JP2015026530A - Method of manufacturing electrode body - Google Patents

Method of manufacturing electrode body Download PDF

Info

Publication number
JP2015026530A
JP2015026530A JP2013155766A JP2013155766A JP2015026530A JP 2015026530 A JP2015026530 A JP 2015026530A JP 2013155766 A JP2013155766 A JP 2013155766A JP 2013155766 A JP2013155766 A JP 2013155766A JP 2015026530 A JP2015026530 A JP 2015026530A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
current collector
collector foil
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013155766A
Other languages
Japanese (ja)
Inventor
泰正 小熊
Yasumasa Oguma
泰正 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013155766A priority Critical patent/JP2015026530A/en
Publication of JP2015026530A publication Critical patent/JP2015026530A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode body in which breakage of a current collector foil during pressing can be suppressed using an electrode body in which a negative electrode mixture and a positive electrode mixture with respect to a negative electrode current collector foil and a positive electrode current collector foil are installed on both surfaces.SOLUTION: In a method of manufacturing an electrode body, when a positive electrode having a positive electrode layer and a solid electrolyte layer on both surfaces of a positive electrode current collector foil, and a negative electrode having a negative layer and the solid electrolyte layer on both surfaces of a negative electrode current collector foil and a size larger than that of the positive electrode are laminated on each other, the displacement amount of film thickness prevented from generating breakage of a current collector foil is obtained in advance by measuring the film thickness of a press part to which pressing pressure is applied and the film thickness of a non-press part which is not laminated on the positive electrode and to which the pressing pressure is not applied, and the positive electrode and the negative electrode are pressed and laminated by the pressing pressure based on the displacement amount of the film thickness.

Description

本発明は、電極体の製造方法に関し、さらに詳しくはプレス時の集電箔の切れを抑制し得る電極体の製造方法に関する。   The present invention relates to a method for manufacturing an electrode body, and more particularly, to a method for manufacturing an electrode body capable of suppressing breakage of a current collector foil during pressing.

近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために様々な研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウム電池に比べて電解液を用いないため、非水電解液を用いる場合の安全性向上のために必要なシステムを簡略化し得て構造の自由度が増し補器の数を減らすことができる等の多くの利点を有し得ることから、全固体電池の実用化が期待されている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, since the electrolyte is not used compared to the conventional non-aqueous electrolyte lithium battery, the system required for improving the safety when using the non-aqueous electrolyte can be simplified. Therefore, it is expected that the all-solid-state battery will be put to practical use because it can have many advantages such as an increased degree of freedom and a reduced number of auxiliary devices.

しかし、全固体電池の実用化が実現するためには、高容量・高出力を与え得る固体電解質の創出および/又は高電極利用効率を実現し得る電極を創出することなどの様々な改良が必要である。
全固体電池、例えばリチウム二次電池の電極体の構造は、Li析出を抑制するために正極の対向位置にLiイオンを受け入れる負極を設置する必要があり、通常負極シートのサイズを正極シートのサイズより大きくしている。この場合、従来の非水電解液系のリチウム二次電池と異なり、固体電解質によりLiイオンパスが繋がるため密着した界面を形成する必要がある。
However, in order to realize the practical application of all-solid-state batteries, various improvements such as the creation of a solid electrolyte capable of providing high capacity and high output and / or the creation of electrodes capable of realizing high electrode utilization efficiency are required. It is.
The structure of an electrode body of an all-solid battery, for example, a lithium secondary battery, requires that a negative electrode that accepts Li ions be installed at a position opposite to the positive electrode in order to suppress Li deposition, and the size of the negative electrode sheet is usually the size of the positive electrode sheet. It is bigger. In this case, unlike a conventional non-aqueous electrolyte type lithium secondary battery, a Li ion path is connected by a solid electrolyte, so that a close interface needs to be formed.

このため、例えば、特許文献1には、正極集電体の片面に正極活物質層を形成して所望の密度になるまでプレスする工程と、負極集電体の片面に負極活物質層を形成してプレスする工程と、両集電体の活物質層が形成されていない面を対向させて導電性を有する接着層によって接続するバイポーラ電極の製造方法が記載されているが、両集電体を同時にプレスすることによる集電箔切れについては言及されていない。   For this reason, for example, in Patent Document 1, a step of forming a positive electrode active material layer on one side of the positive electrode current collector and pressing it to a desired density, and a formation of the negative electrode active material layer on one side of the negative electrode current collector And a method of manufacturing a bipolar electrode in which the surfaces of the current collectors on which the active material layer is not formed are opposed to each other and connected by an adhesive layer having conductivity. There is no mention of cutting out of the current collector foil by pressing simultaneously.

また、特許文献2には、正極合材に固体電解質を積層した後に加圧成形して正極部材を得る工程と、負極合材に固体電解質を積層した後に加圧成形して負極部材を得る工程と、前記正極部材と負極部材とをそれぞれの固体電解質同士を合わせて加圧成形する工程を具備する全固体電池の製造方法が記載されおり、具体例として正極合材のサイズ(10mm角)より負極合材のサイズ(12mm角)が大きい場合が示されているが、負極集電箔および正極集電箔に対して負極合材および正極合材が両面に設置された電極体の具体例は示されていない。   Patent Document 2 discloses a step of obtaining a positive electrode member by laminating a solid electrolyte on a positive electrode mixture, and a step of obtaining a negative electrode member by laminating a solid electrolyte on a negative electrode mixture and then press-molding the solid electrolyte. And a method for producing an all-solid battery comprising a step of press-molding the positive electrode member and the negative electrode member together with each solid electrolyte, and as a specific example, from the size (10 mm square) of the positive electrode mixture Although the case where the size (12 mm square) of the negative electrode mixture is large is shown, a specific example of the electrode body in which the negative electrode mixture and the positive electrode mixture are installed on both sides with respect to the negative electrode current collector foil and the positive electrode current collector foil Not shown.

これらの公知の技術によっては、負極集電箔および正極集電箔に対して負極合材および正極合材が両面に設置された電極体を用いてプレス時の集電箔の切れを抑制し得る電極体を得ることは困難である。   Depending on these known techniques, it is possible to suppress cutting of the current collector foil during pressing using an electrode body in which the negative electrode composite material and the positive electrode composite material are installed on both sides of the negative electrode current collector foil and the positive electrode current collector foil. It is difficult to obtain an electrode body.

特開2005−317468号公報JP 2005-317468 A 特開2012−69248号公報JP 2012-69248 A

従って、本発明の目的は、負極集電箔および正極集電箔に対して負極合材および正極合材が両面に設置された電極体を用いてプレス時の集電箔の切れを抑制し得る電極体の製造方法を提供することである。   Therefore, the object of the present invention is to suppress the cutting of the current collector foil during pressing using an electrode body in which the negative electrode mixture and the positive electrode mixture are installed on both sides of the negative electrode current collector foil and the positive electrode current collector foil. It is providing the manufacturing method of an electrode body.

本発明者らは、前記目的を達成するために検討を行った結果、集電箔の両面に電極を設けて積層プレスを行う場合、集電箔の厚みが小さくなると集電箔の切れが発生することを見出し、さらに検討を行った結果、本発明を完成した。   As a result of investigations to achieve the above object, the present inventors have conducted a laminating press with electrodes provided on both sides of the current collector foil, and when the current collector foil thickness is reduced, the current collector foil breaks. As a result of finding out and conducting further studies, the present invention was completed.

本発明は、正極集電箔の両面に正極層とその上に固体電解質層とを有する正層と、負極集電箔の両面に負極層とその上に固体電解質層とを有し正極のサイズよりも大きいサイズを有する負極とを積層して固体電解質層同士を密着させて積層構造に成形する電極体の製造方法であって、負極における、積層時に正極に積層されてプレス圧力がかかるプレス部および正極に積層されずプレス圧力がかからない非プレス部の膜厚を測定することによって集電箔切れを起こさない膜厚変位量を予め求めておき、該膜厚変位量に基くプレス圧力によってプレスして積層する、前記製造方法に関する。
本発明において、膜厚変位は、後述の実施例の欄に詳述する測定法によって求めることができる。
The present invention provides a positive layer having a positive electrode layer on both sides of a positive electrode current collector foil and a solid electrolyte layer thereon, a negative electrode layer on both sides of the negative electrode current collector foil, and a positive electrode size having a solid electrolyte layer thereon. A method for producing an electrode body in which a negative electrode having a larger size is laminated and solid electrolyte layers are adhered to each other to form a laminated structure. The film thickness displacement amount that does not cause the current collector foil to break is measured in advance by measuring the film thickness of the non-pressed portion that is not stacked on the positive electrode and is not subjected to the press pressure, and is pressed with the press pressure based on the film thickness displacement amount. It is related with the said manufacturing method laminated | stacked.
In the present invention, the film thickness displacement can be determined by the measurement method described in detail in the column of Examples described later.

本発明によれば、負極集電箔および正極集電箔に対して負極合材および正極合材が両面に設置された電極体を用いてプレス時の集電箔の切れを抑制し得る電極体を容易に得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode body which can suppress the cutting | disconnection of the current collection foil at the time of press using the electrode body by which the negative electrode compound material and the positive electrode compound material were installed in both surfaces with respect to the negative electrode current collector foil and the positive electrode current collector foil Can be easily obtained.

図1は、本発明の実施態様の電極体の製造方法における工程の一部を示す模式図である。FIG. 1 is a schematic diagram showing a part of the steps in the method of manufacturing an electrode body according to the embodiment of the present invention. 図2は、本発明の実施態様の電極体の製造方法の工程における正極と負極とを説明するための部分的模式図である。FIG. 2 is a partial schematic view for explaining the positive electrode and the negative electrode in the steps of the method for producing an electrode body according to the embodiment of the present invention. 図3は、本発明の実施態様の電極体の製造方法の工程における負極のプレス部と非プレス部とを説明するための部分拡大模式図である。FIG. 3 is a partially enlarged schematic view for explaining a pressed portion and a non-pressed portion of the negative electrode in the process of the method for manufacturing an electrode body according to the embodiment of the present invention. 図4は、負極における膜厚変位量とプレス圧との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the film thickness displacement amount and the press pressure in the negative electrode. 図5は、負極における膜厚変位量とプレス圧との関係をまとめて示す表である。FIG. 5 is a table collectively showing the relationship between the film thickness displacement amount and the press pressure in the negative electrode. 図6は、1.0tのプレス圧でプレスした負極の断面SEM写真の写しである。FIG. 6 is a copy of a cross-sectional SEM photograph of the negative electrode pressed at a press pressure of 1.0 t. 図7は、2.0tのプレス圧でプレスした負極の断面SEM写真の写しである。FIG. 7 is a copy of a cross-sectional SEM photograph of the negative electrode pressed at a press pressure of 2.0 t. 図8は、3.0tのプレス圧でプレスした負極の断面SEM写真の写しである。FIG. 8 is a copy of a cross-sectional SEM photograph of the negative electrode pressed at a press pressure of 3.0 t. 図9は、4.0tのプレス圧でプレスした負極の断面SEM写真の写しである。FIG. 9 is a copy of a cross-sectional SEM photograph of the negative electrode pressed at a pressure of 4.0 t. 図10は、本発明の実施態様の電極体の製造方法の工程における負極の膜厚変位の測定方法を説明するための模式図である。FIG. 10 is a schematic diagram for explaining a method of measuring the film thickness displacement of the negative electrode in the process of the method for manufacturing an electrode body according to the embodiment of the present invention. 図11は、プレス時の温度を変化させて、プレス圧と得られた電極体の剥離強度をまとめて示す表である。FIG. 11 is a table collectively showing the pressing pressure and the peel strength of the obtained electrode body by changing the temperature during pressing.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記プレスが、ホットプレスによって行われる前記の製造方法。
2)前記正極が正極活物質および固体電解質を含み、前記負極が負極活物質および固体電解質を含む前記の製造方法
3)前記電極体が、層間の剥離が電極/集電箔間で生じる剥離強度を有し、集電箔の切れを有しないものである前記の製造方法
In particular, in the present invention, the following embodiments can be mentioned.
1) The said manufacturing method with which the said press is performed by a hot press.
2) The production method described above, wherein the positive electrode includes a positive electrode active material and a solid electrolyte, and the negative electrode includes a negative electrode active material and a solid electrolyte.
3) The manufacturing method as described above, wherein the electrode body has a peeling strength at which delamination between the electrodes / current collector foil occurs, and the current collector foil does not have a break.

以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様の電極体の製造方法においては、正極集電箔の両面に正極層とその上に固体電解質層とを有する正極と、負極集電箔の両面に負極層とその上に固体電解質層とを有し正極のサイズよりも大きいサイズを有する負極とを積層して固体電解質層同士を密着させて積層構造に成形する電極体の製造方法において、負極における、積層時に正極に積層されてプレス圧力がかかるプレス部および正極に積層されずプレス圧力がかからない非プレス部の膜厚を測定することによって集電箔切れを起こさない膜厚変位量を予め求めておき、該膜厚変位量に基くプレス圧力によってプレス、好適にはホットプレスして積層することによって、集電箔の切れを抑制して、好適には剥離試験で電極/集電箔間で剥離が生じるほどの大きな剥離強度で固体電解質同士が密着して積層された電極体を得ることが可能となると考えられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the method for producing an electrode body according to an embodiment of the present invention, a positive electrode having a positive electrode layer on both sides of the positive electrode current collector foil and a solid electrolyte layer thereon, a negative electrode layer on both sides of the negative electrode current collector foil, and a solid material thereon In an electrode body manufacturing method in which a negative electrode having an electrolyte layer and a size larger than the size of the positive electrode is laminated and the solid electrolyte layers are adhered to each other to form a laminated structure, the negative electrode is laminated on the positive electrode at the time of lamination. The film thickness displacement amount that does not cause current collector foil breakage is determined in advance by measuring the film thickness of the pressed portion where the pressing pressure is applied and the non-pressed portion where the pressing pressure is not applied to the positive electrode. The peel strength is high enough to prevent the current collector foil from being cut by pressing, preferably hot-pressing, and laminating, and preferably causing separation between the electrode and current collector foil in the peel test. Considered a solid electrolyte with each other can be obtained to a stacked electrode body contact.

一方、従来の電極体の製造方法においては、片面塗工、すなわち正極集電箔の片面に正極層とその上に固体電解質層とを有する正極と、負極集電箔の片面に負極層とその上に固体電解質層とを有し正極のサイズよりも大きいサイズを有する負極とを積層して固体電解質層同士を密着させて積層構造に成形して電極体を得る方法であるため、集電箔の一方がフリーであるため、せん断応力が掛からず電極体における箔切れの問題は顕在化していなかったと考えられる。   On the other hand, in the conventional method for producing an electrode body, single-side coating, that is, a positive electrode having a positive electrode layer and a solid electrolyte layer thereon on one side of the positive electrode current collector foil, and a negative electrode layer on one side of the negative electrode current collector foil and its The current collector foil is a method of obtaining an electrode body by laminating a negative electrode having a solid electrolyte layer thereon and having a size larger than the size of the positive electrode and bringing the solid electrolyte layers into close contact to form a laminated structure. Since one of these is free, it is considered that no shear stress is applied and the problem of foil breakage in the electrode body has not been realized.

しかし、本発明の範囲外の製造方法による両面塗工、すなわち正極集電箔の両面に正極層とその上に固体電解質層とを有する正極と、負極集電箔の両面に負極層とその上に固体電解質層とを有し正極のサイズよりも大きいサイズを有する負極とを積層して固体電解質層同士を密着させて積層構造に成形して電極体を得る方法によれば、両面の塗工層が電極に拘束されているため、条件によっては、電極体における箔切れの問題が顕在化したと考えられる。   However, double-sided coating by a production method outside the scope of the present invention, that is, a positive electrode having a positive electrode layer and a solid electrolyte layer thereon on both sides of the positive electrode current collector foil, and a negative electrode layer on both sides of the negative electrode current collector foil In accordance with the method for obtaining an electrode body by laminating a solid electrolyte layer and a negative electrode having a size larger than the size of the positive electrode and bringing the solid electrolyte layers into close contact to form a laminated structure, Since the layer is constrained to the electrode, it is considered that the problem of foil breakage in the electrode body has become apparent depending on conditions.

本発明の実施態様の全固体電池の製造方法は、図1に示すように、
(1)正極集電箔の両面における正極層の緻密化と、負極集電箔の両面における負極層の緻密化、
(2)正極層の両面上に粗固体電解質層(粗SE層と略記する場合もある。)の転写と、負極層の両面上に粗固体電解質層(粗SE層と略記する場合もある。)の転写の工程、
(3)負極における、積層時に正極に積層されてプレス圧力がかかるプレス部および正極に積層されずプレス圧力がかからない非プレス部の膜厚を測定することによって集電箔切れを起こさない膜厚変位量を予め求める工程(図示せず)、および
(4)該膜厚変位量に基くプレス圧力によって一軸プレスにより積層して、粗SE同士の界面形成を行う工程、を含む。
前記の工程(4)において、固体電解質同士の密着を高めるために、ホットプレスによってプレスし得る。前記のホットプレスは100℃以上、好適には100〜200℃の範囲、特に100〜180℃の範囲の温度で実施し得る。
As shown in FIG. 1, the manufacturing method of the all solid state battery of the embodiment of the present invention is as follows.
(1) Densification of the positive electrode layer on both sides of the positive electrode current collector foil, and densification of the negative electrode layer on both sides of the negative electrode current collector foil,
(2) Transfer of a coarse solid electrolyte layer (sometimes abbreviated as a crude SE layer) on both surfaces of the positive electrode layer, and a coarse solid electrolyte layer (abbreviated as a coarse SE layer) on both sides of the negative electrode layer. ) Transcription process,
(3) Displacement of film thickness that does not cause current collector foil breakage by measuring the film thickness of the negative electrode and the non-pressed part that is not laminated to the positive electrode and is not pressed at the positive electrode during lamination. A step of determining the amount in advance (not shown), and
(4) A step of laminating by uniaxial pressing with a pressing pressure based on the film thickness displacement amount to form an interface between the rough SEs.
In the step (4), in order to enhance the adhesion between the solid electrolytes, the pressing can be performed by hot pressing. Said hot pressing can be carried out at temperatures of 100 ° C. or higher, preferably in the range of 100 to 200 ° C., in particular in the range of 100 to 180 ° C.

本発明の実施態様においては、図2に示すように、正極集電箔の両面に正極層とその上に固体電解質層とを有する正極と、負極集電箔の両面に負極層とその上に固体電解質層とを有し正極のサイズよりも大きいサイズを有する負極とを用い、両電極層をプレスして固体電解質(SE)界面を形成する。
前記の正極および負極のサイズは電極体を用いる全固体電池の用途によって異なり得るが、負極のサイズの方が負極のサイズよりも大きく、典型的には正極のサイズが直径11.28mmで、負極のサイズが直径13mmであり得る。
In the embodiment of the present invention, as shown in FIG. 2, a positive electrode having a positive electrode layer on both sides of the positive electrode current collector foil and a solid electrolyte layer thereon, and a negative electrode layer on both surfaces of the negative electrode current collector foil. Using a negative electrode having a solid electrolyte layer and a size larger than the size of the positive electrode, both electrode layers are pressed to form a solid electrolyte (SE) interface.
The size of the positive electrode and the negative electrode may vary depending on the use of the all-solid battery using the electrode body. However, the size of the negative electrode is larger than the size of the negative electrode, and typically the positive electrode has a diameter of 11.28 mm. Can be 13 mm in diameter.

本発明の実施態様においては、図3に示すように、負極において、積層時に正極に積層されてプレス圧力がかかるプレス部と正極に積層されずプレス圧力がかからない非プレス部が存在する。
そして、負極にプレス圧を変えて膜厚の変位量:非プレス部の厚み−プレス部の厚み(μm)を求め、プレス圧(t)との関係をプロットしたのが図4であり、表にまとめたのが図5である。
本発明は、工程内で、非破壊で負極の膜厚変化を測定し、プレス圧と膜厚変化との相関に基いて集電箔の割れが発生する前に予想することによって、プレスによる電極体の製造歩留りが向上し得ることを見出したことに基くものである。
In the embodiment of the present invention, as shown in FIG. 3, in the negative electrode, there are a press part that is laminated on the positive electrode during lamination and a press pressure is applied, and a non-pressed part that is not laminated on the positive electrode and is not subjected to a press pressure.
Then, by changing the press pressure to the negative electrode, the displacement amount of the film thickness: the thickness of the non-pressed portion−the thickness of the pressed portion (μm) was obtained, and the relationship with the press pressure (t) was plotted in FIG. FIG. 5 summarizes the above.
The present invention measures the film thickness change of the negative electrode in a non-destructive manner within the process, and predicts before the current collector foil cracks based on the correlation between the press pressure and the film thickness change. This is based on the finding that the production yield of the body can be improved.

これは、径サイズの異なる電極(シート)を一軸プレスにより積層すると、電極端部においてプレス圧力が掛かる部位と掛からない部位との間で、電極端部で変位差が生じて集電箔にせん断力が発生して、集電箔の切れが発生するが、負極の膜厚変化を測定することで、電極体に箔切れが発生する前に予測することができて、歩留りを向上させることによると考えられる。また、負極の膜厚変位がほぼない場合は、箔切れが発生する原因が低減されるため、電極体の製造歩留りをさらに向上させ得る。   This is because when electrodes (sheets) with different diameter sizes are laminated by uniaxial pressing, a displacement difference occurs between the portion where the pressing pressure is applied and the portion where the pressing pressure is not applied at the end of the electrode, and the current collector foil is sheared. Force is generated and the current collector foil is cut off, but by measuring the change in the film thickness of the negative electrode, it can be predicted before the foil breakage occurs in the electrode body, thereby improving the yield. it is conceivable that. Moreover, when there is almost no film thickness displacement of the negative electrode, the cause of the foil breakage is reduced, so that the production yield of the electrode body can be further improved.

そして、図4を基に、プレス圧を変えてプレスしてプレスによる電極体の集電箔の割れの発生を観察したのが、図6〜9である。
図6および図7と図8および図9との比較から、プレス圧3.0tおよび4.0tでは箔切れが発生し、プレス圧が1.0tおよび2.0tでは集電箔切れが発生していない。
この結果は、2.0t以下のプレス圧であれば集電箔の切れの発生を防止乃至は抑制し得ることを示している。
4 to 9 show the occurrence of cracks in the current collector foil of the electrode body due to pressing by changing the pressing pressure based on FIG.
From comparison between FIGS. 6 and 7 and FIGS. 8 and 9, foil breakage occurred at press pressures of 3.0 t and 4.0 t, and current collector foil breakage occurred at press pressures of 1.0 t and 2.0 t. Not.
This result shows that the occurrence of breakage of the current collector foil can be prevented or suppressed if the pressing pressure is 2.0 t or less.

本発明の実施態様において、電極体を得るための第1の工程における正極および負極は以下のようにして得ることができる。例えば、活物質、固体電解質、例えば固体電解質材料、バインダーおよび溶媒を含む正極スラリーを正極集電箔の片面に塗布し、同様の手順で他の面に正極スラリーを塗布して正極層を得、次いで固体電解質材料、バインダーおよび溶媒を含む固体電解質スラリーを正極層の両面に塗布して正極を得る。一方、活物質、固体電解質材料、バインダーおよび溶媒を含む負極スラリーを負極集電箔の片面に塗布し、同様の手順で他の面に負極スラリーを塗布して負極層を得、次いで固体電解質材料、バインダーおよび溶媒を含む固体電解質スラリーを負極層の両面に塗布して負極を得る。
前記の正極集電箔として金属箔、例えばSUS箔、Al箔を、前記の負極集電箔として金属箔、例えばSUS箔、Cu箔を用い得る。
In the embodiment of the present invention, the positive electrode and the negative electrode in the first step for obtaining the electrode body can be obtained as follows. For example, a positive electrode slurry containing an active material, a solid electrolyte such as a solid electrolyte material, a binder and a solvent is applied to one side of the positive electrode current collector foil, and the positive electrode slurry is applied to the other side in the same procedure to obtain a positive electrode layer. Next, a solid electrolyte slurry containing a solid electrolyte material, a binder and a solvent is applied to both surfaces of the positive electrode layer to obtain a positive electrode. On the other hand, a negative electrode slurry containing an active material, a solid electrolyte material, a binder and a solvent is applied to one side of a negative electrode current collector foil, and a negative electrode slurry is applied to the other side in the same procedure to obtain a negative electrode layer, and then a solid electrolyte material Then, a solid electrolyte slurry containing a binder and a solvent is applied to both sides of the negative electrode layer to obtain a negative electrode.
A metal foil such as SUS foil or Al foil can be used as the positive electrode current collector foil, and a metal foil such as SUS foil or Cu foil can be used as the negative electrode current collector foil.

本発明の実施態様において、前記の活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルマンガンコバルト酸リチウム(Li1+xNi1/3Mn1/3Co1/3)、リチウムコバルト酸ニッケル(LiCo0.3Ni0.7)、マンガン酸リチウム(LiMn)、チタン酸リチウム(Li4/3Ti5/3)、リチウムマンガン酸化合物(Li1+xMn2−x−y;M=Al、Mg、Fe、Cr、Co、Ni、Zn)、チタン酸リチウム(LiTiO)、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)、酸化バナジウム(V)、酸化モリブデン(MoO3)、硫化チタン(TiS)、リチウムコバルト窒化物(LiCoN)、リチウムシリコン窒化物(LiCoN)、リチウム金属、リチウム合金(LiM、M=Sn、Si、Al、Ge、Sb、P)、リチウム貯蔵性金属間化合物(MgxM、M=Sn、Ge、Sb、あるいはXySb、X=In、Cu、Mn)やそれらの誘導体、グラファイト、ハードカーボンなどの炭素材料(C)が挙げられる。ここに、正極活物質と負極活物質には明確な区別はなく、2種類の化合物の充放電電位を比較して貴な電位を示すものを正極に、卑な電位を示すものを負極に用いて任意の電圧の電極を構成し得る。
例えば、LiCoO、LiNiO、LiMn、LiNi1/2Mn1/2、LiNi1/3Co1/3Mn1/3、Li[NiLi1/3−2y/3]O(0≦x≦1、0<y<1/2)やこれらのリチウム遷移金属酸化物のリチウム又は遷移金属を他の元素で置換したリチウム遷移金属、例えばLiNiMnCoOが正極活物質として挙げられる。
また、グラファイト、ハードカーボンなどの炭素材料(C)が負極活物質として好適に挙げられる。
In an embodiment of the present invention, the active material includes lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2 ), nickel manganese lithium cobaltate (Li 1 + x Ni 1/3 Mn 1/3). Co 1/3 O 2 ), nickel lithium cobaltate (LiCo 0.3 Ni 0.7 O 2 ), lithium manganate (Li x Mn 2 O 4 ), lithium titanate (Li 4/3 Ti 5/3 O) 4), lithium manganese oxide compound (Li 1 + x M y Mn 2-x-y O 4; M = Al, Mg, Fe, Cr, Co, Ni, Zn), lithium titanate (Li x TiO y), phosphoric acid metallic lithium (LiMPO 4, M = Fe, Mn, Co, Ni), vanadium oxide (V 2 O 5), molybdenum oxide (MoO3), titanium sulfide ( iS 2), lithium cobalt nitride (LiCoN), lithium silicon nitride (LiCoN), lithium metal, lithium alloy (LiM, M = Sn, Si , Al, Ge, Sb, P), lithium storage intermetallic compound ( (MgxM, M = Sn, Ge, Sb, or XySb, X = In, Cu, Mn) and their derivatives, carbon materials (C) such as graphite and hard carbon. Here, there is no clear distinction between the positive electrode active material and the negative electrode active material, and the positive and negative potentials are compared for the positive electrode and the negative potential is used for the negative electrode by comparing the charge and discharge potentials of the two types of compounds. Thus, an electrode having an arbitrary voltage can be formed.
For example, Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x Ni 1/2 Mn 1/2 O 2 , Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 , Li x [Ni y Li 1 / 3-2y / 3 ] O 3 (0 ≦ x ≦ 1, 0 <y <1/2) and lithium or transition metal of these lithium transition metal oxides were substituted with other elements Lithium transition metals such as LiNiMnCoO 2 can be mentioned as the positive electrode active material.
Moreover, carbon materials (C), such as graphite and hard carbon, are preferably used as the negative electrode active material.

前記の固体電解質としては、LiS−SiS、LiI−LiS−SiS、liI−liS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiPS、LiS−Pなどの硫化物系非晶質固体電解質が挙げられる。 Examples of the solid electrolyte include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , liI-li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3 PO 4 —. Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5 , sulfide-type amorphous solid electrolytes such as Li 3 PS 4 and Li 2 S—P 2 S 5 .

前記のLiS−Pは、硫化リチウムと、五硫化二燐及び/又は、単体燐及び単体硫黄から得るができ、例えばこれら原料を溶融反応した後、急冷するか、又は原料をメカニカルミリング法により処理して得られる硫化物ガラスを加熱処理することによって得ることができる。硫化リチウムと、五硫化二燐又は単体燐及び単体硫黄の混合モル比は、通常50:50〜80:20、好ましくは60:40〜75:25であり、好適にはLiS:P=70:30〜75:25(モル比)程度である。 The Li 2 S—P 2 S 5 can be obtained from lithium sulfide and diphosphorus pentasulfide and / or simple phosphorus and simple sulfur. For example, these raw materials are melt-reacted and then rapidly cooled or the raw materials are used. It can be obtained by heat-treating sulfide glass obtained by processing by a mechanical milling method. The mixing molar ratio of lithium sulfide to diphosphorus pentasulfide or simple phosphorus and simple sulfur is usually 50:50 to 80:20, preferably 60:40 to 75:25, and preferably Li 2 S: P 2. S 5 = 70: 30~75: is about 25 (mole ratio).

本発明の実施態様において、前記の活物質と固体電解質と、一般的に用いられる導電剤を用い得る。
前記導電剤としては、炭素材料、リチウムと合金化し難い金属、例えばアルミニウム、導電性高分子材料等が挙げられ、アルミニウム、炭素材料が好適である。前記炭素材料としては、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、フラーレン等を単独で又は2種以上を組み合わせて用いることができる。
前記バインダーとしては、ポリブタジエンゴム(BRゴム)、スチレンブタジエンゴム(SBR)、ポリアクリレート、ポリフッ化ビニリデン(PVdF)等が挙げられる。
正極および負極材料中の総固形分に占める各成分の割合は、活物質が60質量%以上で98.5質量%以下、固体電解質が10〜35質量%、バインダーが1質量%以上で20質量%以下、導電剤が0〜30質量%以下であり得る。
In the embodiment of the present invention, the active material, the solid electrolyte, and a commonly used conductive agent can be used.
Examples of the conductive agent include carbon materials and metals that are difficult to be alloyed with lithium, such as aluminum and conductive polymer materials, and aluminum and carbon materials are preferable. As the carbon material, graphite, carbon black, carbon nanotube, carbon nanofiber, fullerene and the like can be used alone or in combination of two or more.
Examples of the binder include polybutadiene rubber (BR rubber), styrene butadiene rubber (SBR), polyacrylate, and polyvinylidene fluoride (PVdF).
The proportion of each component in the total solid content in the positive electrode and the negative electrode material is 60% by mass or more and 98.5% by mass or less, the solid electrolyte is 10 to 35% by mass, and the binder is 1% by mass or more and 20% by mass. % Or less, and the conductive agent may be 0 to 30% by mass or less.

前記の工程においては、正極のサイズ、負極のサイズ、負極厚み(両面塗工+集電箔)の典型的な例に基いて説明を行ったが、本発明の実施態様の製造方法においては、正極および負極サイズや、負極厚み(両面塗工+集電箔)が異なる場合も、前記の工程(1)〜(4)によって、膜厚変位量に基くプレス圧力によって一軸プレスにより積層して、粗SE同士の界面形成を行う工程によって、プレス時の集電箔の切れが抑制された電極体を得ることができる。   In the above process, the description was made based on typical examples of the size of the positive electrode, the size of the negative electrode, and the thickness of the negative electrode (double-sided coating + current collector foil), but in the manufacturing method of the embodiment of the present invention, Even when the positive and negative electrode sizes and the negative electrode thickness (double-sided coating + current collector foil) are different, the above steps (1) to (4) are laminated by uniaxial press with the press pressure based on the film thickness displacement amount, An electrode body in which cutting of the current collector foil during pressing is suppressed can be obtained by the step of forming the interface between the rough SEs.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
以下の各例において、測定は以下に示す測定法によって行った。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.
In each of the following examples, the measurement was performed by the following measurement method.

1.変位量の測定
負極の変位を、392MPaでプレスしたサンプルを直径11.28mmで打ち抜き、島津製作所製オートグラフを使用して、下記の手法で求める。
A.図10の左図のプレス時の変位、オートグラフ装置の変位を測定して、ベースラインの測定を行う。
B.プレス治具の中に、両面塗工した負極を挿入し、変位量を測定して、サンプル+ベースラインの値を求める。
測定範囲:0〜5t(5t/cm
使用した負極厚み(両面塗工+10μmの集電箔):120μm
1. Measurement of Displacement The displacement of the negative electrode is obtained by punching out a sample pressed at 392 MPa with a diameter of 11.28 mm and using an autograph manufactured by Shimadzu Corporation by the following method.
A. The baseline is measured by measuring the displacement during pressing and the displacement of the autograph device in the left diagram of FIG.
B. Insert the negative electrode coated on both sides into the press jig, measure the displacement, and determine the value of sample + baseline.
Measurement range: 0 to 5 t (5 t / cm 2 )
Negative electrode thickness used (double-sided coating + 10 μm current collector foil): 120 μm

2.集電箔の割れ確認
積層された電極体断面をミクトロームで切断し、SEMにて確認
3.剥離強度試験
積層された電極体の両面を粘着テープで固定し、電極体に対して引張応力を加え、剥離試験を行った。
2. 2. Confirmation of cracking of current collector foil Cut the cross section of the laminated electrode body with Microtrome and confirm with SEM Peel strength test Both surfaces of the laminated electrode body were fixed with an adhesive tape, a tensile stress was applied to the electrode body, and a peel test was performed.

参考例1
1.固体電解質の合成
LiS(日本化学工業社)とP(アルドリッチ社)とを出発原料として、P0.7656g、Pを1.2344g秤量し、そこにデンカブラック(DENKA)を0.016g添加し、メノウ乳鉢で5分間混合し、その後ヘプタン4gを入れ、遊星ボールミル(容器:ZrO製45ml、ボール:ZrO製のφ5mmを53g)を用いて、500rpmで20時間メカニカルミリングし、110℃で1時間加熱することでヘプタンを除去して固体電解質を得た。
Reference example 1
1. Solid electrolyte synthesized Li 2 S and (Nippon Chemical Industrial Co., Ltd.) P 2 S 5 and (Aldrich) as a starting material, P 2 S 5 0.7656g, a P 2 S 5 and 1.2344g weighed, Denka there Add 0.016 g of black (DENKA), mix for 5 minutes in an agate mortar, then add 4 g of heptane, and use a planetary ball mill (container: 45 ml of ZrO 2 , ball: 53 g of φ 5 mm made of ZrO 2 ), 500 rpm Was mechanically milled for 20 hours and heated at 110 ° C. for 1 hour to remove heptane and obtain a solid electrolyte.

実施例1〜16
2.電池要素の作製
2−1正極
正極活物質としてのLiNi1/3Co1/3Mn1/3O(日亜化学工業社)12.03mgとVGCF(昭和電工社)0.51mg、前記の固体電解質5.03mgを秤量し、ヘプタンを溶媒として混合したものをアルミ集電箔に塗工したものを乾燥し、他方の面にも同様に塗工、乾燥したものを正極塗工膜とした。
2−2負極
負極活物質としてのグラファイト(三菱化学社)9.06mgと前記の固体電解質8.24mgを秤量し、ヘプタンを溶媒として混合したものを銅集電箔に塗工したものを乾燥し、他方の面にも塗工、乾燥したものを負極塗工膜とした。
2−3固体電解質層
前記の固体電解質18mgを秤量し、バインダーとしてのBRゴムの5質量%ヘプタン溶液3.6mgとヘプタン30.3mgを混合したものをアルミ箔に塗工し、乾燥させて、アルミ箔を剥離させたものをBR電解質塗工膜とした。
Examples 1-16
2. Preparation of Battery Element 2-1 Positive Electrode LiNi1 / 3Co1 / 3Mn1 / 3O 2 (Nichia Chemical Co., Ltd.) 12.03 mg, VGCF (Showa Denko Co., Ltd.) 0.51 mg, and the above solid electrolyte 5.03 mg as a positive electrode active material What weighed and mixed with heptane as a solvent was coated on an aluminum current collector foil, dried, and coated on the other side in the same manner. The dried one was used as a positive electrode coating film.
2-2 Negative electrode A graphite (Mitsubishi Chemical Corporation) 9.06 mg as a negative electrode active material and 8.24 mg of the above solid electrolyte were weighed, and a mixture of heptane as a solvent and applied to a copper current collector foil was dried. The negative electrode coating film was coated and dried on the other surface.
2-3 Solid Electrolyte Layer Weighing 18 mg of the above solid electrolyte, applying a mixture of 3.6 mg of 5% by weight heptane solution of BR rubber as a binder and 30.3 mg of heptane on aluminum foil and drying, What peeled aluminum foil was used as the BR electrolyte coating film.

3.サンプルの作製
サンプルの作製を、図1に示す工程に従って行った。
1)各電極シートを、CIP(冷間等方圧プレス)を用いて329MPaにてプレス
2)上記電極シート上の両面に、電解質層を98MPaにてプレス
3)上記電極シートを、正極はφ11.28で打ち抜き、負極はφ13で打抜く
4)各電極シートに電解質層を張り合わせ、一軸プレスにて接合
4.負極の変位量とプレス圧の関係の予備的測定
前記のようにして、図10に示す手順で負極の変位量とプレス圧の関係の予備的測定を行った。
結果をまとめて図4のグラフおよび図5の表に示す。
3. Sample Preparation Sample preparation was performed according to the steps shown in FIG.
1) Press each electrode sheet at 329 MPa using CIP (Cold Isostatic Press) 2) Press both sides of the electrode sheet and press the electrolyte layer at 98 MPa 3) Press the electrode sheet and the positive electrode is φ11 Punching at 28 and negative electrode punching at φ13 4) Electrolyte layers are bonded to each electrode sheet and bonded by uniaxial pressing. Preliminary Measurement of Relationship between Negative Electrode Displacement and Pressing Pressure Preliminary measurement of the relationship between negative electrode displacement and press pressure was performed in the procedure shown in FIG.
The results are summarized in the graph of FIG. 4 and the table of FIG.

5.電極体の作製
図4〜5および図6〜9の結果に基いて、下記の条件で一軸プレス(プレス、ホットプレス)して電極体を製造した。
プレス圧:0.2、0.5、1.0、2.0t/cm
温度:室温(約25℃)、100℃、140℃、180℃
得られた電極体について測定結果をまとめて図11の表に示す。
図11の表において、電極/箔で剥離した場合は、SE/SE界面の剥離強度は電極/箔の剥離強度より大きいことを示す。
図11から、ホットプレスにより、積層プレス圧が低減可能であることが理解される。
5. Production of Electrode Body Based on the results of FIGS. 4 to 5 and FIGS. 6 to 9, an electrode body was produced by uniaxial pressing (pressing and hot pressing) under the following conditions.
Press pressure: 0.2, 0.5, 1.0, 2.0 t / cm 2
Temperature: Room temperature (about 25 ° C), 100 ° C, 140 ° C, 180 ° C
The measurement results of the obtained electrode body are summarized and shown in the table of FIG.
In the table of FIG. 11, when peeled at the electrode / foil, the peel strength at the SE / SE interface is greater than the peel strength at the electrode / foil.
From FIG. 11, it is understood that the lamination press pressure can be reduced by hot pressing.

比較例1〜2
下記の条件で一軸プレスした他は実施例1と同様にして、電極体を製造した。
プレス圧:3.0(比較例1)、4.0(比較例2)の各プレス圧(t/cm
温度:室温(約25℃)
得られた電極体についての断面SEM写真を図8、図9に示す。
Comparative Examples 1-2
An electrode body was produced in the same manner as in Example 1 except that uniaxial pressing was performed under the following conditions.
Pressing pressure: Each pressing pressure (t / cm 2 ) of 3.0 (Comparative Example 1) and 4.0 (Comparative Example 2 )
Temperature: Room temperature (about 25 ° C)
The cross-sectional SEM photograph about the obtained electrode body is shown in FIG. 8, FIG.

本発明によって、正極層および負極層の両面に固体電解質を有する電極を用いてプレス時の集電箔の切れを抑制し得る電極体を容易に得ることができる。   By this invention, the electrode body which can suppress the cutting | disconnection of the current collection foil at the time of a press using the electrode which has a solid electrolyte on both surfaces of a positive electrode layer and a negative electrode layer can be obtained easily.

Claims (4)

正極集電箔の両面に正極層とその上に固体電解質層とを有する正極と、負極集電箔の両面に負極層とその上に固体電解質層とを有し正極のサイズよりも大きいサイズを有する負極とを積層して固体電解質層同士を密着させて積層構造に成形する電極体の製造方法であって、負極における、積層時に正極に積層されてプレス圧力がかかるプレス部および正極に積層されずプレス圧力がかからない非プレス部の膜厚を測定することによって集電箔切れを起こさない膜厚変位量を予め求めておき、該膜厚変位量に基くプレス圧力によってプレスして積層する、前記製造方法。   A positive electrode having a positive electrode layer on both sides of the positive electrode current collector foil and a solid electrolyte layer thereon, and a negative electrode layer on both sides of the negative electrode current collector foil and a solid electrolyte layer thereon, and having a size larger than the size of the positive electrode A method of manufacturing an electrode body in which a solid electrolyte layer is laminated and formed into a laminated structure by laminating a negative electrode having a negative electrode, and the negative electrode is laminated on a positive electrode and a press portion on which a press pressure is applied at the time of lamination. The film thickness displacement amount that does not cause current collector foil breakage is determined in advance by measuring the film thickness of the non-pressed portion where no pressing pressure is applied, and is pressed and laminated by the pressing pressure based on the film thickness displacement amount, Production method. 前記プレスが、ホットプレスによって行われる請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the pressing is performed by hot pressing. 前記正極が正極活物質および固体電解質を含み、前記負極が負極活物質および固体電解質を含む請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1, wherein the positive electrode includes a positive electrode active material and a solid electrolyte, and the negative electrode includes a negative electrode active material and a solid electrolyte. 前記電極体が、層間の剥離が電極/集電箔間で生じる剥離強度を有し、集電箔の切れを有しないものである請求項1〜3に記載の製造方法。   The manufacturing method according to claim 1, wherein the electrode body has a peel strength at which delamination between electrodes / current collector foil occurs, and the current collector foil does not have a break.
JP2013155766A 2013-07-26 2013-07-26 Method of manufacturing electrode body Pending JP2015026530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155766A JP2015026530A (en) 2013-07-26 2013-07-26 Method of manufacturing electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155766A JP2015026530A (en) 2013-07-26 2013-07-26 Method of manufacturing electrode body

Publications (1)

Publication Number Publication Date
JP2015026530A true JP2015026530A (en) 2015-02-05

Family

ID=52491038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155766A Pending JP2015026530A (en) 2013-07-26 2013-07-26 Method of manufacturing electrode body

Country Status (1)

Country Link
JP (1) JP2015026530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191750A (en) * 2016-04-15 2017-10-19 国立研究開発法人産業技術総合研究所 All-solid type lithium secondary battery and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095200A (en) * 2002-08-29 2004-03-25 Kyocera Corp Stacked battery
JP2005310662A (en) * 2004-04-23 2005-11-04 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2011243402A (en) * 2010-05-18 2011-12-01 Hitachi Zosen Corp Solid lithium battery, method of manufacturing solid lithium battery, and apparatus including solid lithium battery
WO2012090601A1 (en) * 2010-12-28 2012-07-05 住友電気工業株式会社 Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP2012169200A (en) * 2011-02-16 2012-09-06 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery electrode and solid electrolyte membrane deposition method and nonaqueous electrolyte battery
WO2012164642A1 (en) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 Bipolar all-solid-state battery
JP2013093241A (en) * 2011-10-26 2013-05-16 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and method for manufacturing nonaqueous electrolyte battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095200A (en) * 2002-08-29 2004-03-25 Kyocera Corp Stacked battery
JP2005310662A (en) * 2004-04-23 2005-11-04 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2011243402A (en) * 2010-05-18 2011-12-01 Hitachi Zosen Corp Solid lithium battery, method of manufacturing solid lithium battery, and apparatus including solid lithium battery
WO2012090601A1 (en) * 2010-12-28 2012-07-05 住友電気工業株式会社 Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP2012169200A (en) * 2011-02-16 2012-09-06 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery electrode and solid electrolyte membrane deposition method and nonaqueous electrolyte battery
WO2012164642A1 (en) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 Bipolar all-solid-state battery
JP2013093241A (en) * 2011-10-26 2013-05-16 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and method for manufacturing nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191750A (en) * 2016-04-15 2017-10-19 国立研究開発法人産業技術総合研究所 All-solid type lithium secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
US20170263981A1 (en) Bipolar laminated all-solid-state lithium-ion rechargeable battery and method for manufacturing same
EP2884573A1 (en) All-solid-state battery and method for manufacturing same
JP5413129B2 (en) Solid battery manufacturing method
JP2011165410A (en) All solid lithium ion secondary battery and method for manufacturing the same
KR20180129638A (en) Electrode current collector and all-solid-state battery
JP2016001598A (en) Lithium ion secondary battery
JP6729479B2 (en) Laminated battery
JP2014216131A (en) All solid battery and manufacturing method therefor
CN110265707B (en) Method for manufacturing all-solid-state battery and all-solid-state battery
JP2016207636A (en) Positive electrode for lithium ion battery and lithium ion battery using the same
JP2016207614A (en) Solid-state battery
JP7188562B2 (en) solid state battery
WO2015049996A1 (en) Secondary battery
WO2015147122A1 (en) All-solid-state secondary battery
JP6638692B2 (en) Stacked battery
JP2017152147A (en) Composite active material secondary particle, laminate green sheet, all-solid type secondary battery and manufacturing methods thereof
JP2011081915A (en) Solid electrolyte, solid electrolyte film containing solid electrolyte and all solid lithium secondary battery using the solid electrolyte
JP2016001596A (en) Lithium ion secondary battery
JP6070471B2 (en) All-solid lithium secondary battery and method for producing all-solid lithium secondary battery
JP2018206486A (en) Laminate green sheet, all-solid secondary battery and manufacturing method thereof
WO2019156172A1 (en) Lithium ion secondary battery, lithium ion secondary battery negative electrode structure, and production method for lithium ion secondary battery
JP7107389B2 (en) solid state battery
CN110416630B (en) All-solid-state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170321