JP2015025448A - Exhaust after-treatment method of internal combustion engine, and internal combustion engine - Google Patents

Exhaust after-treatment method of internal combustion engine, and internal combustion engine Download PDF

Info

Publication number
JP2015025448A
JP2015025448A JP2014147502A JP2014147502A JP2015025448A JP 2015025448 A JP2015025448 A JP 2015025448A JP 2014147502 A JP2014147502 A JP 2014147502A JP 2014147502 A JP2014147502 A JP 2014147502A JP 2015025448 A JP2015025448 A JP 2015025448A
Authority
JP
Japan
Prior art keywords
exhaust
ammonia
internal combustion
combustion engine
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014147502A
Other languages
Japanese (ja)
Other versions
JP6399541B2 (en
Inventor
アンドレアス・デーリング
Andreas Doering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo SE filed Critical MAN Diesel and Turbo SE
Publication of JP2015025448A publication Critical patent/JP2015025448A/en
Application granted granted Critical
Publication of JP6399541B2 publication Critical patent/JP6399541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/005Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for draining or otherwise eliminating condensates or moisture accumulating in the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/06Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of the exhaust apparatus relative to the turbine of a turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new exhaust after-treatment method of an internal combustion engine, and to provide a new internal combustion engine.SOLUTION: In an exhaust after-treatment method of an internal combustion engine (10), in particular, an internal combustion engine having at least one stage of exhaust turbo supercharge through at least one exhaust turbocharger (13), and exhaust emission control through a SCR catalyst (14), and being operated with a heavy oil, the SCR catalyst (14) is disposed on the exhaust turbocharger (13) or at an upstream side of each exhaust turbocharger (13) in the exhaust flowing direction, sulfur dioxide is oxidized to sulfur trioxide at a downstream side of the SCR catalyst (14) and on the exhaust turbocharger (13) or at the upstream side of each exhaust turbocharger (13) in the exhaust flowing direction, and sulfur trioxide is condensed to sulfuric acid to be removed from the exhaust as sulfuric acid at the exhaust turbocharger (13) or at a downstream side of each exhaust turbocharger in the exhaust flowing direction.

Description

本発明は請求項1のおいて書きに記載の、内燃機関の排気後処理に関する。本発明はまた、請求項8のおいて書きに記載の内燃機関に関する。   The invention relates to an exhaust aftertreatment of an internal combustion engine as described in claim 1. The invention also relates to an internal combustion engine as described in claim 8.

特許文献1より、一段又は二段の排気過給、及び、SCR触媒を介した排気浄化を行う内燃機関が知られている。この従来技術では、一段の排気過給において、SCR触媒は排気ターボチャージャのタービンの下流、又は、排気ターボチャージャのタービンの上流のいずれかに配置されている。この従来技術では、2つの排気ターボチャージャを備えた二段の排気過給においては、SCR触媒は2つの排気ターボチャージャの2つのタービンの間に配置されている。この従来技術からはさらに、バイパスラインを介してSCR触媒をバイパスし、排気を、SCR触媒を通さずに、SCR触媒の下流に配置された排気ターボチャージャのタービンに向かう方向に案内することがすでに知られている。バイパスラインを通る排気流は、調整装置により調整可能である。   From Patent Document 1, an internal combustion engine is known that performs one-stage or two-stage exhaust supercharging and exhaust purification via an SCR catalyst. In this prior art, in one stage of supercharging, the SCR catalyst is arranged either downstream of the turbine of the exhaust turbocharger or upstream of the turbine of the exhaust turbocharger. In this prior art, in a two-stage exhaust supercharging with two exhaust turbochargers, the SCR catalyst is arranged between the two turbines of the two exhaust turbochargers. From this prior art it is already possible to bypass the SCR catalyst via a bypass line and guide the exhaust in the direction towards the turbine of the exhaust turbocharger arranged downstream of the SCR catalyst without passing through the SCR catalyst. Are known. The exhaust flow through the bypass line can be adjusted by a regulating device.

SCR触媒を用いることにより、排気内の窒素酸化物、とりわけ一酸化窒素及び二酸化窒素を定義通りに還元することはすでに可能であるが、とりわけ重油で運転される内燃機関では、追加的にSO排出を低減させる必要がある。 By using an SCR catalyst, it is already possible to reduce nitrogen oxides in the exhaust, in particular nitrogen monoxide and nitrogen dioxide, as defined, but in particular for internal combustion engines operated with heavy oil, additional SO 2 There is a need to reduce emissions.

独国特許第102004027593明細書German Patent No. 102004027593

本発明の課題は、内燃機関の新規の排気後処理法、及び、新規の内燃機関を提供することである。   An object of the present invention is to provide a novel exhaust aftertreatment method for an internal combustion engine and a novel internal combustion engine.

この課題は、請求項1に記載の方法により解決される。本発明によると排気ターボ過給を行う内燃機関の排気内に、排気ターボチャージャの上流で、二酸化硫黄を酸化するための触媒が設けられ、また、排気の流れ方向において当該排気ターボチャージャ又は各排気ターボチャージャの下流で三酸化硫黄が硫酸に凝縮され、硫酸及び/又は硫酸塩として排気から除去される。   This problem is solved by the method according to claim 1. According to the present invention, a catalyst for oxidizing sulfur dioxide is provided in the exhaust of an internal combustion engine that performs exhaust turbocharging upstream of the exhaust turbocharger, and the exhaust turbocharger or each exhaust in the exhaust flow direction. Downstream of the turbocharger, sulfur trioxide is condensed into sulfuric acid and removed from the exhaust as sulfuric acid and / or sulfate.

本発明によると、とりわけ重油で運転される内燃機関のSO排出を低減させるために2つの手段、つまり、排気過給の上流における硫黄酸化物の三酸化硫黄への酸化、及び、排気過給の下流における三酸化硫黄の硫酸への凝縮が組み合わされて使用されている。二酸化硫黄の三酸化硫黄への酸化は、SO酸化触媒を利用して行われ、このとき、この酸化触媒における酸化が排気過給の上流で行われるために、二酸化硫黄の三酸化硫黄への酸化において排気は高温及び高圧を有しており、そのためSO酸化が最適な運転条件ですばやく進み、また、相応の予熱装置により排気を予熱する必要もない。さらに、三酸化硫黄の硫酸への凝縮が排気過給の下流で起こり、このとき三酸化硫黄の硫酸への凝縮は、排気過給の当該タービン又は各タービンによるエンタルピ落差のために窒素酸化物の二酸化窒素への酸化より明らかに低い温度で起こるため、排気過給の下流での三酸化硫黄の硫酸への凝縮も最適な運転条件で行われ、そのため効率的に行われ得る。 In accordance with the present invention, two means are particularly useful for reducing SO 2 emissions in internal combustion engines operated with heavy oil: oxidation of sulfur oxides to sulfur trioxide upstream of exhaust supercharging and exhaust supercharging. Condensation of sulfur trioxide into sulfuric acid downstream is used in combination. Oxidation of sulfur dioxide to sulfur trioxide is performed using an SO 2 oxidation catalyst. At this time, since oxidation in the oxidation catalyst is performed upstream of the exhaust gas supercharging, sulfur dioxide is converted to sulfur trioxide. In the oxidation, the exhaust has a high temperature and a high pressure, so that the SO 2 oxidation proceeds quickly under optimum operating conditions, and there is no need to preheat the exhaust with a corresponding preheating device. Furthermore, the condensation of sulfur trioxide to sulfuric acid occurs downstream of the exhaust supercharging, where the condensation of sulfur trioxide to sulfuric acid is caused by the enthalpy drop by the turbine or each turbine of the exhaust supercharging, resulting in nitrogen oxides. Condensation of sulfur trioxide into sulfuric acid downstream of exhaust supercharging also takes place at optimal operating conditions and can therefore be done efficiently because it occurs at a temperature significantly lower than oxidation to nitrogen dioxide.

本発明によるとこの方法は、SCR触媒をSO酸化触媒の上流に配置する形でSCR触媒と組み合わせることができる。 Toko of the process according to the invention can be combined with the SCR catalyst in the form of placing a SCR catalyst upstream of SO 2 oxidation catalyst.

望ましくは、SCR触媒の上流においてアンモニア及び/又は排気内でアンモニアに変換されるアンモニア前駆体が排気内に供給される。アンモニア及び/又はアンモニア前駆体がSCR触媒の上流において排気内に供給されることにより、SCR触媒内での窒素酸化物の変換が効率的に行われる。   Desirably, ammonia and / or an ammonia precursor that is converted to ammonia in the exhaust is supplied upstream of the SCR catalyst. By supplying ammonia and / or an ammonia precursor into the exhaust gas upstream of the SCR catalyst, conversion of nitrogen oxides in the SCR catalyst is efficiently performed.

本発明の好適な第1の発展形によるとアンモニア及び/又はアンモニア前駆体は、供給比がNH/NO>1になるよう排気内に供給され、それによりSCR触媒の下流で排気内にアンモニアが存在し、それが硫酸を中和するのに使用される。本発明の好適な第2の発展形によるとSCR触媒の上流かつアンモニア及び/又はアンモニア前駆体が排気内に供給される位置の下流で、排気部分流が分岐し、その排気部分流を介して、硫酸の中和に使われるアンモニアを硫酸凝縮の下流で硫酸に、又は硫酸凝縮の上流で排気に供給可能である。2つの好適な発展形により、凝縮で生じる硫酸を中和することが可能であり、しかも使用されるアンモニアはSCR触媒においていずれにせよ必要とされるものである。したがって、凝縮で生じる硫酸を中和するための塩基性成分を別個に必要としない。 According to a preferred first development of the invention, ammonia and / or an ammonia precursor are fed into the exhaust such that the feed ratio is NH 3 / NO X > 1, thereby entering the exhaust downstream of the SCR catalyst. Ammonia is present and is used to neutralize the sulfuric acid. According to a preferred second development of the invention, the exhaust partial stream branches off upstream of the SCR catalyst and downstream of the position where ammonia and / or ammonia precursor is fed into the exhaust, via the exhaust partial stream. Ammonia used for sulfuric acid neutralization can be supplied to sulfuric acid downstream of sulfuric acid condensation or to exhaust gas upstream of sulfuric acid condensation. Two preferred developments make it possible to neutralize the sulfuric acid produced by condensation, and the ammonia used is anyway required in the SCR catalyst. Thus, no separate basic component is required to neutralize the sulfuric acid produced by condensation.

望ましくは排気部分流の排気は、さらなるSCR触媒及び/又は加水分解触媒を通って案内される。それにより、一つには、加水分解触媒におけるNH前駆体の定量的分解が確実にされ、しかしまた、硫酸の中和に必要なNHが含まれる排気路を介して窒素酸化物が排出される。 Desirably, the exhaust partial stream exhaust is guided through additional SCR and / or hydrolysis catalysts. This, in part, ensures quantitative decomposition of the NH 3 precursor in the hydrolysis catalyst, but also releases nitrogen oxides through the exhaust path containing NH 3 necessary for neutralization of sulfuric acid. Is done.

本発明の内燃機関は請求項12に定義されている。   The internal combustion engine of the present invention is defined in claim 12.

本発明の望ましい発展形は、従属請求項及び以下の説明から理解できる。本発明の実施例を図を用いて詳しく説明するが、これに限定されるわけではない。   Preferred developments of the invention can be seen from the dependent claims and the following description. Embodiments of the present invention will be described in detail with reference to the drawings, but are not limited thereto.

本発明の第1の実施例の過給内燃機関の図である。1 is a diagram of a supercharged internal combustion engine according to a first embodiment of the present invention. 本発明の第2の実施例の過給内燃機関の図である。It is a figure of the supercharged internal combustion engine of the 2nd Example of this invention. 本発明の第3の実施例の過給内燃機関の図である。It is a figure of the supercharged internal combustion engine of the 3rd Example of this invention. 本発明の第4の実施例の過給内燃機関の図である。It is a figure of the supercharged internal combustion engine of the 4th Example of this invention.

本発明は内燃機関、とりわけ重油で運転される船舶ディーゼル内燃機関に関する。本発明はまた、そのような内燃機関の排気後処理方法に関する。   The present invention relates to an internal combustion engine, in particular a marine diesel internal combustion engine operated with heavy oil. The invention also relates to an exhaust aftertreatment method for such an internal combustion engine.

重油で運転される内燃機関には、内燃機関により使用される燃料、つまり重油の硫黄の含有量が高いという特殊事情がある。排気規制がますます厳しくなる中、硫黄酸化物の排出をさらに低減させることが必要である。本発明は、重油で運転される内燃機関におけるSO排出を効率的に低減させることが可能な手段又は特徴を提案する。 An internal combustion engine operated with heavy oil has a special situation in which the fuel used by the internal combustion engine, that is, the sulfur content of heavy oil is high. As exhaust emission regulations become more stringent, it is necessary to further reduce sulfur oxide emissions. The present invention proposes a means or features that can be efficiently reduced SO 2 emissions in an internal combustion engine which is operated at heavy oil.

図1に図示された本発明の第1の内燃機関10は、複数の気筒12を持つエンジン11、排気ターボチャージャ13を介した排気過給、及びSCR触媒14を介した排気浄化を有している。   A first internal combustion engine 10 of the present invention shown in FIG. 1 has an engine 11 having a plurality of cylinders 12, exhaust supercharging via an exhaust turbocharger 13, and exhaust purification via an SCR catalyst 14. Yes.

燃料、とりわけ重油の燃焼によりエンジン11の気筒12内に生じる排気は、排気浄化のためにまずSCR触媒14を通り、次に、エネルギを得るために排気ターボチャージャ13のタービン15を通って案内され、このとき、排気ターボチャージャ13のタービン15内で排気が膨張して得られたエネルギを利用して、燃料燃焼のために気筒12に必要な給気が、排気ターボチャージャ13のコンプレッサ16の領域において圧縮される。   Exhaust gas generated in the cylinder 12 of the engine 11 due to combustion of fuel, particularly heavy oil, first passes through the SCR catalyst 14 for exhaust purification, and then is guided through the turbine 15 of the exhaust turbocharger 13 to obtain energy. At this time, by using the energy obtained by the exhaust gas expanding in the turbine 15 of the exhaust turbocharger 13, the supply air necessary for the cylinder 12 for fuel combustion becomes the region of the compressor 16 of the exhaust turbocharger 13. Is compressed.

SCR触媒14の上流において排気内にアンモニア及び/又はアンモニア前駆体が供給され、このアンモニア前駆体は例えば尿素水溶液とすることができる。そのようなアンモニア前駆体は排気内においてアンモニアに変換され、SCR触媒14は、窒素酸化物変換における還元剤としてこのアンモニアを必要とする。   Ammonia and / or an ammonia precursor is supplied into the exhaust gas upstream of the SCR catalyst 14, and this ammonia precursor can be, for example, an aqueous urea solution. Such an ammonia precursor is converted into ammonia in the exhaust, and the SCR catalyst 14 requires this ammonia as a reducing agent in nitrogen oxide conversion.

図1にはアンモニアが生成されるアンモニア生成装置17が図示されており、図1においてはSCR触媒14の上流で、エンジン11の気筒12から出た排気内にアンモニアが供給される。   FIG. 1 shows an ammonia generator 17 that generates ammonia. In FIG. 1, ammonia is supplied into the exhaust discharged from the cylinder 12 of the engine 11 upstream of the SCR catalyst 14.

本発明において、排気の流れの方向においてSCR触媒14の下流かつ排気ターボチャージャ13のタービン15の上流で、排気の二酸化硫黄の二酸化窒素への酸化が行われ、つまり、図1によると、排気の流れの方向においてSCR触媒14の下流かつ排気ターボチャージャ13のタービン15の上流に配置されたSO酸化触媒18を用いて行われる。SO酸化触媒をこのように配置することにより、SO酸化が高温及び高圧で、つまり効率的に行われ、SO酸化触媒18の上流において排気の予熱は必要とされない。 In the present invention, the exhaust sulfur dioxide is oxidized to nitrogen dioxide downstream of the SCR catalyst 14 and upstream of the turbine 15 of the exhaust turbocharger 13 in the direction of exhaust flow, that is, according to FIG. This is performed using an SO 2 oxidation catalyst 18 disposed downstream of the SCR catalyst 14 and upstream of the turbine 15 of the exhaust turbocharger 13 in the flow direction. By disposing the SO 2 oxidation catalyst in this way, SO 2 oxidation is performed at high temperature and high pressure, that is, efficiently, and exhaust preheating is not required upstream of the SO 2 oxidation catalyst 18.

本発明によるとさらに、排気の流れの方向において排気ターボチャージャ13の下流、つまり排気ターボチャージャ13のタービン15の下流で、三酸化硫黄の硫酸への凝縮が行われ、そのために図1においては排気ターボチャージャ13の下流、つまり排気ターボチャージャ13のタービン15の下流にHSO凝縮器19が配置されている。HSO凝縮器19には、排気ターボチャージャ13のタービン15から出た排気が供給され、HSO凝縮器からは一方では排気が、他方では硫酸が出るが、この硫酸は、HSO凝縮器19内で三酸化硫黄が凝縮されることにより生じたものであり、容器20に集められる。 Further according to the invention, condensation of sulfur trioxide to sulfuric acid takes place downstream of the exhaust turbocharger 13 in the direction of the exhaust flow, ie downstream of the turbine 15 of the exhaust turbocharger 13, and for that reason, in FIG. An H 2 SO 4 condenser 19 is disposed downstream of the turbocharger 13, that is, downstream of the turbine 15 of the exhaust turbocharger 13. The H 2 SO 4 condenser 19 is supplied with the exhaust gas from the turbine 15 of the exhaust turbocharger 13, and the H 2 SO 4 condenser emits exhaust gas on one side and sulfuric acid on the other side. This is generated by the condensation of sulfur trioxide in the 2 SO 4 condenser 19 and collected in the container 20.

タービン15を通ることによるエンタルピ落差により、HSO凝縮器19内での凝縮は、SO酸化触媒内での酸化より明らかに低い温度で行われる。そのためSO酸化触媒18内での酸化もHSO触媒19内での凝縮も最適なプロセス条件で行われる。 Due to the enthalpy drop due to passing through the turbine 15, the condensation in the H 2 SO 4 condenser 19 takes place at a significantly lower temperature than the oxidation in the SO 2 oxidation catalyst. Therefore, the oxidation in the SO 2 oxidation catalyst 18 and the condensation in the H 2 SO 4 catalyst 19 are performed under optimum process conditions.

ここで、SO酸化触媒18の領域において活性元素としてバナジウムV及び/又はカリウムK及び/又はナトリウムNa及び/又はセシウムCs及び/又は鉄Fe及び/又はセリウムCe及び場合によってはこれらの元素の酸化物を使用することができることが指摘される。 Here, vanadium V and / or potassium K and / or sodium Na and / or cesium Cs and / or iron Fe and / or cerium Ce and possibly oxidation of these elements in the region of the SO 2 oxidation catalyst 18 It is pointed out that things can be used.

バナジウムの割合は5%より高く、望ましくは7%より高く、最も望ましくは9%より高い。   The proportion of vanadium is higher than 5%, preferably higher than 7%, most preferably higher than 9%.

本発明の一つの好適な発展形によると、凝縮で生じた硫酸を中和して硫酸の塩を生じさせることが提案される。   According to one preferred development of the invention, it is proposed to neutralize the sulfuric acid produced by condensation to form a salt of sulfuric acid.

そのために図1の実施例においては、アンモニア及び/又はアンモニア前駆体を、供給比がNH/NO>1となるように排気内に供給することが可能であり、それによりSCR触媒14の下流で排気内にアンモニアが存在し、それをHSO凝縮器19の領域で生じる硫酸の中和に利用できる。 Therefore, in the embodiment of FIG. 1, ammonia and / or an ammonia precursor can be supplied into the exhaust gas so that the supply ratio is NH 3 / NO X > 1, whereby the SCR catalyst 14 Ammonia is present in the exhaust downstream and can be used to neutralize the sulfuric acid produced in the region of the H 2 SO 4 condenser 19.

これとは異なり、硫酸の中和は、図2のようにSCR触媒14の上流かつアンモニア生成装置17内で生じたアンモニアが排気内に供給される位置の下流で、バイパス21により排気部分流を分岐させ、SCR触媒14、SO酸化触媒18、及び排気ターボチャージャ13のタービン15をバイパスさせて排気部分流をHSO凝縮器19の上流で排気に混合することにより行うことも可能である。このときも排気部分流内には、硫酸の中和に使用できるアンモニアが存在する。これに関連して、バイパス21を介して案内された排気部分流の排気を、追加的なSCR触媒22を通して案内することが可能である。 In contrast to this, the neutralization of sulfuric acid is carried out by using a bypass 21 as a partial exhaust stream upstream of the SCR catalyst 14 and downstream of the position where the ammonia generated in the ammonia generator 17 is supplied into the exhaust as shown in FIG. It is also possible to branch off and bypass the SCR catalyst 14, the SO 2 oxidation catalyst 18 and the turbine 15 of the exhaust turbocharger 13 and mix the exhaust partial stream with the exhaust upstream of the H 2 SO 4 condenser 19. is there. At this time, ammonia that can be used for neutralization of sulfuric acid is present in the exhaust partial stream. In this connection, it is possible to guide the exhaust of the partial exhaust stream guided via the bypass 21 through the additional SCR catalyst 22.

図3に図示された本発明の変形例でも、SCR触媒14の上流かつアンモニア生成装置17内で生じたアンモニアが排気内に供給される位置の下流において、排気部分流の排気がバイパス21により排気流から分岐され、HSO凝縮器19の領域で生じる硫酸を中和するのに使用されるが、図3では図2とは異なり、排気部分流は硫酸又は硫酸循環に供給されるのであって、HSO凝縮器19の上流においてタービン15から出た排気流に混合されるのではない。図3の変形例においてはまた、排気部分流の排気もSCR触媒を通して案内するために、バイパス21に別個のSCR触媒22を任意に割り当てることができる。 Also in the modification of the present invention illustrated in FIG. 3, the exhaust of the partial exhaust gas is exhausted by the bypass 21 upstream of the SCR catalyst 14 and downstream of the position where ammonia generated in the ammonia generator 17 is supplied into the exhaust. 3 is used to neutralize the sulfuric acid produced in the region of the H 2 SO 4 condenser 19, but in FIG. 3, unlike FIG. 2, the exhaust partial stream is fed to sulfuric acid or a sulfuric acid circulation. Thus, it is not mixed with the exhaust stream leaving the turbine 15 upstream of the H 2 SO 4 condenser 19. In the variant of FIG. 3 also, a separate SCR catalyst 22 can optionally be assigned to the bypass 21 in order to guide the exhaust of the exhaust partial stream through the SCR catalyst.

図4に図示された本発明の変形例では、エンジン11の下流においてアンモニアではなくむしろアンモニア前駆体が排気に供給され、これが排気内でアンモニアに変換される。このアンモニア前駆体は例えば、排気内でアンモニア、二酸化炭素、水蒸気に変換される尿素水溶液とすることができる。   In the variant of the invention illustrated in FIG. 4, ammonia precursor rather than ammonia is supplied downstream of the engine 11 into the exhaust, which is converted into ammonia in the exhaust. The ammonia precursor can be, for example, an aqueous urea solution that is converted into ammonia, carbon dioxide, and water vapor in the exhaust.

図4の変形例においては、図3の変形例と同様、SCR触媒14の上流かつアンモニア前駆体が排気内に供給される位置の下流において、バイパス21により排気部分流が分岐しており、図4では、アンモニア前駆体のアンモニアへの変換をスピードアップするため又は改善するためにこの排気部分流は加水分解触媒23を通して案内される。   In the modification of FIG. 4, as in the modification of FIG. 3, the exhaust partial flow is branched by the bypass 21 upstream of the SCR catalyst 14 and downstream of the position where the ammonia precursor is supplied into the exhaust. 4 this exhaust partial stream is guided through the hydrolysis catalyst 23 to speed up or improve the conversion of the ammonia precursor to ammonia.

制御可能又は調整可能な絞り弁24を用いて、バイパス21を介して案内される排気部分流を調節することができる。制御可能又は調整可能な絞り弁25及び26を用いて、加水分解触媒23を通して案内される部分流のどれだけの量を引き続きバイパス21により、SCR触媒14、SO酸化触媒18、及び排気ターボチャージャ13をバイパスして硫酸循環に供給するのか、又は、排気部分流のどれだけの量をSCR触媒14の上流で主流に戻すのかを調節することができる。 A controllable or adjustable throttle valve 24 can be used to adjust the exhaust partial flow guided through the bypass 21. Controllable or adjustable using a throttle valve 25 and 26, how much by subsequent bypass 21 the amount, SCR catalyst 14, SO 2 oxidation catalyst 18, and an exhaust turbocharger partial flow which is guided through the hydrolysis catalyst 23 It is possible to control whether to bypass 13 and supply to the sulfuric acid circulation or how much of the exhaust partial stream is returned to the main stream upstream of the SCR catalyst 14.

図示された実施例すべてに共通していることは、重油で運転される過給内燃機関10において、SCR触媒14の下流かつ排気ターボチャージャ13のタービン15の上流にS0酸化触媒18が設けられており、これを用いることにより高温及び高圧においてSO酸化をスピードアップして行えることである。 Common to all the illustrated embodiments, the supercharged internal combustion engine 10 which is operated at heavy oil, upstream S0 2 oxidation catalyst 18 of the turbine 15 downstream and exhaust turbocharger 13 is provided in the SCR catalyst 14 By using this, it is possible to speed up SO 2 oxidation at high temperature and high pressure.

さらに、すべての実施例において、排気ターボチャージャ13のタービン15の下流にHSO凝縮器が設けられていて、三酸化硫黄を硫酸として凝縮し、硫酸の形で排出する。 Furthermore, in all the embodiments, an H 2 SO 4 condenser is provided downstream of the turbine 15 of the exhaust turbocharger 13 to condense sulfur trioxide as sulfuric acid and discharge it in the form of sulfuric acid.

望ましくは、生じた硫酸は中和され、つまり、SCR触媒14の領域において還元剤として必要なアンモニアを用いて中和される。   Desirably, the resulting sulfuric acid is neutralized, that is, neutralized with the ammonia required as a reducing agent in the region of the SCR catalyst 14.

先述したように、硫酸の中和に使われるアンモニアは、HSO凝縮器19の上流かつタービン15の下流において排気に、又は、HSO凝縮器19の下流で硫酸に、混合される。 As described above, ammonia used for neutralization of sulfuric acid is mixed with exhaust gas upstream of the H 2 SO 4 condenser 19 and downstream of the turbine 15, or mixed with sulfuric acid downstream of the H 2 SO 4 condenser 19. The

このとき、SCR触媒14の下流かつHSO凝縮器19の上流においてバイパスラインを必要とすることなく、排気内に硫酸を中和するのに十分な量のアンモニアが用意されるよう、アンモニアは供給比>1で準備しておくことができる。 At this time, ammonia is prepared so that a sufficient amount of ammonia for neutralizing sulfuric acid is prepared in the exhaust gas without requiring a bypass line downstream of the SCR catalyst 14 and upstream of the H 2 SO 4 condenser 19. Can be prepared with a supply ratio> 1.

他方では、バイパスライン21を用いてSCR触媒14の上流で排気主流から、アンモニア及び/又はアンモニア前駆体を含んだ排気部分流を分岐させ、それにより硫酸の中和に用いられるアンモニアを用意することもできる。   On the other hand, the exhaust partial stream containing ammonia and / or an ammonia precursor is branched from the exhaust main stream upstream of the SCR catalyst 14 using the bypass line 21, thereby preparing ammonia used for neutralization of sulfuric acid. You can also.

特に好適な実施形態(図2から4参照)においては、バイパスライン21によりSCR触媒14、SO酸化触媒18、及びタービン15をバイパスした排気部分流は、バイパスライン21の領域においてSCR触媒22及び/又は加水分解触媒23を通して案内される。加水分解触媒23を介して排気内でのアンモニア発生が支援され得る。バイパス21の別個のSCR触媒22を介して排気部分流内の窒素酸化物を還元することができる。 In a particularly preferred embodiment (see FIGS. 2 to 4), the exhaust partial flow bypassing the SCR catalyst 14, the SO 2 oxidation catalyst 18 and the turbine 15 by the bypass line 21 is in the region of the bypass line 21 and the SCR catalyst 22 and Guided through the hydrolysis catalyst 23. Ammonia generation in the exhaust can be supported via the hydrolysis catalyst 23. Nitrogen oxides in the exhaust partial stream can be reduced via a separate SCR catalyst 22 in the bypass 21.

バイパスライン21内にSCR触媒22が設けられている場合、硫酸HSOを硫酸アンモニウム(NHSOに中和するためにSCR触媒22の下流で十分なアンモニアNHが用意されるよう、排気部分流についても、排気部分流内の供給比が>1であることがあてはまる。 When the SCR catalyst 22 is provided in the bypass line 21, sufficient ammonia NH 3 is prepared downstream of the SCR catalyst 22 to neutralize the sulfuric acid H 2 SO 4 to ammonium sulfate (NH 4 ) 2 SO 4. Thus, for the exhaust partial flow, it is also true that the supply ratio in the exhaust partial flow is> 1.

10 内燃機関
11 エンジン
12 気筒
13 排気ターボチャージャ
14 SCR触媒
15 タービン
16 コンプレッサ
17 アンモニア生成装置
18 SO酸化触媒
19 HSO凝縮器
20 容器
21 バイパス
22 SCR触媒
23 加水分解触媒
24 絞り弁
25 絞り弁
26 絞り弁
10 internal combustion engine 11 engine 12 cylinder 13 exhaust turbocharger 14 SCR catalyst 15 turbine 16 compressor 17 ammonia generating apparatus 18 SO 2 oxidation catalyst 19 H 2 SO 4 condenser 20 container 21 bypass 22 SCR catalyst 23 hydrolysis catalyst 24 throttle valve 25 throttle Valve 26 Throttle valve

Claims (17)

内燃機関、とりわけ少なくとも一つの排気ターボチャージャ及び排気の脱硫装置を介した少なくとも一段の排気ターボ過給を有する、重油で運転される内燃機関における排気後処理方法において、排気ターボチャージャの上流に二酸化硫黄を酸化するための触媒が設けられており、排気の流れの方向において当該排気ターボチャージャ又は各排気ターボチャージャの下流で三酸化硫黄が硫酸に凝縮され、硫酸及び/又は硫酸塩として排気から除去されることを特徴とする方法。   In an exhaust aftertreatment method for an internal combustion engine, in particular an internal combustion engine operated with heavy oil, having at least one exhaust turbocharger via at least one exhaust turbocharger and an exhaust desulfurizer, sulfur dioxide upstream of the exhaust turbocharger In the direction of the exhaust flow, sulfur trioxide is condensed into sulfuric acid downstream of the exhaust turbocharger or each exhaust turbocharger and removed from the exhaust as sulfuric acid and / or sulfate. A method characterized by that. 上記触媒の上流に、二酸化硫黄の酸化のために、選択触媒還元するための触媒が設けられていることを特徴とする請求項1に記載の方法。   The process according to claim 1, wherein a catalyst for selective catalytic reduction is provided upstream of the catalyst for the oxidation of sulfur dioxide. 前記SCR触媒の上流において排気内にアンモニア及び/又は排気内でアンモニアに変換されるアンモニア前駆体が供給されることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein ammonia and / or an ammonia precursor that is converted into ammonia in the exhaust gas are supplied upstream of the SCR catalyst in the exhaust gas. 前記アンモニア及び/又はアンモニア前駆体は、供給比がNH/NO>1となるよう排気内に供給されるために、前記SCR触媒の下流においてアンモニアが排気内に存在し、それが硫酸の中和に用いられることを特徴とする請求項3に記載の方法。 Since the ammonia and / or the ammonia precursor is supplied into the exhaust gas so that the supply ratio is NH 3 / NO X > 1, ammonia is present in the exhaust gas downstream of the SCR catalyst, which is sulfuric acid. The method according to claim 3, wherein the method is used for neutralization. 前記SCR触媒の上流で排気部分流が分岐しており、この排気部分流を介して硫酸凝縮の下流で硫酸にアンモニアを供給可能であり、このアンモニアが硫酸の中和に使用されることを特徴とする請求項3に記載の方法。   The exhaust partial stream is branched upstream of the SCR catalyst, and ammonia can be supplied to the sulfuric acid downstream of the sulfuric acid condensation via the exhaust partial stream, and this ammonia is used for neutralization of sulfuric acid. The method according to claim 3. 前記SCR触媒の上流で排気部分流が分岐し、この排気部分流を介して前記硫酸凝縮の上流で排気にアンモニアを供給可能であり、このアンモニアが硫酸の中和に使用されることを特徴とする請求項3に記載の方法。   The exhaust partial flow is branched upstream of the SCR catalyst, and ammonia can be supplied to the exhaust upstream of the sulfuric acid condensation via the exhaust partial flow, and the ammonia is used for neutralization of sulfuric acid. The method according to claim 3. 前記排気部分流の排気がさらなるSCR触媒を通して案内されることを特徴とする請求項5又は6に記載の方法。   The method according to claim 5 or 6, characterized in that the exhaust partial stream exhaust is guided through a further SCR catalyst. 前記排気部分流の排気が、アンモニア前駆体を加水分解するために加水分解触媒を通して案内されることを特徴とする請求項5から7のいずれか一項に記載の方法。   8. A process according to any one of claims 5 to 7, wherein the exhaust partial stream exhaust is guided through a hydrolysis catalyst to hydrolyze the ammonia precursor. 前記SO酸化触媒の活性元素として、バナジウム、ナトリウム、カリウム、セリウム、鉄、セシウムのグループから選ばれた少なくとも一つの元素又はその酸化物が使用されることを特徴とする請求項1から8のいずれか一項に記載の方法。 As active elements in the SO 2 oxidation catalyst, vanadium, sodium, potassium, cerium, iron, claim 1 in which at least one element or oxide thereof selected from the group of cesium, characterized in that it is used 8 The method according to any one of the above. バナジウムの割合が5%より高く、望ましくは7%より高く、最も望ましくは9%より高いことを特徴とする請求項1から9のいずれか一項に記載の方法。   10. A method according to any one of the preceding claims, characterized in that the proportion of vanadium is higher than 5%, preferably higher than 7%, most preferably higher than 9%. 内燃機関であって、請求項1から10のいずれか一項に記載の方法を実施するために、少なくとも一つの排気ターボチャージャ(13)及び排気の脱硫装置を介した、少なくとも一段の排気ターボ過給を有する内燃機関において、排気ターボチャージャ(13)の上流に二酸化硫黄を酸化するための触媒(18)が設けられており、排気の流れの方向において当該排気ターボチャージャ又は各排気ターボチャージャの下流にHSO凝縮器(19)が配置されていて、それにより三酸化硫黄が硫酸の形に凝縮されて排気から除去されることを特徴とする内燃機関。 In order to carry out the method according to any one of claims 1 to 10, an internal combustion engine comprising at least one exhaust turbocharger via at least one exhaust turbocharger (13) and an exhaust desulfurization device. In an internal combustion engine having a supply, a catalyst (18) for oxidizing sulfur dioxide is provided upstream of an exhaust turbocharger (13), and the exhaust turbocharger or downstream of each exhaust turbocharger in the direction of exhaust flow. An internal combustion engine characterized in that an H 2 SO 4 condenser (19) is arranged in the exhaust gas so that sulfur trioxide is condensed in the form of sulfuric acid and removed from the exhaust. 前記触媒の上流に、二酸化硫黄を酸化するために、選択触媒還元を行うための触媒が設けられることを特徴とする請求項11に記載の内燃機関。   The internal combustion engine according to claim 11, wherein a catalyst for performing selective catalytic reduction is provided upstream of the catalyst to oxidize sulfur dioxide. 前記SCR触媒(14)の上流で前記排気内にアンモニア又は、排気内でアンモニアに変換可能なアンモニア前駆体が供給可能であることを特徴とする請求項12に記載の内燃機関。   13. The internal combustion engine according to claim 12, wherein ammonia or ammonia precursor that can be converted into ammonia in the exhaust gas can be supplied upstream of the SCR catalyst (14). 当該排気ターボチャージャ(13)又は各排気ターボチャージャ(13)の下流かつ前記HSO凝縮器(19)の上流で前記排気流内に開口した、前記SCR触媒(14)より前で分岐するバイパスライン(21)を特徴とする請求項12又は13に記載の内燃機関。 Branches before the SCR catalyst (14) opened into the exhaust stream downstream of the exhaust turbocharger (13) or each exhaust turbocharger (13) and upstream of the H 2 SO 4 condenser (19). 14. Internal combustion engine according to claim 12 or 13, characterized by a bypass line (21). 前記HSO凝縮器(19)の下流で硫酸内に開口した、前記SCR触媒(14)より前で分岐するバイパスライン(21)を特徴とする請求項12又は13に記載の内燃機関。 The internal combustion engine according to claim 12 or 13, characterized by a bypass line (21) branched into the sulfuric acid downstream of the H 2 SO 4 condenser (19) and branched before the SCR catalyst (14). 前記バイパスライン(21)内にさらなる一つのSCR触媒(22)が配置されていることを特徴とする請求項14又は15に記載の内燃機関。   The internal combustion engine according to claim 14 or 15, characterized in that a further SCR catalyst (22) is arranged in the bypass line (21). 前記バイパスライン(21)内に加水分解触媒(23)が配置されていることを特徴とする請求項14又は15に記載の内燃機関。   16. Internal combustion engine according to claim 14 or 15, characterized in that a hydrolysis catalyst (23) is arranged in the bypass line (21).
JP2014147502A 2013-07-26 2014-07-18 Exhaust aftertreatment method for internal combustion engine and internal combustion engine Expired - Fee Related JP6399541B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310012399 DE102013012399A1 (en) 2013-07-26 2013-07-26 A method for exhaust aftertreatment on an internal combustion engine and internal combustion engine
DE102013012399.2 2013-07-26

Publications (2)

Publication Number Publication Date
JP2015025448A true JP2015025448A (en) 2015-02-05
JP6399541B2 JP6399541B2 (en) 2018-10-03

Family

ID=52273814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147502A Expired - Fee Related JP6399541B2 (en) 2013-07-26 2014-07-18 Exhaust aftertreatment method for internal combustion engine and internal combustion engine

Country Status (5)

Country Link
JP (1) JP6399541B2 (en)
KR (1) KR102083689B1 (en)
CN (1) CN104343499B (en)
DE (1) DE102013012399A1 (en)
FI (1) FI127785B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134670A (en) * 2020-02-25 2021-09-13 マツダ株式会社 Engine with supercharger
JP2021134669A (en) * 2020-02-25 2021-09-13 マツダ株式会社 Engine with supercharger
JP7441020B2 (en) 2018-12-19 2024-02-29 ヴィンタートゥール ガス アンド ディーゼル リミテッド Exhaust gas after-treatment system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014007913A1 (en) * 2014-05-27 2015-12-03 Man Diesel & Turbo Se Exhaust after-treatment system and exhaust aftertreatment process
DE102016205299A1 (en) * 2016-03-31 2017-10-05 Man Diesel & Turbo Se Internal combustion engine with exhaust aftertreatment system
CN108119208B (en) * 2016-11-30 2020-09-29 上海汽车集团股份有限公司 Vehicle tail gas treatment system
EP3670855A1 (en) * 2018-12-19 2020-06-24 Winterthur Gas & Diesel Ltd. Exhaust gas aftertreatment system
CN110813026A (en) * 2019-11-01 2020-02-21 华电电力科学研究院有限公司 Flue gas SO with base injection and multi-stage humidification3Removal method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130375A1 (en) * 2011-03-28 2012-10-04 Haldor Topsøe A/S Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294410A (en) * 1992-06-01 1994-03-15 Solar Turbine Incorporated Gas purification and conditioning system
FR2851936B1 (en) * 2003-03-04 2006-12-08 PROCESS FOR EXTRACTING CARBON DIOXIDE AND SULFUR DIOXIDE BY ANTI-SUBLIMATION FOR STORAGE
SE525743C2 (en) * 2003-09-09 2005-04-19 Volvo Lastvagnar Ab Piston-type internal combustion engine e.g. diesel engine for motor vehicle, has upstream diesel fuel mixer and downstream LNA reactor installed to one of two branch pipes connected to exhaust line through valve
DE102004027593A1 (en) 2004-06-05 2005-12-29 Man B & W Diesel Ag Automotive diesel or petrol engine with exhaust system with selective catalytic reduction
US8151558B2 (en) * 2008-01-31 2012-04-10 Caterpillar Inc. Exhaust system implementing SCR and EGR
NO329851B1 (en) * 2008-08-22 2011-01-10 Sargas As Methods and facilities for cleaning exhaust from diesel engines
JP2011144766A (en) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Exhaust gas denitration system and ship equipped therewith, and control method for the exhaust gas denitration system
JP5775147B2 (en) * 2010-04-12 2015-09-09 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Catalyst for oxidizing SO2 to SO3

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130375A1 (en) * 2011-03-28 2012-10-04 Haldor Topsøe A/S Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441020B2 (en) 2018-12-19 2024-02-29 ヴィンタートゥール ガス アンド ディーゼル リミテッド Exhaust gas after-treatment system
JP2021134670A (en) * 2020-02-25 2021-09-13 マツダ株式会社 Engine with supercharger
JP2021134669A (en) * 2020-02-25 2021-09-13 マツダ株式会社 Engine with supercharger
JP7354875B2 (en) 2020-02-25 2023-10-03 マツダ株式会社 supercharged engine
JP7359031B2 (en) 2020-02-25 2023-10-11 マツダ株式会社 supercharged engine

Also Published As

Publication number Publication date
KR20150013045A (en) 2015-02-04
DE102013012399A1 (en) 2015-01-29
FI20145683A (en) 2015-01-27
CN104343499B (en) 2019-11-19
JP6399541B2 (en) 2018-10-03
KR102083689B1 (en) 2020-03-02
CN104343499A (en) 2015-02-11
FI127785B (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6399541B2 (en) Exhaust aftertreatment method for internal combustion engine and internal combustion engine
JP6246385B2 (en) Exhaust gas aftertreatment system and exhaust gas aftertreatment method
CA2830295C (en) Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine
KR102079789B1 (en) Internal combustion engine
US20080022666A1 (en) Balanced partial two-stroke engine
CN103775174A (en) Internal combustion engine
CN104018957B (en) Internal combustion engine, ERG and the method recycled for waste gas
JP2009103020A (en) Exhaust emission control method and exhaust emission control device for internal combustion engine
US10876449B2 (en) Internal combustion engine and method for operating same
KR20200094050A (en) System and method for exhaust gas after treatment
KR101892327B1 (en) Method of operating an internal combustion engine and an internal combustion engine arrangement
KR102307828B1 (en) Internal combustion engine and method for operating the same
CN107100702B (en) Method and apparatus for engine exhaust gas reprocessing
JP7149691B2 (en) METHOD OF OPERATION OF INTERNAL COMBUSTION ENGINE AND INTERNAL COMBUSTION ENGINE
KR102077866B1 (en) Internal combustion engine
KR20160014019A (en) Ammonia generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R150 Certificate of patent or registration of utility model

Ref document number: 6399541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees