要求情報を載せたポーリング応答パケット503を子局20nに返信する。子局20nは、1回の通信周期のうち自局の送受信可能時間以外の時間は送受信機280の電力を切り、スリープ状態になる。
(制御詳細)
次に、実施の形態1における省電力通信方式の制御詳細について説明する。
図5は、上述の省電力通信方式を実現するために、本システムが実行する制御ルーチンのフローチャートである。図5の左側は親局100の動作を示したものである。一方、図5の右側は子局20nの動作を示したものである。
まず、親局100の動作について説明する。親局100は、リセットシーケンスが解除されると、通常の電子機器が行うLSI初期化、送受信機初期化、レジスタ初期化、メモリー初期化などの各種デバイスやペリフェラルIOの初期化処理を行う(ステップ301)。
次に、CPU140は、子局20nの送受信可能時間を算出する(ステップ302)。送受信可能時間は、あらかじめ設定された通信周期とシステム構成情報(図1)より得られる総子局台数を用いて所定の計算式によって算出される。計算式は、例えば、次の式(1)のようなものである。
子局送受信可能時間 = 通信周期 ÷ 総子局台数 ・・・(1)
式(1)を用いる場合、例えば、通信周期60秒、総子局台数15台の場合、各子局の送受信可能時間は次のように計算される。
子局送受信可能時間 = 60秒 ÷ 15局 = 4秒
次に、親局100は、全子局に対して、通信を実施するための各種パラメータと共に時刻と各子局20nの送受信可能時間などの情報を載せた通信初期化パケット501を送信する通信初期化処理を実施する(ステップ303)。このあと親局100は子局20nからのポーリング要求パケット502を待つ受信待ち状態に移行する(ステップ304)。
次に、親局100は、子局20nからのポーリング要求パケット502を受信する。ポーリング要求パケット502の中には、子局20nのセンシング情報が格納されている。センシング情報の処理については、本提案とは直接関連がないためここでは説明を省略する。このあと、親局100は、ポーリング要求パケット502を送信した子局20nに対してポーリング応答パケット503を送信するが、このときポーリング応答パケット503に子局20nに対するコマンド、例えばパラメータ変更要求などを載せて送信する(ステップ305)。
次に親局100は、再び子局20nからのポーリング要求パケット502を待つ受信待ち状態に移行する(ステップ304)。再び子局20nからポーリング要求パケット502を受信すると前述のステップ305を実施し、その後はステップ304とステップ305を繰り返す。
次に、子局20nの動作について説明する。子局20nは、リセットシーケンスが解除されると、通常の電子機器が行うLSI初期化、送受信機初期化、レジスタ初期化、メモリー初期化などの各種デバイスやペリフェラルIOの初期化処理を行う(ステップ401)。その後、親局100からの通信初期化パケット501の受信待ち状態に移行する(ステップ402)。
子局20nは、親局100からの通信初期化パケット501を受信すると、そのパケットに載っている時刻情報と送受信可能時間の情報を取り出し、自局時間を修正し(ステップ403)、送受信可能時間を記憶部240に格納し、さらに親局100からの送受信可能時間と自局に設定された局番号と所定の計算式より、自局に割り当てられる送受信可能時間を生成し、時計(タイマー)部230に設定する(ステップ404)。例えば、自局に割り当てられる送受信可能時間を求める計算式としては次の式(2)がある。
自局に割り当てられる送受信可能時間=n×(送受信可能時間×局番号)
(n=:1,2,3,4,……) ・・・(2)
ここで子局20nは、自局に割り当てられた送受信可能時間が判明したので電力供給制御機能250により送受信機280の電源を切る(ステップ405)。この後、子局20nは、タイマーがカウントアップし自局に割り当てられた送受信可能時間の到来を待つ(ステップ406)。タイマーがカウントアップし自局に割り当てられた送受信可能時間が到来すると、子局20nは、センシング情報を取得する(ステップ407)。その後、電力供給制御機能250により送受信機280の電源を入れる(ステップ408)。
次に子局20nは、親局100に対するポーリング要求パケット502を送信する(ステップ409)。このとき、ステップ407で取得したセンシング情報をこのポーリング要求パケット502に載せて送信する。好ましくは、自局に割り当てられた送受信可能時間の開始直後にポーリング要求パケット502を送信する。
その後、子局20nは、親局100からのポーリング応答パケット503の受信を待つ(ステップ410)。ポーリング応答パケット503には自局に対するコマンド、例えばパラメータ変更要求など、が含まれているので、子局20nは、親局100からのポーリング応答パケット503を受信し、受信したコマンドに対応した処理を実施する(ステップ411)。
次に子局20nは、ステップ405に戻り、電力供給制御機能250により送受信機280の電源を切る。以後、ステップ405からステップ411を繰り返す。
(効果)
以上説明したように、本実施の形態におけるセンサーデータ収集システムによれば、各子局20nは、自局に割り当てられた送受信可能時間にのみ送受信機280に電力を供給するため、センサーである子局20nの消費電力を削減できる。特に、電源確保が難しくバッテリによる駆動が必要な場所において、センサーの長期間稼動が可能になる。
また、上述した特許第4858091号のシステム(ボタン電話システム)では、親局から周期的に送信されるビーコン信号を受信するために、その都度すべての子局の送受信機に電力を供給する必要がある。これに対し、本実施の形態におけるセンサーデータ収集システムによれば、各子局20nは、自局に割り当てられた送信可能時間の間にのみ送受信機280に電力を供給すればよいため、特許第4858091号のシステムに比して子局20nの消費電力を削減できる。
また、上述した特許第4858091号のシステム(ボタン電話システム)では、子局は、親局からビーコンを待ち、求めに応じて受動的に情報を送信する。これに対し、本実施の形態におけるセンサーデータ収集システムによれば、センサーである子局20nは、自局に割り当てられた送受信可能時間中に子局20nから親局100へのポーリング(逆ポーリング)を行う。逆ポーリングに際し、子局20nは、センシング情報を載せたポーリング要求パケット502を親局100に送信する。そのため、親局100からの要求を待つこと無く、自局に割り当てられた送受信可能時間の開始直後に、能動的にセンシング情報を親局に送信することが可能であり、親局からの要求を待つ時間分の消費電力を削減できる。
以上より、この発明によれば、子局が検出したセンシング情報を親局に送信するセンサーデータ収集システムにおいて、単純な構成と方式で、センサーである子局の消費電力を削減できる。
ところで、上述した実施の形態1のシステムにおいては、子局間で送受信可能時間を重複しないように設定することで、子局20nと親局100との間の通信に必要なチャンネル数を1つとしている。しかし、チャンネル数はこれに限定されるものではなく、チャンネル数に余裕がある場合には一部の送受信可能時間を重複させてもよい。なお、この点は以下の実施の形態でも同様である。
尚、上述した実施の形態1においては、基準時計110がこの発明における「基準時計」に相当している。
また、ここではCPU140が、上記ステップ302の処理を実行することによりこの発明における「子局送受信可能時間算出手段」が、上記ステップ305の処理を実行することによりこの発明における「逆ポーリング応答手段」が、それぞれ実現されている。
また、ここではCPU260が、電力供給制御機能250と共に上記ステップ405、406、408の処理を実行することによりこの発明における「電力供給制御装置」が、上記ステップ409の処理を実行することによりこの発明における「逆ポーリング要求手段」が、それぞれ実現されている。
実施の形態2.
[実施の形態2のシステム構成]
次に、図6と図7を参照して本発明の実施の形態2について説明する。本実施形態のシステムは、図1に示す構成において、図6のルーチンを実施することで実現することができる。
[実施の形態2における特徴的制御]
上述した実施の形態1では、親局100が子局の送受信可能時間を算出する機能を有し、子局20nに通知している。これに比して、本実施の形態では、子局20nが送受信可能時間を算出する機能を有する点に主な特徴を有している。
実施の形態2における省電力通信方式の制御詳細について説明する。
図6は、上述の省電力通信方式を実現するために、本システムが実行する制御ルーチンのフローチャートである。図6の左側は親局100の動作を示したものである。一方、図6の右側は子局20nの動作を示したものである。
まず、親局100の動作について説明する。親局100は、ステップ301において初期化処理を行う。この処理は実施の形態1で述べた図5のステップ301と同様であるため説明を省略する。
次に、CPU140は、子局20nの論理局番号を決定する(ステップ302a)。具体的には、まず、CPU140は、MM I/F130から得られるシステム構成情報に含まれる子局20nの局番号(物理局番号)を取得し、これに基づいて論理局番号を決定する。論理局番号は、物理局番号が連番で設定されていなくても、通信を効率よく実施するために考案したものである。論理局番号の定め方の一例として、システムを構成する子局の物理局番号の最も小さいものを論理局番号1とする。次に物理局番号の小さい子局の論理局番号を2とする。以下、論理局番号は物理局番号の小さい順に3、4、5、・・・と連番を割り振る。図7は、物理局番号に基づいて論理局番号を決定する一例を示した図である。
次に親局100は、すべての子局20nに対して、通信を実施するための各種パラメータと共に、時刻と、各子局の論理局番号と、総子局台数の情報を載せた通信初期化パケット501を送信する通信初期化処理を実施する(ステップ303)。
次に親局100は、ステップ304、ステップ305の処理を実施する。これらの処理は実施の形態1で述べた図5のステップ304、ステップ305と同様であるため説明を省略する。
次に、子局20nの動作について説明する。子局20nは、ステップ401、ステップ402の処理を実施する。これらの処理は実施の形態1で述べた図5のステップ401、ステップ402と同様であるため説明を省略する。
次に、子局20nは、親局100からの通信初期化パケット501を受信すると、そのパケットに載っている時刻情報と論理局番号、および、総子局台数の情報を取り出し、自局時間を修正し(ステップ403)、送受信可能時間の計算を所定の計算式を用いて実施する(ステップ404a)。送受信可能時間の計算をする式として例えば次の式(3)がある。
子局送受信可能時間 = 通信周期 ÷ 総子局台数 ・・・(3)
次に、子局20nは、所定の計算式で計算した送受信可能時間を記憶部240に格納し、さらに親局100から受信した送受信可能時間と論理局番号より自局に割り当てられる送受信可能時間を所定の計算式を用いて計算し、時計(タイマー)部230に設定する(ステップ404a)。たとえば、自局に割り当てられる送受信可能時間を求める計算式として次の式(4)がある。
自局に割り当てられる送受信可能時間=n×(送受信可能時間×論理局番号)
(n=:1,2,3,4、……)・・・(4)
ここで子局20nは、自局に割り当てられる送受信可能時間が判明したので電力供給制御機能250により送受信機280の電源を切る(ステップ405)。
その後、子局20nは、ステップ406〜ステップ411の処理を実施する。これらの処理は実施の形態1で述べた図5のステップ406〜ステップ411と同様であるため説明を省略する。
以上説明したように、実施の形態2におけるセンサーデータ収集システムによれば、実施の形態1で述べた図4に示す通信動作を実現することができ、実施の形態1のシステムと同様の効果を得ることができる。
尚、上述した実施の形態2においては、CPU140が、上記ステップ302aの処理を実行することによりこの発明における「論理子局番号生成手段」が、上記ステップ303の処理を実行することによりこの発明における「通信初期化パケット送信手段」が、それぞれ実現されている。また、CPU260が、上記ステップ404aの処理を実行することによりこの発明における「子局送受信可能時間算出手段」が実現されている。
実施の形態3.
[実施の形態3のシステム構成]
次に、図8を参照して本発明の実施の形態3について説明する。本実施形態のシステムは、図1に示す構成において、図8のルーチンを実施することで実現することができる。
[実施の形態3における特徴的制御]
上述した実施の形態1では、子局20nから親局100へのポーリング(逆ポーリング)を行っている。これに比して、本実施の形態では、親局100から子局20nへの通常のポーリングを行う点が異なっている。
通常のポーリングを採用する場合は、親局100は、子局20nへ送信しなければならないデータ、例えば、子局20nへのコマンドなどを子局20nへのポーリング要求パケット502に載せて、通信周期に従い各子局20nに順次送信する。子局20nは自局に割り当てられた送受信可能時間になると送受信機280に電力を供給してアウェイク状態に移行する。そして親局100からのポーリング要求パケット502を受信し、親局100の要求に従ってセンシング情報などを載せたポーリング応答パケット503を送信する。ポーリング応答パケット503を送信後、子局20nは直ちに送受信機280に供給する電力を停止しスリープ状態に移行する。
実施の形態3における省電力通信方式の制御詳細について説明する。
図8は、上述の省電力通信方式を実現するために、本システムが実行する制御ルーチンのフローチャートである。図8の左側は親局100の動作を示したものである。一方、図8の右側は子局20nの動作を示したものである。
まず、親局100の動作について説明する。親局100は、ステップ301〜ステップ303の処理を実施する。これらの処理は、実施の形態1で述べた図5のステップ301〜ステップ303と同様であるため説明を省略する。
その後、子局20nの送信可能時間になると親局100は子局20n(例えば子局200)に対してデータを要求するポーリング要求パケット502を送信する(ステップ409)。このとき、ポーリング要求パケット502に子局200に対するコマンドを載せることもできる。
次に、親局100は子局200からのポーリング応答を待つ受信待ちモードに移行する(ステップ304)。子局200からのポーリング応答パケット503を受信すると、このパケットの中に子局200のセンシング情報が格納されているので、親局100はセンシング情報の処理を実施しなければならないが、本提案とは直接関連がないためここでは説明を省略する。
次に親局100は、次の子局20n(例えば子局201)の送信可能時間になると子局201に対してデータを要求するポーリング要求パケット502を送信し(ステップ409)、子局201からのポーリング応答を待つ受信待ちモードに移行する(ステップ304)。その後、各子局20nについてステップ409とステップ304を繰り返す。
次に、子局20nの動作について説明する。子局20nはステップ401〜ステップ407の処理を実施する。これらの処理は、実施の形態1で述べた図5のステップ401〜ステップ407と同様であるため説明を省略する。
その後、電力供給制御機能250により送受信機280の電源を入れ(ステップ408)、親局100からのポーリング要求パケット502の受信を待つ受信待ちモードに移行する(ステップ410)。
次に子局20nは、親局100からのポーリング要求パケット502を受信する。ポーリング要求パケット502には自局に対するコマンド、例えばパラメータ変更要求など、が含まれているので、子局20nは、受信したコマンドに対応した処理を実施する(ステップ411)。
次に子局20n(n=0、1、2、3、……)は、親局100へステップ407で取得したセンシング情報を載せたポーリング応答パケット503を送信する(ステップ305)。
次に子局20nは、ステップ405に戻り送受信機280の電源を切る。以後、ステップ405からステップ305を繰り返す。
以上説明したように、実施の形態3におけるセンサーデータ収集システムによれば、実施の形態1で述べたように、単純な構成と方式で、センサーである子局20nの消費電力を削減できる。
実施の形態4.
[実施の形態4のシステム構成]
次に、図9を参照して本発明の実施の形態4について説明する。本実施形態のシステムは、図1に示す構成において、図9のルーチンを実施することで実現することができる。
[実施の形態4における特徴的制御]
上述した実施の形態2では、子局20nから親局100へのポーリング(逆ポーリング)を行っている。これに比して、本実施の形態では、親局100から子局20nへの通常のポーリングを行う点が異なっている。
実施の形態4における省電力通信方式の制御詳細について説明する。
図9は、上述の省電力通信方式を実現するために、本システムが実行する制御ルーチンのフローチャートである。図9の左側は親局100の動作を示したものである。一方、図9の右側は子局20nの動作を示したものである。
まず、親局100の動作について説明する。親局100は、ステップ301、ステップ302a、およびステップ303の処理を実施する。これらの処理は、実施の形態2で述べたステップ301、ステップ302a、およびステップ303と同様であるため説明を省略する。
その後、親局100は自配下のすべての子局20nについて、各子局に割り当てられる送受信可能時間を所定の計算式(例えば式(4))を用いて計算し、親局100の記憶部120に記憶する(ステップ404b)。
その後、子局20n(例えば子局200)の送信可能時間になると親局100は子局200に対してデータを要求するポーリング要求パケット502を送信する(ステップ409)。このとき、ポーリング要求パケット502に子局200に対するコマンドを載せることができる。
次に、親局100は子局200からのポーリング応答を待つ受信待ちモードに移行する(ステップ304)。子局200からのポーリング応答パケット503を受信すると、このパケットの中に子局200のセンシング情報が格納されているので、親局100はセンシング情報の処理を実施しなければならないが、本提案とは直接関連がないためここでは説明を省略する。
次に親局100は、子局20n(例えば子局201)の送信可能時間になると子局201に対してデータを要求するポーリング要求パケット502を送信し(ステップ409)、子局201からのポーリング応答を待つ受信待ちモードに移行する(ステップ304)。その後、各子局20nについてステップ409とステップ304を繰り返す。
次に、子局20nの動作について説明する。子局20nはステップ401〜ステップ403、ステップ404a、ステップ405〜ステップ408の処理を実施する。これらの処理は、実施の形態2で述べたステップ401〜ステップ403、ステップ404a、ステップ405〜ステップ408と同様であるため説明を省略する。
その後、電力供給制御機能250により送受信機280の電源を入れ(ステップ408)、親局100からのポーリング要求パケット502の受信を待つ受信待ちモードに移行する(ステップ410)。
次に子局20nは、親局100からのポーリング要求パケット502を受信する。ポーリング要求パケット502には自局に対するコマンド、例えばパラメータ変更要求など、が含まれているので、子局20nは、受信したコマンドに対応した処理を実施する(ステップ411)。
次に子局20nは、親局100へステップ407で取得したセンシング情報を載せたポーリング応答パケット503を送信する(ステップ305)。
次に子局20nは、ステップ405に戻り送受信機280の電源を切る。以後、ステップ405からステップ305を繰り返す。
以上説明したように、実施の形態4におけるセンサーデータ収集システムによれば、実施の形態2で述べたように、単純な構成と方式で、センサーである子局20nの消費電力を削減できる。
なお、上述した実施の形態1〜実施の形態4では、送受信機280が子局の中で最も電力を消費するため、送受信機280についてのみ電力供給を制御する旨記述したが、CPU260と時計230と記憶部240以外のすべてのペリフェラルの供給電力を制御すれば、さらなる省電力が期待できる。
実施の形態5.
[実施の形態5のシステム構成]
次に、図10を参照して本発明の実施の形態5について説明する。実施の形態5では、親局100と子局20nの時刻同期について説明する。
[実施の形態5における特徴的制御]
図10は、親局100と子局20nの時刻同期方式について説明するための図である。図10に示すとおり、実施の形態5では、親局100は、通信初期化時、および、子局20nとのポーリング実施時に、パケットに基準時間(基準時計値)を載せて送信する。これを受信した子局20nは、親局100がシステム基準時計値を取得するのに要した時間701、親局100がパケット生成処理に要した時間702、通信に要する時間801、802、803、自局がデータ処理に要する時間901、および自局時計に値をセットする時間902を差し引いて親局100が基準時計値を取得した時間との差分Tを算出し、その時間Tを受信した基準時計値から差し引いて自局の時計に設定する。こうすることにより局間の時間の誤差を僅差に保つことができ、システム全体の時刻同期を容易にし、送受信可能時間の局間の間隔を精度よく設定することができる。時刻同期により各子局20nの送受信可能時間の重なりを防ぐためのマージンを低減することが可能であり、通信効率を高めることができる。
なお、近年の時計LSI(通称リアルタイムクロック)の精度はよく、その誤差は1ヶ月に±1分程度のものが一般的である。すると、先の例で示した通信周期が60秒、子局台数15台のシステムで通信周期毎に時刻同期を行うと、その誤差は±0.7ミリ秒程度である。システムによって、例えば通信周期が長いなど誤差に関して寛大である場合は、時刻同期処理がポーリング毎には必要ない場合がある。例えば、時刻同期を1時間に1回としても、その誤差は±42ミリ秒程度となる。これが許されるシステムの場合は、時刻同期は1時間に1回でよく、これにより、子局20nにおいてシステム基準時計値を受信する処理、自局の時計の補正をかける処理の実施回数を大幅に減らすことができる。このように、システム許容範囲内で時刻同期の回数を調整することができ、特別な機能や回路を必要とすることなく、単純な構成と方式で、センサーである子局の消費電力を削減できる。
100 親局
200−204 子局
20n 子局
110 基準時計
120 記憶部
130 MM I/F
140 CPU
150 送受信機
160 バス
170 伝送路
210 センシング手段
220 A/D変換器
230 時計
240 記憶部
250 電力供給制御機能
260 CPU
270 バス
280 送受信機
290 伝送路
501 通信初期化パケット
502 ポーリング要求パケット
503 ポーリング応答パケット

Claims (5)

  1. 送受信機を有する親局と、外部物理量や環境量を検出するセンシング手段と送受信機とを有する複数の子局とを備えるセンサーデータ収集システムであって、
    システム全体の基準時間を管理する基準時計と、
    前記基準時間に基づいて、前記子局のそれぞれが前記親局と通信可能な送受信可能時間を算出する子局送受信可能時間算出手段と、を備え、
    前記子局はそれぞれ、
    自局に割り当てられた送受信可能時間以外は送受信機に電力を供給せず、自局に割り当てられた送受信可能時間にのみ送受信機に電力を供給する電力供給制御装置と、
    自局に割り当てられた送受信可能時間中にポーリング要求パケットに自局のセンシング手段が検出したセンシング情報を載せて前記親局に送信する逆ポーリング要求手段と、を備え、
    前記親局は、前記ポーリング要求パケットに応答して、前記要求情報を載せたポーリング応答パケットを返信する逆ポーリング応答手段、を備えること、
    を特徴とするセンサーデータ収集システム。
  2. 前記親局は、前記子局送受信可能時間算出手段を備え、
    前記子局送受信可能時間算出手段は、予め定められた通信周期とシステム構成情報とに基づいて、前記子局のそれぞれが前記親局と通信可能な送受信可能時間を算出すること、
    を特徴とする請求項1に記載のセンサーデータ収集システム。
  3. 前記親局は、
    予め定められたシステム構成情報に基づいて、前記子局の物理局番号を連番に振り直すことにより論理局番号を生成する論理子局番号生成手段と、
    通信初期化時に、総子局台数とパケット送信先の前記子局の論理局番号と予め定められた通信周期とを含む通信初期化パケットを前記各子局に送信する通信初期化パケット送信手段と、を備え、
    前記子局は、前記子局送受信可能時間算出手段を備え、
    前記子局送受信可能時間算出手段は、前記通信初期化パケットに含まれる総子局台数と論理局番号と通信周期とに基づいて、自局に割り当てられる送受信可能時間を算出すること、
    を特徴とする請求項1記載のセンサーデータ収集システム。
  4. 前記子局送受信可能時間算出手段は、前記子局間で重複しない送受信可能時間を算出すること、
    を特徴とする請求項1乃至3のいずれか1項に記載のセンサーデータ収集システム。
  5. 前記ポーリング応答パケットには、前記基準時計が管理する基準時間が載せられ、
    前記子局は、前記ポーリング応答パケットに載せられた基準時間に基づいて、自局の時計値を補正する補正機能を更に備えること、
    を特徴とする請求項1乃至4のいずれか1項に記載のセンサーデータ収集システム。
JP2013154783A 2013-07-25 2013-07-25 センサーデータ収集システム Active JP5991280B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013154783A JP5991280B2 (ja) 2013-07-25 2013-07-25 センサーデータ収集システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154783A JP5991280B2 (ja) 2013-07-25 2013-07-25 センサーデータ収集システム

Publications (2)

Publication Number Publication Date
JP2015026949A true JP2015026949A (ja) 2015-02-05
JP5991280B2 JP5991280B2 (ja) 2016-09-14

Family

ID=52491286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154783A Active JP5991280B2 (ja) 2013-07-25 2013-07-25 センサーデータ収集システム

Country Status (1)

Country Link
JP (1) JP5991280B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745223A (zh) * 2022-03-22 2022-07-12 深圳市合广测控技术有限公司 多从站的管理方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116408A (ja) * 2005-10-20 2007-05-10 Nippon Telegr & Teleph Corp <Ntt> マルチホップ無線通信システムとその基地局及び無線端末
JP2008004035A (ja) * 2006-06-26 2008-01-10 Matsushita Electric Works Ltd 火災報知システム
JP2008306472A (ja) * 2007-06-07 2008-12-18 Hitachi Ltd センサネットシステム、及びセンサノード

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116408A (ja) * 2005-10-20 2007-05-10 Nippon Telegr & Teleph Corp <Ntt> マルチホップ無線通信システムとその基地局及び無線端末
JP2008004035A (ja) * 2006-06-26 2008-01-10 Matsushita Electric Works Ltd 火災報知システム
JP2008306472A (ja) * 2007-06-07 2008-12-18 Hitachi Ltd センサネットシステム、及びセンサノード

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745223A (zh) * 2022-03-22 2022-07-12 深圳市合广测控技术有限公司 多从站的管理方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
JP5991280B2 (ja) 2016-09-14

Similar Documents

Publication Publication Date Title
CN104412649A (zh) 一种心跳的调整方法、装置和终端
US9146298B2 (en) Wireless communication system, slave station device, master station device, and wireless communication system control method
JP6506165B2 (ja) 携帯端末機の低電力の近距離通信機能の操作方法及び装置
US8867421B2 (en) Correction of clock errors in a wireless station to enable reduction of power consumption
US8634341B1 (en) Method and apparatus for iterative synchronization of two or more electronic devices
CN107960151B (zh) 无线通信系统中的响应装置和请求装置及其实现方法
CN108777862B (zh) 一种蓝牙传输方法、蓝牙控制器以及蓝牙设备
US20170153680A1 (en) Power Management System and Method
JP2015525395A (ja) 測定装置及び通信方法
CN112637938B (zh) 一种设备唤醒的方法、数据传输的方法以及相关装置
US20120127902A1 (en) System and method for mac layer clock drift compensation
JP2009206749A (ja) マルチホップ無線ネットワークシステム
EP3861799B1 (en) Cellular modem for low power applications
US20140359326A1 (en) Embedded controller for power-saving and method thereof
TW201508468A (zh) 功率信號介面
KR100726476B1 (ko) 이기종 센서노드의 전력소모 최소화를 위한 시간동기화방법 및 이를 적용한 네트워크
JP5991280B2 (ja) センサーデータ収集システム
US9176777B2 (en) System for determining operating time of a computer to execute assigned tasks based on an amount of change per unit time of a stored electric power
JP6251363B1 (ja) 電池駆動型無線通信システムおよび通信方法
CN109076100B (zh) 用于智能设备的协作传输管理
JP6473494B1 (ja) 電池駆動型無線通信システムおよび同期補正方式
US20210192400A1 (en) Reservation method and reservation apparatus for electronic device
CN104053218B (zh) 无线通信方法、无线装置和无线协调器
CN109039971B (zh) 一种数据发送方法及装置
WO2020211861A1 (zh) 终端设备的调度方法、终端设备和基站

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5991280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250