JP2015026753A - Semiconductor light emitting device and manufacturing method thereof - Google Patents

Semiconductor light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP2015026753A
JP2015026753A JP2013156269A JP2013156269A JP2015026753A JP 2015026753 A JP2015026753 A JP 2015026753A JP 2013156269 A JP2013156269 A JP 2013156269A JP 2013156269 A JP2013156269 A JP 2013156269A JP 2015026753 A JP2015026753 A JP 2015026753A
Authority
JP
Japan
Prior art keywords
light emitting
wavelength conversion
semiconductor light
transparent plate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013156269A
Other languages
Japanese (ja)
Inventor
静一郎 小林
Seiichiro Kobayashi
静一郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013156269A priority Critical patent/JP2015026753A/en
Publication of JP2015026753A publication Critical patent/JP2015026753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device and a manufacturing method of the same, which can achieve outgoing beams having a uniform chromaticity distribution and a uniform luminance distribution across a whole area of a light emission surface.SOLUTION: A semiconductor light emitting device comprises: a light emitting element 10 composed of a truncated pyramid-shaped growth substrate 11, and an epitaxial growth layer 15 which is stacked on a bottom face of the growth substrate 11 and includes an active layer 13; a wavelength conversion layer 40 provided so as to cover a top face 21 and a lateral face 22 of the growth substrate 11; a transparent plate 45 arranged on the wavelength conversion layer 40; and a diffusion reflection member 50 arranged to collectively cover lateral faces 25, 41, 48 of the epitaxial growth layer 15 of the light emitting element 10, the wavelength conversion layer 40 and the transparent plate 45. In this case, the light emitting element 10, the wavelength conversion layer 40 and the transparent plate 45 substantially overlap each other in plan view which is viewed from above the transparent plate 45.

Description

本発明は、半導体発光装置及びその製造方法に関するものであり、詳しくは、発光源の半導体発光素子と、半導体発光素子からの出射光で励起されて励起光よりも長波長の波長変換光を放出する波長変換部材とを組み合わせた構成により、半導体発光素子の発光色とは異なる色相の光を出射する半導体発光装置及びその製造方法に関する。   The present invention relates to a semiconductor light-emitting device and a method for manufacturing the same, and more particularly, to a semiconductor light-emitting element as a light-emitting source and to emit wavelength-converted light having a wavelength longer than that of excitation light when excited by light emitted from the semiconductor light-emitting element. The present invention relates to a semiconductor light-emitting device that emits light having a hue different from the emission color of a semiconductor light-emitting element, and a manufacturing method thereof.

従来、この種の半導体発光装置としては、例えば、図9に示す構造のものが、特許文献1に「発光装置」として開示されている。   Conventionally, as this type of semiconductor light emitting device, for example, a semiconductor light emitting device having the structure shown in FIG.

それは、実装基板80上に形成された回路パターンに、フリップチップ実装タイプの複数個の半導体発光素子81が金属バンプ82を介して電気的且つ機械的に接合され、複数個の半導体発光素子81の夫々の上面及び側面を一体に覆うように透明樹脂に蛍光体を含有してなる蛍光体含有樹脂からなる波長変換層83が設けられており、波長変換層83の上には透明板84が配置されている。そして、波長変換層83及び透明板84の夫々の側面が拡散反射部材85で一体に覆われた構造となっている。   That is, a plurality of flip chip mounting type semiconductor light emitting elements 81 are electrically and mechanically joined to the circuit pattern formed on the mounting substrate 80 via metal bumps 82. A wavelength conversion layer 83 made of a phosphor-containing resin containing a phosphor in a transparent resin is provided so as to integrally cover the upper and side surfaces of each, and a transparent plate 84 is disposed on the wavelength conversion layer 83. Has been. The side surfaces of the wavelength conversion layer 83 and the transparent plate 84 are integrally covered with the diffuse reflection member 85.

透明板84は、下方に位置する複数個の半導体発光素子81の実装領域よりも大きく、上面(光出射面)86には粗面化処理が施されている。   The transparent plate 84 is larger than the mounting region of the plurality of semiconductor light emitting elements 81 located below, and the upper surface (light emitting surface) 86 is subjected to a roughening process.

そこで、発光源の半導体発光素子81の上面(主光出射面)87から出射した光は、その一部が波長変換層83内をそのまま透過し、一部が波長変換層83内の蛍光体を励起して励起光よりも長波長の波長変換光を放出させ、半導体発光素子81からの出射光の一部と波長変換光との加法混色光が、透明板84の粗面化された光出射面86から拡散光として外部に出射される。   Therefore, a part of the light emitted from the upper surface (main light emission surface) 87 of the semiconductor light emitting element 81 of the light source is transmitted through the wavelength conversion layer 83 as it is, and a part of the light passes through the phosphor in the wavelength conversion layer 83. Excitation is performed to emit wavelength-converted light having a wavelength longer than that of the excitation light, and additive color mixing light of a part of the light emitted from the semiconductor light emitting element 81 and the wavelength-converted light is emitted from the roughened surface of the transparent plate 84. The light is emitted from the surface 86 as diffused light.

特開2012−79840号公報JP 2012-79840 A

ところで、上述の特許文献1で開示された発光装置は、透明板84の上方から透明板84の光出射面86を観視(上方視)した場合、下方に位置する半導体発光素子81の直上領域とそれ以外の領域では、出射光に色相の違いが認められる。つまり、半導体発光装置の上方視において、透明板84の光出射面86からの出射光に色度ムラが生じることになり、演色性に劣るものとなる。   By the way, the light emitting device disclosed in Patent Document 1 described above is a region directly above the semiconductor light emitting element 81 located below when the light emitting surface 86 of the transparent plate 84 is viewed from above the transparent plate 84 (upward view). In other areas, a difference in hue is observed in the emitted light. That is, when viewed from the top of the semiconductor light emitting device, chromaticity unevenness occurs in the light emitted from the light emitting surface 86 of the transparent plate 84, and the color rendering properties are inferior.

具体的には、半導体発光素子81を青色光を発光する青色半導体発光素子とし、波長変換層83に含有される蛍光体を青色半導体発光素子81からの青色光に励起されて青色光の補色光の黄色光に波長変換して放出する黄色蛍光体とした場合、透明板84の光出射面86の青色半導体発光素子81の直上領域からは、青色半導体発光素子81からの青色光の一部の直接光と青色半導体発光素子81からの青色光の一部が波長変換層83内の黄色蛍光体を励起することにより波長変換された黄色光との加法混色により白色光が出射される。   Specifically, the semiconductor light-emitting element 81 is a blue semiconductor light-emitting element that emits blue light, and the phosphor contained in the wavelength conversion layer 83 is excited by the blue light from the blue semiconductor light-emitting element 81 to complement the blue light. In the case of a yellow phosphor that converts the wavelength into yellow light and emits it, a part of the blue light from the blue semiconductor light emitting element 81 is partly from the region immediately above the blue semiconductor light emitting element 81 on the light exit surface 86 of the transparent plate 84. White light is emitted by additive color mixing of the direct light and the blue light from the blue semiconductor light emitting element 81 with the yellow light whose wavelength is converted by exciting the yellow phosphor in the wavelength conversion layer 83.

一方、透明板84の光出射面86の青色半導体発光素子81の直上領域以外の領域からは、下方に青色半導体発光素子81が位置していないために、青色半導体発光素子81から透明板84の下面(光入射面)88に向かう青色光のうち青色半導体発光素子81の直上領域以外の領域に向かう光量は青色半導体発光素子81の直上領域に向かう光量に比べて極めて少なく、そのため、加法混色された光は青色成分が少なく黄色成分が多い黄色みがかった白色光となって外部に出射される。   On the other hand, since the blue semiconductor light emitting element 81 is not positioned below the region of the light emitting surface 86 of the transparent plate 84 other than the region directly above the blue semiconductor light emitting element 81, the blue semiconductor light emitting element 81 to the transparent plate 84 Of the blue light traveling toward the lower surface (light incident surface) 88, the amount of light directed to a region other than the region directly above the blue semiconductor light emitting element 81 is extremely small compared to the amount of light directed toward the region directly above the blue semiconductor light emitting element 81. The emitted light becomes yellowish white light with less blue component and more yellow component, and is emitted to the outside.

同時に、青色半導体発光素子81から透明板84の光入射面88に向かう青色光の光量の違いによって、青色半導体発光素子81の直上領域とそれ以外の領域では、半導体発光装置からの出射光に輝度の違いが生じる。つまり、発光装置の上方視において、出射光に輝度ムラが生じることになる。   At the same time, due to the difference in the amount of blue light directed from the blue semiconductor light emitting element 81 toward the light incident surface 88 of the transparent plate 84, the brightness of the emitted light from the semiconductor light emitting device is increased in the region directly above the blue semiconductor light emitting device 81 and the other regions. The difference arises. That is, luminance unevenness occurs in the emitted light when the light emitting device is viewed from above.

なお、上記色度ムラ及び輝度ムラは、透明板84の光出射面86に粗面化処理を施して出射光を拡散光とすることにより抑制するように図られているが、上述のように青色半導体発光素子81から出射して透明板84の光入射面88に向かう青色光の光量が異なるために、色度ムラ及び輝度ムラの抑制効果は限定的なものにならざるを得ない。   Note that the chromaticity unevenness and luminance unevenness are suppressed by applying a roughening process to the light emitting surface 86 of the transparent plate 84 to make the emitted light diffused, but as described above. Since the amount of blue light emitted from the blue semiconductor light emitting element 81 and traveling toward the light incident surface 88 of the transparent plate 84 is different, the effect of suppressing chromaticity unevenness and luminance unevenness must be limited.

また、透明板84が、下方に位置する複数個の青色半導体発光素子81の実装領域よりも大きいことは、透明板84の大きさが青色半導体発光素子81の実装面積よりも大きいことを意味するものであり、透明板84が、色度ムラ及び輝度ムラのない光の出射に寄与しない無駄な領域を有するものとなっている。   In addition, the fact that the transparent plate 84 is larger than the mounting area of the plurality of blue semiconductor light emitting elements 81 positioned below means that the size of the transparent plate 84 is larger than the mounting area of the blue semiconductor light emitting elements 81. The transparent plate 84 has a useless area that does not contribute to the emission of light without chromaticity unevenness and brightness unevenness.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、光出射面全面に亘って均一な色度分布及び輝度分布の出射光を得ることができる半導体発光装置及びその製造方法を提供することにある。   Accordingly, the present invention was devised in view of the above problems, and its object is to provide a semiconductor light emitting device capable of obtaining emitted light having uniform chromaticity distribution and luminance distribution over the entire light emitting surface, and It is in providing the manufacturing method.

上記課題を解決するために、本発明の請求項1に記載された発明は、四角錐台形状の成長基板と、前記成長基板の底面上に積層された、活性層を含むエピタキシャル成長層を有する1個の半導体発光素子と、前記成長基板の上面上及び側面上に設けられた、第1のバインダーに蛍光体粒子が混入・分散されてなる波長変換層と、前記波長変換層の上に設けられた透明板と、前記半導体発光素子の前記エピタキシャル成長層、前記波長変換層及び前記透明板の夫々の側面を一体に覆うように設けられた、第2のバインダーに光散乱粒子を混入・分散してなる拡散反射部材とを備え、前記エピタキシャル成長層、前記波長変換層及び前記透明板はいずれも、前記半導体発光素子の光軸に垂直な方向の外形寸法がほぼ同じであり、且つ、夫々の側面同士は前記光軸に平行な略同一平面上に位置していることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention includes a growth substrate having a truncated pyramid shape and an epitaxial growth layer including an active layer stacked on a bottom surface of the growth substrate. A plurality of semiconductor light emitting devices, a wavelength conversion layer formed on the upper surface and side surfaces of the growth substrate, in which phosphor particles are mixed and dispersed in a first binder, and provided on the wavelength conversion layer. The light scattering particles are mixed and dispersed in the second binder provided so as to integrally cover the transparent plate, the epitaxial growth layer, the wavelength conversion layer, and the transparent plate of the semiconductor light emitting element. The epitaxial growth layer, the wavelength conversion layer, and the transparent plate all have substantially the same outer dimensions in the direction perpendicular to the optical axis of the semiconductor light emitting element, and each side surface. Judges are characterized in that they are positioned substantially on the same plane parallel to the optical axis.

また、本発明の請求項2に記載された発明は、四角錐台形状の成長基板と、前記成長基板の底面上に積層された、活性層を含むエピタキシャル成長層を有する複数個の半導体発光素子と、前記複数個の半導体発光素子の夫々の成長基板の上面上及び側面上に一体に設けられた、第1のバインダーに蛍光体粒子が混入・分散されてなる波長変換層と、 前記波長変換層の上の設けられた透明板と、前記複数個の半導体発光素子の夫々の前記エピタキシャル成長層、前記波長変換層及び前記透明板の夫々の側面を一体に覆うように設けられた、第2のバインダーに光散乱粒子を混入・分散してなる拡散反射部材とを備え、前記波長変換層及び前記透明板は前記複数個の半導体発光素子の実装領域とほぼ同一の外形寸法であり、且つ、前記波長変換層及び前記透明板の夫々の側面と前記複数個の半導体発光素子の実装領域の最外周同士は前記半導体発光素子の光軸に平行な略同一平面上に位置していることを特徴とするものである。   According to a second aspect of the present invention, there is provided a plurality of semiconductor light emitting devices having a growth substrate having a truncated pyramid shape and an epitaxial growth layer including an active layer stacked on a bottom surface of the growth substrate. A wavelength conversion layer in which phosphor particles are mixed and dispersed in a first binder provided integrally on an upper surface and a side surface of each growth substrate of the plurality of semiconductor light emitting elements; and the wavelength conversion layer And a second binder provided so as to integrally cover each of the epitaxial growth layers, the wavelength conversion layer, and the side surfaces of the transparent plates of the plurality of semiconductor light emitting elements. A diffuse reflection member formed by mixing and dispersing light scattering particles, and the wavelength conversion layer and the transparent plate have substantially the same outer dimensions as mounting regions of the plurality of semiconductor light emitting elements, and the wavelength conversion In addition, each of the side surfaces of the transparent plate and the outermost circumferences of the mounting regions of the plurality of semiconductor light emitting elements are located on substantially the same plane parallel to the optical axis of the semiconductor light emitting element. is there.

また、本発明の請求項3に記載された発明は、請求項1又は請求項2において、前記第1のバインダー及び前記第2のバインダーはいずれも、シリコーン樹脂又はエポキシ樹脂からなることを特徴とするものである。   The invention described in claim 3 of the present invention is characterized in that, in claim 1 or 2, both the first binder and the second binder are made of a silicone resin or an epoxy resin. To do.

また、本発明の請求項4に記載された発明は、請求項1〜請求項3のいずれかにおいて、前記光散乱粒子は、酸化チタン(TiO)、酸化亜鉛(ZnO)、窒化硼素(B)及び窒化アルミニウム(AlN)のうちの1つからなることを特徴とするものである。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the light scattering particles may be titanium oxide (TiO 2 ), zinc oxide (ZnO), boron nitride (B 2 O 3 ) and aluminum nitride (AlN).

また、本発明の請求項5に記載された発明は、請求項1〜請求項4のいずれかにおいて、前記透明板は、ガラス、シリコーン樹脂及びエポキシ樹脂のうちの1つからなることを特徴とするものである。   Moreover, the invention described in claim 5 of the present invention is characterized in that in any one of claims 1 to 4, the transparent plate is made of one of glass, silicone resin and epoxy resin. To do.

また、本発明の請求項6に記載された発明は、四角錐台形状の成長基板と、前記成長基板の底面上に積層された、活性層を含むエピタキシャル成長層を有する1個の半導体発光素子の前記成長基板の上面上に第1のバインダーに蛍光体粒子が混入・分散されてなる波長変換樹脂を塗布する工程と、前記波長変換樹脂が未硬化の状態において、前記波長変換樹脂を前記エピタキシャル成長層と略同一外形寸法の透明板で前記エピタキシャル成長層側に押圧移動することにより押し潰された前記波長変換樹脂が前記成長基板の上面から側面に流れ下って上面及び側面を覆う工程と、前記エピタキシャル成長層、前記波長変換樹脂の硬化後の波長変換層及び前記透明板の夫々の側面を一体に覆うように、第2のバインダーに光散乱粒子を混入・分散してなる拡散反射部材を設ける工程と、を有し、前記エピタキシャル成長層、前記波長変換層及び前記透明板の夫々の側面同士を前記半導体発光素子の光軸に平行な略同一平面上に位置させたことを特徴とするものである。   According to a sixth aspect of the present invention, there is provided a semiconductor light emitting element having a growth substrate having a truncated pyramid shape and an epitaxial growth layer including an active layer stacked on a bottom surface of the growth substrate. A step of applying a wavelength conversion resin in which phosphor particles are mixed and dispersed in a first binder on the upper surface of the growth substrate, and the wavelength conversion resin is uncured and the wavelength conversion resin is applied to the epitaxial growth layer. The wavelength conversion resin crushed by pressing and moving to the epitaxial growth layer side with a transparent plate having substantially the same outer dimensions and flowing down from the upper surface of the growth substrate to the side surface to cover the upper surface and the side surface, and the epitaxial growth layer The light scattering particles are mixed and dispersed in the second binder so as to integrally cover the side surfaces of the wavelength conversion layer after curing of the wavelength conversion resin and the transparent plate. A step of providing a diffuse reflection member, and the side surfaces of the epitaxial growth layer, the wavelength conversion layer, and the transparent plate are positioned on substantially the same plane parallel to the optical axis of the semiconductor light emitting device. It is characterized by this.

また、本発明の請求項7に記載された発明は、四角錐台形状の成長基板と、前記成長基板の底面上に積層された、活性層を含むエピタキシャル成長層を有する複数個の半導体発光素子の夫々の前記成長基板の上面上に該上面を覆うように、第1のバインダーに蛍光体粒子が混入・分散されてなる波長変換樹脂を塗布する工程と、前記波長変換樹脂が未硬化の状態において、前記波長変換樹脂の夫々を前記複数個の半導体発光素子の実装領域とほぼ同一の外形寸法の透明板で前記エピタキシャル成長層側に一括押圧移動することにより押し潰された各波長変換樹脂が前記成長基板の上面から側面に流れ下って夫々の成長基板の上面及び側面を一体に覆う工程と、前記複数個の半導体発光素子の夫々の前記エピタキシャル成長層、前記波長変換樹脂の硬化後の波長変換層及び前記透明板の夫々の側面を一体に覆うように、第2のバインダーに光散乱粒子を混入・分散してなる拡散反射部材を設ける工程と、を有し、前記波長変換層及び前記透明板の夫々の側面と前記複数個の半導体発光素子の実装領域の最外周同士を前記半導体発光素子の光軸に平行な略同一平面上に位置させたことを特徴とするものである。   According to a seventh aspect of the present invention, there is provided a plurality of semiconductor light emitting devices each having a growth substrate having a truncated pyramid shape and an epitaxial growth layer including an active layer stacked on a bottom surface of the growth substrate. A step of applying a wavelength conversion resin in which phosphor particles are mixed and dispersed in a first binder so as to cover the upper surface of each of the growth substrates, and the wavelength conversion resin is in an uncured state Each of the wavelength conversion resins crushed by collectively pressing and moving to the epitaxial growth layer side with a transparent plate having substantially the same outer dimensions as the mounting region of the plurality of semiconductor light emitting elements is grown. A step of integrally covering the upper surface and the side surface of each growth substrate by flowing down from the upper surface to the side surface of the substrate, the epitaxial growth layer of each of the plurality of semiconductor light emitting devices, and the wavelength conversion tree A step of providing a diffuse reflection member formed by mixing and dispersing light scattering particles in the second binder so as to integrally cover the respective side surfaces of the wavelength conversion layer after curing and the transparent plate, and The side surfaces of the wavelength conversion layer and the transparent plate and the outermost peripheries of the mounting regions of the plurality of semiconductor light emitting elements are positioned on substantially the same plane parallel to the optical axis of the semiconductor light emitting element. Is.

また、本発明の請求項8に記載された発明は、請求項6又は請求項7において、前記第1のバインダー及び前記第2のバインダーはいずれも、シリコーン樹脂又はエポキシ樹脂からなることを特徴とするものである。   The invention described in claim 8 of the present invention is characterized in that, in claim 6 or 7, both the first binder and the second binder are made of a silicone resin or an epoxy resin. To do.

また、本発明の請求項9に記載された発明は、請求項6〜請求項8のいずれかにおいて、前記光散乱粒子は、酸化チタン(TiO)、酸化亜鉛(ZnO)、窒化硼素(B)及び窒化アルミニウム(AlN)のうちの1つからなることを特徴とするものである。 The invention according to claim 9 of the present invention is the light scattering particle according to any one of claims 6 to 8, wherein the light scattering particles are titanium oxide (TiO 2 ), zinc oxide (ZnO), boron nitride (B 2 O 3 ) and aluminum nitride (AlN).

また、本発明の請求項10に記載された発明は、請求項6〜請求項9のいずれかにおいて、前記透明板は、ガラス、シリコーン樹脂及びエポキシ樹脂のうちの1つからなることを特徴とするものである。   The invention described in claim 10 of the present invention is characterized in that, in any of claims 6 to 9, the transparent plate is made of one of glass, silicone resin and epoxy resin. To do.

本発明の半導体発光装置は、成長基板と、活性層を含むエピタキシャル成長層とで構成した半導体発光素子の該成長基板上に波長変換層を設けて更に波長変換層の上に透明板を設け、エピタキシャル成長層、波長変換層及び透明板の夫々の側面を一体に覆うように拡散反射部材を設けた。このとき、エピタキシャル成長層、波長変換層及び透明板はいずれも、半導体発光素子の光軸に垂直な方向の外形寸法がほぼ同じであり、且つ、夫々の側面同士は光軸に平行な略同一平面上に位置している。   In the semiconductor light emitting device of the present invention, a wavelength conversion layer is provided on a growth substrate of a semiconductor light emitting device composed of a growth substrate and an epitaxial growth layer including an active layer, and a transparent plate is further provided on the wavelength conversion layer, and epitaxial growth is performed. A diffuse reflection member was provided so as to integrally cover the side surfaces of the layer, the wavelength conversion layer, and the transparent plate. At this time, the epitaxial growth layer, the wavelength conversion layer, and the transparent plate all have substantially the same outer dimensions in the direction perpendicular to the optical axis of the semiconductor light emitting device, and the respective side surfaces are substantially in the same plane parallel to the optical axis. Located on the top.

これにより、半導体発光装置の光出射面となる透明板の光出射面からは、該光出射面全面に亘って均一な色度分布及び輝度分布の出射光を得ることができた。   Thereby, from the light emission surface of the transparent plate, which is the light emission surface of the semiconductor light emitting device, it was possible to obtain emission light having uniform chromaticity distribution and luminance distribution over the entire light emission surface.

本発明の半導体発光装置に係わる実施形態の平面図である。It is a top view of embodiment concerning the semiconductor light-emitting device of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 半導体発光素子の製造工程の説明図である。It is explanatory drawing of the manufacturing process of a semiconductor light-emitting device. 半導体発光素子の製造工程の説明図である。It is explanatory drawing of the manufacturing process of a semiconductor light-emitting device. 半導体発光素子の底面図である。It is a bottom view of a semiconductor light emitting element. 図4のB−B断面図である。It is BB sectional drawing of FIG. 半導体発光装置の製造工程の説明図である。It is explanatory drawing of the manufacturing process of a semiconductor light-emitting device. 半導体発光装置の製造工程の説明図である。It is explanatory drawing of the manufacturing process of a semiconductor light-emitting device. 実施形態(実施例)の光学的な説明図である。It is an optical explanatory view of an embodiment (example). 従来例(比較例)の光学的な説明図である。It is an optical explanatory view of a conventional example (comparative example). 従来例の説明図である。It is explanatory drawing of a prior art example.

以下、この発明の好適な実施形態を図1〜図8を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 8 (the same portions are given the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は本発明の半導体発光装置に係わる実施形態の平面図、図2は図1のA−A断面図である。   FIG. 1 is a plan view of an embodiment of a semiconductor light emitting device according to the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

本発明の半導体発光装置1は、回路パターン2が形成された半導体発光素子実装基板(以下、「実装基板」と略称する)3上に、該実装基板3の周縁部から該周縁部に沿って立ち上がる所定の高さの環状の側壁4が設けられている。   The semiconductor light emitting device 1 of the present invention is provided on a semiconductor light emitting element mounting substrate (hereinafter abbreviated as “mounting substrate”) 3 on which a circuit pattern 2 is formed, from the peripheral portion of the mounting substrate 3 along the peripheral portion. An annular side wall 4 having a predetermined height is provided.

実装基板は3、例えば、窒化アルミニウム(AlN)基板が用いられ、回路パターン2は、例えば、銅箔上に電解あるいは無電解のメッキによって金(Au)メッキ層が設けられている。   As the mounting substrate, for example, an aluminum nitride (AlN) substrate is used, and for the circuit pattern 2, for example, a gold (Au) plating layer is provided on a copper foil by electrolytic or electroless plating.

側壁4は、例えば、セラミックスにより形成されている。   The side wall 4 is made of ceramics, for example.

実装基板3と側壁4によって囲まれた凹部5内の中央部の実装基板3上には、半導体発光素子(以下、「発光素子」と略称する)10が実装され、実装基板3の回路パターン2と発光素子10のn側電極(バンプ電極)17及びp側電極(バンプ電極)18とが電気的且つ機械的に接合されている。バンプ電極17、18は、例えば、金(Au)等の金属材料で形成される。   A semiconductor light emitting element (hereinafter abbreviated as “light emitting element”) 10 is mounted on the central mounting board 3 in the recess 5 surrounded by the mounting board 3 and the side wall 4. The n-side electrode (bump electrode) 17 and the p-side electrode (bump electrode) 18 of the light emitting element 10 are electrically and mechanically joined. The bump electrodes 17 and 18 are made of a metal material such as gold (Au), for example.

上記発光素子10は、図3(a)〜(f)に示す工程を経て作製される。   The light emitting element 10 is manufactured through the steps shown in FIGS.

まず、図3(a)に示す半導体成長工程において、透明なn型GaNの成長基板11上に、MOCVD等の結晶成長方法によってn型半導体層12、活性層13及びP型半導体層14を順次成長させて半導体層の積層構造のエピタキシャル成長層15を形成し、エピタキシャル基板(以下、「エピ基板」と略称する)19を作製する。なお、結晶成長方法、成長基板及び半導体層の構成は上記に限らず、夫々、公知の技術、材料及び層構成を用いることができる。   First, in the semiconductor growth step shown in FIG. 3A, an n-type semiconductor layer 12, an active layer 13, and a P-type semiconductor layer 14 are sequentially formed on a transparent n-type GaN growth substrate 11 by a crystal growth method such as MOCVD. An epitaxial growth layer 15 having a laminated structure of semiconductor layers is formed by growth, and an epitaxial substrate (hereinafter abbreviated as “epi substrate”) 19 is manufactured. Note that the structures of the crystal growth method, the growth substrate, and the semiconductor layer are not limited to those described above, and known techniques, materials, and layer structures can be used, respectively.

次に、図3(b)に示す、素子化工程のうちの電極形成工程において、n型半導体層12及びP型半導体層14の夫々に電気的且つ機械的に接合されたn側電極(バンプ電極)17及びp側電極(バンプ電極)18の組み合わせを、縦横夫々所定の間隔で複数箇所に形成する。なお、n側電極となるバンプ電極17を形成する際には、予め、p型半導体層14及び活性層13の、バンプ電極17を形成する領域をエッチングにより除去しておく。電極の配置構成、材料及び形成方法は公知技術を適用できる。   Next, in the electrode formation step in the element formation step shown in FIG. 3B, an n-side electrode (bump) electrically and mechanically bonded to each of the n-type semiconductor layer 12 and the P-type semiconductor layer 14. Electrodes) 17 and p-side electrodes (bump electrodes) 18 are formed at a plurality of positions at predetermined intervals in the vertical and horizontal directions. Note that, when the bump electrode 17 to be the n-side electrode is formed, regions of the p-type semiconductor layer 14 and the active layer 13 where the bump electrode 17 is formed are removed in advance by etching. Known techniques can be applied to the electrode arrangement, material, and formation method.

次に、図3(c)に示す、素子化工程のうちの成長基板薄肉化工程において、板状のサンプルホルダー27上に全面に亘って均一な厚みで溶剤に溶けるワックス28を塗布し、エピ基板19のp型半導体層14側をワックス28によりサンプルホルダー27に接着固定する。そして、成長基板11を研削・研磨等の方法によって適宜な厚みに加工する。成長基板11の厚みは、活性層13からの発光光の吸収、機械的強度及び発光素子の光取り出し効率等を考慮して設定される。   Next, in the growth substrate thinning step of the element forming step shown in FIG. 3C, a wax 28 that is soluble in a solvent with a uniform thickness is applied over the entire surface of the plate-like sample holder 27, The p-type semiconductor layer 14 side of the substrate 19 is bonded and fixed to the sample holder 27 with wax 28. Then, the growth substrate 11 is processed to an appropriate thickness by a method such as grinding and polishing. The thickness of the growth substrate 11 is set in consideration of absorption of light emitted from the active layer 13, mechanical strength, light extraction efficiency of the light emitting element, and the like.

次に、図3(d)に示す、素子化工程のうちの成長基板端面テーパ加工工程において、成長基板11を薄肉化し且つバンプ電極17、18を形成したエピ基板19を、刃先がテーパ状のダイシングブレード30によるハーフカットダイシングによって、成長基板11の厚み方向に沿って厚み全長に亘って縦横夫々所定の間隔で格子状にダイシングし、ハーフカット溝31を形成する。なお、ダイシングの代わりにドライエッチング等の手法によってハーフカット溝31に相当する形状の溝を形成してもよい。   Next, in the growth substrate end face taper processing step shown in FIG. 3D, the growth substrate 11 is thinned, and the epitaxial substrate 19 on which the bump electrodes 17 and 18 are formed is formed with a tapered cutting edge. By half-cut dicing by the dicing blade 30, the half-cut grooves 31 are formed by dicing in a lattice pattern at predetermined intervals in the vertical and horizontal directions along the thickness direction of the growth substrate 11. A groove having a shape corresponding to the half-cut groove 31 may be formed by a technique such as dry etching instead of dicing.

次に、図3(e)に示す、素子化工程のうちの粗面化工程において、成長基板11の上面21及び側面22からなる表面20をKOH溶液等のアルカリ性溶液に所定の時間浸漬すことにより、粗面化して凹凸16を有する面を形成する。凹凸16の大きさは、発光素子の光取り出し効率や製造時の歩留まり等を考慮して設定される。   Next, in the roughening step of the element forming step shown in FIG. 3E, the surface 20 composed of the upper surface 21 and the side surface 22 of the growth substrate 11 is immersed in an alkaline solution such as a KOH solution for a predetermined time. As a result, the surface having the irregularities 16 is formed by roughening. The size of the concavo-convex 16 is set in consideration of the light extraction efficiency of the light emitting element, the manufacturing yield, and the like.

最後に、図3(f)に示す、素子化工程のうちの個片化工程において、ハーフカット溝31に沿って、刃先がストレート形状のダイシングブレード(図示せず)によってフルカットダイシングし、その後、溶剤によってワックスを溶解することにより、格子状に切断されて個片化した複数個の半導体発光素子10を得る。あるいは、ダイシングブレードによるスクライブ後にブレイクする方法でもよい。   Finally, in the singulation step of the elementization step shown in FIG. 3 (f), the cutting edge is fully cut by a straight dicing blade (not shown) along the half-cut groove 31, and thereafter Then, by dissolving the wax with a solvent, a plurality of semiconductor light emitting devices 10 cut into a lattice and separated into pieces are obtained. Alternatively, a method of breaking after scribing with a dicing blade may be used.

なお、上記工程の中に、研磨等によるダメージ層の除去や、SiO等の保護膜を形成する工程を適宜入れてもよい。 Incidentally, in the above step, removal or damage layer by polishing or the like, may be appropriately put the step of forming a protective film of SiO 2 or the like.

以上の工程により作製された発光素子10は、図4(下面図)及び図5(図4のB−B断面図)にあるように、透明なn型GaNの成長基板11上にn型半導体層12、活性層13及びP型半導体層14の積層構造のエピタキシャル成長層15が形成され、n型半導体層12に電気的且つ機械的に接合されたn側電極(バンプ電極)17及びp型半導体層14に電気的且つ機械的に接合されたp側電極(バンプ電極)18の夫々がp型半導体層14側から突出して設けられている。   The light-emitting element 10 manufactured by the above process has an n-type semiconductor on a transparent n-type GaN growth substrate 11 as shown in FIG. 4 (bottom view) and FIG. 5 (BB cross-sectional view in FIG. 4). An epitaxial growth layer 15 having a stacked structure of the layer 12, the active layer 13, and the P-type semiconductor layer 14 is formed, and an n-side electrode (bump electrode) 17 and a p-type semiconductor that are electrically and mechanically joined to the n-type semiconductor layer 12. Each of the p-side electrodes (bump electrodes) 18 electrically and mechanically joined to the layer 14 is provided so as to protrude from the p-type semiconductor layer 14 side.

成長基板11は、上面21及び側面22からなる表面20が粗面化されて凹凸16を有する面を形成すると共に側面22が上面21の垂直面に対して所定の角度で傾斜した傾斜面を形成している。   In the growth substrate 11, the surface 20 including the upper surface 21 and the side surface 22 is roughened to form a surface having irregularities 16, and the side surface 22 forms an inclined surface inclined at a predetermined angle with respect to the vertical surface of the upper surface 21. doing.

図1及び図2に戻って、成長基板11の、上面21及び側面22からなる表面20上には、バインダーに蛍光体粒子を混入・分散してなる波長変換層40が形成されている。   Referring back to FIGS. 1 and 2, a wavelength conversion layer 40 in which phosphor particles are mixed and dispersed in a binder is formed on the surface 20 including the upper surface 21 and the side surface 22 of the growth substrate 11.

波長変換層40を構成するバインダーは、例えば、シリコーン樹脂、エポキシ樹脂等の透明樹脂を用いることが好ましい。   As the binder constituting the wavelength conversion layer 40, for example, a transparent resin such as a silicone resin or an epoxy resin is preferably used.

同様に、波長変換層40を構成する蛍光体粒子(以下、「蛍光体」と略称する)は、発光素子10からの出射光で励起されて励起光よりも長波長の所望の波長からなる波長変換光を放出する蛍光体が用いられる。   Similarly, the phosphor particles constituting the wavelength conversion layer 40 (hereinafter abbreviated as “phosphor”) are excited by the light emitted from the light emitting element 10 and have a wavelength having a desired wavelength longer than the excitation light. A phosphor that emits converted light is used.

具体的には、発光素子10に青色光を発光する青色発光素子を用いた場合、波長変換層40を構成する蛍光体として、青色発光素子からの青色光に励起されて青色光の補色光の黄色光に波長変換して放出する黄色蛍光体を用いると、波長変換層40からは、青色発光素子からの青色光の一部の直接光と、青色発光素子からの青色光の一部が波長変換層40内の黄色蛍光体を励起することにより波長変換された黄色光との加法混色による白色光が出射される。   Specifically, when a blue light emitting element that emits blue light is used as the light emitting element 10, the phosphor constituting the wavelength conversion layer 40 is excited by the blue light from the blue light emitting element to emit complementary light of the blue light. When a yellow phosphor that converts the wavelength into yellow light and emits it is used, the wavelength conversion layer 40 emits part of the direct light of the blue light from the blue light emitting element and the part of the blue light from the blue light emitting element. White light is emitted by additive color mixing with yellow light that has been wavelength-converted by exciting the yellow phosphor in the conversion layer 40.

同様に、発光素子10に青色光を発光する青色発光素子を用いた場合、波長変換層40を構成する蛍光体として、青色発光素子からの青色光に励起されて赤色光に波長変換して放出する赤色蛍光体と青色発光素子からの青色光に励起されて緑色光に波長変換して放出する緑色蛍光体との混合蛍光体を用いると、青色発光素子からの青色光の一部の直接光と、青色発光素子からの青色光の一部が波長変換層40内の赤色蛍光体及び緑色蛍光体の夫々の蛍光体を励起することにより波長変換された赤色光及び緑色光との加法混色による白色光が出射される。   Similarly, when a blue light emitting element that emits blue light is used as the light emitting element 10, the phosphor that constitutes the wavelength conversion layer 40 is excited by the blue light from the blue light emitting element and converted into red light and emitted. Using a mixed phosphor of a red phosphor that emits light and a green phosphor that is excited by the blue light from the blue light emitting device and converts the wavelength to green light and emits it, a portion of the blue light from the blue light emitting device is directly emitted In addition, a part of blue light from the blue light-emitting element is caused by additive color mixture of red light and green light that have been wavelength-converted by exciting the phosphors of the red phosphor and the green phosphor in the wavelength conversion layer 40. White light is emitted.

更に、発光素子10からの出射光の色相(波長)と蛍光体の種類とを適宜に組み合わせることにより、発光素子10の発光色とは異なる種々の色相の光を得ることができる。   Furthermore, by appropriately combining the hue (wavelength) of the light emitted from the light emitting element 10 and the type of phosphor, light having various hues different from the emission color of the light emitting element 10 can be obtained.

波長変換層40の上には、発光素子10を保護するための透明板45が配設されている。透明板45は、発光素子10からの出射光及び波長変換層40による波長変換光に対して良好な光透過性を有しており、例えば、ガラス等の透明無機材料やシリコーン樹脂、エポキシ樹脂等の透明樹脂材料が用いられる。   A transparent plate 45 for protecting the light emitting element 10 is disposed on the wavelength conversion layer 40. The transparent plate 45 has good light transmittance with respect to the light emitted from the light emitting element 10 and the wavelength converted light by the wavelength conversion layer 40. For example, a transparent inorganic material such as glass, a silicone resin, an epoxy resin, etc. The transparent resin material is used.

また、透明板45の上面(光出射面)46は、粗面化が施されて所定の粗さの凹凸面が形成されている。光出射面46の粗面化は、例えば、フッ酸(HF)等を用いたウェットエッチングによる化学的方法、あるいはサンドブラスト等の機械的方法により行われる。粗面化により形成される凹凸面は、規則的あるいは幾何学的な形状でもよいし、規則性がなく幾何学的でもないランダムな形状でもよい。   Further, the upper surface (light emitting surface) 46 of the transparent plate 45 is roughened to form an uneven surface with a predetermined roughness. The light emitting surface 46 is roughened by, for example, a chemical method by wet etching using hydrofluoric acid (HF) or the like, or a mechanical method such as sand blasting. The uneven surface formed by roughening may be a regular or geometric shape, or may be a random shape that is neither regular nor geometric.

波長変換層40と透明板45とは、互いに接する界面に空気等の気体が存在しないように互いの面が全面に亘って密着している。これにより、発光素子10から出射して波長変換層40に入射した光が、該波長変換層40から出射して透明板45に入射するときの光の損失を抑制している。また、透明板45は、波長変換層40を構成するバインダーの屈折率以上の屈折率を有する材料が用いられる。これにより、波長変換層40から出射した光が全反射されることなく透明板45の下面(光入射面)47から該透明板45内に入射するように図られ、光入射効率の低下が抑制されている。   The wavelength conversion layer 40 and the transparent plate 45 are in close contact with each other over the entire surface so that no gas such as air is present at the interface contacting each other. Thereby, the loss of light when the light emitted from the light emitting element 10 and incident on the wavelength conversion layer 40 is emitted from the wavelength conversion layer 40 and incident on the transparent plate 45 is suppressed. The transparent plate 45 is made of a material having a refractive index equal to or higher than the refractive index of the binder constituting the wavelength conversion layer 40. Thereby, the light emitted from the wavelength conversion layer 40 is made to enter the transparent plate 45 from the lower surface (light incident surface) 47 of the transparent plate 45 without being totally reflected, and the reduction of the light incident efficiency is suppressed. Has been.

発光素子10(発光素子10のエピタキシャル成長層15)、発光素子10の上に位置する波長変換層40及び波長変換層40の上に位置する透明板45はいずれも、発光素子10の光軸Xの方向から見た外形寸法がほぼ同じであり、透明板45の上方から見た上方視において互いにほぼ重なり合っている。つまり、発光素子10の、n型半導体層12、活性層13及びp型半導体層14からなるエピタキシャル成長層15の夫々の側面12a、13a、14aからなる側面25、波長変換層40の側面41及び透明板45の側面48はいずれも、光軸Xに平行な略同一平面上に位置している。   The light emitting element 10 (epitaxial growth layer 15 of the light emitting element 10), the wavelength conversion layer 40 positioned on the light emitting element 10, and the transparent plate 45 positioned on the wavelength conversion layer 40 are all on the optical axis X of the light emitting element 10. The external dimensions viewed from the direction are substantially the same, and are substantially overlapped with each other when viewed from above the transparent plate 45. That is, the side surface 25 of the epitaxial growth layer 15 including the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14, the side surface 25 including the side surface 41 of the wavelength conversion layer 40, and the transparent layer. All the side surfaces 48 of the plate 45 are located on substantially the same plane parallel to the optical axis X.

発光素子10と波長変換層40と透明板45による三重構造と側壁4との間の隙間には、バインダーに光散乱粒子を混入・分散してなる拡散反射部材50が充填されている。   A gap between the triple structure formed by the light emitting element 10, the wavelength conversion layer 40, and the transparent plate 45 and the side wall 4 is filled with a diffuse reflection member 50 in which light scattering particles are mixed and dispersed in a binder.

拡散反射部材50を構成するバインダーは、例えば、シリコーン樹脂、エポキシ樹脂等の樹脂を用いることが好ましい。   As the binder constituting the diffuse reflection member 50, for example, a resin such as a silicone resin or an epoxy resin is preferably used.

同様に、拡散反射部材50を構成する光散乱粒子は、酸化チタン(TiO)、酸化亜鉛(ZnO)、窒化硼素(B)、窒化アルミニウム(AlN)等の金属酸化物を用いることが好ましい。 Similarly, the light scattering particles constituting the diffusive reflecting member 50 are made of metal oxide such as titanium oxide (TiO 2 ), zinc oxide (ZnO), boron nitride (B 2 O 3 ), aluminum nitride (AlN). Is preferred.

拡散反射部材50は、発光素子10のn型半導体層12、活性層13及びp型半導体層14の夫々の側面12a、13a、14aからなる側面25、波長変換層40の側面41及び透明板45の側面48を覆うと共に、透明板45の光出射面46にかからないように且つ側壁4から溢れ出ないように充填されている。   The diffuse reflection member 50 includes a side surface 25 including the side surfaces 12a, 13a, and 14a of the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14 of the light emitting element 10, a side surface 41 of the wavelength conversion layer 40, and a transparent plate 45. The side surface 48 of the transparent plate 45 is covered so that it does not cover the light emitting surface 46 of the transparent plate 45 and does not overflow from the side wall 4.

次に、半導体発光装置の製造方法について図6(a)〜(d)を参照して説明する。   Next, a method for manufacturing a semiconductor light emitting device will be described with reference to FIGS.

まず、図6(a)に示す発光素子実装工程において、回路パターン2が形成された実装基板3と該実装基板3の周縁部から該周縁部に沿って立ち上がる所定の高さの環状の側壁4からなるパッケージ6の凹部5内の中央部の実装基板3上に発光素子10を実装する。なお、ここでは、パッケージ6の凹部5内に1個の発光素子10を実装した半導体発光装置について説明する。   First, in the light emitting element mounting step shown in FIG. 6A, the mounting substrate 3 on which the circuit pattern 2 is formed and the annular side wall 4 having a predetermined height rising from the peripheral portion of the mounting substrate 3 along the peripheral portion. The light emitting element 10 is mounted on the mounting substrate 3 at the center in the recess 5 of the package 6 made of the above. Here, a semiconductor light-emitting device in which one light-emitting element 10 is mounted in the recess 5 of the package 6 will be described.

実装基板は3、例えば窒化アルミニウム(AlN)基板が用いられ、回路パターン2は、例えば、銅箔上に電解あるいは無電解のメッキによって金メッキ層が設けられている。側壁4は、例えば、セラミックスにより形成されている。   The mounting substrate 3 is an aluminum nitride (AlN) substrate, for example, and the circuit pattern 2 is provided with a gold plating layer on a copper foil by electrolysis or electroless plating, for example. The side wall 4 is made of ceramics, for example.

発光素子10は、透明なn型GaNの成長基板11上にエピタキシャル成長によってn型半導体層12、活性層13及びP型半導体層14が積層形成され、n型半導体層12に電気的且つ機械的に接合されたn側電極(バンプ電極)17及びp型半導体層14に電気的且つ機械的に接合されたp側電極(バンプ電極)18の夫々がp型半導体層14側から突出して設けられている。成長基板11は、上面21及び側面22からなる表面20が粗面化されて凸凹面を形成すると共に側面22が上面21の垂直面に対して所定の角度で傾斜した傾斜面を形成している。バンプ電極17、18は、例えば、金(Au)等の金属材料で形成されている。   In the light emitting element 10, an n-type semiconductor layer 12, an active layer 13, and a P-type semiconductor layer 14 are formed by epitaxial growth on a transparent n-type GaN growth substrate 11, and electrically and mechanically formed on the n-type semiconductor layer 12. Each of an n-side electrode (bump electrode) 17 and a p-side electrode (bump electrode) 18 electrically and mechanically bonded to the p-type semiconductor layer 14 is provided so as to protrude from the p-type semiconductor layer 14 side. Yes. In the growth substrate 11, the surface 20 including the upper surface 21 and the side surface 22 is roughened to form an uneven surface, and the side surface 22 forms an inclined surface that is inclined at a predetermined angle with respect to the vertical surface of the upper surface 21. . The bump electrodes 17 and 18 are made of a metal material such as gold (Au), for example.

パッケージ6の凹部5内に実装された発光素子10は、n側電極(バンプ電極)17及びp側電極(バンプ電極)18が実装基板3の回路パターン2に電気的且つ機械的に接合している。   In the light emitting element 10 mounted in the recess 5 of the package 6, the n-side electrode (bump electrode) 17 and the p-side electrode (bump electrode) 18 are electrically and mechanically joined to the circuit pattern 2 of the mounting substrate 3. Yes.

次に、図6(b)に示す波長変換樹脂塗布工程において、発光素子10の成長基板11の上面21に、バインダーに蛍光体粒子を混入・分散してなる波長変換樹脂55を、例えば、印刷法あるいはポッティング等により所定の量だけ塗布する。   Next, in the wavelength conversion resin coating step shown in FIG. 6B, a wavelength conversion resin 55 formed by mixing and dispersing phosphor particles in a binder is printed on the upper surface 21 of the growth substrate 11 of the light emitting element 10, for example. Apply a predetermined amount by the method or potting.

波長変換樹脂55を構成するバインダーは、例えば、シリコーン樹脂、エポキシ樹脂等の透明樹脂を用いることが好ましい。   As the binder constituting the wavelength conversion resin 55, for example, a transparent resin such as a silicone resin or an epoxy resin is preferably used.

同様に、波長変換樹脂55を構成する蛍光体は、発光素子10からの出射光で励起されて励起光よりも長波長の所望の波長からなる波長変換光を放出する蛍光体が用いられる。   Similarly, as the phosphor constituting the wavelength conversion resin 55, a phosphor that is excited by the light emitted from the light emitting element 10 and emits wavelength converted light having a desired wavelength longer than the excitation light is used.

具体的には、発光素子10に青色光を発光する青色発光素子を用いた場合、波長変換樹脂55を構成する蛍光体として、青色発光素子からの青色光に励起されて青色光の補色光の黄色光に波長変換して放出する黄色蛍光体を用いると、波長変換樹脂55からは、青色発光素子からの青色光の一部の直接光と、青色発光素子からの青色光の一部が波長変換樹脂55内の黄色蛍光体を励起することにより波長変換された黄色光との加法混色による白色光が出射される。   Specifically, when a blue light-emitting element that emits blue light is used as the light-emitting element 10, the phosphor that constitutes the wavelength conversion resin 55 is excited by blue light from the blue light-emitting element and is used as a complementary color light of blue light. When a yellow phosphor that converts the wavelength into yellow light and emits it is used, the wavelength conversion resin 55 emits a part of the direct light of the blue light from the blue light emitting element and a part of the blue light from the blue light emitting element. By exciting the yellow phosphor in the conversion resin 55, white light is emitted by additive color mixing with the yellow light whose wavelength has been converted.

同様に、発光素子10に青色光を発光する青色発光素子を用いた場合、波長変換樹脂55を構成する蛍光体として、青色発光素子からの青色光に励起されて赤色光に波長変換して放出する赤色蛍光体と青色発光素子からの青色光に励起されて緑色光に波長変換して放出する緑色蛍光体との混合蛍光体を用いると、青色発光素子からの青色光の一部の直接光と、青色発光素子からの青色光の一部が波長変換樹脂55内の赤色蛍光体及び緑色蛍光体の夫々の蛍光体を励起することにより波長変換された赤色光及び緑色光との加法混色による白色光が出射される。   Similarly, when a blue light emitting element that emits blue light is used as the light emitting element 10, the phosphor that constitutes the wavelength conversion resin 55 is excited by the blue light from the blue light emitting element and converted into red light and emitted. Using a mixed phosphor of a red phosphor that emits light and a green phosphor that is excited by the blue light from the blue light emitting device and converts the wavelength to green light and emits it, a portion of the blue light from the blue light emitting device is directly emitted In addition, a part of blue light from the blue light-emitting element is caused by additive color mixture of red light and green light that have been wavelength-converted by exciting the phosphors of the red phosphor and the green phosphor in the wavelength conversion resin 55. White light is emitted.

更に、発光素子10からの出射光の色相(波長)と蛍光体の種類とを適宜に組み合わせることにより、発光素子10の発光色とは異なる種々の色相の光を得ることができる。   Furthermore, by appropriately combining the hue (wavelength) of the light emitted from the light emitting element 10 and the type of phosphor, light having various hues different from the emission color of the light emitting element 10 can be obtained.

次に、図6(c)に示す透明板配設工程において、発光素子10の成長基板11の上面21に塗布された波長変換樹脂55が未硬化の状態において、該波長変換樹脂55の上の発光素子10の直上位置に、発光素子10の該発光素子10の光軸と垂直な方向の外形寸法とほぼ同じ外形寸法の透明板45を静置し、静置した透明板45を発光素子10の、n型半導体層12、活性層13及びp型半導体層14からなるエピタキシャル成長層15の側に押圧移動して波長変換樹脂55を挟んで対向する、透明板45の下面47と発光素子10の成長基板11の上面21とが互いに平行に且つ所定の間隔を持つように位置させる。   Next, in the transparent plate disposing step shown in FIG. 6C, the wavelength conversion resin 55 applied to the upper surface 21 of the growth substrate 11 of the light emitting element 10 is uncured and is placed on the wavelength conversion resin 55. At a position directly above the light emitting element 10, a transparent plate 45 having a substantially same outer dimension as that of the light emitting element 10 in a direction perpendicular to the optical axis of the light emitting element 10 is allowed to stand. The lower surface 47 of the transparent plate 45 and the light emitting element 10 facing each other with the wavelength conversion resin 55 sandwiched between the n-type semiconductor layer 12, the active layer 13 and the p-type semiconductor layer 14. The growth substrate 11 is positioned so as to be parallel to each other and have a predetermined interval.

その際、発光素子10の成長基板11の上面21に塗布された未硬化の波長変換樹脂55は、透明板45の押圧移動によって押し潰されて透明板45の下面に沿って広がると同時に成長基板11の、傾斜面からなる側面22に沿って流れ下る。但し、成長基板11の、傾斜面からなる側面22が流れ下る波長変換樹脂55の樹脂溜まりとなって流れを止める。   At that time, the uncured wavelength conversion resin 55 applied to the upper surface 21 of the growth substrate 11 of the light emitting element 10 is crushed by the pressing movement of the transparent plate 45 and spreads along the lower surface of the transparent plate 45 at the same time. 11 flows down along the side surface 22 formed of an inclined surface. However, the flow is stopped as a resin pool of the wavelength conversion resin 55 in which the side surface 22 of the inclined surface of the growth substrate 11 flows down.

その結果、波長変換樹脂55が、成長基板11の上面21及び側面22からなる表面20全面と透明板45の下面47全面の間に挟持された状態となり、透明板45の上方から見た上方視において、発光素子10、発光素子10の上に位置する波長変換樹脂55及び波長変換樹脂55の上に位置する透明板45はいずれも、互いにほぼ重なり合って位置することになる。   As a result, the wavelength conversion resin 55 is sandwiched between the entire surface 20 composed of the upper surface 21 and the side surface 22 of the growth substrate 11 and the entire lower surface 47 of the transparent plate 45, and viewed from above the transparent plate 45. 2, the light emitting element 10, the wavelength conversion resin 55 positioned on the light emitting element 10, and the transparent plate 45 positioned on the wavelength conversion resin 55 are positioned so as to substantially overlap each other.

つまり、発光素子10の、n型半導体層12、活性層13及びp型半導体層14からなる発光素子10の、n型半導体層12、活性層13及びp型半導体層14からなるエピタキシャル成長層15の夫々の側面12a、13a、14aからなる側面25、波長変換樹脂55の側面41及び透明板45の側面48はいずれも、発光素子10の光軸Xに平行な略同一平面上に位置している。   That is, in the light emitting element 10, the epitaxial growth layer 15 composed of the n type semiconductor layer 12, the active layer 13 and the p type semiconductor layer 14 of the light emitting element 10 composed of the n type semiconductor layer 12, the active layer 13 and the p type semiconductor layer 14. The side surface 25 including the respective side surfaces 12 a, 13 a, and 14 a, the side surface 41 of the wavelength conversion resin 55, and the side surface 48 of the transparent plate 45 are all located on substantially the same plane parallel to the optical axis X of the light emitting element 10. .

この状態で、未硬化の波長変換樹脂55を所定の条件で硬化して波長変換層40を形成する。これにより、波長変換層40は、透明板45を発光素子10に固定するための接着層としての働きも有することになる。   In this state, the uncured wavelength conversion resin 55 is cured under predetermined conditions to form the wavelength conversion layer 40. Thereby, the wavelength conversion layer 40 also has a function as an adhesive layer for fixing the transparent plate 45 to the light emitting element 10.

透明板45は、発光素子10からの出射光及び波長変換層40による波長変換光に対して良好な光透過性を有しており、例えば、ガラス等の透明無機材料やシリコーン樹脂、エポキシ樹脂等の透明樹脂材料が用いられる。   The transparent plate 45 has good light transmittance with respect to the light emitted from the light emitting element 10 and the wavelength converted light by the wavelength conversion layer 40. For example, a transparent inorganic material such as glass, a silicone resin, an epoxy resin, etc. The transparent resin material is used.

また、透明板45の上面(光出射面)46は、粗面化が施されて所定の粗さの凹凸面が形成されている。光出射面46の粗面化は、例えば、フッ酸(HF)等を用いたウェットエッチングによる化学的方法、あるいはサンドブラスト等の機械的方法により行われる。粗面化により形成される凹凸面は、規則的あるいは幾何学的な形状でもよいし、規則性がなく幾何学的でもないランダムな形状でもよい。   Further, the upper surface (light emitting surface) 46 of the transparent plate 45 is roughened to form an uneven surface with a predetermined roughness. The light emitting surface 46 is roughened by, for example, a chemical method by wet etching using hydrofluoric acid (HF) or the like, or a mechanical method such as sand blasting. The uneven surface formed by roughening may be a regular or geometric shape, or may be a random shape that is neither regular nor geometric.

最後に、図6(d)に示す拡散反射部材充填工程において、発光素子10と波長変換層40と透明板45による三重構造と側壁4との間の隙間に、バインダーに光散乱粒子を混入・分散してなる拡散反射部材50を充填し、所定の条件で硬化させる。   Finally, in the diffuse reflection member filling step shown in FIG. 6D, light scattering particles are mixed into the binder in the gap between the triple structure formed by the light emitting element 10, the wavelength conversion layer 40, and the transparent plate 45 and the side wall 4. The diffused reflection member 50 formed by dispersion is filled and cured under predetermined conditions.

拡散反射部材50を構成するバインダーは、例えば、シリコーン樹脂、エポキシ樹脂等の樹脂を用いることが好ましい。   As the binder constituting the diffuse reflection member 50, for example, a resin such as a silicone resin or an epoxy resin is preferably used.

同様に、拡散反射部材50を構成する光散乱粒子は、酸化チタン(TiO)、酸化亜鉛(ZnO)、窒化硼素(B)、窒化アルミニウム(AlN)等の金属酸化物を用いることが好ましい。 Similarly, the light scattering particles constituting the diffusive reflecting member 50 are made of metal oxide such as titanium oxide (TiO 2 ), zinc oxide (ZnO), boron nitride (B 2 O 3 ), aluminum nitride (AlN). Is preferred.

拡散反射部材50は、発光素子10の、n型半導体層12、活性層13及びp型半導体層14の夫々の側面12a、13a、14aからなる側面25、波長変換層40の側面41及び透明板45の側面48を覆うと共に、透明板45の光出射面46にかからないように且つ側壁4から溢れ出ないように充填される。   The diffuse reflection member 50 includes the side surface 25 including the side surfaces 12a, 13a, and 14a of the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14, the side surface 41 of the wavelength conversion layer 40, and the transparent plate. The side surface 48 of the transparent plate 45 is covered and the side surface 48 of the transparent plate 45 is covered with the light emitting surface 46 so as not to overflow from the side wall 4.

次に、上述の製造方法で作製された上記構成の半導体発光装置について、図7(半導体発光装置の部分断面図)を参照して光学的な説明を行なう。   Next, the semiconductor light-emitting device having the above structure manufactured by the above-described manufacturing method will be optically described with reference to FIG. 7 (partial cross-sectional view of the semiconductor light-emitting device).

外部電源(図示せず)から実装基板3上の回路パターン2及びバンプ電極17、18を介して発光素子10に電力が供給されると、発光素子10の活性層13において発光する。活性層13で発光した発光光(青色光)のうち透明板45側に位置するn型半導体層12の方向に向かう青色光は、n型半導体層12及び成長基板11を透過して成長基板11の上面21及び側面22からなる表面20(発光素子の主光出射面)から波長変換層40に入射する。   When power is supplied to the light emitting element 10 from an external power source (not shown) via the circuit pattern 2 and the bump electrodes 17 and 18 on the mounting substrate 3, the active layer 13 of the light emitting element 10 emits light. Of the emitted light (blue light) emitted from the active layer 13, blue light traveling in the direction of the n-type semiconductor layer 12 positioned on the transparent plate 45 side passes through the n-type semiconductor layer 12 and the growth substrate 11 and grows. The light is incident on the wavelength conversion layer 40 from the surface 20 (the main light emitting surface of the light emitting element) composed of the upper surface 21 and the side surface 22 of the light emitting element.

波長変換層40内に入射した青色光は、その一部が青色光Bのまま波長変換層40内を透過して透明板45に入射し、一部は蛍光体(黄色蛍光体)を励起して波長変換された、青色光の補色光となる黄色光Yが透明板45に入射する。そして、透明板45に入射した青色光B及び黄色光Yの夫々が透明板45内を透過して粗面化により形成される凹凸面からなる光出射面46から外部に向けて拡散出射され、青色拡散光Bと黄色拡散光Yからなる拡散出射光の加法混色によって白色拡散光Wが得られる。 A part of the blue light incident on the wavelength conversion layer 40 is transmitted through the wavelength conversion layer 40 while being part of the blue light B 1 and enters the transparent plate 45, and a part excites the phosphor (yellow phosphor). Then, the yellow light Y 1 that is wavelength-converted and becomes complementary color light of blue light enters the transparent plate 45. Then, each of the blue light B 1 and the yellow light Y 1 incident on the transparent plate 45 is transmitted through the transparent plate 45 and diffused and emitted outward from the light emitting surface 46 formed of the uneven surface formed by roughening. is, white diffuse light W 1 is obtained by additive color mixing of the diffused light emitted consisting of blue diffused light B 1 and yellow diffused light Y 1.

一方、活性層13で発光した発光光(青色光)のうち該活性層13の側方の方向に向かう青色光は、活性層13の側面13aが、発光素子10と波長変換層40と透明板45による三重構造と側壁4との間の隙間に充填された拡散反射部材50によって覆われており、活性層13の側面13aに到達した青色光は、拡散反射部材50の、活性層13の側面13aとの接触面及びその近傍で反射されてその一部が波長変換層40側に向かう。   On the other hand, of the emitted light (blue light) emitted from the active layer 13, the blue light directed to the side of the active layer 13 has the side surface 13 a of the active layer 13, the light emitting element 10, the wavelength conversion layer 40, and the transparent plate. The blue light reaching the side surface 13a of the active layer 13 covered with the diffuse reflection member 50 filled in the gap between the triple structure 45 and the side wall 4 is the side surface of the active layer 13 of the diffuse reflection member 50. A part of the light is reflected on the contact surface with 13a and the vicinity thereof, and a part thereof is directed to the wavelength conversion layer 40 side.

波長変換層40側に向かう青色光は、その一部が青色光Bのまま波長変換層40内を透過して透明板45に入射し、一部は蛍光体(黄色蛍光体)を励起して波長変換された、青色光の補色光となる黄色光Yが透明板45に入射する。そして、透明板45に入射した青色光B及び黄色光Yの夫々が透明板45内を透過して粗面化により形成される凹凸面からなる光出射面46から外部に向けて拡散出射され、青色拡散光Bと黄色拡散光Yからなる拡散出射光の加法混色によって白色拡散光Wが得られる。 A part of the blue light traveling toward the wavelength conversion layer 40 is transmitted through the wavelength conversion layer 40 while being part of the blue light B 2 and enters the transparent plate 45, and a part excites the phosphor (yellow phosphor). The yellow light Y 2 that is wavelength-converted and becomes complementary color light of blue light enters the transparent plate 45. Then, each of the blue light B 2 and the yellow light Y 2 incident on the transparent plate 45 is transmitted through the transparent plate 45 and diffused and emitted outward from a light emitting surface 46 formed of an uneven surface formed by roughening. is, white diffuse light W 2 is obtained by additive color mixing of the diffused light emitted consisting of blue diffused light B 2 and yellow diffused light Y 1.

このように、本実施形態の半導体発光装置(実施例)は、発光素子10と波長変換層40と透明板45による三重構造と側壁4との間の隙間に拡散反射部材50を充填し、発光素子10の、n型半導体層12、活性層13及びp型半導体層14の夫々の側面12a、13a、14aからなる側面25、波長変換層40の側面41及び透明板45の側面48を覆うようにした。   As described above, the semiconductor light emitting device (example) of the present embodiment fills the gap between the triple structure of the light emitting element 10, the wavelength conversion layer 40, and the transparent plate 45 and the side wall 4 with the diffuse reflection member 50 to emit light. The device 10 covers the side surface 25 including the side surfaces 12 a, 13 a, and 14 a of the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14, the side surface 41 of the wavelength conversion layer 40, and the side surface 48 of the transparent plate 45. I made it.

これにより、発光素子10の活性層13で発光して半導体発光装置1の光出射方向(透明板45方向)に向かう光が半導体発光装置1の出射光を構成すると同様に、活性層13の側方に向かう光も発光素子10の直上の出射光を構成するものとなる。   As a result, the light emitted from the active layer 13 of the light emitting element 10 and traveling in the light emitting direction of the semiconductor light emitting device 1 (in the direction of the transparent plate 45) constitutes the emitted light of the semiconductor light emitting device 1. The light traveling in the direction also constitutes outgoing light immediately above the light emitting element 10.

比較例は、透明板84の上方から透明板84の光出射面86を上方視した場合、下方に位置する半導体発光素子81の直上領域(A)とそれ以外の領域(B)では、出射光に色相の違いが認められる。つまり、半導体発光装置の上方視において、透明板84の光出射面86からの出射光に色度ムラが生じることになり、演色性に劣るものとなる。   In the comparative example, when the light emitting surface 86 of the transparent plate 84 is viewed from above from above the transparent plate 84, the emitted light is emitted in the region (A) directly above the semiconductor light emitting element 81 located below and the other region (B). There is a difference in hue. That is, when viewed from the top of the semiconductor light emitting device, chromaticity unevenness occurs in the light emitted from the light emitting surface 86 of the transparent plate 84, and the color rendering properties are inferior.

同時に、青色半導体発光素子81から透明板84の光入射面88に向かう青色光の光量の違いによって、半導体発光素子81の直上領域(A)とそれ以外の領域(B)では、照射光に輝度の違いが生じる。つまり、半導体発光装置の上方視において、出射光に輝度ムラが生じることになる。   At the same time, due to the difference in the amount of blue light from the blue semiconductor light emitting element 81 toward the light incident surface 88 of the transparent plate 84, the brightness of the irradiated light is increased in the region (A) immediately above the semiconductor light emitting device 81 and the other region (B). The difference arises. That is, uneven brightness occurs in the emitted light when the semiconductor light emitting device is viewed from above.

そこで、上記色度ムラ及び輝度ムラは、透明板84の光出射面86に粗面化処理を施して出射光を拡散光とすることにより抑制するように図られているが、上述のように青色半導体発光素子81から出射して透明板84の光入射面88に向かう青色光の光量が異なるために、色度ムラ及び輝度ムラの抑制効果は限定的なものにならざるを得ない。   Therefore, the chromaticity unevenness and luminance unevenness are intended to be suppressed by applying a roughening process to the light exit surface 86 of the transparent plate 84 to make the emitted light diffused, but as described above. Since the amount of blue light emitted from the blue semiconductor light emitting element 81 and traveling toward the light incident surface 88 of the transparent plate 84 is different, the effect of suppressing chromaticity unevenness and luminance unevenness must be limited.

これに対し、実施例は、発光素子10、発光素子10の上に位置する波長変換層40及び波長変換層40の上に位置する透明板45がいずれも、発光素子10の光軸Xに垂直な方向の外形寸法がほぼ同じであり、透明板45の上方から見た上方視において互いにほぼ重なり合っている。つまり、発光素子10の、n型半導体層12、活性層13及びp型半導体層14の夫々の側面12a、13a、14aからなる側面25、波長変換層40の側面41及び透明板45の側面48はいずれも、光軸Xに平行な略同一平面上に位置している。   In contrast, in the embodiment, the light emitting element 10, the wavelength conversion layer 40 positioned on the light emitting element 10, and the transparent plate 45 positioned on the wavelength conversion layer 40 are all perpendicular to the optical axis X of the light emitting element 10. The outer dimensions in the same direction are substantially the same, and are substantially overlapping each other when viewed from above the transparent plate 45. That is, the side surface 25 including the side surfaces 12 a, 13 a, and 14 a of the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14, the side surface 41 of the wavelength conversion layer 40, and the side surface 48 of the transparent plate 45. Are located on substantially the same plane parallel to the optical axis X.

そのため、半導体発光装置1の上方視において、出射光に色度ムラ及び輝度ムラの夫々が大幅に低減され、光出射面全面からより均一な色度分布及び輝度分布の出射光を得ることができる。   Therefore, when the semiconductor light emitting device 1 is viewed from above, each of the chromaticity unevenness and the luminance unevenness is significantly reduced in the emitted light, and the emitted light having a more uniform chromaticity distribution and luminance distribution can be obtained from the entire light emitting surface. .

また、実施例は、発光素子10の成長基板11の側面22を、上面21の垂直面に対して所定の角度で傾斜した傾斜面とすることにより、この傾斜面が、上面21に塗布された未硬化の波長変換樹脂55が透明板45の押圧移動によって押し潰された際に、側面22に沿って流れ下る波長変換樹脂55の樹脂溜まりとなって流れを止める働きをする。   Further, in the example, the side surface 22 of the growth substrate 11 of the light emitting element 10 is an inclined surface inclined at a predetermined angle with respect to the vertical surface of the upper surface 21, and this inclined surface is applied to the upper surface 21. When the uncured wavelength conversion resin 55 is crushed by the pressing movement of the transparent plate 45, it functions as a resin pool of the wavelength conversion resin 55 that flows down along the side surface 22 and stops the flow.

そのため、下方に位置する活性層13の側面13aが波長変換樹脂55で覆われるのを防止して拡散反射部材50で覆われるようにした。その結果、活性層13で発光した発光光のうち該活性層13の側方に向かう光を拡散反射部材50で反射して半導体発光装置1の出射光として構成することができ、発光素子10から出射された光の利用効率の向上に寄与するものとなる。   Therefore, the side surface 13 a of the active layer 13 positioned below is prevented from being covered with the wavelength conversion resin 55 and is covered with the diffuse reflection member 50. As a result, the light emitted from the active layer 13 toward the side of the active layer 13 can be reflected by the diffuse reflection member 50 and configured as the emitted light of the semiconductor light emitting device 1. This contributes to improvement in the utilization efficiency of the emitted light.

また、実施例の透明板45と比較例の透明板84を同一の外形寸法とすると、比較例は透明板84より小さい半導体発光素子81を有し、実施例は透明板45と同じ大きさの発光素子10を有することから、実施例は比較例よりも大きい発光素子を実装することが可能となる。そのため、半導体発光装置1の駆動(点灯)時に、比較例と同一電流密度で駆動して比較例よりも高い輝度を得ることができる。   Further, if the transparent plate 45 of the example and the transparent plate 84 of the comparative example have the same outer dimensions, the comparative example has a semiconductor light emitting element 81 smaller than the transparent plate 84, and the example has the same size as the transparent plate 45. Since the light emitting element 10 is provided, the embodiment can mount a light emitting element larger than the comparative example. Therefore, when the semiconductor light emitting device 1 is driven (lighted), it can be driven at the same current density as that of the comparative example, and higher brightness than that of the comparative example can be obtained.

なお、本実施形態は、パッケージ6の凹部5内に1個の発光素子10を実装した半導体発光装置であったが、パッケージ6内に実装する発光素子10の数は1個に限られるものではなく、複数個の発光素子10を実装することも可能である。その場合、波長変換層40及び透明板45は、複数個の発光素子10が実装された実装領域と同一の外形寸法とし、且つ、発光素子10の実装領域の直上に配設されており、波長変換層及び透明板の夫々の側面と複数の発光素子10の実装領域の最外周同士は発光素子の光軸に平行な略同一平面上に位置する。   Although the present embodiment is a semiconductor light emitting device in which one light emitting element 10 is mounted in the recess 5 of the package 6, the number of light emitting elements 10 mounted in the package 6 is not limited to one. Alternatively, it is possible to mount a plurality of light emitting elements 10. In that case, the wavelength conversion layer 40 and the transparent plate 45 have the same outer dimensions as the mounting area where the plurality of light emitting elements 10 are mounted, and are disposed immediately above the mounting area of the light emitting elements 10. The side surfaces of the conversion layer and the transparent plate and the outermost circumferences of the mounting regions of the plurality of light emitting elements 10 are located on substantially the same plane parallel to the optical axis of the light emitting elements.

なお、本実施形態における透明板45の代わりに、蛍光体セラミックスや蛍光体ガラス等の波長変換機能を備えた板状部材を使用することも可能である。その場合、波長変換層40の代わりに透明材料層を用いると好適である。   In addition, it is also possible to use the plate-shaped member provided with wavelength conversion functions, such as fluorescent substance ceramics and fluorescent substance glass, instead of the transparent plate 45 in this embodiment. In that case, it is preferable to use a transparent material layer instead of the wavelength conversion layer 40.

1… 半導体発光装置
2… 回路パターン
3… 半導体発光素子実装基板(実装基板)
4… 側壁
5… 凹部
6… パッケージ
10… 半導体発光素子(発光素子)
11… 成長基板
12… n型半導体層
12a… 側面
13… 活性層
13a… 側面
14… P型半導体層
14a… 側面
15… エピタキシャル成長層
16… 凹凸
17… n側電極(バンプ電極)
18… p側電極(バンプ電極)
19… エピタキシャル基板(エピ基板)
20… 表面
21… 上面
22… 側面
25… 側面
27… サンプルホルダー
28… ワックス
30… ダイシングブレード
31… ハーフカット溝
32… ダイシングブレード
40… 波長変換層
41… 側面
45… 透明板
46… 上面(光出射面)
47… 下面(光入射面)
48… 側面
50… 拡散反射部材
55… 波長変換樹脂
DESCRIPTION OF SYMBOLS 1 ... Semiconductor light-emitting device 2 ... Circuit pattern 3 ... Semiconductor light-emitting device mounting substrate (mounting substrate)
4 ... Side wall 5 ... Recess 6 ... Package 10 ... Semiconductor light emitting device (light emitting device)
DESCRIPTION OF SYMBOLS 11 ... Growth substrate 12 ... N type semiconductor layer 12a ... Side surface 13 ... Active layer 13a ... Side surface 14 ... P type semiconductor layer 14a ... Side surface 15 ... Epitaxial growth layer 16 ... Concavity and convexity 17 ... N side electrode (bump electrode)
18 ... p-side electrode (bump electrode)
19 ... Epitaxial substrate (epi substrate)
20 ... Surface 21 ... Upper surface 22 ... Side surface 25 ... Side surface 27 ... Sample holder 28 ... Wax 30 ... Dicing blade 31 ... Half-cut groove 32 ... Dicing blade 40 ... Wavelength conversion layer 41 ... Side surface 45 ... Transparent plate 46 ... Upper surface (light emission) surface)
47 ... Bottom surface (light incident surface)
48 ... Side 50 ... Diffuse reflection member 55 ... Wavelength conversion resin

Claims (10)

四角錐台形状の成長基板と、前記成長基板の底面上に積層された、活性層を含むエピタキシャル成長層を有する1個の半導体発光素子と、
前記成長基板の上面上及び側面上に設けられた、第1のバインダーに蛍光体粒子が混入・分散されてなる波長変換層と、
前記波長変換層の上に設けられた透明板と、
前記半導体発光素子の前記エピタキシャル成長層、前記波長変換層及び前記透明板の夫々の側面を一体に覆うように設けられた、第2のバインダーに光散乱粒子を混入・分散してなる拡散反射部材とを備え、
前記エピタキシャル成長層、前記波長変換層及び前記透明板はいずれも、前記半導体発光素子の光軸に垂直な方向の外形寸法がほぼ同じであり、且つ、夫々の側面同士は前記光軸に平行な略同一平面上に位置していることを特徴とする半導体発光装置。
A semiconductor pyramid-shaped growth substrate, and one semiconductor light emitting device having an epitaxial growth layer including an active layer, which is stacked on the bottom surface of the growth substrate;
A wavelength conversion layer provided on the upper surface and side surfaces of the growth substrate, in which phosphor particles are mixed and dispersed in the first binder;
A transparent plate provided on the wavelength conversion layer;
A diffuse reflection member formed by mixing and dispersing light scattering particles in a second binder provided so as to integrally cover the respective sides of the epitaxial growth layer, the wavelength conversion layer, and the transparent plate of the semiconductor light emitting device; With
The epitaxial growth layer, the wavelength conversion layer, and the transparent plate all have substantially the same outer dimensions in the direction perpendicular to the optical axis of the semiconductor light emitting device, and the respective side surfaces are substantially parallel to the optical axis. A semiconductor light emitting device which is located on the same plane.
四角錐台形状の成長基板と、前記成長基板の底面上に積層された、活性層を含むエピタキシャル成長層を有する複数個の半導体発光素子と、
前記複数個の半導体発光素子の夫々の成長基板の上面上及び側面上に一体に設けられた、第1のバインダーに蛍光体粒子が混入・分散されてなる波長変換層と、
前記波長変換層の上の設けられた透明板と、
前記複数個の半導体発光素子の夫々の前記エピタキシャル成長層、前記波長変換層及び前記透明板の夫々の側面を一体に覆うように設けられた、第2のバインダーに光散乱粒子を混入・分散してなる拡散反射部材とを備え、
前記波長変換層及び前記透明板は前記複数個の半導体発光素子の実装領域とほぼ同一の外形寸法であり、且つ、前記波長変換層及び前記透明板の夫々の側面と前記複数個の半導体発光素子の実装領域の最外周同士は前記半導体発光素子の光軸に平行な略同一平面上に位置していることを特徴とする半導体発光装置。
A plurality of semiconductor light emitting devices having a growth substrate having a truncated pyramid shape and an epitaxial growth layer including an active layer, which is stacked on a bottom surface of the growth substrate;
A wavelength conversion layer in which phosphor particles are mixed and dispersed in a first binder, which are integrally provided on an upper surface and a side surface of each growth substrate of the plurality of semiconductor light emitting elements;
A transparent plate provided on the wavelength conversion layer;
Light scattering particles are mixed and dispersed in a second binder provided so as to integrally cover each of the epitaxial growth layers, the wavelength conversion layers, and the transparent plates of the plurality of semiconductor light emitting devices. And a diffuse reflection member
The wavelength conversion layer and the transparent plate have substantially the same outer dimensions as mounting regions of the plurality of semiconductor light emitting elements, and each side surface of the wavelength conversion layer and the transparent plate and the plurality of semiconductor light emitting elements. The outermost peripheries of the mounting regions are positioned on substantially the same plane parallel to the optical axis of the semiconductor light emitting element.
前記第1のバインダー及び前記第2のバインダーはいずれも、シリコーン樹脂又はエポキシ樹脂からなることを特徴とする請求項1又は請求項2に記載の半導体発光装置。   3. The semiconductor light emitting device according to claim 1, wherein each of the first binder and the second binder is made of a silicone resin or an epoxy resin. 前記光散乱粒子は、酸化チタン(TiO)、酸化亜鉛(ZnO)、窒化硼素(B)及び窒化アルミニウム(AlN)のうちの1つからなることを特徴とする請求項1〜請求項3のいずれかに記載の半導体発光装置。 The light scattering particle is made of one of titanium oxide (TiO 2 ), zinc oxide (ZnO), boron nitride (B 2 O 3 ), and aluminum nitride (AlN). 4. The semiconductor light emitting device according to any one of items 3. 前記透明板は、ガラス、シリコーン樹脂及びエポキシ樹脂のうちの1つからなることを特徴とする請求項1〜請求項4のいずれかに記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the transparent plate is made of one of glass, silicone resin, and epoxy resin. 四角錐台形状の成長基板と、前記成長基板の底面上に積層された、活性層を含むエピタキシャル成長層を有する1個の半導体発光素子の前記成長基板の上面上に第1のバインダーに蛍光体粒子が混入・分散されてなる波長変換樹脂を塗布する工程と、
前記波長変換樹脂が未硬化の状態において、前記波長変換樹脂を前記エピタキシャル成長層と略同一外形寸法の透明板で前記エピタキシャル成長層側に押圧移動することにより押し潰された前記波長変換樹脂が前記成長基板の上面から側面に流れ下って上面及び側面を覆う工程と、
前記エピタキシャル成長層、前記波長変換樹脂の硬化後の波長変換層及び前記透明板の夫々の側面を一体に覆うように、第2のバインダーに光散乱粒子を混入・分散してなる拡散反射部材を設ける工程と、を有し、
前記エピタキシャル成長層、前記波長変換層及び前記透明板の夫々の側面同士を前記半導体発光素子の光軸に平行な略同一平面上に位置させたことを特徴とする半導体発光装置の製造方法。
Phosphor particles in a first binder on the top surface of the growth substrate of one semiconductor light emitting device having a growth substrate having a truncated pyramid shape and an epitaxial growth layer including an active layer stacked on the bottom surface of the growth substrate A step of applying a wavelength conversion resin in which is mixed and dispersed,
In the uncured state of the wavelength conversion resin, the wavelength conversion resin is crushed by pressing and moving the wavelength conversion resin to the epitaxial growth layer side with a transparent plate having substantially the same outer dimensions as the epitaxial growth layer. Covering the upper surface and the side surface by flowing down from the upper surface to the side surface;
A diffuse reflection member is formed by mixing and dispersing light scattering particles in the second binder so as to integrally cover the epitaxial growth layer, the wavelength conversion layer after curing of the wavelength conversion resin, and the side surfaces of the transparent plate. And having a process
A method of manufacturing a semiconductor light emitting device, wherein the side surfaces of the epitaxial growth layer, the wavelength conversion layer, and the transparent plate are positioned on substantially the same plane parallel to the optical axis of the semiconductor light emitting element.
四角錐台形状の成長基板と、前記成長基板の底面上に積層された、活性層を含むエピタキシャル成長層を有する複数個の半導体発光素子の夫々の前記成長基板の上面上に該上面を覆うように、第1のバインダーに蛍光体粒子が混入・分散されてなる波長変換樹脂を塗布する工程と、
前記波長変換樹脂が未硬化の状態において、前記波長変換樹脂の夫々を前記複数個の半導体発光素子の実装領域とほぼ同一の外形寸法の透明板で前記エピタキシャル成長層側に一括押圧移動することにより押し潰された各波長変換樹脂が前記成長基板の上面から側面に流れ下って夫々の成長基板の上面及び側面を一体に覆う工程と、
前記複数個の半導体発光素子の夫々の前記エピタキシャル成長層、前記波長変換樹脂の硬化後の波長変換層及び前記透明板の夫々の側面を一体に覆うように、第2のバインダーに光散乱粒子を混入・分散してなる拡散反射部材を設ける工程と、を有し、
前記波長変換層及び前記透明板の夫々の側面と前記複数個の半導体発光素子の実装領域の最外周同士を前記半導体発光素子の光軸に平行な略同一平面上に位置させたことを特徴とする半導体発光装置の製造方法。
A plurality of semiconductor light emitting devices each having a rectangular pyramid-shaped growth substrate and an epitaxial growth layer including an active layer stacked on the bottom surface of the growth substrate so as to cover the upper surface of the growth substrate. Applying a wavelength conversion resin in which phosphor particles are mixed and dispersed in the first binder;
When the wavelength conversion resin is in an uncured state, each of the wavelength conversion resins is pressed by moving collectively to the epitaxial growth layer side with a transparent plate having substantially the same outer dimensions as the mounting area of the plurality of semiconductor light emitting elements. Each of the crushed wavelength conversion resins flows down from the upper surface of the growth substrate to the side surface and integrally covers the upper surface and the side surface of each growth substrate;
Light scattering particles are mixed in the second binder so as to integrally cover the respective epitaxial growth layers of the plurality of semiconductor light emitting elements, the wavelength conversion layers after curing of the wavelength conversion resin, and the side surfaces of the transparent plate. A step of providing a diffuse reflection member formed by dispersion,
The side surfaces of the wavelength conversion layer and the transparent plate and the outermost peripheries of the mounting regions of the plurality of semiconductor light emitting elements are positioned on substantially the same plane parallel to the optical axis of the semiconductor light emitting element. A method for manufacturing a semiconductor light emitting device.
前記第1のバインダー及び前記第2のバインダーはいずれも、シリコーン樹脂又はエポキシ樹脂からなることを特徴とする請求項6又は請求項7に記載の半導体発光装置の製造方法。   The method for manufacturing a semiconductor light-emitting device according to claim 6, wherein each of the first binder and the second binder is made of a silicone resin or an epoxy resin. 前記光散乱粒子は、酸化チタン(TiO)、酸化亜鉛(ZnO)、窒化硼素(B)及び窒化アルミニウム(AlN)のうちの1つからなることを特徴とする請求項6〜請求項8のいずれかに記載の半導体発光装置の製造方法。 The light scattering particle is made of one of titanium oxide (TiO 2 ), zinc oxide (ZnO), boron nitride (B 2 O 3 ), and aluminum nitride (AlN). Item 9. A method for manufacturing a semiconductor light-emitting device according to any one of Items 8 to 10. 前記透明板は、ガラス、シリコーン樹脂及びエポキシ樹脂のうちの1つからなることを特徴とする請求項6〜請求項9のいずれかに記載の半導体発光装置の製造方法。   The method for manufacturing a semiconductor light emitting device according to claim 6, wherein the transparent plate is made of one of glass, silicone resin, and epoxy resin.
JP2013156269A 2013-07-29 2013-07-29 Semiconductor light emitting device and manufacturing method thereof Pending JP2015026753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156269A JP2015026753A (en) 2013-07-29 2013-07-29 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156269A JP2015026753A (en) 2013-07-29 2013-07-29 Semiconductor light emitting device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2015026753A true JP2015026753A (en) 2015-02-05

Family

ID=52491172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156269A Pending JP2015026753A (en) 2013-07-29 2013-07-29 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2015026753A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797312A (en) * 2016-09-07 2018-03-13 深圳市光峰光电技术有限公司 Ceramic composite and preparation method thereof, wavelength shifter
CN110047989A (en) * 2018-01-16 2019-07-23 斯坦雷电气株式会社 Light emitting device
CN110620172A (en) * 2018-06-20 2019-12-27 斯坦雷电气株式会社 Light emitting device
CN110957400A (en) * 2018-09-26 2020-04-03 日亚化学工业株式会社 Light emitting device and method for manufacturing the same
CN111326647A (en) * 2018-12-14 2020-06-23 日亚化学工业株式会社 Light-emitting device, light-emitting module, and manufacturing method of the light-emitting device
US10833234B2 (en) 2017-03-08 2020-11-10 Osram Oled Gmbh Optoelectronic semiconductor component
JP7572617B2 (en) 2020-12-15 2024-10-24 日亜化学工業株式会社 Method for manufacturing a light emitting device
JP7580206B2 (en) 2020-05-25 2024-11-11 スタンレー電気株式会社 Semiconductor light emitting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797312A (en) * 2016-09-07 2018-03-13 深圳市光峰光电技术有限公司 Ceramic composite and preparation method thereof, wavelength shifter
CN107797312B (en) * 2016-09-07 2024-04-16 深圳光峰科技股份有限公司 Ceramic composite material, preparation method thereof and wavelength converter
US10833234B2 (en) 2017-03-08 2020-11-10 Osram Oled Gmbh Optoelectronic semiconductor component
CN110047989A (en) * 2018-01-16 2019-07-23 斯坦雷电气株式会社 Light emitting device
CN110047989B (en) * 2018-01-16 2024-05-28 斯坦雷电气株式会社 Light emitting device
CN110620172A (en) * 2018-06-20 2019-12-27 斯坦雷电气株式会社 Light emitting device
CN110620172B (en) * 2018-06-20 2024-06-07 斯坦雷电气株式会社 Light emitting device
CN110957400A (en) * 2018-09-26 2020-04-03 日亚化学工业株式会社 Light emitting device and method for manufacturing the same
CN111326647A (en) * 2018-12-14 2020-06-23 日亚化学工业株式会社 Light-emitting device, light-emitting module, and manufacturing method of the light-emitting device
JP7580206B2 (en) 2020-05-25 2024-11-11 スタンレー電気株式会社 Semiconductor light emitting device
JP7572617B2 (en) 2020-12-15 2024-10-24 日亜化学工業株式会社 Method for manufacturing a light emitting device

Similar Documents

Publication Publication Date Title
JP2015026753A (en) Semiconductor light emitting device and manufacturing method thereof
US11201271B2 (en) Method for manufacturing light emitting device including first and second reflectors
CN104576882B (en) Light-emitting device
US9728678B2 (en) Light emitting element and method of manufacturing the same
JP6094062B2 (en) Light emitting device and manufacturing method thereof
JP6176171B2 (en) Method for manufacturing light emitting device
US9406847B2 (en) Optoelectronic semiconductor component, conversion-medium lamina and method for producing a conversion-medium lamina
TWI485888B (en) Light module
JP6593237B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP5736203B2 (en) Light emitting device
CN103053037A (en) Fluorescent member and light-emitting module
TW201537780A (en) Semiconductor light emitting device
JP2017520118A (en) Wavelength-converted light-emitting device with small light source
JP2016066632A (en) Light emission device
JP6201675B2 (en) Manufacturing method of semiconductor light emitting device
TWI493758B (en) Semiconductor light emitting device and light emitting module
JP6269753B2 (en) Light emitting device
US12057535B2 (en) Flip chip LED with side reflectors encasing side surfaces of a semiconductor structure and phosphor
CN104953006A (en) Semiconductor light emitting device
JP5853441B2 (en) Light emitting device
JP6555335B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP2016127052A (en) Light emission device and mounting method for the same, and method of manufacturing light source device
JP2016063121A (en) Light emitting device
JP5761391B2 (en) Light emitting device
JP2017034160A (en) Method for manufacturing light emitting device