JP2015026934A - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP2015026934A
JP2015026934A JP2013154446A JP2013154446A JP2015026934A JP 2015026934 A JP2015026934 A JP 2015026934A JP 2013154446 A JP2013154446 A JP 2013154446A JP 2013154446 A JP2013154446 A JP 2013154446A JP 2015026934 A JP2015026934 A JP 2015026934A
Authority
JP
Japan
Prior art keywords
clock
circuit
pixel
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2013154446A
Other languages
English (en)
Inventor
和樹 比津
Kazuki Hitsu
和樹 比津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013154446A priority Critical patent/JP2015026934A/ja
Priority to US14/150,032 priority patent/US20150029371A1/en
Publication of JP2015026934A publication Critical patent/JP2015026934A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

【課題】信号の読み出し速度を維持しつつ、分解能を上げるとともに、基準クロックの周波数の上昇を抑制する。【解決手段】光電変換した電荷を蓄積する画素PCがマトリックス状に配置された画素アレイ部1と、画素PCから読み出された画素信号と基準電圧VREFとの比較結果を参照した上で、第1クロックと第1クロックと周期の異なる第2クロックとの位相関係に基づいてカウント動作を行うカラムADC回路4と、カラムADC回路4のカウント結果に基づいて画素信号のAD変換値を算出する演算回路9とを備える。【選択図】図1

Description

本発明の実施形態は、固体撮像装置に関する。
固体撮像装置では、画素から読み出された信号をデジタル値に変換するために、基準クロックに従ってカウント動作させる方法が用いられている。固体撮像装置からの信号の読み出し速度を維持しつつ、分解能を上げるには、基準クロックの周波数を上げる必要があった。
特開2011−254246号公報
本発明の一つの実施形態は、信号の読み出し速度を維持しつつ、分解能を上げるとともに、基準クロックの周波数の上昇を抑制することが可能な固体撮像装置を提供することを目的とする。
本発明の一つの実施形態によれば、画素アレイ部と、カラムADC回路と、演算回路とが設けられている。画素アレイ部は、光電変換した電荷を蓄積する画素がマトリックス状に配置されている。カラムADC回路は、前記画素から読み出された画素信号と基準電圧との比較結果を参照した上で、第1クロックと前記第1クロックと周期の異なる第2クロックとの位相関係に基づいてカウント動作を行う。演算回路は、前記カラムADC回路のカウント結果に基づいて前記画素信号のAD変換値を算出する。
図1は、第1実施形態に係る固体撮像装置の概略構成を示すブロック図である。 図2は、図1の固体撮像装置の画素の構成例を示す回路図である。 図3は、図1の基準電圧発生回路およびカラムADC回路の構成例を示す回路図である。 図4は、図3の時間デジタル変換器の構成例を示すブロック図である。 図5は、図1の画素の読み出し動作時の各部の電圧波形を示すタイミングチャートである。 図6は、図4の時間デジタル変換器の動作を示すタイミングチャートである。 図7は、図4の起動回路22、バーニアオシレータ23およびマスク回路24、26の構成例を示す回路図である。 図8は、図7の遅延素子H1〜H5の構成例を示す回路図である。 図9は、図4のリップルカウンタ25、27の構成例を示す回路図である。 図10は、図9のリップルカウンタ25、27の動作を示すタイミングチャートである。 図11は、図9のフリップフロップF1〜F3の構成例を示す回路図である。 図12は、図1の遅延時間制御回路の構成例を示すブロック図である。 図13は、第2の実施形態に係る固体撮像装置における画素の読み出し動作時の各部の電圧波形を示すタイミングチャートである。 図14は、第2の実施形態に係る固体撮像装置における時間デジタル変換器の動作を示すタイミングチャートである。 図15は、第3の実施形態に係る固体撮像装置が適用されたデジタルカメラの概略構成を示すブロック図である。
以下に添付図面を参照して、実施形態に係る固体撮像装置を詳細に説明する。なお、これらの実施形態により本発明が限定されるものではない。
(第1実施形態)
図1は、第1実施形態に係る固体撮像装置の概略構成を示すブロック図である。
図1において、固体撮像装置には、画素アレイ部1が設けられている。画素アレイ部1には、光電変換した電荷を蓄積する画素PCがロウ方向RDおよびカラム方向CDにm(mは正の整数)行×n(nは正の整数)列分だけマトリックス状に配置されている。また、この画素アレイ部1において、ロウ方向RDには画素PCの読み出し制御を行う水平制御線Hlinが設けられ、カラム方向CDには画素PCから読み出された信号を伝送する垂直信号線Vlinが設けられている。
また、固体撮像装置には、読み出し対象となる画素PCを垂直方向に走査する垂直走査回路2、画素PCとの間でソースフォロア動作を行うことにより、画素PCから垂直信号線Vlinにカラムごとに画素信号を読み出す負荷回路3、各画素PCの信号成分をCDSにてカラムごとに検出するカラムADC回路4、読み出し対象となる画素PCを水平方向に走査する水平走査回路5、カラムADC回路4に基準電圧VREFを出力する基準電圧発生回路6および各画素PCの読み出しや蓄積のタイミングを制御するタイミング制御回路7が設けられている。なお、基準電圧VREFはランプ波を用いることができる。ここで、カラムADC回路4は、画素PCから読み出された画素信号と基準電圧VREFとの比較結果を参照した上で、基準クロックMCKと基準クロックMCKと周期の異なるバーニアクロックBCKとの位相関係に基づいてカウント動作を行うことができる。なお、バーニアクロックBCKの周期は、バーニアクロックBCKの1周期ごとの基準クロックMCKとの位相差の変動で基準クロックMCKの周期が分割されるように設定される。
さらに、固体撮像装置には、バーニアクロックBCKの周期を制御する遅延時間制御回路8およびカラムADC回路4のカウント結果に基づいて画素信号のAD変換値を算出する演算回路9が設けられている。遅延時間制御回路8は、バーニアクロックBCKの周期を制御するため、遅延時間制御電圧VDをカラムADC回路4に出力する。なお、演算回路9の構成を簡単化するために、バーニアクロックBCKは、基準クロックMCKに対して1/2(nは正の整数)だけ周期が長くなるように設定することが好ましい。この場合、演算回路9は、nビットシフタおよび加算器で構成することができる。
そして、垂直走査回路2にて画素PCが垂直方向に走査されることで、ロウ方向RDに画素PCが選択される。そして、負荷回路3において、その画素PCとの間でソースフォロア動作が行われることにより、画素PCから読み出された画素信号のリセットレベルおよび信号レベルが垂直信号線Vlinを介して伝送され、カラムADC回路4に送られる。また、基準電圧発生回路6において、基準電圧VREFとしてランプ波が設定され、カラムADC回路4に送られる。そして、画素PCから読み出された画素信号のリセットレベルがカラムADC回路4に送られている時に、ランプ波のレベルがリセットレベルに達した後、基準クロックMCKとバーニアクロックBCKとの位相関係が反転されるまで、基準クロックMCKのカウント動作が行われることで、リセットレベルにおける第1カウント値NR1が算出される。さらに、基準クロックMCKとバーニアクロックBCKとの位相関係が反転された後、基準クロックMCKのカウント動作が行われることで、リセットレベルにおける第2カウント値NR2が算出される。そして、演算回路9において、第1カウント値NR1と第2カウント値NR2に基づいて、画素信号のリセットレベルにおけるAD変換値が算出される。
また、画素PCから読み出された画素信号の信号レベルがカラムADC回路4に送られている時に、ランプ波のレベルが信号レベルに達した後、基準クロックMCKとバーニアクロックBCKとの位相関係が反転されるまで、基準クロックMCKのカウント動作が行われることで、信号レベルにおける第1カウント値NS1が算出される。さらに、基準クロックMCKとバーニアクロックBCKとの位相関係が反転された後、基準クロックMCKのカウント動作が行われることで、信号レベルにおける第2カウント値NS2が算出される。そして、演算回路9において、第1カウント値NS1と第2カウント値NS2に基づいて、画素信号の信号レベルにおけるAD変換値が算出される。そして、その時の信号レベルのAD変換値とリセットレベルのAD変換値の差分がとられることで各画素PCの信号成分がCDSにて検出され、出力信号S1として出力される。
この時、各第2カウント値NR2、NS2は、第1カウント値NR1、NS1のバーニアとして用いることができる。すなわち、第1カウント値NR1、NS1を画素信号のAD変換値の下位ビット、第2カウント値NR2、NS2を画素信号のAD変換値の上位ビットとして用いることができる。
これにより、基準クロックMCKの周波数の上昇を抑制しつつ、画素信号のAD変換値の分解能を上げることが可能となる。このため、消費電力の増大を抑制しつつ、撮像画像の画質を向上させることが可能となる。
以下、図1の固体撮像装置についてより詳細に説明する。
図2は、図1の固体撮像装置の画素の構成例を示す回路図である。
図2において、各画素PCには、フォトダイオードPD、行選択トランジスタTa、増幅トランジスタTb、リセットトランジスタTrおよび読み出しトランジスタTdが設けられている。また、増幅トランジスタTbとリセットトランジスタTrと読み出しトランジスタTdとの接続点には検出ノードとしてフローティングディフュージョンFDが形成されている。
そして、画素PCにおいて、読み出しトランジスタTdのソースは、フォトダイオードPDに接続され、読み出しトランジスタTdのゲートには、読み出し信号ΦDが入力される。また、リセットトランジスタTrのソースは、読み出しトランジスタTdのドレインに接続され、リセットトランジスタTrのゲートには、リセット信号ΦRが入力され、リセットトランジスタTrのドレインは、電源電位VDDに接続されている。また、行選択トランジスタTaのゲートには、行選択信号ΦAが入力され、行選択トランジスタTaのドレインは、電源電位VDDに接続されている。また、増幅トランジスタTbのソースは、垂直信号線Vlinに接続され、増幅トランジスタTbのゲートは、読み出しトランジスタTdのドレインに接続され、増幅トランジスタTbのドレインは、行選択トランジスタTaのソースに接続されている。なお、図1の水平制御線Hlinは、読み出し信号ΦD、リセット信号ΦRおよび行選択信号ΦAをロウごとに画素PCに伝送することができる。図1の負荷回路3には定電流源GA1がカラムごとに設けられ、定電流源GA1は垂直信号線Vlinに接続されている。
図3は、図1の基準電圧発生回路およびカラムADC回路の構成例を示す回路図である。
図3において、基準電圧発生回路6には、オペアンプPA1、コンデンサC1、スイッチW1、定電流源GA2および基準電源VRが設けられている。
コンデンサC1はオペアンプPA1の出力端子と反転入力端子との間に接続されている。スイッチW1はコンデンサC1に並列に接続されている。オペアンプPA1の反転入力端子には定電流源GA2が接続されている。オペアンプPA1の非反転入力端子には基準電源VRが接続されている。
そして、スイッチW1がオフすると、定電流源GA2から電流がコンデンサC1に流れ込み、コンデンサC1の端子間電圧が上昇する。そして、コンデンサC1の端子間電圧に応じた基準電圧VREFがオペアンプPA1から出力される。ここで、コンデンサC1の端子間電圧は、定電流源GA2からコンデンサC1に流れ込んだ電流の積分で与えることができるため、基準電圧VREFとしてランプ波を得ることができる。また、スイッチW1をオンすることにより、コンデンサC1の端子間電圧をゼロにすることができ、オペアンプPA1の出力をリセットすることができる。
一方、カラムADC回路4には、レベル比較器CP1〜CPnおよび時間デジタル変換器TD1〜TDnがカラムごとに設けられている。そして、レベル比較器CP1〜CPnは、第1列目〜第n列目の画素PC1〜PCnにそれぞれ接続されている。レベル比較器CP1には、コンデンサC2、C3、コンパレータPA2、スイッチW2、W3およびインバータV1が設けられている。
そして、コンパレータPA2の反転入力端子にはコンデンサC2を介して垂直信号線Vlinが接続され、コンパレータPA2の非反転入力端子にはオペアンプPA1の出力端子が接続されている。コンパレータPA2の反転入力端子と出力端子との間にはスイッチW2が接続されている。インバータV1の入力端子にはコンデンサC3を介してコンパレータPA2の出力端子が接続され、インバータV1の出力端子には時間デジタル変換器TD1が接続されている。インバータV1の反転入力端子と出力端子との間にはスイッチW3が接続されている。また、時間デジタル変換器TD1には、遅延時間制御電圧VDおよび基準クロックMCKが入力される。
図4は、図3の時間デジタル変換器の構成例を示すブロック図である。
図4において、時間デジタル変換器TD1には、位相比較器21、起動回路22、バーニアオシレータ23、マスク回路24、26およびリップルカウンタ25、27が設けられている。位相比較器21は、基準クロックMCKとバーニアクロックBCKとの位相を比較する。起動回路22は、レベル比較器CP1の出力P2および位相比較器21の出力PHに基づいて、バーニアオシレータ23の起動および停止を制御する。バーニアオシレータ23は、遅延時間制御電圧VDに基づいてバーニアクロックBCKを生成する。マスク回路24は、基準電圧VREFが画素PCから読み出された画素信号に達した後、基準クロックMCKとバーニアクロックBCKとの位相関係が反転するまで基準クロックMCKを通過させる。リップルカウンタ25は、マスク回路24にて通過された基準クロックMCKをカウントする。マスク回路26は、基準電圧VREFが画素PCから読み出された画素信号に達した後であって、基準クロックMCKとバーニアクロックBCKとの位相関係が反転した後に基準クロックMCKを通過させる。リップルカウンタ27は、マスク回路26にて通過された基準クロックMCKをカウントする。
図5は、図1の画素の読み出し動作時の各部の電圧波形を示すタイミングチャートである。
図5において、行選択信号ΦAがロウレベルの場合、行選択トランジスタTaがオフ状態となりソースフォロワ動作しないため、垂直信号線Vlinに信号は出力されない。この時、読み出し信号ΦDとリセット信号ΦRがハイレベルになると、読み出しトランジスタTdおよびリセットトランジスタTrがオンする。そして、フォトダイオードPDに蓄積されていた電荷がフローティングディフュージョンFDに排出され、リセットトランジスタTrを介して電源電位VDDに排出される。
フォトダイオードPDに蓄積されていた電荷が電源電位VDDに排出された後、読み出し信号ΦDがロウレベルになると、フォトダイオードPDでは、有効な信号電荷の蓄積が開始される。そして、リセット信号ΦRが立ち上がると、リセットトランジスタTrがオンし、リーク電流などで発生した余分な電荷がフローティングディフュージョンFDに転送される。
次に、行選択信号ΦAがハイレベルになると、画素PCの行選択トランジスタTaがオンし、増幅トランジスタTbのドレインに電源電位VDDが印加されることで、増幅トランジスタTbと定電流源GA1とでソースフォロアが構成される。そして、フローティングディフュージョンFDのリセットレベルRLに応じた電圧が増幅トランジスタTbのゲートにかかる。ここで、増幅トランジスタTbと定電流源GA1とでソースフォロアが構成されているので、増幅トランジスタTbのゲートに印加された電圧に垂直信号線Vlinの電圧が追従し、リセットレベルRLの画素信号Vsigが垂直信号線Vlinを介してカラムADC回路4に出力される。
そして、リセットレベルRLの画素信号Vsigが垂直信号線Vlinに出力されている時に、リセットパルスφCがスイッチW2に印加され、スイッチW2がオンすると、コンパレータPA2の反転入力端子の入力電圧が出力電圧P1でクランプされ、動作点が設定される。この時、垂直信号線Vlinからの画素信号Vsigとの差分電圧に応じた電荷がコンデンサC2に保持され、コンパレータPA2の入力電圧がゼロ設定される。また、リセットパルスφCがスイッチW3に印加され、スイッチW3がオンすると、インバータV1の入力端子の入力電圧が出力電圧でクランプされ、動作点が設定される。この時、インバータV1からの出力信号との差分電圧に応じた電荷がコンデンサC3に保持され、インバータV1の入力電圧がゼロ設定される。
スイッチW2、W3がオフした後、リセットレベルRLの画素信号VsigがコンデンサC2を介してコンパレータPA2に入力された状態で、基準電圧VREFとしてランプ波が与えられ、リセットレベルRLの画素信号Vsigと基準電圧VREFとが比較される。そして、コンパレータPA2の出力電圧P1はインバータV1にて反転された後、時間デジタル変換器TD1に入力される。
そして、時間デジタル変換器TD1において、基準電圧VREFのレベルがリセットレベルRLの画素信号Vsigに一致すると、コンパレータPA2の出力電圧P1が立ち下がり、出力電圧P1がインバータV1にて反転されることでレベル比較器CP1の出力P2が立ち上がる。レベル比較器CP1の出力P2が立ち上がると、位相比較器21の出力PHが立ち上がり、マスク回路24を介して基準クロックMCKがリップルカウンタ25に入力されることで、基準クロックMCKがカウントされる。また、レベル比較器CP1の出力P2が立ち上がると、起動回路22を介してバーニアオシレータ23が起動され、バーニアオシレータ23にてバーニアクロックBCKが生成される。そして、位相比較器21において、基準クロックMCKとバーニアクロックBCKとの位相が比較される。そして、基準クロックMCKとバーニアクロックBCKとの位相が反転すると、レベル比較器CP1の出力P2が立ち下がり、リップルカウンタ25への基準クロックMCKの入力がマスク回路24にて遮断され、リセットレベルRLの第1カウント値NR1がリップルカウンタ25に保持される。また、レベル比較器CP1の出力P2が立ち下がると、起動回路22を介してバーニアオシレータ23が停止される。さらに、レベル比較器CP1の出力P2が立ち下がると、マスク回路26を介して基準クロックMCKがリップルカウンタ27に入力されることで、基準クロックMCKがカウントされる。そして、AD変換終了時にAD変換終了信号EAが立ち下がると、リップルカウンタ27への基準クロックMCKの入力がマスク回路26にて遮断され、リセットレベルRLの第2カウント値NR2がリップルカウンタ27に保持される。
そして、第1カウント値NR1と第2カウント値NR2が演算回路9に送られ、第1カウント値NR1と第2カウント値NR2に基づいて、画素信号のリセットレベルにおけるAD変換値DRが算出される。なお、バーニアクロックBCKの周期をHB、基準クロックMCKの周期をHMとすると、AD変換値DRは、以下の式で算出することができる。
DR=NR2×HM/(HM−HB)+NR1
次に、読み出し信号ΦDが立ち上がると、読み出しトランジスタTdがオンし、フォトダイオードPDに蓄積されていた電荷がフローティングディフュージョンFDに転送され、フローティングディフュージョンFDの信号レベルSLに応じた電圧が増幅トランジスタTbのゲートにかかる。ここで、増幅トランジスタTbと定電流源GA1とでソースフォロアが構成されているので、増幅トランジスタTbのゲートに印加された電圧に垂直信号線Vlinの電圧が追従し、信号レベルSLの画素信号Vsigが垂直信号線Vlinを介してカラムADC回路4に出力される。
そして、カラムADC回路4において、信号レベルSLの画素信号VsigがコンデンサC2を介してコンパレータPA2に入力された状態で、基準電圧VREFとしてランプ波が与えられ、信号レベルSLの画素信号Vsigと基準電圧VREFとが比較される。そして、コンパレータPA2の出力電圧P1はインバータV1にて反転された後、時間デジタル変換器TD1に入力される。
そして、時間デジタル変換器TD1において、基準電圧VREFのレベルが信号レベルRLの画素信号Vsigに一致すると、コンパレータPA2の出力電圧P1が立ち下がり、出力電圧P1がインバータV1にて反転されることでレベル比較器CP1の出力P2が立ち上がる。レベル比較器CP1の出力P2が立ち上がると、位相比較器21の出力PHが立ち上がり、マスク回路24を介して基準クロックMCKがリップルカウンタ25に入力されることで、基準クロックMCKがカウントされる。また、レベル比較器CP1の出力P2が立ち上がると、起動回路22を介してバーニアオシレータ23が起動され、バーニアオシレータ23にてバーニアクロックBCKが生成される。そして、位相比較器21において、基準クロックMCKとバーニアクロックBCKとの位相が比較される。そして、基準クロックMCKとバーニアクロックBCKとの位相が反転すると、レベル比較器CP1の出力P2が立ち下がり、リップルカウンタ25への基準クロックMCKの入力がマスク回路24にて遮断され、信号レベルSLの第1カウント値NS1がリップルカウンタ25に保持される。また、レベル比較器CP1の出力P2が立ち下がると、起動回路22を介してバーニアオシレータ23が停止される。さらに、レベル比較器CP1の出力P2が立ち下がると、マスク回路26を介して基準クロックMCKがリップルカウンタ27に入力されることで、基準クロックMCKがカウントされる。そして、AD変換終了時にAD変換終了信号EAが立ち下がると、リップルカウンタ27への基準クロックMCKの入力がマスク回路26にて遮断され、信号レベルSLの第2カウント値NS2がリップルカウンタ27に保持される。
そして、第1カウント値NS1と第2カウント値NS2が演算回路9に送られ、第1カウント値NS1と第2カウント値NS2に基づいて、画素信号の信号レベルにおけるAD変換値DSが算出される。AD変換値DSは、以下の式で算出することができる。
DS=NS2×HM/(HM−HB)+NS1
そして、リセットレベルRLのAD変換値DRと信号レベルSLのAD変換値DSとの差分DR−DSが算出され、出力信号S1として出力される。
ここで、第1カウント値NR1、NS1のカウント動作時のみバーニアオシレータ23を動作させることにより、バーニアオシレータ23の消費電力を低減することが可能となる。
図6は、図4の時間デジタル変換器の動作を示すタイミングチャートである。なお、図6では、第1カウント値NS1と第2カウント値NS2を算出する場合を例にとった。
図6において、基準電圧VREFのレベルが信号レベルRLの画素信号Vsigに一致すると、レベル比較器CP1の出力P2が立ち上がる。レベル比較器CP1の出力P2が立ち上がると、起動回路22を介してバーニアオシレータ23が起動され(A1)、バーニアオシレータ23にてバーニアクロックBCKが生成される。そして、位相比較器21において、基準クロックMCKとバーニアクロックBCKとの位相が比較される(A2、A4、A5、A6)。また、レベル比較器CP1の出力P2が立ち上がると、マスク回路24を介して基準クロックMCKがリップルカウンタ25に入力されることで、基準クロックMCKがカウントされる(A3)。そして、基準クロックMCKとバーニアクロックBCKとの位相が反転すると(A6)、リップルカウンタ25への基準クロックMCKの入力がマスク回路24にて遮断され(A7)、信号レベルの第1カウント値NS1がリップルカウンタ25に保持される。また、基準クロックMCKとバーニアクロックBCKとの位相が反転すると(A6)、マスク回路26を介して基準クロックMCKがリップルカウンタ27に入力されることで、基準クロックMCKがカウントされる(A8)。さらに、基準クロックMCKとバーニアクロックBCKとの位相が反転すると(A6)、起動回路22を介してバーニアオシレータ23が停止される(A9)。
ここで、バーニアクロックBCKと基準クロックMCKとの位相関係に基づいて基準クロックMCKのカウント期間を制御することにより、クロック周波数を増大させることなく、カウント値の時間分解能を向上させることができる。
図7は、図4の起動回路22、バーニアオシレータ23およびマスク回路24、26の構成例を示す回路図である。
図7において、起動回路22にはAND回路M1が設けられ、マスク回路24にはAND回路M2が設けられ、マスク回路26にはAND回路M3が設けられている。バーニアオシレータ23には、遅延素子H1〜H5、インバータV2およびN型トランジスタN1、N2が設けられている。
遅延素子H1〜H5は直列に接続され、遅延素子H5の出力端子はN型トランジスタN1を介して遅延素子H1の入力端子に接続されている。また、遅延素子H1の入力端子にはN型トランジスタN2が接続されている。インバータV2の入力端子はN型トランジスタN1のゲートに接続され、インバータV2の出力端子はN型トランジスタN2のゲートに接続されている。また、インバータV2の入力端子はAND回路M1の出力端子に接続されている。
AND回路M1にはレベル比較器CP1の出力P2および位相比較器21の出力PHが入力される。AND回路M2にはレベル比較器CP1の出力P2、位相比較器21の出力PHおよび基準クロックMCKが入力される。AND回路M3にはレベル比較器CP1の出力P2、AD変換終了信号EAおよび基準クロックMCKが入力されるとともに、位相比較器21の出力PHが反転入力される。
そして、レベル比較器CP1の出力P2が立ち上がると、位相比較器21の出力PHが立ち上がり、AND回路M1の出力が立ち上がる。このため、N型トランジスタN1がオンするとともに、N型トランジスタN2がオフし、遅延素子H1〜H5にてリングオシレータが構成されることで、バーニアクロックBCKが生成される。また、AND回路M2を介して基準クロックMCKがリップルカウンタ25に入力されることで、基準クロックMCKがカウントされる。
また、位相比較器21において、基準クロックMCKとバーニアクロックBCKとの位相が比較される。そして、基準クロックMCKとバーニアクロックBCKとの位相が反転すると、レベル比較器CP1の出力P2が立ち下がる。このため、リップルカウンタ25への基準クロックMCKの入力がAND回路M2にて遮断される。また、レベル比較器CP1の出力P2が立ち下がると、AND回路M1の出力が立ち上がる。このため、N型トランジスタN1がオフするとともに、N型トランジスタN2がオンし、遅延素子H1、H5が切り離されることで、バーニアクロックBCKの生成が停止される。さらに、レベル比較器CP1の出力P2が立ち下がると、AND回路M3を介して基準クロックMCKがリップルカウンタ27に入力されることで、基準クロックMCKがカウントされる。そして、AD変換終了時にAD変換終了信号EAが立ち下がると、リップルカウンタ27への基準クロックMCKの入力がAND回路M3にて遮断される。
図8は、図7の遅延素子H1〜H5の構成例を示す回路図である。
図8において、例えば、遅延素子H1には、P型トランジスタP11、P12およびN型トランジスタN11、N12が設けられている。P型トランジスタP11、P12およびN型トランジスタN11、N12は直列に接続されている。P型トランジスタP11のソースは第1電位VDDに接続され、N型トランジスタN12のソースは第2電位VSSに接続されている。第1電位VDDは第2電位VSSより高くすることができ、例えば、第1電位VDDは電源電位、第2電位VSSは接地電位に設定することができる。P型トランジスタP12のゲートおよびN型トランジスタN11のゲートには入力電圧VIが入力され、P型トランジスタP12のドレインからは出力電圧VOが出力される。P型トランジスタP11のゲートにはバイアス電圧VBPが入力され、N型トランジスタN12のゲートにはバイアス電圧VBNが入力される。ここで、バイアス電圧VBPまたはバイアス電圧VBNを増大させると、遅延素子H1の負荷を軽くすることができ、入力電圧VIに対する出力電圧VOの遅延時間を減らすことができる。このため、バイアス電圧VBPまたはバイアス電圧VBNを遅延時間制御電圧VDとして用いることにより、バーニアクロックBCKの周期を制御することができる。
図9は、図4のリップルカウンタ25、27の構成例を示す回路図である。
図9において、例えば、リップルカウンタ25にはフリップフロップF1〜F3が設けられている。ここで、フリップフロップF1〜F3には、入力端子D、クロック端子CK、出力端子Qおよび反転出力端子QNが設けられている。フリップフロップF1〜F3は直列に接続されている。フリップフロップF1のクロック端子CKには基準クロックMCKが入力される。また、前段のフリップフロップF1〜F3の反転出力端子QNは、後段のフリップフロップF1〜F3のクロック端子CKに接続されている。自段のフリップフロップF1〜F3の反転出力端子QNは、自段のフリップフロップF1〜F3の入力端子Dに接続されている。
図10は、図9のリップルカウンタ25、27の動作を示すタイミングチャートである。
図10において、フリップフロップF1〜F3の出力端子Qからはクロック信号Q1、Q2、Q3がそれぞれ出力される。ここで、基準クロックMCKが2個入力されると、クロック信号Q1が1個出力され、クロック信号Q1が2個入力されると、クロック信号Q2が1個出力され、クロック信号Q2が2個入力されると、クロック信号Q3が1個出力される。このため、クロック信号Q1、Q2、Q3は、基準クロックMCKの個数に応じたデジタル値を表すことができる。
図11は、図9のフリップフロップF1〜F3の構成例を示す回路図である。
図11において、例えば、フリップフロップF1にはインバータV11〜V14およびクロックドインバータCV11〜CV14が設けられている。インバータV11、V12は直列に接続されている。クロックドインバータCV11、インバータV13、クロックドインバータCV12およびインバータV14は順次直列に接続されている。インバータV13にはクロックドインバータCV13が逆並列接続されている。インバータV14にはクロックドインバータCV14が逆並列接続されている。なお、インバータV13およびクロックドインバータCV13はスレーブラッチSLを構成し、インバータV14およびクロックドインバータCV14はマスターラッチMLを構成することができる。
ここで、インバータV11の入力端子はクロック端子CKに対応し、クロックドインバータCV11の入力端子は入力端子Dに対応し、インバータV14の入力端子は反転出力端子QNに対応しインバータV14の出力端子は出力端子Qに対応する。インバータV11からは反転クロックCKXが出力され、インバータV12からは非反転クロックCKXXが出力される。反転クロックCKXは、クロックドインバータCV11、CV14の反転クロック端子およびクロックドインバータCV12、CV13の非反転クロック端子に入力される。非反転クロックCKXXは、クロックドインバータCV11、CV14の非反転クロック端子およびクロックドインバータCV12、CV13の反転クロック端子に入力される。
そして、入力端子Dにデータが入力されている時に、クロック端子CKの電位が立ち下がると、クロックドインバータCV11を介してデータがインバータV13に入力され、インバータV13を介してクロックドインバータCV12、CV13に入力される。
次に、クロック信号CKが立ち上がると、データがクロックドインバータCV13を介してインバータV13の入力端子に戻され、マスターラッチMLに保持される。また、データは、クロックドインバータCV12を介してインバータV14に入力され、出力端子Qおよび反転出力端子QNを介して出力される。次に、クロック信号CKが立ち下がると、データがクロックドインバータCV14を介してインバータV14の入力端子に戻され、スレーブラッチSLに保持される。
図12は、図1の遅延時間制御回路の構成例を示すブロック図である。
図12において、遅延時間制御回路8には、位相比較器31、ローパスフィルタ32、チャージポンプ回路33およびレプリカオシレータ34が設けられている。なお、レプリカオシレータ34は、図7のバーニアオシレータ23の動作を模擬することができる。ここで、レプリカオシレータ34では、インバータH1〜H5の段数を変えることで発振周波数を調整することができる。
そして、位相比較器31において、レプリカオシレータ34にて生成されたレプリカクロックSKと外部クロックEKとの間で位相が比較され、その比較結果がローパスフィルタ32を介してチャージポンプ回路33に入力される。そして、チャージポンプ回路33において、レプリカクロックSKと外部クロックEKとの間で位相が一致するように、遅延時間制御電圧VDが制御される。
(第2実施形態)
図13は、第2の実施形態に係る固体撮像装置における画素の読み出し動作時の各部の電圧波形を示すタイミングチャートである。
図13において、リセットレベルRLの画素信号VsigがコンデンサC2を介してコンパレータPA2に入力された状態で、基準電圧VREFとしてランプ波が与えられ、リセットレベルRLの画素信号Vsigと基準電圧VREFとが比較される。そして、コンパレータPA2の出力電圧P1はインバータV1にて反転された後、図3の時間デジタル変換器TD1に入力される。
そして、時間デジタル変換器TD1において、マスク回路26を介して基準クロックMCKがリップルカウンタ27に入力されることで、基準クロックMCKがカウントされる。そして、基準電圧VREFのレベルがリセットレベルRLの画素信号Vsigに一致するまで基準クロックMCKがカウントされることでリセットレベルRLの第2カウント値NR2が算出され、リップルカウンタ27に保持される。この時、基準電圧VREFのレベルがリセットレベルRLの画素信号Vsigに一致すると、コンパレータPA2の出力電圧P1が立ち下がり、出力電圧P1がインバータV1にて反転されることでレベル比較器CP1の出力P2が立ち上がる。レベル比較器CP1の出力P2が立ち上がると、リップルカウンタ27への基準クロックMCKの入力がマスク回路26にて遮断される。
また、レベル比較器CP1の出力P2が立ち上がると、マスク回路24を介して基準クロックMCKがリップルカウンタ25に入力されることで、基準クロックMCKがカウントされる。また、レベル比較器CP1の出力P2が立ち上がると、起動回路22を介してバーニアオシレータ23が起動され、バーニアオシレータ23にてバーニアクロックBCKが生成される。また、レベル比較器CP1の出力P2が立ち上がると、位相比較器21の出力PHが立ち上がる。そして、位相比較器21において、基準クロックMCKとバーニアクロックBCKとの位相が比較される。そして、基準クロックMCKとバーニアクロックBCKとの位相が反転すると、位相比較器21の出力PHが立ち下がり、リップルカウンタ25への基準クロックMCKの入力がマスク回路24にて遮断され、リセットレベルの第1カウント値NR1がリップルカウンタ25に保持される。また、位相比較器21の出力PHが立ち下がると、起動回路22を介してバーニアオシレータ23が停止される。
また、信号レベルSLの画素信号VsigがコンデンサC2を介してコンパレータPA2に入力された状態で、基準電圧VREFとしてランプ波が与えられ、信号レベルSLの画素信号Vsigと基準電圧VREFとが比較される。そして、コンパレータPA2の出力電圧P1はインバータV1にて反転された後、図3の時間デジタル変換器TD1に入力される。
そして、時間デジタル変換器TD1において、マスク回路26を介して基準クロックMCKがリップルカウンタ27に入力されることで、基準クロックMCKがカウントされる。そして、基準電圧VREFのレベルが信号レベルSLの画素信号Vsigに一致するまで基準クロックMCKがカウントされることで信号レベルSLの第2カウント値NS2が算出され、リップルカウンタ27に保持される。この時、基準電圧VREFのレベルが信号レベルSLの画素信号Vsigに一致すると、コンパレータPA2の出力電圧P1が立ち下がり、出力電圧P1がインバータV1にて反転されることでレベル比較器CP1の出力P2が立ち上がる。レベル比較器CP1の出力P2が立ち上がると、リップルカウンタ27への基準クロックMCKの入力がマスク回路26にて遮断される。
また、レベル比較器CP1の出力P2が立ち上がると、マスク回路24を介して基準クロックMCKがリップルカウンタ25に入力されることで、基準クロックMCKがカウントされる。また、レベル比較器CP1の出力P2が立ち上がると、起動回路22を介してバーニアオシレータ23が起動され、バーニアオシレータ23にてバーニアクロックBCKが生成される。また、レベル比較器CP1の出力P2が立ち上がると、位相比較器21の出力PHが立ち上がる。そして、位相比較器21において、基準クロックMCKとバーニアクロックBCKとの位相が比較される。そして、基準クロックMCKとバーニアクロックBCKとの位相が反転すると、位相比較器21の出力PHが立ち下がり、リップルカウンタ25への基準クロックMCKの入力がマスク回路24にて遮断され、信号レベルSLの第1カウント値NS1がリップルカウンタ25に保持される。また、位相比較器21の出力PHが立ち下がると、起動回路22を介してバーニアオシレータ23が停止される。
ここで、第1カウント値NR1、NS1のカウント動作時のみバーニアオシレータ23を動作させることにより、バーニアオシレータ23の消費電力を低減することが可能となる。
図14は、第2の実施形態に係る固体撮像装置における時間デジタル変換器の動作を示すタイミングチャートである。なお、図14では、第1カウント値NS1と第2カウント値NS2を算出する場合を例にとった。
図14において、信号レベルSLの画素信号VsigがコンデンサC2を介してコンパレータPA2に入力された状態で、基準電圧VREFとしてランプ波が与えられると、マスク回路26を介して基準クロックMCKがリップルカウンタ27に入力され、基準クロックMCKがカウントされる。そして、基準電圧VREFのレベルが信号レベルSLの画素信号Vsigに一致するまで基準クロックMCKがカウントされることで信号レベルSLの第2カウント値NS2が算出され、リップルカウンタ27に保持される。この時、基準電圧VREFのレベルが信号レベルSLの画素信号Vsigに一致すると、レベル比較器CP1の出力P2が立ち上がり、リップルカウンタ27への基準クロックMCKの入力がマスク回路26にて遮断される(B0)。
また、レベル比較器CP1の出力P2が立ち上がると、起動回路22を介してバーニアオシレータ23が起動され、バーニアオシレータ23にてバーニアクロックBCKが生成される(B1)。また、レベル比較器CP1の出力P2が立ち上がると、マスク回路24を介して基準クロックMCKがリップルカウンタ25に入力されることで、基準クロックMCKがカウントされる(B3)。また、レベル比較器CP1の出力P2が立ち上がると、基準クロックMCKとバーニアクロックBCKとの位相が位相比較器21にて比較される(B2、B4、B5、B6)。そして、基準クロックMCKとバーニアクロックBCKとの位相が反転すると(B6)、リップルカウンタ25への基準クロックMCKの入力がマスク回路24にて遮断され(B7)、信号レベルSLの第1カウント値NS1がリップルカウンタ25に保持される。また、基準クロックMCKとバーニアクロックBCKとの位相が反転すると(B6)、起動回路22を介してバーニアオシレータ23が停止される(B8)。
ここで、バーニアクロックBCKと基準クロックMCKとの位相関係に基づいて基準クロックMCKのカウント期間を制御することにより、クロック周波数を増大させることなく、カウント値の時間分解能を向上させることができる。
なお、バーニアクロックBCKおよび基準クロックMCKは外部から供給を受けるようにしてもよいし、固体撮像装置内で生成するようにしてもよい。バーニアクロックBCKおよび基準クロックMCKの生成にはPLL(Phase Locked Loop)回路を用いるようにしてもよいし、DLL(Delay Locked Loop)回路を用いるようにしてもよい。また、基準クロックMCKをカウントするカウンタとしてグレイコードカウンタを用いるようにしてもよい。
(第3実施形態)
図15は、第3の実施形態に係る固体撮像装置が適用されたデジタルカメラの概略構成を示すブロック図である。
図15において、デジタルカメラ11は、カメラモジュール12および後段処理部13を有する。カメラモジュール12は、撮像光学系14および固体撮像装置15を有する。後段処理部13は、イメージシグナルプロセッサ(ISP)16、記憶部17及び表示部18を有する。なお、固体撮像装置15は、図1の構成を用いることができる。また、ISP16の少なくとも一部の構成は固体撮像装置15とともに1チップ化するようにしてもよい。
撮像光学系14は、被写体からの光を取り込み、被写体像を結像させる。固体撮像装置15は、被写体像を撮像する。ISP16は、固体撮像装置15での撮像により得られた画像信号を信号処理する。記憶部17は、ISP16での信号処理を経た画像を格納する。記憶部17は、ユーザの操作等に応じて、表示部18へ画像信号を出力する。表示部18は、ISP16あるいは記憶部17から入力される画像信号に応じて、画像を表示する。表示部18は、例えば、液晶ディスプレイである。なお、カメラモジュール12は、デジタルカメラ11以外にも、例えばカメラ付き携帯端末等の電子機器に適用するようにしてもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 画素アレイ部、2 垂直走査回路、3 負荷回路、4 カラムADC回路、5 水平走査回路、6 基準電圧発生回路、7 タイミング制御回路、8 遅延時間制御回路、9 演算回路、PC 画素、Ta 行選択トランジスタ、Tb 増幅トランジスタ、Tr リセットトランジスタ、Td 読み出しトランジスタ、PD フォトダイオード、FD フローティングディフュージョン、Vlin 垂直信号線、Hlin 水平制御線

Claims (5)

  1. 光電変換した電荷を蓄積する画素がマトリックス状に配置された画素アレイ部と、
    前記画素から読み出された画素信号と基準電圧との比較結果を参照した上で、第1クロックと前記第1クロックと周期の異なる第2クロックとの位相関係に基づいてカウント動作を行うカラムADC回路と、
    前記カラムADC回路のカウント結果に基づいて前記画素信号のAD変換値を算出する演算回路と、
    前記第2クロックの周期を制御する遅延時間制御回路とを備え、
    前記カラムADC回路は、
    前記画素から読み出された画素信号と基準電圧とを比較するレベル比較器と、
    前記第2クロックを生成するバーニアオシレータと、
    前記第1クロックと前記第2クロックとの位相を比較する位相比較器と、
    前記基準電圧が前記画素から読み出された画素信号に達した後、前記第1クロックと前記第2クロックとの位相関係が反転するまで前記第1クロックを通過させる第1マスク回路と、
    前記第1マスク回路にて通過された前記第1クロックをカウントする第1カウンタ回路と、
    前記基準電圧が前記画素から読み出された画素信号に達した後、前記第1クロックと前記第2クロックとの位相関係が反転した後に前記第1クロックを通過させる第2マスク回路と、
    前記第2マスク回路にて通過された前記第1クロックをカウントする第2カウンタ回路とを備えることを特徴とする固体撮像装置。
  2. 光電変換した電荷を蓄積する画素がマトリックス状に配置された画素アレイ部と、
    前記画素から読み出された画素信号と基準電圧との比較結果を参照した上で、第1クロックと前記第1クロックと周期の異なる第2クロックとの位相関係に基づいてカウント動作を行うカラムADC回路と、
    前記カラムADC回路のカウント結果に基づいて前記画素信号のAD変換値を算出する演算回路とを備えることを特徴とする固体撮像装置。
  3. 前記カラムADC回路は、前記基準電圧が前記画素から読み出された画素信号に達した後において、前記第1クロックと前記第2クロックとの位相関係が反転するまでカウントされた第1カウント値と、前記第1クロックと前記第2クロックとの位相関係が反転した後にカウントされた第2カウント値とを算出することを特徴とする請求項2に記載の固体撮像装置。
  4. 前記第2カウント値は前記第1カウント値のバーニアとして用いられることを特徴とする請求項3に記載の固体撮像装置。
  5. 前記第2クロックの周期は、前記第2クロックの1周期ごとの前記第1クロックとの位相差の変動で前記第1クロックの周期が分割されるように設定されることを特徴とする請求項4に記載の固体撮像装置。
JP2013154446A 2013-07-25 2013-07-25 固体撮像装置 Abandoned JP2015026934A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013154446A JP2015026934A (ja) 2013-07-25 2013-07-25 固体撮像装置
US14/150,032 US20150029371A1 (en) 2013-07-25 2014-01-08 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154446A JP2015026934A (ja) 2013-07-25 2013-07-25 固体撮像装置

Publications (1)

Publication Number Publication Date
JP2015026934A true JP2015026934A (ja) 2015-02-05

Family

ID=52390197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154446A Abandoned JP2015026934A (ja) 2013-07-25 2013-07-25 固体撮像装置

Country Status (2)

Country Link
US (1) US20150029371A1 (ja)
JP (1) JP2015026934A (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924137B2 (ja) * 2007-03-27 2012-04-25 セイコーエプソン株式会社 冗長ビット付きデジタル−アナログ変換器及びこれを用いたアナログ−デジタル変換器及びこれを用いたイメージセンサ
JP5254140B2 (ja) * 2009-07-14 2013-08-07 株式会社東芝 A/d変換器及びそれを備えた固体撮像装置
JP5540901B2 (ja) * 2010-06-01 2014-07-02 ソニー株式会社 積分型a/d変換器、積分型a/d変換方法、固体撮像素子、およびカメラシステム
JP2012191359A (ja) * 2011-03-09 2012-10-04 Sony Corp A/d変換装置、a/d変換方法、並びにプログラム

Also Published As

Publication number Publication date
US20150029371A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
US10659710B2 (en) A/D conversion device, gray code generation device, signal processing device, imaging element, and electronic device
US7859583B2 (en) Solid-state image capture device, analog/digital conversion method for solid state image capture device, and image capture device
JP5493934B2 (ja) デューティ補正回路、遅延同期ループ回路、カラムa/d変換器、固体撮像素子およびカメラシステム
US10609318B2 (en) Imaging device, driving method, and electronic apparatus
US9232165B2 (en) Solid-state imaging apparatus and method for driving solid-state imaging apparatus
US8994575B2 (en) Time detection circuit, ad converter, and solid state image pickup device
JP6004685B2 (ja) 固体撮像装置及びその駆動方法
JP2012019411A (ja) 固体撮像装置
JP2015130611A (ja) アナログデジタル変換器およびイメージセンサ
JP2015008348A (ja) 固体撮像装置
JP2014143498A (ja) 固体撮像装置
JP2015177320A (ja) 固体撮像装置
JP2015185855A (ja) 固体撮像装置
US8085325B2 (en) Solid-state image pickup apparatus
KR101554095B1 (ko) 고체 촬상 장치
JP2015026934A (ja) 固体撮像装置
JP2015126240A (ja) 撮像装置、撮像装置の駆動方法
US20090310002A1 (en) Solid-state image pickup apparatus
JP2015026977A (ja) 固体撮像装置
JP2017041844A (ja) デジタル演算回路および固体撮像装置
JP2018019444A (ja) 撮像装置、撮像システム
JP2017077003A (ja) 撮像装置、撮像システム
US9807334B1 (en) Analog to digital conversion with enhanced precision
JP2012044554A (ja) 固体撮像素子およびカメラシステム
KR20120046843A (ko) Tdc를 이용하는 칼럼-병렬 cmos 이미지 센서 및 칼럼-병렬 아날로그-디지털 변환방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150812

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151102

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20151204