JP2015025728A - Positioning method and positioning device using signal from aircraft - Google Patents

Positioning method and positioning device using signal from aircraft Download PDF

Info

Publication number
JP2015025728A
JP2015025728A JP2013155216A JP2013155216A JP2015025728A JP 2015025728 A JP2015025728 A JP 2015025728A JP 2013155216 A JP2013155216 A JP 2013155216A JP 2013155216 A JP2013155216 A JP 2013155216A JP 2015025728 A JP2015025728 A JP 2015025728A
Authority
JP
Japan
Prior art keywords
signal
positioning
ads
aircraft
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013155216A
Other languages
Japanese (ja)
Other versions
JP6177612B2 (en
Inventor
功 中島
Isao Nakajima
功 中島
輝彦 林
Teruhiko Hayashi
輝彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TASADA KOSAKUSHO KK
Tasada Kosakusho KK
Original Assignee
TASADA KOSAKUSHO KK
Tasada Kosakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TASADA KOSAKUSHO KK, Tasada Kosakusho KK filed Critical TASADA KOSAKUSHO KK
Priority to JP2013155216A priority Critical patent/JP6177612B2/en
Publication of JP2015025728A publication Critical patent/JP2015025728A/en
Application granted granted Critical
Publication of JP6177612B2 publication Critical patent/JP6177612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a positioning method and a positioning device which can be made overwhelmingly miniaturized to the extent that the positioning device can be mounted on a small-sized bird and a middle-sided bird by suppressing power consumption.SOLUTION: The positioning method includes a receiver mounting step for mounting a positioning device including signal reception means for receiving an ADS-B signal, signal detection means for detecting a Doppler shift value of a received frequency or an attenuation value of reception power and recording means on a movable body, a position detection step for detecting ADS-B signals of two machines or more at a predetermined positioning time received by the signal reception means and position information of the receiver at the positioning time obtained by the signal detection means, a recording step for recording the ADS-B signals themselves received in the receiver mounting step or the position information of the receiver at the positioning time in the position detection step in the recording means, a data collection step for collecting the recorded positioning time and position information of the position detection means from the recording means, and a displaying step for displaying the position of the movable body over time from the collected positioning time and position information.

Description

本発明は、航空機に搭載される放送型自動従属監視 (Automatic Dependent Surveillance-Broadcast: ADS−B)信号を用いた測位装置及び方法に関し、更に詳しくは、測位した計測器の計測時の位置を、航空機に搭載される放送型自動従属監視装置(ADS−B)から発せられる信号を用いて、計測時の計測位置を決定する測位方法及び測位装置に関する。   The present invention relates to a positioning apparatus and method using an automatic dependent surveillance (Broadcast: ADS-B) signal mounted on an aircraft, and more specifically, a position of a measured measuring instrument at the time of measurement, The present invention relates to a positioning method and a positioning apparatus that determine a measurement position at the time of measurement using a signal emitted from a broadcast type automatic subordinate monitoring apparatus (ADS-B) mounted on an aircraft.

鳥インフルエンザの予防上、鳥の位置データの記録は、鳥相や感染経路の特定に重要である。鳥相とは、どの鳥と相性が良いのかが判ることにより、どの鳥から感染したのかの類推が可能となるため、重要である。現在、鳥の追跡のために人工衛星送信機を使用するものとしてアルゴスシステムが確立されている。しかしながら、現在のところ、送信機の重さの制約からおよそ400gより大きい種に制限される。これらは長距離の移動を行う渡り鳥(ガチョウ、ハクチョウ、ツル、ワシタカ)やペンギンなどのその他の種に装着される。送信機のバッテリーの寿命が尽きるまでのあいだ、個体は長大な距離の移動を衛星によって追尾される。   For the prevention of avian influenza, the recording of bird position data is important for identifying the avian fauna and the route of infection. The avian fauna is important because it is possible to analogize which bird has been infected by knowing which bird is compatible with it. Currently, the Argos system has been established to use satellite transmitters for bird tracking. However, currently it is limited to species larger than approximately 400 g due to transmitter weight constraints. They are mounted on other species such as migratory birds (geese, swans, vines, eagles) and penguins that travel long distances. During the lifetime of the transmitter battery, the individual is tracked over long distances by satellite.

また、GPS測位システムは、周回軌道上に打ち上げられた複数の衛星からの電波を用いて自己の位置を測位するもので、既に人間、船舶、航空機、自動車等の各種移動体の現在位置の確認等に広く使用されている。しかしながら、移動体で測位される測位値には、種々の誤差が含まれる。この誤差を減少させるシステムとして近年注目を集めているのがディファレンシャルGPS測位システムである。これは、固定側の基準局が誤差補正情報を演算して送信し、これを移動側の測位局が利用して自己の測位値を補正するものである。   In addition, the GPS positioning system measures its own position using radio waves from multiple satellites launched on a circular orbit, and has already confirmed the current position of various mobile objects such as humans, ships, aircraft, and automobiles. Widely used in etc. However, the positioning value measured by the mobile body includes various errors. In recent years, a differential GPS positioning system has attracted attention as a system for reducing this error. In this case, the reference station on the fixed side calculates and transmits error correction information, and this is used by the positioning station on the moving side to correct its own positioning value.

ところで、鳥に搭載する送信機の重さについては、鳥体重の4%が限界であると言われている。特に、人工衛星送信機やGPS電波受信器等の重さの半分以上は駆動電池であり、小・中型鳥類については、効率の高い電池を使用したとしてもアルゴスシステムの送信機やGPS信号の受信器の搭載が難しいのが現状である。   By the way, it is said that the limit of the weight of the transmitter mounted on the bird is 4% of the bird weight. In particular, more than half of the weight of satellite transmitters and GPS radio receivers are driven batteries, and for small and medium-sized birds, even Argos system transmitters and GPS signal reception are possible even when high-efficiency batteries are used. Currently, it is difficult to install the device.

一方、新しい航空機の監視システムとして、航空機に搭載される放送型自動従属監視(ADS−B)が検討され、実用化されている(例えば、特許文献1参照)。このADS−BはGPSを使って航空機自身の位置を正確に把握し、その位置情報等を管制システムや近くにいる他の航空機に高頻度で送信する装置である。ADS−Bを搭載すると、近くにいる航空機同士が自機の位置情報を送信して、お互いの位置をコックピットのディスプレー等に表示可能となるため、パイロットの周辺監視が容易になるとともに、空中衝突防止装置(TCAS)との統合による、より一層の安全性向上が期待されている。   On the other hand, as a new aircraft monitoring system, broadcast-type automatic subordinate monitoring (ADS-B) mounted on an aircraft has been studied and put into practical use (see, for example, Patent Document 1). This ADS-B is a device that accurately grasps the position of the aircraft itself using GPS and transmits the position information and the like to the control system and other nearby aircraft at a high frequency. With ADS-B installed, nearby aircraft can send their own location information and display each other's location on the cockpit display, etc., making pilot monitoring easier and aerial collisions Further improvement in safety is expected by integration with a prevention device (TCAS).

具体的には、航空機(主として定期旅客便)にADS−B信号を地上の管制機関や周辺を飛ぶ飛行機に向けて常時送信する装置を搭載する。ADS−BはGPSを使った測位システムに基づいていて、従来のレーダーよりも精度が高い。この信号は1090MHzで送信されていて、専用のレシーバーさえあれば誰でも受信可能である。ADS−B信号を受信できる範囲は、おおむね半径150−200kmである。また、全ての旅客機がADS−Bを搭載しているわけではないため、探知範囲であってもすべての航空機を認識できるわけではない。   More specifically, a device that constantly transmits an ADS-B signal to an aircraft (mainly a regular passenger flight) toward a ground control engine or an airplane flying in the vicinity. ADS-B is based on a positioning system using GPS and has higher accuracy than conventional radar. This signal is transmitted at 1090 MHz and can be received by anyone with a dedicated receiver. The range in which the ADS-B signal can be received is generally a radius of 150 to 200 km. In addition, since not all passenger planes are equipped with ADS-B, not all aircraft can be recognized even within the detection range.

特表2012−533133号公報Special table 2012-533133 gazette

このADS−B信号を発する航空機の高度は約10kmであり、アルゴスシステムのNOAA衛星の高度は840kmであり、GPS衛星の高度は20200kmである。この高度の差によって、−7dBiのADS−Bアンテナ端子の受信電力はGPSに比して80dB以上も高い。受信電力で80dBは圧倒的な差であり、消費電力を抑えることによる搭載電池の小型化が達成できる。   The altitude of the aircraft that emits the ADS-B signal is about 10 km, the altitude of the NOAA satellite of the Argos system is 840 km, and the altitude of the GPS satellite is 20200 km. Due to this difference in altitude, the received power of the -7 dBi ADS-B antenna terminal is 80 dB or more higher than GPS. The received power of 80 dB is an overwhelming difference, and the size of the mounted battery can be reduced by reducing the power consumption.

本発明は、消費電力を抑えることにより、小型の鳥、中型の鳥に搭載できるほど圧倒的に小型化可能な測位方法及び測位装置を得ることを目的とする。   An object of the present invention is to obtain a positioning method and a positioning device that can be downsized so as to be mounted on a small bird or a medium bird by suppressing power consumption.

請求項1に記載された発明に係る航空機からの信号を用いた測位方法は、航空機からのADS−B信号を受信する信号受信手段と、受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知する信号検知手段と、記録手段とを備えた測位装置を移動体に搭載する受信機器搭載工程と、
前記信号受信手段で受信した予め定められた測位時刻における2機以上の航空機からのADS−B信号と、信号検知手段で得られたドップラーシフト値又は減衰値とから測位時の受信機器の位置情報を検知する位置検知工程と、
受信機器搭載工程での受信したADS−B信号自体、又は、前記位置検知工程での測位時の受信機器の位置情報を前記記録手段に記録する記録工程と、
前記記録手段から記録された位置検知手段の測位時と位置情報とを回収するデータ回収工程と、
回収された測位時と位置情報とから移動体の位置を経時的に表示する表示工程とを備えたことを特徴とするものである。
A positioning method using a signal from an aircraft according to the invention described in claim 1 includes a signal receiving means for receiving an ADS-B signal from the aircraft, a Doppler shift value of the frequency of the received ADS-B signal, or A receiving device mounting step of mounting a positioning device including a signal detecting means for detecting the attenuation value of the received power and a recording means on the moving body;
Position information of the receiving device at the time of positioning from the ADS-B signals from two or more aircraft at the predetermined positioning time received by the signal receiving means and the Doppler shift value or attenuation value obtained by the signal detecting means A position detection process for detecting
A recording step of recording the received ADS-B signal itself in the receiving device mounting step or the position information of the receiving device at the time of positioning in the position detecting step in the recording means;
A data recovery step of recovering the positioning and position information of the position detection means recorded from the recording means;
And a display step of displaying the position of the moving body over time from the collected positioning time and position information.

請求項2に記載された発明に係る航空機からの信号を用いた測位方法は、請求項1に記載の航空機からの信号を用いた測位方法において、2機以上の航空機からのADS−B信号を受信し、受信した信号から測位地点からの個々の航空機までの距離を求めることにより、測位時の測位地点位置を求めることを特徴とするものである。   The positioning method using signals from the aircraft according to the invention described in claim 2 is the positioning method using signals from the aircraft according to claim 1, wherein ADS-B signals from two or more aircraft are used. The position of the positioning point at the time of positioning is obtained by obtaining the distance from the received signal to the individual aircraft from the positioning point.

請求項3に記載された発明に係る航空機からの信号を用いた測位装置は、搭載された移動体の位置を経時的に計測する測位装置であって、
予め定められた測位時刻における2機以上の航空機からのADS−B信号を受信する信号受信手段と、
受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知する信号検知手段と、
信号受信手段で受信されたADS−B信号から得られるADS−B信号データと、信号検知手段で得られたドップラーシフト値又は減衰値とから測位時の測位装置の位置情報を検知する位置検知手段と、
前記位置検知手段の測位時と位置情報とを記録する記録手段とを備えたことを特徴とするものである。
A positioning device using a signal from an aircraft according to the invention described in claim 3 is a positioning device that measures the position of a mounted mobile body over time,
Signal receiving means for receiving ADS-B signals from two or more aircraft at a predetermined positioning time;
Signal detection means for detecting a Doppler shift value of the frequency of the received ADS-B signal or an attenuation value of the received power;
Position detecting means for detecting position information of the positioning device at the time of positioning from ADS-B signal data obtained from the ADS-B signal received by the signal receiving means and Doppler shift value or attenuation value obtained by the signal detecting means When,
The position detecting means includes a recording means for recording the position information and position information.

本発明は、消費電力を抑えることにより、小型の鳥、中型の鳥に搭載できるほど圧倒的に小型化可能な測位方法及び測位装置を得ることができるという効果がある。従って、日照時間によるおおまかな測位を行いながら、週に一度でも大圏コースを飛ぶ航空機からのADS−Bを捕えられれば、正確な時刻と位置の補正が鳥に搭載したCPUで行え、このシステムはGPSの電池を負荷できない小型の鳥類の追跡に役立つ。   The present invention has an effect that by suppressing power consumption, a positioning method and a positioning device that can be overwhelmingly reduced in size so as to be mounted on a small bird or a medium bird can be obtained. Therefore, if the ADS-B from the aircraft flying over the great circle course can be captured even once a week while performing rough positioning based on the sunshine hours, the correct time and position can be corrected by the CPU mounted on the bird. Is useful for tracking small birds that cannot load the GPS battery.

本発明の航空機からの信号を用いた測位方法の概要を示す説明図であり、a図は横軸は距離に応じた受信電力値、縦軸は−3dBの距離に応じた受信電力値を示す線図であり、b図は2機の航空機航空機からのADS−B信号の状態を示す概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the outline | summary of the positioning method using the signal from the aircraft of this invention, a figure shows the received power value according to the distance of -3 dB, and a vertical axis | shaft shows the received power value according to the distance. FIG. 4B is a conceptual diagram showing a state of an ADS-B signal from two aircraft aircraft. 航空機の速度に応じた1090MHzにおけるドップラーシフト値の仰角に応じた値を示す説明図であり、a図は周波数変化と航空機の速度との線図であり、b図は航空機の仰角を示す説明図である。It is explanatory drawing which shows the value according to the elevation angle of the Doppler shift value in 1090MHz according to the speed of an aircraft, a figure is a diagram with a frequency change and the speed of an aircraft, b figure is explanatory drawing which shows the elevation angle of an aircraft It is. とある日時の3機の航空機の速度、飛行方位、高度変化が受信できた航空機のデータを示す説明図である。It is explanatory drawing which shows the data of the aircraft which could receive the speed, flight direction, and altitude change of three aircraft of a certain date and time. 本発明の一実施例の測位装置の構成を説明する説明図であり、a図は装置の概要を示す斜視図図、b図はa図の断面図、c図は装置の受信回路の構成を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining the structure of the positioning apparatus of one Example of this invention, a figure is a perspective view which shows the outline | summary of an apparatus, b figure is sectional drawing of a figure, c figure shows the structure of the receiving circuit of an apparatus. FIG. FPGA集積回路の構成を示す構成図である。It is a block diagram which shows the structure of an FPGA integrated circuit. ADS−B信号のパケットデータの構造を示す説明図である。It is explanatory drawing which shows the structure of the packet data of an ADS-B signal. 本発明の測位装置の2機以上の航空機からのADS−B信号が受信された際の測位方式を説明する説明図である。It is explanatory drawing explaining the positioning system at the time of the ADS-B signal from two or more aircraft of the positioning apparatus of this invention being received. 本発明の測位装置の1機のみの航空機からのADS−B信号が受信された際の測位方式を説明する説明図である。It is explanatory drawing explaining the positioning system at the time of receiving the ADS-B signal from the aircraft of only 1 of the positioning apparatus of this invention.

本発明の航空機からの信号を用いた測位方法としては、航空機からのADS−B信号を受信する信号受信手段と、受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知する信号検知手段と、記録手段とを備えた測位装置を移動体に搭載する受信機器搭載工程と、前記信号受信手段で受信した予め定められた測位時刻における航空機からのADS−B信号と、信号検知手段で得られたドップラーシフト値又は減衰値とから測位時の受信機器の位置情報を検知する位置検知工程と、受信機器搭載工程での受信したADS−B信号自体、又は、前記位置検知工程での測位時の受信機器の位置情報を前記記録手段に記録する記録工程と、前記記録手段から記録された位置検知手段の測位時と位置情報とを回収するデータ回収工程と、回収された測位時と位置情報とから移動体の位置を経時的に表示する表示工程とを備える。これにより、消費電力を抑えることにより、小型の鳥、中型の鳥に搭載できるほど圧倒的に小型化可能な測位方法及び測位装置を得ることができる。   The positioning method using the signal from the aircraft of the present invention includes a signal receiving means for receiving an ADS-B signal from the aircraft, a Doppler shift value of the frequency of the received ADS-B signal, or a received power attenuation value. A receiving device mounting step of mounting a positioning device including a signal detecting means to detect and a recording means on a moving body; an ADS-B signal from an aircraft at a predetermined positioning time received by the signal receiving means; A position detection step for detecting position information of the receiving device at the time of positioning from the Doppler shift value or attenuation value obtained by the signal detection means, and the ADS-B signal itself received in the receiving device mounting step, or the position detection A recording step for recording the position information of the receiving device at the time of positioning in the process on the recording means, and a data for collecting the positioning time and position information of the position detecting means recorded from the recording means. Comprising a recovery step, and a display step of temporally displaying the position of the moving body from the recovered positioning time and location information. As a result, it is possible to obtain a positioning method and a positioning device that can be overwhelmingly miniaturized so as to be mounted on small birds and medium-sized birds by suppressing power consumption.

本発明での記録工程は、受信機器搭載工程での受信したADS−B信号自体を測位装置の記録手段に記録するか、又は、前記位置検知工程での測位時の受信機器の位置情報を記録手段に記録する。ADS−B信号自体を記録手段に記録する場合には、データ回収を行った後に、位置検知工程を行えばよく、その位置情報を検知するための演算手段を測位装置に搭載する必要がなくなる利点がある。位置検知工程での測位時の受信機器の位置情報を記録手段に記録する場合には、大容量の記録手段を搭載しなくても良い利点がある。   In the recording step of the present invention, the ADS-B signal itself received in the receiving device mounting step is recorded in the recording means of the positioning device, or the position information of the receiving device at the time of positioning in the position detecting step is recorded. Record on means. When the ADS-B signal itself is recorded in the recording means, it is only necessary to perform a position detection step after collecting the data, and there is no need to install a calculation means for detecting the position information in the positioning device. There is. When the position information of the receiving device at the time of positioning in the position detection process is recorded in the recording means, there is an advantage that it is not necessary to mount a large capacity recording means.

また、データ回収についても、測位装置自体を回収した後でデータを回収することは勿論のこと、測位装置自体にデータを送信する機能を持たせてもよい。例えば、何らかのトリガー信号を受けた場合に、蓄積されたデータ及び測位装置の識別信号を発信することにより、データが回収可能となる。トリガーとなる信号としては、例えば鳥探知機等が上げられる。鳥探知器とは、既に広く使用されているSバンドレーダ(特に、3000MHz帯を使用)であり、魚がいるところに鳥が集まる習性を利用し、双眼鏡で見えないような遠方の鳥を探索、追尾するレーダであり、カツオ釣りやまき網漁業などには欠かせない装置として漁船等に搭載されている。このため、搭載された漁船等に受信装置を搭載してデータの回収を行っても良い。   As for data collection, the positioning device itself may be provided with a function of transmitting data as well as collecting the data after collecting the positioning device itself. For example, when any trigger signal is received, the data can be collected by transmitting the accumulated data and the positioning device identification signal. An example of a trigger signal is a bird detector. The bird detector is an S-band radar (especially using the 3000 MHz band) that is already widely used, and uses the habit of collecting birds where fish are present to search for distant birds that cannot be seen with binoculars. This radar is used for tracking, and is mounted on fishing boats as an indispensable device for skipjack fishing and purse seine fishing. For this reason, data may be collected by mounting a receiving device on a mounted fishing boat or the like.

本発明の航空機からの信号を用いた測位方法としては、予め定められた測位時刻におけるADS−B信号の受信が1機のみの航空機からの受信か、2機以上の航空機からの受信かで受信後の対応が相違する。   As a positioning method using signals from an aircraft according to the present invention, reception of an ADS-B signal at a predetermined positioning time is received based on reception from only one aircraft or reception from two or more aircraft. The later response is different.

2機以上の航空機からの受信では、信号検知手段によって個々の受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知することで、信号を発した航空機からの各々の距離が得られる。これにより、2機以上の航空機の測位時の位置が判明すれば、測位装置の位置が判明する。   For reception from two or more aircraft, each signal from the aircraft that issued the signal is detected by detecting the Doppler shift value or the attenuation value of the received power of the frequency of each received ADS-B signal by the signal detection means. The distance is obtained. Thereby, if the position at the time of positioning of two or more aircrafts is determined, the position of the positioning device is determined.

1機のみの航空機からの受信では、実際の存在位置が定まらない。よって、この場合には、測位装置には、予め定められた測位時刻におけるADS−B信号の受信が1機のみの航空機からの受信のみの場合に、10〜30秒ごとに間歇的に連続して信号を受信する判別手段と、受信した2つのADS−B信号を用いて2つの信号の測位時刻における航空機の位置と航空機までの距離とから測位地点位置を求める際に、実位置と虚位置とを判別するための虚実判別情報を得る判別情報取得手段とを備え、前記データ回収工程では、前記記録手段から受信した同一航空機からの2つの相違する測位時の信号ADS−B信号自体又は該信号から得られるADS−B信号データと、信号検知手段で得られたドップラーシフト値又は減衰値とを回収し、前記表示工程では、受信した2つのADS−B信号を用いて2つの信号の測位時刻における航空機の位置と航空機までの距離とから測位地点の実位置と虚位置とを求めた後に、虚実判別情報を用いて実位置を選択する。これにより、実位置が求められることになる。   When receiving from only one aircraft, the actual location is not determined. Accordingly, in this case, the positioning device intermittently continues every 10 to 30 seconds when the ADS-B signal is received only from one aircraft at a predetermined positioning time. When the positioning point position is obtained from the position of the aircraft at the positioning time of the two signals and the distance to the aircraft using the two ADS-B signals received, Discriminating information acquisition means for obtaining true / false discrimination information for discriminating between, and in the data recovery step, two different positioning signals ADS-B signals from the same aircraft received from the recording means or the The ADS-B signal data obtained from the signal and the Doppler shift value or attenuation value obtained by the signal detection means are collected, and in the display step, two received ADS-B signals are used to And a distance to the position and the aircraft of the aircraft after obtaining the actual position and the imaginary position of the positioning point in No. of positioning time, select the actual position with a true or false determination information. As a result, the actual position is obtained.

即ち、予め定められた測位時刻におけるADS−B信号の受信が1機のみの航空機からの受信のみの場合に、10〜30秒ごとに間歇的に連続して信号を受信するものである。現代の一般的な旅客機の巡航速度は900km/時〜1000km/時(250m/秒〜278m/秒)であるため、再度の受信では、250m〜27800mの差異が生じることになり、この差異によって測位装置の実位置と虚位置とが得られる。この状態で、判別情報取得手段によって、実位置と虚位置との選択を行う。尚、再度の信号を受信する場合に、ドップラーシフトや振幅の変化は少なくとも10秒以上の間隔を開ける方が変化が顕著となり、また30秒を超える受信信号を虚実位置の判別に用いるには、巡航距離が長くなり、信号を受信する距離を外れる可能性があるためである。   That is, when the ADS-B signal is received only from one aircraft at a predetermined positioning time, the signal is intermittently continuously received every 10 to 30 seconds. Since the cruising speed of modern general passenger aircraft is 900 km / hr to 1000 km / hr (250 m / sec to 278 m / sec), a difference of 250 m to 27800 m will occur in the second reception. The real position and imaginary position of the device are obtained. In this state, the discrimination position acquisition means selects the real position and the imaginary position. When receiving a signal again, the Doppler shift or amplitude change becomes more noticeable when the interval is at least 10 seconds or more, and a received signal exceeding 30 seconds is used to determine the true position. This is because the cruising distance becomes long and the signal reception distance may be exceeded.

虚実判別情報としては、測位時の太陽位置情報、地磁気方位情報、固定基地局からの方位情報等が挙げられる。   Examples of the truth determination information include solar position information at the time of positioning, geomagnetic azimuth information, azimuth information from a fixed base station, and the like.

本発明においては、搭載された移動体の位置を経時的に計測する測位装置であって、予め定められた測位時刻における2機以上の航空機からのADS−B信号を受信する信号受信手段と、受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知する信号検知手段と、信号受信手段で受信されたADS−B信号から得られるADS−B信号データと、信号検知手段で得られたドップラーシフト値又は減衰値とから測位時の測位装置の位置情報を検知する位置検知手段と、前記位置検知手段の測位時と位置情報とを記録する記録手段とを備える。これにより、消費電力を抑えることにより、小型の鳥、中型の鳥に搭載できるほど圧倒的に小型化可能な測位装置を得ることができる。   In the present invention, a positioning device that measures the position of a mounted mobile body over time, a signal receiving unit that receives ADS-B signals from two or more aircrafts at a predetermined positioning time; Signal detection means for detecting the Doppler shift value of the frequency of the received ADS-B signal or the attenuation value of the received power, ADS-B signal data obtained from the ADS-B signal received by the signal reception means, and signal detection Position detecting means for detecting position information of the positioning device at the time of positioning from the Doppler shift value or attenuation value obtained by the means, and recording means for recording the positioning time and position information of the position detecting means. Thereby, by suppressing power consumption, it is possible to obtain a positioning device that can be overwhelmingly miniaturized so that it can be mounted on a small bird or a medium bird.

図1は本発明の航空機からの信号の受信電力の減衰値を検知する測位方法の概要を示す説明図であり、a図は横軸は距離に応じた受信電力値、縦軸は−3dBの距離に応じた受信電力値を示す線図であり、b図は2機の航空機航空機からのADS−B信号の状態を示す概念図である。図2は航空機の速度に応じた1090MHzにおけるドップラーシフト値の仰角に応じた値を示す説明図であり、a図は周波数変化と航空機の速度との線図であり、b図は航空機の仰角を示す説明図である。   FIG. 1 is an explanatory diagram showing an overview of a positioning method for detecting a received power attenuation value of a signal from an aircraft according to the present invention. In FIG. 1, the horizontal axis represents a received power value according to distance, and the vertical axis represents −3 dB. It is a diagram which shows the received power value according to distance, and b figure is a conceptual diagram which shows the state of the ADS-B signal from two aircraft aircraft. FIG. 2 is an explanatory diagram showing values according to the elevation angle of the Doppler shift value at 1090 MHz according to the speed of the aircraft, FIG. 2a is a diagram of the frequency change and the speed of the aircraft, and FIG. 2b is the elevation angle of the aircraft. It is explanatory drawing shown.

図1のa図に示す通り、距離に応じた受信電力値がきれいな1次関数で示されるため、受信電力による測位自由空間伝播の式より受信電力から距離が推定できることが判る。   As shown in FIG. 1a, since the received power value corresponding to the distance is represented by a clean linear function, it can be seen that the distance can be estimated from the received power from the positioning free space propagation equation based on the received power.

即ち、受信電力は環境にも依存するので、例えば−3dBの猶予を持たせ、この範囲の距離に送信機と受信機は位置すると想定する。この確率密度関数は、見通し通信であるので、対数正規分布であるライス分布を基本としており、受信電力−3dBの範囲には論理的には68%の事象が収容される。もし、図1に示したような2機の航空機からほぼ同時に受信電力を記録できれば、実・虚の2つのエリアが推定できる。この2つのエリアのどちらかをドップラーシフトで否定(虚エリアの否定)し、ドップラーシフトのデータ、航空機の位置データ、時刻より最小二乗法を使って位置を求め、エリア内の位置精度を高める。
振幅成分より実と虚のエリアが推測される航空機とADS−B受信機の距離は、概ね10−100km程度で1秒間の光速度に比して十分小さいので、この距離にかかる伝送時間は無視する。一方、ADS−B信号には航空機のGPS記録時間が乗っているため、航空機側のGPS受信の位置は、ADS−B受信機の受信時間とΔtの時間差があり、航空機は移動距離=Δt*(飛行速度)だけ離れており、ドップラーシフトの計算位置の誤差となる。
That is, since the received power depends on the environment, it is assumed that, for example, a delay of -3 dB is provided, and the transmitter and the receiver are located within a distance in this range. Since this probability density function is line-of-sight communication, it is based on the Rice distribution that is logarithmic normal distribution, and 68% of events are logically accommodated in the range of received power −3 dB. If the received power can be recorded almost simultaneously from the two aircrafts as shown in FIG. 1, the real and imaginary two areas can be estimated. Either of these two areas is negated by Doppler shift (imaginary area is negated), and the position is obtained from the Doppler shift data, the aircraft position data, and the time using the least square method, and the position accuracy within the area is improved.
The distance between the aircraft where the real and imaginary areas are estimated from the amplitude component and the ADS-B receiver is approximately 10-100 km, which is sufficiently small compared to the light speed for 1 second, so the transmission time for this distance is ignored. To do. On the other hand, since the GPS recording time of the aircraft is on the ADS-B signal, the GPS reception position on the aircraft side has a time difference of Δt from the reception time of the ADS-B receiver. It is separated by (flying speed), which is an error in the calculation position of Doppler shift.

念のため航空機の速度、飛行方位、高度変化が受信できた航空機のみをデータとして使うことにした。これらはADS−B受信データから幾何学的に推定可能である。受信機からみた航空機の幾何学座標(距離が短いので地球をここでは平らとして計算)する。図3はとある日時の3機の航空機の速度、飛行方位、高度変化が受信できた航空機のデータを示す説明図である。図3に示される通り、○印、□印、△印の3機の航空機において、計測された21個の座標は、1パスで誤差、+/−2秒=+/−61m内に求められることが示された。これらを複数機で加算平均すれば1桁低い範囲の推定値となることが判った。
パルス成分の短いADS−B信号の周波数偏位を求めることが意外と困難なので、時間軸上に周波数をトレンドし、単位時間に加算して平均する方法で、更にドップラーシフトと振幅(受信電力)との推定エリアを加味して、位置精度を+/−2秒(+/−61.4m)程度の誤差で求めることが可能と思われる。なお、緯度の1分が1海里(1854m)とほぼ等しく、DEG=度+(分+秒÷60)÷60で計算する。
As a precaution, we decided to use only aircraft that could receive aircraft speed, flight direction, and altitude changes. These can be estimated geometrically from the ADS-B received data. Geometric coordinates of the aircraft as seen from the receiver (because the distance is short, the earth is calculated as flat here). FIG. 3 is an explanatory diagram showing data of an aircraft that has received the speed, flight direction, and altitude change of three aircraft at a certain date and time. As shown in FIG. 3, in the three aircrafts of ○ mark, □ mark, and △ mark, the measured 21 coordinates are obtained within an error of +/− 2 seconds = + / − 61 m in one pass. It was shown that. It was found that if these were averaged by a plurality of machines, the estimated value was in the range of one digit lower.
Since it is unexpectedly difficult to obtain the frequency deviation of the ADS-B signal with a short pulse component, the frequency is trended on the time axis and added to the unit time and averaged. Further, the Doppler shift, amplitude (received power) and It is considered that the position accuracy can be obtained with an error of about +/− 2 seconds (+/− 61.4 m) in consideration of the estimated area. Note that one minute of latitude is approximately equal to one nautical mile (1854 m), and DEG = degree + (minute + second ÷ 60) ÷ 60.

本発明の測位装置は、ADS−B信号を受信するものであるため、例えばGPS受信器を備えた測位装置に比べて消費電力が圧倒的に低いため、駆動電源として小型の電池を採用することができ、これにより、小型の鳥、中型の鳥に搭載できるほど圧倒的に小型化可能な測位装置を得ることができる。   Since the positioning device of the present invention receives an ADS-B signal, power consumption is overwhelmingly lower than, for example, a positioning device equipped with a GPS receiver. Therefore, a small battery is used as a driving power source. Thus, it is possible to obtain a positioning device that can be overwhelmingly small enough to be mounted on a small bird or a medium bird.

本発明の測位装置としては、搭載された移動体の位置を経時的に計測するものである。計測された移動位置のデータは、記録手段に記録される。この記録手段から記録されたデータを読み取った後に移動体の経時的な位置を得る。これにより、例えば、鳥インフルエンザの予防を想定して渡り鳥の位置データの検証に使用したり、バイクや自動車に搭載することで、ツーリングでの経路や立ち寄った店舗も確認することができる。   The positioning device of the present invention measures the position of the mounted moving body over time. The measured movement position data is recorded in the recording means. After reading the data recorded from the recording means, the position of the moving body over time is obtained. Thereby, for example, it can be used for verification of migratory bird position data on the assumption of prevention of avian flu, or mounted on a motorcycle or a car, so that a touring route and a store where the user visited may be confirmed.

本発明の信号受信手段としては、測位時刻における1機以上の航空機からのADS−B信号を受信するものであれば良い。ADS−B信号は、放送型自動従属監視(ADS−B)を備えた航空機より発せられる信号であり、GPSによって航空機自身の位置を計測し、航空機自身の機種、緯度・経度・高度の位置、進行方向、上昇及び下降を示す上向き、及び下向き、発信時の時間等のような他の関連情報を、地上局及び他の航空機に定期的に放送される信号であり、その信号中の発信時の時間、航空機自身の機種、緯度・経度・高度の位置を少なくとも利用する。   Any signal receiving means of the present invention may be used as long as it receives ADS-B signals from one or more aircraft at the positioning time. The ADS-B signal is a signal emitted from an aircraft equipped with broadcast-type automatic subordinate monitoring (ADS-B). The position of the aircraft itself is measured by GPS, and the aircraft's own model, latitude / longitude / altitude position, Signals that are regularly broadcast to the ground station and other aircraft, such as the direction of travel, upward and downward indicating up and down, and time of transmission, etc. Use at least the aircraft's time, aircraft model, latitude / longitude / altitude position.

この信号受信手段による測位時刻における受信に際して、2機以上の航空機からのADS−B信号が受信された場合には、信号検知手段によって個々の受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知することで、信号を発した航空機からの各々の距離が得られる。これにより、2機以上の航空機の測位時の位置が判明すれば、測位装置の位置が判明することになる。前述の通り、ADS−B信号には、航空機自身の機種、緯度・経度・高度の位置、進行方向、上昇及び下降を示す上向き、及び下向き、発信時の時間等が放送されている。   When receiving ADS-B signals from two or more aircrafts at the time of positioning by the signal receiving means, the Doppler shift value of the frequency of each ADS-B signal received by the signal detecting means or By detecting the attenuation value of the received power, each distance from the aircraft that issued the signal can be obtained. Thereby, if the position at the time of positioning of two or more aircrafts is determined, the position of the positioning device is determined. As described above, the ADS-B signal broadcasts the aircraft's own model, the position of latitude / longitude / altitude, the traveling direction, upward and downward indicating upward and downward, and the time of transmission.

更に、位置検知手段によって、信号受信手段で受信された個々のADS−B信号から得られるADS−B信号データと、信号検知手段で得られたドップラーシフト値又は減衰値とから測位時の測位装置の位置情報を検知し、記録手段に、この位置検知手段の測位時と位置情報とを記録することにより、測位装置が搭載された移動体の経時的な位置を計測することが可能となり、ADS−B信号を受信するものであるため、例えばGPS受信器を備えた測位装置に比べて消費電力が圧倒的に低いため、駆動電源として小型の電池を採用することができ、これにより、小型の鳥、中型の鳥に搭載できるほど圧倒的に小型化可能な測位装置を得ることができる。   Further, a positioning device at the time of positioning from the ADS-B signal data obtained from the individual ADS-B signals received by the signal receiving means and the Doppler shift value or attenuation value obtained by the signal detecting means by the position detecting means. By detecting the position information and recording the position information of the position detection means and the position information on the recording means, it becomes possible to measure the position of the moving body on which the positioning device is mounted over time. -B signal is received, and for example, power consumption is overwhelmingly lower than that of a positioning device equipped with a GPS receiver. Therefore, a small battery can be used as a drive power source. A positioning device that can be overwhelmingly reduced in size so that it can be mounted on birds and medium-sized birds can be obtained.

2機以上の航空機からのADS−B信号が受信された場合には、個々の信号によって測位時における測位装置の位置が決定されるが、1機のみの航空機からのADS−B信号のみでは、実際の存在位置が定まらない。即ち、1つのADS−B信号によって、測位時の航空機位置からの距離が求められる。この航空機は飛行をしているため、数秒後には相違する位置に移動する。その際の同一航空機からのADS−B信号によって、数秒後の航空機位置からの距離が求められる。これにより、測位装置を搭載した移動体の位置を求めようとする際に、測位装置の実位置と共に、航空機の航路に対する鏡像位置に虚位置が存在することになる。   When ADS-B signals from two or more aircraft are received, the position of the positioning device at the time of positioning is determined by the individual signals, but only with ADS-B signals from only one aircraft, The actual location is not determined. That is, the distance from the aircraft position at the time of positioning is obtained from one ADS-B signal. Since this aircraft is flying, it will move to a different position after a few seconds. The distance from the aircraft position after a few seconds is obtained from the ADS-B signal from the same aircraft at that time. As a result, when trying to determine the position of the moving body on which the positioning device is mounted, an imaginary position exists in the mirror image position with respect to the route of the aircraft along with the actual position of the positioning device.

このため、好ましい態様としては、予め定められた測位時刻におけるADS−B信号の受信が1機のみの航空機からの受信のみの場合に、10〜30秒ごとに間歇的に連続して信号を受信する判別手段と、受信した2つのADS−B信号を用いて2つの信号の測位時刻における航空機の位置と航空機までの距離とから測位地点位置を求める際に、実位置と虚位置とを判別するための虚実判別情報を得る判別情報取得手段とを更に備える。   For this reason, as a preferable aspect, when the ADS-B signal is received only from one aircraft at a predetermined positioning time, the signal is intermittently received every 10 to 30 seconds. And determining the position of the positioning point from the position of the aircraft at the positioning time of the two signals and the distance to the aircraft using the received two ADS-B signals, and determining the actual position and the imaginary position Discriminating information acquisition means for obtaining truth discriminating discriminating information.

本発明の判別情報取得手段としては、測位装置を取り巻くように均等に配置された複数のアンテナと、測位装置を取り巻くように均等に配置された照度センサとを備えたもの、又は、測位装置を取り巻くように均等に配置された複数のアンテナと、磁気を検知して包囲を検出する電子コンパスとを備えたものが挙げられる。   The discrimination information acquisition means of the present invention includes a plurality of antennas that are evenly arranged so as to surround the positioning device and an illuminance sensor that is uniformly arranged so as to surround the positioning device, or a positioning device. One having a plurality of antennas arranged evenly so as to surround and an electronic compass for detecting envelopment by detecting magnetism.

図4は本発明の一実施例の測位装置の構成を説明する説明図であり、a図は装置の概要を示す斜視図図、b図はa図の断面図、c図は装置の受信回路の構成を示す構成図である。図5はFPGA集積回路の構成を示す構成図である。図6はADS−B信号のパケットデータの構造を示す説明図である。図7は本発明の測位装置の2機以上の航空機からのADS−B信号が受信された際の測位方式を説明する説明図である。図8は本発明の測位装置の1機のみの航空機からのADS−B信号が受信された際の測位方式を説明する説明図である。   FIG. 4 is an explanatory diagram for explaining the configuration of a positioning device according to an embodiment of the present invention. FIG. 4a is a perspective view showing the outline of the device. FIG. 4b is a sectional view of FIG. FIG. FIG. 5 is a configuration diagram showing the configuration of the FPGA integrated circuit. FIG. 6 is an explanatory diagram showing the structure of packet data of an ADS-B signal. FIG. 7 is an explanatory diagram for explaining a positioning method when ADS-B signals are received from two or more aircraft of the positioning device of the present invention. FIG. 8 is an explanatory diagram for explaining a positioning method when an ADS-B signal is received from only one aircraft of the positioning device of the present invention.

図4のa図及びb図に示す通り、本実施例の測位装置10は、図7及び図8に示す通り、渡り鳥11の首に装着される。この測位装置10は、断面が6角形状をしており、隣り合わない3平面の120度ごとに3つのパッチアンテナ12(PINダイオードで順に選択)と、他の3平面の120度毎に3つの照度計31が配置されたモジュールである。c図に示す通り、受信回路はPINダイオードで順に選択されたパッチアンテナ12からの信号を高周波増幅器(LNA)13で信号を選択および増幅する。パッチアンテナ12のサイズは、高誘電体を使用し、2.5cmx2.5cm −4dBi、PINでの減衰を含め高周波増幅器13の入力端から見た値を−7dBiとしている。   As shown in FIGS. 4a and 4b, the positioning device 10 of this embodiment is attached to the neck of the migratory bird 11 as shown in FIGS. The positioning device 10 has a hexagonal cross section, three patch antennas 12 (selected in order of PIN diodes) every 120 degrees on three non-adjacent planes, and 3 every 120 degrees on the other three planes. It is a module in which two illuminance meters 31 are arranged. As shown in FIG. c, the receiving circuit selects and amplifies the signal from the patch antenna 12 selected in order by the PIN diode by the high frequency amplifier (LNA) 13. The size of the patch antenna 12 uses a high dielectric, and is 2.5 cm × 2.5 cm −4 dBi, and the value viewed from the input end of the high-frequency amplifier 13 including attenuation at PIN is −7 dBi.

高周波増幅器13を経た信号はSAWフィルター14を経て特定の周波数帯域(1090MHz(BW:5MHz))の電気信号が取り出される。更に、マイクロ波集積回路15で局部発振器16と混合器17(ミキサ)から構成される周波数変換器で周波数を下げた上で、SAWフィルター18を経て特定の周波数帯域(70MHz(BW:1MHz))の電気信号が取り出される。   From the signal that has passed through the high-frequency amplifier 13, an electrical signal in a specific frequency band (1090 MHz (BW: 5 MHz)) is taken out through the SAW filter 14. Further, after the frequency is lowered by a frequency converter composed of a local oscillator 16 and a mixer 17 (mixer) in the microwave integrated circuit 15, a specific frequency band (70 MHz (BW: 1 MHz)) passes through the SAW filter 18. The electrical signal is taken out.

更に、中間周波増幅器19で局部発振器20と混合器21(ミキサ)から構成される周波数変換器で周波数を下げ、アナログ・デジタル変換器22で変換処理を行った上で、受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知し、受信されたADS−B信号から得られるADS−B信号データと、信号検知手段で得られたドップラーシフト値又は減衰値とから測位時の測位装置の位置情報を検知した上で、位置検知手段の測位時と位置情報とを記録手段としてのメモリ24に記録する。尚、受信回路は、c図に示すような回路のみではなく、種々の改良を加えてもよい。例えば、ホモダイン受信機上の回路図からIF回路を削除し、−60dBmの受信電力を1GHzで30dB増幅(SAWや周波数変換を除く)し、ベースバンドでさらに40dB増幅(LPFの減衰を除く)すると10mWのベースバンド電力となるので、A/D端子抵抗400Ωでは、平均値で2Vを得る。   The intermediate frequency amplifier 19 lowers the frequency with a frequency converter composed of a local oscillator 20 and a mixer 21 (mixer), the analog-digital converter 22 performs conversion processing, and the received ADS-B. Detecting the Doppler shift value of the signal frequency or the attenuation value of the received power, and positioning from the ADS-B signal data obtained from the received ADS-B signal and the Doppler shift value or attenuation value obtained by the signal detection means After detecting the position information of the positioning device at the time, the positioning time and the position information of the position detecting means are recorded in the memory 24 as a recording means. Note that the receiving circuit is not limited to the circuit as shown in FIG. For example, if the IF circuit is deleted from the circuit diagram on the homodyne receiver, the received power of -60 dBm is amplified by 30 dB at 1 GHz (excluding SAW and frequency conversion), and further amplified by 40 dB at baseband (excluding LPF attenuation) Since the baseband power is 10 mW, an average value of 2 V is obtained with the A / D terminal resistance 400Ω.

ADS−B信号を用いて測位時の測位装置の位置情報を検知する具体的な構成としては、例えば図5に示す通り、FPGA集積回路23で離散フーリエ変換又は高速フーリエ変換処理等で行う。図5では、ヘテロダイン受信機の方がNFと受信電力の直線性が良いが、局発の周波数の揺らぎを前のパルスから算出するので、周波数の安定度が重要となる。   As a specific configuration for detecting the position information of the positioning device at the time of positioning using the ADS-B signal, for example, as shown in FIG. 5, the FPGA integrated circuit 23 performs discrete Fourier transform or fast Fourier transform processing. In FIG. 5, the heterodyne receiver has better linearity between the NF and the received power, but the frequency stability is important because the local frequency fluctuation is calculated from the previous pulse.

図5のFPGA集積回路においては、バタフライ演算として、A/Dの標本化速度は、最大で100MSPSであるが、データ速度が1Mbpsであるので8MSPSで十分である。パルス幅が0.1msであり、1フレーム8000個の電力軸16bitsのデータ列を得る。これを2回に分けてDFTを行い、周波数偏位0.1Hz、電力0.1dBmの分解能を目指す。中心周波数のズレはドップラーシフトであり、ゼロスパンのズレは局所発信器の揺らぎであり、AFCとして受信機側PLLにアナログ電位としてNFBをかけ、最終的に解析されたデータはメモリ24に記録される。   In the FPGA integrated circuit of FIG. 5, as a butterfly operation, the sampling rate of A / D is 100 MSPS at the maximum, but since the data rate is 1 Mbps, 8 MSPS is sufficient. A pulse width is 0.1 ms, and a data string of 8000 power axes 16 bits per frame is obtained. This is divided into two times and DFT is performed to achieve a resolution of frequency deviation 0.1 Hz and power 0.1 dBm. The deviation of the center frequency is Doppler shift, the deviation of the zero span is the fluctuation of the local oscillator, the NFC is applied to the PLL on the receiver side as an analog potential as AFC, and the finally analyzed data is recorded in the memory 24 .

このような測位装置10で受信するADS−B信号のデータブロックの構造は図6に示す通り、8ビットの制御部、24ビットのアドレス部、56ビットのADS−Bメッセージ部、24ビットのパリティ部との合計112ビットからなる。メッセージの種類としては、航空機位置、航空機速度、空港位置、識別、イベントドリブンとがある。   As shown in FIG. 6, the structure of the data block of the ADS-B signal received by the positioning apparatus 10 is as follows: an 8-bit control unit, a 24-bit address unit, a 56-bit ADS-B message unit, and a 24-bit parity. It consists of 112 bits in total. The message types include aircraft position, aircraft speed, airport position, identification, and event driven.

図7に示す通り、測位装置10が2機以上の航空機からのADS−B信号を受信した場合には、個々の信号によって測位時における測位装置の位置が決定される。図に示す通り、測位装置10が、渡り鳥11の首に装着される。図7に示された場合では、この測位装置10の周囲には、4機の航空機41,42,43,44からのADS−B信号が受信される。   As shown in FIG. 7, when the positioning device 10 receives ADS-B signals from two or more aircrafts, the position of the positioning device at the time of positioning is determined by the individual signals. As shown in the figure, the positioning device 10 is attached to the neck of the migratory bird 11. In the case shown in FIG. 7, ADS-B signals from four aircrafts 41, 42, 43, 44 are received around the positioning device 10.

この受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知することで、信号を発した航空機からの各々の距離r1、r2、r3、r4が得られる。一方、個々の航空機が発信するADS−B信号には、その航空機自身の機種、緯度・経度・高度の位置及び発信時の時間等が放送されているため、測位装置10が搭載された渡り鳥11の経時的な位置を計測することが可能となる。   By detecting the Doppler shift value of the frequency of the received ADS-B signal or the attenuation value of the received power, the respective distances r1, r2, r3, r4 from the aircraft that issued the signal are obtained. On the other hand, since the ADS-B signal transmitted by each aircraft broadcasts the aircraft's own model, the latitude / longitude / altitude position, the time at the time of transmission, etc., the migratory bird 11 equipped with the positioning device 10 is installed. It is possible to measure the position of each of them over time.

以上の通り、2機以上の航空機からのADS−B信号が受信された場合には、個々の信号によって測位時における測位装置の位置が決定されるが、1機のみの航空機からのADS−B信号のみでは、実際の存在位置が定まらない。この場合には、実位置と虚位置とを判別するための虚実判別情報を必要とする。   As described above, when ADS-B signals from two or more aircraft are received, the position of the positioning device at the time of positioning is determined by the individual signals, but ADS-B from only one aircraft is used. The actual location is not determined only by the signal. In this case, the true / false discrimination information for discriminating the real location and the imaginary location is required.

図8に示す通り、1機のみの航空機51の測位位置51aからの1つのADS−B信号によって、測位時の航空機位置からの距離raが求められる。この航空機51は飛行をしているため、数秒後には相違する位置51bに移動する。その際の同一航空機からのADS−B信号によって、数秒後に移動された航空機位置51からの距離rbが求められる。これにより、測位装置を搭載した移動体の位置を求めようとする際に、測位装置の実位置と共に、航空機の航路に対する鏡像位置に虚位置が存在することになる。   As shown in FIG. 8, the distance ra from the aircraft position at the time of positioning is obtained from one ADS-B signal from the positioning position 51 a of only one aircraft 51. Since the aircraft 51 is flying, it moves to a different position 51b after a few seconds. The distance rb from the aircraft position 51 moved several seconds later is obtained from the ADS-B signal from the same aircraft at that time. As a result, when trying to determine the position of the moving body on which the positioning device is mounted, an imaginary position exists in the mirror image position with respect to the route of the aircraft along with the actual position of the positioning device.

このため、定められた測位時刻におけるADS−B信号の受信が1機のみの航空機からの受信のみの場合に、10〜30秒ごとに間歇的に連続して信号を受信し、受信した2つのADS−B信号を用いて2つの信号の測位時刻における航空機の位置と航空機までの距離とから測位地点位置を求める。この際に、実位置Aと虚位置Bとが生じる。この実位置Aと虚位置Bとを判別するための虚実判別情報を用いる。   Therefore, when the ADS-B signal is received only from one aircraft at a determined positioning time, the signal is intermittently received every 10 to 30 seconds, and the received two Using the ADS-B signal, the positioning point position is obtained from the position of the aircraft at the positioning time of the two signals and the distance to the aircraft. At this time, a real position A and an imaginary position B are generated. The true / false discrimination information for discriminating between the real position A and the imaginary position B is used.

本実施例の虚実判別情報として、図4に示す通り、測位装置10を取り巻くように均等に配置された照度計31を備えるため、図8に示す通り、照度計31では太陽の位置が判るので、首輪の向いている方向が120度単位で同定でき、PINで順番に受信アンテナ12を選択するとどの方向から電波が強いのかが把握できる。即ち、受信できるアンテナの方向と太陽の関係より真と虚の座標を決めることができる。これは太陽を使った空間的な方位センサとなっている。尚、回線設計では20km(仰角約30度)離れ、3dBのマッチングロスを考慮している。   As shown in FIG. 4, since the illuminometer 31 is arranged evenly so as to surround the positioning device 10 as shown in FIG. 4, the illuminometer 31 knows the position of the sun as shown in FIG. The direction in which the collar is facing can be identified in units of 120 degrees, and by selecting the receiving antenna 12 in order by PIN, it is possible to grasp from which direction the radio wave is strong. That is, true and imaginary coordinates can be determined from the relationship between the direction of the antenna that can be received and the sun. This is a spatial orientation sensor using the sun. In the line design, a distance of 20 km (elevation angle of about 30 degrees) is separated and a matching loss of 3 dB is considered.

消費電力を抑えることにより、圧倒的に小型化することができ、小型の鳥、中型の鳥にも搭載でき、データを回収することにより、経時的な位置を計測することができる。   By suppressing power consumption, it can be overwhelmingly miniaturized, and can be mounted on small birds and medium-sized birds, and by collecting data, the position over time can be measured.

10…測位装置、
11…渡り鳥、
12…パッチアンテナ、
13…高周波増幅器(LNA)、
14…SAWフィルター、
15…マイクロ波集積回路、
16…局部発振器、
17…混合器(ミキサ)、
18…SAWフィルター、
19…中間周波増幅器、
20…局部発振器、
21…混合器(ミキサ)、
22…アナログ・デジタル変換器、
23…FPGA集積回路、
24…メモリ、
31…照度計、
41…航空機、
42…航空機、
43…航空機、
44…航空機、
10: positioning device,
11 ... Migratory birds,
12 ... Patch antenna,
13 ... high frequency amplifier (LNA),
14 ... SAW filter,
15 ... Microwave integrated circuit,
16 ... Local oscillator,
17 ... mixer (mixer),
18 ... SAW filter,
19: Intermediate frequency amplifier,
20 ... Local oscillator,
21 ... Mixer
22 ... analog / digital converter,
23. FPGA integrated circuit,
24 ... Memory,
31 ... Illuminance meter,
41 ... Aircraft,
42 ... Aircraft,
43 ... Aircraft,
44 ... Aircraft,

Claims (3)

航空機からのADS−B信号を受信する信号受信手段と、受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知する信号検知手段と、記録手段とを備えた測位装置を移動体に搭載する受信機器搭載工程と、
前記信号受信手段で受信した予め定められた測位時刻における2機以上の航空機からのADS−B信号と、信号検知手段で得られたドップラーシフト値又は減衰値とから測位時の受信機器の位置情報を検知する位置検知工程と、
受信機器搭載工程での受信したADS−B信号自体、又は、前記位置検知工程での測位時の受信機器の位置情報を前記記録手段に記録する記録工程と、
前記記録手段から記録された位置検知手段の測位時と位置情報とを回収するデータ回収工程と、
回収された測位時と位置情報とから移動体の位置を経時的に表示する表示工程とを備えたことを特徴とする航空機からの信号を用いた測位方法。
Positioning apparatus comprising signal receiving means for receiving an ADS-B signal from an aircraft, signal detecting means for detecting a Doppler shift value of the frequency of the received ADS-B signal or an attenuation value of received power, and a recording means Receiving device mounting process for mounting the
Position information of the receiving device at the time of positioning from the ADS-B signals from two or more aircraft at the predetermined positioning time received by the signal receiving means and the Doppler shift value or attenuation value obtained by the signal detecting means A position detection process for detecting
A recording step of recording the received ADS-B signal itself in the receiving device mounting step or the position information of the receiving device at the time of positioning in the position detecting step in the recording means;
A data recovery step of recovering the positioning and position information of the position detection means recorded from the recording means;
A positioning method using a signal from an aircraft, comprising: a display step of displaying the position of a moving body over time from the collected positioning time and position information.
2機以上の航空機からのADS−B信号を受信し、受信した信号から測位地点からの個々の航空機までの距離を求めることにより、測位時の測位地点位置を求めることを特徴とする請求項1に記載の航空機からの信号による測位方法。   2. A positioning point position at the time of positioning is obtained by receiving ADS-B signals from two or more aircrafts and obtaining distances from the positioning points to individual aircrafts from the received signals. The positioning method by the signal from the aircraft as described in 1. 搭載された移動体の位置を経時的に計測する測位装置であって、
予め定められた測位時刻における2機以上の航空機からのADS−B信号を受信する信号受信手段と、
受信されたADS−B信号の周波数のドップラーシフト値又は受信電力の減衰値を検知する信号検知手段と、
信号受信手段で受信されたADS−B信号から得られるADS−B信号データと、信号検知手段で得られたドップラーシフト値又は減衰値とから測位時の測位装置の位置情報を検知する位置検知手段と、
前記位置検知手段の測位時と位置情報とを記録する記録手段とを備えたことを特徴とする航空機からの信号を用いた測位装置。
A positioning device that measures the position of a mounted mobile body over time,
Signal receiving means for receiving ADS-B signals from two or more aircraft at a predetermined positioning time;
Signal detection means for detecting a Doppler shift value of the frequency of the received ADS-B signal or an attenuation value of the received power;
Position detecting means for detecting position information of the positioning device at the time of positioning from ADS-B signal data obtained from the ADS-B signal received by the signal receiving means and Doppler shift value or attenuation value obtained by the signal detecting means When,
A positioning device using a signal from an aircraft, comprising: a recording means for recording position information and position information of the position detecting means.
JP2013155216A 2013-07-26 2013-07-26 Positioning method and positioning device using signals from aircraft Active JP6177612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155216A JP6177612B2 (en) 2013-07-26 2013-07-26 Positioning method and positioning device using signals from aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155216A JP6177612B2 (en) 2013-07-26 2013-07-26 Positioning method and positioning device using signals from aircraft

Publications (2)

Publication Number Publication Date
JP2015025728A true JP2015025728A (en) 2015-02-05
JP6177612B2 JP6177612B2 (en) 2017-08-09

Family

ID=52490499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155216A Active JP6177612B2 (en) 2013-07-26 2013-07-26 Positioning method and positioning device using signals from aircraft

Country Status (1)

Country Link
JP (1) JP6177612B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782306A (en) * 2016-08-26 2018-03-09 北京臻迪机器人有限公司 Unmanned plane positioning display method and device
CN111986522A (en) * 2020-07-29 2020-11-24 广州市新航科技有限公司 Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof
WO2021109430A1 (en) * 2019-12-06 2021-06-10 南京萨利智能科技有限公司 Aircraft route monitoring method and device based on ads-b broadcast signal, and computer storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295212A (en) * 1997-04-28 1998-11-10 Matsushita Electric Works Ltd Pasturing managing device and pasturing managing system using the same
JP2006262189A (en) * 2005-03-17 2006-09-28 Hitachi Ltd Traveler traffic line information acquisition system, traveler traffic line information control server appartus and traveler traffic line information acquisition method
US20100202300A1 (en) * 2009-02-12 2010-08-12 Zulutime, Llc Systems and methods for space-time determinations with reduced network traffic
JP2011099778A (en) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp Position determination method, positioning system, and program
JP2012225915A (en) * 2011-04-15 2012-11-15 Exelis Inc Determination of state vector, timing and navigation quality value from reception of ads-b transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10295212A (en) * 1997-04-28 1998-11-10 Matsushita Electric Works Ltd Pasturing managing device and pasturing managing system using the same
JP2006262189A (en) * 2005-03-17 2006-09-28 Hitachi Ltd Traveler traffic line information acquisition system, traveler traffic line information control server appartus and traveler traffic line information acquisition method
US20100202300A1 (en) * 2009-02-12 2010-08-12 Zulutime, Llc Systems and methods for space-time determinations with reduced network traffic
JP2011099778A (en) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp Position determination method, positioning system, and program
JP2012225915A (en) * 2011-04-15 2012-11-15 Exelis Inc Determination of state vector, timing and navigation quality value from reception of ads-b transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
細野 智史、間瀬 憲一: "鳥類モニタリングシステムにおける基地局への位置情報転送に関する検討", 電子情報通信学会技術研究報告, vol. 110, no. 441, JPN6017012756, 24 February 2011 (2011-02-24), JP, pages 79 - 83, ISSN: 0003582407 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782306A (en) * 2016-08-26 2018-03-09 北京臻迪机器人有限公司 Unmanned plane positioning display method and device
WO2021109430A1 (en) * 2019-12-06 2021-06-10 南京萨利智能科技有限公司 Aircraft route monitoring method and device based on ads-b broadcast signal, and computer storage medium
CN111986522A (en) * 2020-07-29 2020-11-24 广州市新航科技有限公司 Airborne equipment positioning method based on ADS-B signal, airborne equipment and storage medium thereof

Also Published As

Publication number Publication date
JP6177612B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
US11686879B2 (en) Distributed weather monitoring system
US9967707B2 (en) Weather data dissemination
US7508344B2 (en) Systems and methods for TDOA/FDOA location
CN102608636B (en) Stepping inquiry-response locating system for flight data recorder
CN108089205B (en) Unmanned aerial vehicle flies accuse personnel positioning system
US11294071B2 (en) Apparatus for determining precise location and method for determining precise location in woodlands
WO2005116682A1 (en) An arrangement for accurate location of objects
CN111800205B (en) Unmanned aerial vehicle-mounted wireless communication interference signal detection method
US20080024365A1 (en) Position finding system and method used with an emergency beacon
CN203480030U (en) Unmanned aerial vehicle positioning system based on mobile phone base station signal
US11194052B1 (en) Systems and methods for real-time GNSS interference monitoring
WO2015130794A1 (en) Single platform doppler geolocation
CN109521402B (en) Passive detection positioning system for low-altitude unmanned aerial vehicle
JP6177612B2 (en) Positioning method and positioning device using signals from aircraft
US20090135059A1 (en) Method and apparatus for passive single platform geo-location
KR101654739B1 (en) Eloran asf survey system and method thereof
Wachtl et al. Global navigation satellite systems in passive surveillance applications
Randall et al. Skywatch: A passive multistatic radar network for the measurement of object position and velocity
US20140354481A1 (en) 406 mhz receiver measuring toa and foa for use in determining the position of an emergency beacon
de Mello et al. SDR-based radar-detectors embedded on tablet devices
RU2613342C1 (en) Compact navigation system of atmosphere radiosonde observation
US10573182B2 (en) Collision avoidance apparatus and method for vehicle
JP2020153834A (en) Location detection system, air mobile body and location detection method
JP7325863B1 (en) Radio equipment, ground station equipment
Barott et al. Passive radar for terminal area surveillance: performance feasibility study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170712

R150 Certificate of patent or registration of utility model

Ref document number: 6177612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250