JP2015021569A - Reduction driven gear structure - Google Patents
Reduction driven gear structure Download PDFInfo
- Publication number
- JP2015021569A JP2015021569A JP2013150815A JP2013150815A JP2015021569A JP 2015021569 A JP2015021569 A JP 2015021569A JP 2013150815 A JP2013150815 A JP 2013150815A JP 2013150815 A JP2013150815 A JP 2013150815A JP 2015021569 A JP2015021569 A JP 2015021569A
- Authority
- JP
- Japan
- Prior art keywords
- forging
- shaft
- disk
- reduction driven
- driven gear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Gear Processing (AREA)
- Gears, Cams (AREA)
- Forging (AREA)
Abstract
Description
本発明は、変速機の出力側に設けられるリダクションドリブン歯車構造体に関する。本発明のリダクションドリブン歯車構造体は、円板状部材とこの中心を上下に貫く軸部材の二部材が一体化製造されたものである。そして、円板状部材の外周面にヘリカル歯からなるリダクションドリブン歯を設け、軸部上方の内周に冷間鍛造によって内スプライン歯を形成し、かつ、軸部材の外周面に冷間鍛造によって外スプライン歯を形成する。本発明のリダクションドリブン歯車構造体は、上部円板状部材の外周ヘリカル歯の外径が大きく、且つ下部軸部材の軸長が長いことが特徴である。 The present invention relates to a reduction driven gear structure provided on the output side of a transmission. The reduction-driven gear structure of the present invention is obtained by integrally manufacturing a disk-shaped member and a shaft member penetrating up and down the center. Then, reduction driven teeth comprising helical teeth are provided on the outer peripheral surface of the disk-shaped member, inner spline teeth are formed by cold forging on the inner periphery above the shaft portion, and cold forging is performed on the outer peripheral surface of the shaft member. External spline teeth are formed. The reduction driven gear structure of the present invention is characterized in that the outer diameter of the outer peripheral helical teeth of the upper disk-shaped member is large and the shaft length of the lower shaft member is long.
変速機構において変速された大きな駆動力は、リダクションドライブ歯車と噛み合うリダクションドリブン歯車を介して、ドライブ軸に伝達される。そして、このドライブ軸の駆動力は、後続のハイポイドピニオン歯車と噛み合うハイポイドドライブ歯車を介して車輪に伝達される。これらの構成の詳細について、図8を参照しながら説明する。変速機の出力側に設けられたドライブ軸3およびドライブピニオン軸11は、同軸上に構成されており、両者はスプラインによってスプライン結合されている。そして、ドライブ軸3の変速機側には、ヘリカル歯からなるリダクションドリブン歯1が設けられている。また、ドライブピニオン軸11の一端には、ハイポイドリング歯車と噛合したハイポイドピニオン歯車12が設けられている。変速機中の機構にて変速された比較的大きな駆動力は、リダクションドライブ歯車13と噛み合うリダクションドリブン歯1を介してドライブ軸3に伝達された後、スプライン部を介してドライブピニオン軸11に伝達される。このドライブピニオン軸11の駆動力は、ハイポイドピニオン歯車12と噛合したハイポイドリング歯車を介して車輪に伝達され、後続するディファレンシャル装置14に至る。
A large driving force shifted by the transmission mechanism is transmitted to the drive shaft via a reduction driven gear that meshes with the reduction drive gear. The driving force of the drive shaft is transmitted to the wheel via a hypoid drive gear that meshes with the subsequent hypoid pinion gear. Details of these configurations will be described with reference to FIG. The
従来、リダクションドリブン歯車構造体は、外周にヘリカル歯からなるリダクションドリブン歯を有する円板状部材とその中心を上下に貫く軸部材とが個別に製造され、その後合体されたものである。そして、円板状部材の外周にヘリカル歯からなるリダクションドリブン歯を設け、軸部材の上方に内スプライン歯及び下方ドライブ軸に外スプライン歯を設ける。リダクションドリブン歯車構造体の応用に関しては幾つかの提案がなされている(特許文献1、特許文献2)。これらの特許文献ではリダクションドリブン歯車構造体の詳細は不明だが、別個に製作された複数の歯部材を合体したリダクションドリブン歯車構造体が変速機の出力側に設けられている。円板状部材とその中心を上下に貫く軸部材との合体方法として、例えばドライブ軸に設けた外スプライン歯の部位において別体の円板状部材のボス内径部とをスプライン結合して一体化したものがある。他に、円板状部材のリム部においてドライブ軸を電子ビーム溶接によって合体したもの等がある。
2. Description of the Related Art Conventionally, a reduction driven gear structure is obtained by individually manufacturing a disk-like member having reduction driven teeth made of helical teeth on the outer periphery and a shaft member penetrating the center up and down, and then combining them. Then, reduction driven teeth comprising helical teeth are provided on the outer periphery of the disk-shaped member, and inner spline teeth are provided above the shaft member and outer spline teeth are provided on the lower drive shaft. Several proposals have been made regarding the application of the reduction driven gear structure (
以上の通りであって、従来のリダクションドリブン歯車構造体には次のような問題点がある。 As described above, the conventional reduction driven gear structure has the following problems.
従来の技術では、ドライブ軸と円盤状部材とを一体化するために転造によって形成した外スプライン歯によって結合するので、転造形成によるスプライン歯欠陥のため強度上の問題がある。他の方法で、同箇所をヘリカル歯による楔結合にした場合歯打ち音が生じる。また、ドライブ軸と円盤状部材とを一体化するために電子ビーム溶接を施すが、剥離、脱落等結合度の信頼性に問題があるので、両部材とも超音波探傷検査を施すことによって内外一体化の信頼性を確認する必要がある。また、スプライン結合、電子ビーム溶接による一体化結合の二方法とも、別個に製作したものを合体するので組み立て方案が原因する同心度等精度の問題が発生する。即ち、外周のリダクションドリブン歯の歯列と外スプライン歯又は内スプライン歯との同軸度の問題がある。他に、ドライブ軸と円盤状部材を別個に製作した後、合体するので歯切り装置から溶接装置へ移動させなければならず、工程が煩雑化しコストアップが余儀なくされる。ところで本発明のリダクションドリブン歯車構造体は、上部円板状部材の外周ヘリカル歯の外径が大きく、且つ下部軸部材の軸長が長い。そのために、鍛造加圧トン数が大きく、且つ鍛造成形ストロークの長いプレスが必要となり、その両方を満足する大容量のプレスを得ることは困難である。 In the prior art, since the drive shaft and the disk-shaped member are combined by outer spline teeth formed by rolling, there is a problem in strength due to spline tooth defects due to rolling formation. In other methods, a rattling sound is generated when the same portion is connected to a wedge by a helical tooth. Also, electron beam welding is performed to integrate the drive shaft and the disk-shaped member, but there are problems with the reliability of the coupling, such as peeling and dropping. It is necessary to confirm the reliability of the conversion. In addition, since both the spline coupling and the integrated coupling by electron beam welding are combined together, problems of accuracy such as concentricity caused by the assembly method occur. That is, there is a problem of the coaxiality between the outer row of the reduction driven teeth and the outer spline teeth or the inner spline teeth. In addition, since the drive shaft and the disk-shaped member are separately manufactured and then combined, it must be moved from the gear cutting device to the welding device, which complicates the process and increases the cost. By the way, the reduction driven gear structure of the present invention has a large outer diameter of the outer peripheral helical teeth of the upper disk-shaped member and a long shaft length of the lower shaft member. Therefore, a press with a large forging pressure tonnage and a long forging stroke is required, and it is difficult to obtain a large-capacity press satisfying both.
そこで、本発明のリダクションドリブン歯車構造体は、以上のような課題に着目してなされたもので、軸部材と円板状部材とを熱間鍛造により一体化製造し、かつ、軸部材に内外スプライン歯を冷間鍛造により形成するとともに、円板状部材にリダクションドリブン歯を設けたリダクションドリブン歯車構造体を提供することを目的としている。また、本発明の目的は、一体化製造することによって二部材同士の組み立ての同軸度等の精度の問題が生じることなく、即ち外周側のリダクションドリブン歯列と軸部側のスプライン歯列の同軸度等の精度を保つリダクションドリブン歯車構造体を提供することを目的としている。そして、鍛造プレスのストローク長さが短い設備仕様であっても、鍛造方案を工夫して軸部材を長く延伸させ、且つ、円板状部材のヘリカル歯の外径が大きい歯車構造体を得ることを目的としている。 Therefore, the reduction driven gear structure of the present invention has been made by paying attention to the above-mentioned problems. The shaft member and the disk-shaped member are integrally manufactured by hot forging, and the shaft member is internally and externally manufactured. An object of the present invention is to provide a reduction driven gear structure in which spline teeth are formed by cold forging and reduction driven teeth are provided on a disk-shaped member. Further, the object of the present invention is to produce an integrated manufacturing without causing problems of accuracy such as the coaxiality of the assembly of the two members, that is, the coaxial of the reduction driven tooth row on the outer peripheral side and the spline tooth row on the shaft side. An object of the present invention is to provide a reduction driven gear structure that maintains accuracy such as degree. And even if the stroke length of the forging press is short, the forging method is devised to extend the shaft member long, and a gear structure having a large outer diameter of the helical teeth of the disk-like member is obtained. It is an object.
近年では鍛造技術の進歩により全ての形状の歯車を鍛造により成形し、機械加工を省くことが可能となってきた。そこで、本発明者等は、鍛造によって形成された鍛流線をそのまま生かすことに着目し、冷間鍛造後の機械加工を省いて歯車を試作したところ耐久性に優れるといいう知見を得た。
本発明のリダクションドリブン歯車構造体はかかる知見を基に具現化したもので、請求項1の発明は、円板状部材とその円板状部材と同軸の軸部材とが一体に設けられると共に、軸心を上下方向に孔が貫通し、前記円板状部材の外周面にヘリカル歯を設け、前記孔の上部内周に内スプライン歯を形成し、かつ、前記軸部材の下方の外周面に外スプライン歯を形成したリダクションドリブン歯車構造体である。
また、請求項2の発明は、請求項1の発明の上記特徴に加えて、前記ヘリカル歯は鍛造によって形成されることを特徴とする。
そして、請求項3の発明は、請求項1の発明の上記特徴に加えて、前記ヘリカル歯は機械加工により歯切り形成されることを特徴とする。
請求項4の発明は、請求項1の発明の上記特徴に加えて、前記軸部材の外周面近傍に熱間鍛造による鍛流線が形成され、かつ、この外周に冷間鍛造により外スプライン歯が形成され、この外スプライン歯には冷間鍛造による鍛流線が形成されることを特徴とする。
In recent years, with the advance of forging technology, gears of all shapes can be formed by forging and machining can be omitted. Therefore, the inventors focused on using the forging line formed by forging as it is, and obtained the knowledge that when the gear was prototyped without machining after cold forging, it was excellent in durability.
The reduction driven gear structure of the present invention is embodied based on such knowledge, and the invention of
The invention of
The invention of
According to a fourth aspect of the present invention, in addition to the above feature of the first aspect of the invention, a forged line by hot forging is formed in the vicinity of the outer peripheral surface of the shaft member, and an outer spline tooth is formed by cold forging on the outer periphery. The outer spline teeth are formed with forged lines by cold forging.
本発明によれば、リダクションドリブン歯車構造体は円板状部材とこの中心を上下に貫く軸部材の二部材が一体で製造される。そして、円板状部材の外周面にヘリカル歯からなるリダクションドリブン歯を設け、軸部上方の内周に冷間鍛造によって内スプライン歯を形成し、かつ、軸部材の外周面に冷間鍛造によって外スプライン歯を形成する。本発明のリダクションドリブン歯車構造体は一体構造であり、各歯を個別に形成し組み立て合体することが無いので、外のヘリカル歯の周列と内側の内外スプライン歯の周列との同軸度の精度が向上する。また、本発明のリダクションドリブン歯車構造体は一体構造なので、歯打ち音が生じない。即ち、ノイズ発生を抑制する効果がある。その他、スプライン結合、或いはヘリカル歯による結合の場合のように歯元部位におけるせん断曲げモーメントが働くようなことが無いので強度的に有利である。その他、軸部材は熱間鍛造によって押し出し成形されるので、軸の外周面の内部に密に鍛流線が形成される。そして、その軸部の外周面に形成する外スプライン歯の内部に密に鍛流線が形成されるので歯形面の耐久性に優れた歯車が得られる。 According to the present invention, the reduction-driven gear structure is integrally manufactured by a disk-shaped member and a shaft member penetrating up and down the center. Then, reduction driven teeth comprising helical teeth are provided on the outer peripheral surface of the disk-shaped member, inner spline teeth are formed by cold forging on the inner periphery above the shaft portion, and cold forging is performed on the outer peripheral surface of the shaft member. External spline teeth are formed. Since the reduction driven gear structure of the present invention is an integral structure and does not form and assemble each tooth individually, the degree of concentricity between the outer helical teeth and the inner inner and outer spline teeth Accuracy is improved. Further, since the reduction driven gear structure of the present invention is an integral structure, no rattling noise is generated. That is, there is an effect of suppressing noise generation. In addition, it is advantageous in terms of strength because the shear bending moment at the root portion does not work as in the case of spline coupling or helical tooth coupling. In addition, since the shaft member is extruded by hot forging, a forged streamline is formed densely inside the outer peripheral surface of the shaft. And since a forge flow line is densely formed inside the outer spline teeth formed on the outer peripheral surface of the shaft portion, a gear having excellent tooth profile surface durability can be obtained.
本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。 Embodiments of the present invention will be specifically described below based on the embodiments of the present invention illustrated in the accompanying drawings.
先ず、本発明の実施例について、図1〜図7を参照しながら説明する。図1は、本発明の実施例を示すもので、リダクションドリブン歯車構造体の断面図である。図2は、熱間鍛造による工程No.1及び熱間鍛造による工程No.2の説明図である。図3は、熱間鍛造による工程No.3及び熱間鍛造による工程No.4の説明図である。図4は、熱間鍛造による工程No.5及び機械加工による工程No.6の説明図である。図5は、冷間鍛造による工程No.7及び冷間鍛造による工程No.8の説明図である。図6は、機械加工による工程No.9及び冷間鍛造による工程No.10の説明図である。図7は、鍛造における鍛流線の形成を示す模式図である。 First, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an embodiment of the present invention and is a sectional view of a reduction driven gear structure. FIG. 2 is an explanatory diagram of process No. 1 by hot forging and process No. 2 by hot forging. FIG. 3 is an explanatory diagram of process No. 3 by hot forging and process No. 4 by hot forging. FIG. 4 is an explanatory diagram of process No. 5 by hot forging and process No. 6 by machining. FIG. 5 is an explanatory diagram of process No. 7 by cold forging and process No. 8 by cold forging. FIG. 6 is an explanatory diagram of process No. 9 by machining and process No. 10 by cold forging. FIG. 7 is a schematic diagram showing formation of forged lines in forging.
本実施例に係るリダクションドリブン歯車構造体を図1に基づいて説明する。リダクションドリブン歯車構造体100は、円板状部材Aとその円板状部材Aと同軸の軸部材Bとが鍛造によって一体的に設けられる。円板状部材Aの外周面にヘリカル歯からなるリダクションドリブン歯1を設け、かつ、軸部材B下方のドライブ軸3の外周面に冷間鍛造によって外スプライン歯4を形成する。そして、軸心を上下方向に貫通させた孔5の上部内周に冷間鍛造によって内スプライン歯2を形成する。他に、必要に応じてドライブ軸3の下端部に螺子部等を設ける。まとめると、本発明のリダクションドリブン歯車構造体100は円板状部材Aの外周面にリダクションドリブン歯1を設ける他、特にドライブ軸3が熱間押し出し鍛造によって長尺に押し出し成形され、その上端に内スプライン歯2が設けられるとともにドライブ軸3に外スプライン歯4が設けられる。そして、ドライブ軸3の軸芯を孔5が下方に向かって貫通する。本実施例においては、円板状部材の外周面のヘリカル歯の径が大きく、且つ軸部材が下方に長く伸びる。例えば、上部円板状部材のヘリカル歯の歯先直径は150mmであり、この中心を貫通する軸部材の全長は全体で170mmである。
A reduction driven gear structure according to the present embodiment will be described with reference to FIG. In the reduction driven
本実施例に係る一体化成形リダクションドリブン歯車構造体を製造するにあたりその主な工程について説明する。
先ず、リダクションドリブン歯車構造体に適した円柱素材をビレットシャーにより所定の軸長に切断した短軸の円柱素材を得る。この場合、素材の材質として変速機用歯車に適した鋼材、例えば、SC鋼、SCM鋼、SNC鋼、SNCM鋼、SCR鋼等を使用することができる。先ず、短軸の円柱素材を例えば1150℃に加熱して熱間によるアプセット鍛造を施して扁平形状の粗材を得、以下の工程に備える。
工程No.1の図2(1)に示すように、熱間鍛造によって製品の形状に近づく素材W1が得られる。この素材W1は、上型によって加圧されこの型形状に沿って上方へ盛り上がる凸部W11及び中段の円板状部W12が形成され、この円板状部W12は径方向に拡がる大径部D2を有する。同時に、下方に伸びる軸部W13は棒状に押し出し成形され小径部D1となる。この小径部D1部の熱間押し出し成形においては、ダイ型Qの穴は貫通しており底はフリーで閉鎖されていない。そのため、上型によって加圧されるまま軸部W13は肉流Fとなって下方へ長尺に押し出し成形される。本熱間鍛造第一工程では、金型構造においてダイ型Qの穴下端が閉鎖されていないので粗材の余肉が加圧される儘に押し出され、軸部W13の先端部まで肉流が充満する。通常、鍛造においては肉流の逃げ路は設けず特に熱間鍛造では設けないが、本工程の熱間鍛造では敢えて肉流の逃げ道を設けることによって先端部位まで肉流を充満させて欠肉を防ぐことができた。仮に、軸部が形成されるダイ型Qの穴の先端を閉じると空気溜りができて肉流が充満せず、欠肉が生じる。以上の要領によって軸部W13の先端部に欠肉を発生させることなく、軸部先端の部位まで角を張らせることができた。
The main steps in manufacturing the integrally formed reduction driven gear structure according to this embodiment will be described.
First, a short-axis cylindrical material obtained by cutting a cylindrical material suitable for a reduction-driven gear structure into a predetermined axial length by a billet shear is obtained. In this case, a steel material suitable for the transmission gear, such as SC steel, SCM steel, SNC steel, SNCM steel, SCR steel, etc., can be used as the material of the material. First, a short-axis cylindrical material is heated to, for example, 1150 ° C. and hot upset forging is performed to obtain a flat rough material, which is prepared for the following steps.
As shown in FIG. 2 (1) of process No. 1, the raw material W1 which approximates the shape of a product is obtained by hot forging. The material W1 is pressed by an upper die to form a convex portion W11 and a middle disc-like portion W12 that rise upward along the die shape, and the disc-like portion W12 is a large-diameter portion D2 that expands in the radial direction. Have At the same time, the shaft portion W13 extending downward is extruded into a rod shape to form a small diameter portion D1. In the hot extrusion molding of the small-diameter portion D1 portion, the hole of the die mold Q penetrates and the bottom is free and not closed. Therefore, the shaft part W13 becomes a flesh flow F while being pressed by the upper die, and is extruded and elongated in the downward direction. In the first hot forging first step, since the lower end of the hole of the die die Q is not closed in the mold structure, the surplus material of the rough material is pushed out to the pressurized trough, and the meat flow flows to the tip of the shaft portion W13. To charge. Normally, in the forging, there is no escape path for the meat flow, especially in the hot forging, but in the hot forging in this process, the meat flow is filled up to the tip part by deliberately providing the escape path for the meat flow. I was able to prevent it. If the tip of the hole of the die mold Q where the shaft portion is formed is closed, an air pool is formed, the meat flow is not filled, and a lack of thickness occurs. According to the above procedure, it was possible to make a corner to the tip portion of the shaft portion without causing a lack of thickness at the tip portion of the shaft portion W13.
次に、工程No.2の図3(2)に示すように、粗材W1に熱間鍛造を施すことによって円板状部W12の上面中央部に凹んだ内径部W21が形成されるとともにこの外周側にドーナツ状の凹みW22が形成される。そして、円板状部W12の大径部D1から外側へはみ出す鍔状のバリW23がはみ出した粗材W2が得られる。
更に、工程No.3として同図(3)に示すように、粗材W2上面中央部の凹んだ内径部W21に熱間鍛造を施すことによって、深い内径部W31を有する粗材W3が得られる。なお、上方に突き出る内径部W31は後述するように、リダクションドリブン歯車構造体において内スプライン歯を形成する下穴となる。
次に、工程No.4として図4(4)に示すように、大径部D1から外側へはみ出る外バリW23をトリムし、除去してW41粗外周面を得る。次いで、軸部W13に冷間鍛造を施してしごき成形し、細くなった小径部D3の軸部W42を有する粗材W4を得る。
同図(5)では工程No.5を示し、内径部W31に機械加工を施し、内径d1の内径部W51を有する粗材W5を得る。
Next, as shown in FIG. 3 (2) of the process No. 2, the rough material W1 is subjected to hot forging to form a concave inner diameter portion W21 in the center of the upper surface of the disk-shaped portion W12. A donut-shaped recess W22 is formed on the outer peripheral side. As a result, a rough material W2 is obtained in which a bowl-shaped burr W23 that protrudes outward from the large-diameter portion D1 of the disk-shaped portion W12 protrudes.
Further, as shown in FIG. 3 (3) as the process No. 3, a rough material W3 having a deep inner diameter portion W31 is obtained by hot forging the inner diameter portion W21 which is recessed at the upper central portion of the rough material W2. . As will be described later, the inner diameter portion W31 protruding upward is a pilot hole that forms the inner spline teeth in the reduction driven gear structure.
Next, as shown in FIG. 4 (4) as step No. 4, the outer burr W23 protruding outward from the large diameter portion D1 is trimmed and removed to obtain a W41 rough outer peripheral surface. Next, cold forging is performed on the shaft portion W13 and ironing is performed to obtain a coarse material W4 having a shaft portion W42 of the small-diameter portion D3 that is thinned.
FIG. 5 (5) shows step No. 5, machining the inner diameter portion W31 to obtain a rough material W5 having an inner diameter portion W51 having an inner diameter d1.
工程No.6の図5(6)では、冷間鍛造によって内径部W51を更に深く穿孔してより小さい内径d2を有する内径部W61を得る。同時に、同じ冷間鍛造によって下方に内径d2を穿孔した体積に相当する分延伸された軸部W62を有する粗材W6を得る。
工程No.7の図5(7)では、冷間鍛造によって内径部W61を更に深く穿孔してより小さい内径d3の内径部W71を得る。同時に冷間鍛造によって更に下方に内径d3を穿孔した体積に相当する分延伸された軸部W72を有する粗材W7を得る。
工程No.8の図6(8)では、内径部W51に機械加工を施して内径d4に拡径した内径部W81を得、かつ、これより下方に機械加工を施して内径d5に拡径した内径部W82を得る。同時に、下方に伸びる軸部W72に機械加工を施し、小径部D5に縮径した軸部W83を得る。そして、軸芯を上下方向に貫通するように、内径部W82の下方へより小さい内径d6を機械加工によって穿孔する。或いは冷間鍛造によって深く穿孔し最後は打ち抜きによって内径d6の孔が貫通した粗材W8を得る。
工程No.9の図6(9)においては、軸芯を上下方向に貫通するように穿孔した内径d6を利用して軸部83を以下の通り冷間鍛造によって延伸加工する。内径d6部が冷間鍛造によって深く穿孔される場合は、穿孔された孔の体積分だけ軸部W83の軸端部が下方へ延伸する。或いは、機械加工によって穿孔された場合は、内径d6部にマンドレルを挿入し、粗材W8を金型によって上下、周方向から閉塞する。下方からは下型によって背圧力BPを加えながら、上方から上型によって加圧力UPを加える。この時、軸部83が縮径され、その体積分だけ軸部W83の軸端部が下方へ延伸する。このように、内径d6を貫通して設けることによって、ストロークの短いプレスを使用しながらも軸部83を冷間鍛造によって下方へ段階的に少しずつ延伸することができた。この時、下方からは下型によって背圧力BPを加えたので内径部d6を密に張らせることができ、例えば、内径部d6の内周面に凹みが生じるようなことはなかった。最後に、冷間鍛造によって内径部W81に内スプライン歯2を形成し、同様に冷間鍛造によって軸部W83に外スプライン歯4を形成した粗材W9を得る。そして、粗外周面W41にヘリカル歯1を形成する(図1参照)。
5 (6) of process No. 6, the inner diameter portion W51 is further deeply drilled by cold forging to obtain an inner diameter portion W61 having a smaller inner diameter d2. At the same time, a rough material W6 having a shaft portion W62 extended by an amount corresponding to the volume of the inner diameter d2 drilled downward by the same cold forging is obtained.
In Step No. 7 of FIG. 5 (7), the inner diameter portion W61 is further deeply drilled by cold forging to obtain an inner diameter portion W71 having a smaller inner diameter d3. At the same time, a rough material W7 having a shaft portion W72 extended by an amount corresponding to the volume in which the inner diameter d3 is further drilled downward by cold forging is obtained.
In FIG. 6 (8) of process No. 8, the inner diameter part W51 was machined to obtain an inner diameter part W81 expanded to the inner diameter d4, and the machine work was performed below to expand the diameter to the inner diameter d5. An inner diameter portion W82 is obtained. At the same time, the shaft portion W72 extending downward is machined to obtain a shaft portion W83 having a diameter reduced to the small diameter portion D5. Then, a smaller inner diameter d6 is drilled by machining so as to penetrate the shaft core in the vertical direction. Or the rough material W8 which the hole of the internal diameter d6 penetrated by the deep drilling by cold forging and the end by punching is obtained.
In FIG. 6 (9) of process No. 9, the shaft part 83 is drawn by cold forging as follows using the inner diameter d6 drilled so as to penetrate the shaft core in the vertical direction. When the inner diameter d6 is deeply drilled by cold forging, the shaft end of the shaft W83 extends downward by the volume of the drilled hole. Alternatively, when drilling is performed by machining, a mandrel is inserted into the inner diameter d6, and the coarse material W8 is closed from above and below and from the circumferential direction by a mold. From the bottom, the back pressure BP is applied by the lower mold, while the pressure UP is applied by the upper mold from above. At this time, the shaft portion 83 is reduced in diameter, and the shaft end portion of the shaft portion W83 extends downward by the volume. Thus, by providing through the inner diameter d6, the shaft portion 83 could be gradually extended downward by cold forging while using a press having a short stroke. At this time, since the back pressure BP was applied from the lower side by the lower mold, the inner diameter part d6 could be tightly stretched. For example, there was no dent on the inner peripheral surface of the inner diameter part d6. Finally, the
ヘリカル歯1を形成するには三方法があり、機械加工又は鍛造によって形成する。第一の機械加工により形成する場合は、工程No.9の後でギヤシェーパ加工によってヘリカル歯を形成する。或いは、冷間鍛造のみによってヘリカル歯を形成する場合或いは熱間鍛造の後冷間鍛造を施すことによってヘリカル歯を形成する場合がある。第二の冷間鍛造のみによって形成する場合は、工程No.9の後で粗外周面W41を機械加工によって仕上げ、冷間鍛造によってヘリカル歯を形成し、その後でサイジング加工によってヘリカル歯を仕上げる。第三の熱間鍛造の後冷間鍛造によってヘリカル歯を形成する場合は、先ず、図3に示す工程No.3の後で熱間鍛造工程を追加して粗ヘリカル歯を形成する。その後、工程No.9の後で冷間鍛造によって、ヘリカル歯を仕上げるためにサイジング加工を施す。
There are three methods for forming the
本発明のリダクションドリブン歯車構成体は以上のように構成され、次に鍛造によって内部に形成される繊維組織の作用について述べる。円板状部材Aの中心から下方に伸びる軸部の内部に鍛流線が形成される状態を図7に示す。
図7(a)は、比較のため従来の圧延粗材における鍛流線の状態を模式的に示す。外周から軸芯へ複数本の鍛流線Rが軸方向に平行に形成されており、その間隔は疎である。一方、同図(b)は、鍛造によって軸部が縮径され内部に鍛流線が形成される状態を模式的に示したものである。先ず、軸部が図2(1)に示すように熱間押し出し成形によって軸部W13へと縮径される。次いで、冷間鍛造によって更に軸部W42、軸部W62及び軸部W83へと順次縮径される。その結果、図7(b)に示すように外周から内側へ複数本の鍛流線が軸方向に平行に形成されておりその間隔は外周面側において鍛流線F1が密に形成され、軸芯部にいくにつれ鍛流線F2が疎になる。
このように、軸部外周側の鍛流線F1が密に形成されている箇所に、図6(9)の工程No.9において冷間鍛造によって外スプライン歯4が形成される。この時、外スプライン歯4の歯形内に鍛流線F1が歯形に沿って曲がりながら密に形成される。このように、外スプライン歯4の歯形内部に鍛流線の繊維組織流れが連続して形成される。外スプライン歯4が鍛造によってのみ歯形が形成されるので、機械加工のように鍛流線が切断されることもないので歯形面の耐久力に優れた歯車が得られる。
一方、軸部上端の内スプライン歯2においても、予め内径部が鍛造によって穿孔される。先ず、軸部が図2(1)に示すように熱間押し出し成形によって内径部W21から内径部W31へと穿孔される。その結果、軸部の場合に述べたように内径部の内部に鍛流線が形成される。このように、内径部の鍛流線が密に形成されている箇所に、図6(9)の工程No.9において冷間鍛造によって内スプライン歯2が形成される。この時、内スプライン歯4の歯形内に鍛流線が歯形に沿って曲がりながら密に形成される。その結果、鍛流線が切断されることもないので内スプライン歯2においても、歯形面の耐久力に優れた歯車が得られる。
The reduction driven gear structure of the present invention is configured as described above, and the operation of the fiber structure formed inside by forging will now be described. FIG. 7 shows a state in which forged lines are formed inside the shaft portion extending downward from the center of the disk-shaped member A.
FIG. 7 (a) schematically shows the state of forged lines in a conventional rolled rough material for comparison. A plurality of forging lines R are formed in parallel to the axial direction from the outer periphery to the shaft core, and the intervals are sparse. On the other hand, FIG. 5B schematically shows a state in which the shaft portion is reduced in diameter by forging and a forged line is formed inside. First, as shown in FIG. 2 (1), the shaft portion is reduced in diameter to the shaft portion W13 by hot extrusion. Next, the diameter is further reduced sequentially to a shaft portion W42, a shaft portion W62, and a shaft portion W83 by cold forging. As a result, as shown in FIG. 7B, a plurality of forged lines are formed in parallel from the outer periphery to the inner side in the axial direction, and the forged lines F1 are formed densely on the outer peripheral surface side. The forged streamline F2 becomes sparse as it goes to the core.
Thus, the
On the other hand, also in the
冷間鍛造成形のみにより内外のスプライン歯が形成されるので、シェービング、ブローチ、又はホブ切り等の機械加工により鍛造面が削り取られるようなことがなく、内部の鍛流線をそのまま保持して歯車の耐久性を向上させることができる。従って、本発明のリダクションドリブン歯車構造体は自動車のトランスミッションの用途に限らず工作機械、荷役建設機械、ロボット等の各種の機械装置の用途に勿論適用できる。 Since the inner and outer spline teeth are formed only by cold forging, the forging surface is not scraped off by machining such as shaving, broaching or hobbing, and the internal forging line is held as it is and the gear is The durability of can be improved. Therefore, the reduction driven gear structure of the present invention is not limited to the use of automobile transmissions, but can of course be applied to the use of various machine devices such as machine tools, cargo handling construction machines, and robots.
A 円板状部材
B 軸部材
100 リダクションドリブン歯車構造体
1 リダクションドリブン歯
2 内スプライン歯
3、30 ドライブ軸
4 外スプライン歯
5 孔
11 ドライブピニオン軸
12 ハイポイドピニオン歯車
13 リダクションドライブ歯
14 ディファレンシャル装置
P 上型
Q ダイ
W0、W1、W2、W3、W4、W5、W6、W7、W8、W9、W10 粗材
W11 凸部、W12 円板状部、W13 軸部、D1 小径部、D2 大径部
W21 内径部、W22 凹み、W23 外バリ
W31 内径部
W41 粗外周面、W42 軸部、D3 小径部
W51 内径部、d1 内径
W61 内径部、d2 内径、W62 小径部、D4 小径部
W71 内径部、d3 内径
W81 内径部、W82 内径部、W83 軸部、D5 小径部
d4 内径、d5 内径
A disk member
Claims (4)
前記円板状部材の外周面にヘリカル歯を設け、
前記孔の上部内周に内スプライン歯を設け、かつ、前記軸部材の下方の外周面に外スプライン歯を設けたリダクションドリブン歯車構造体。 A disk-shaped member and a shaft-shaped member coaxial with the disk-shaped member are provided integrally, and a hole penetrates the shaft in the vertical direction,
Helical teeth are provided on the outer peripheral surface of the disk-shaped member,
A reduction driven gear structure in which inner spline teeth are provided on the upper inner periphery of the hole, and outer spline teeth are provided on an outer peripheral surface below the shaft member.
この外スプライン歯には冷間鍛造による鍛流線が形成されることを特徴とする請求項1に記載のリダクションドリブン歯車構造体。 Forged streamlines by hot forging are formed in the vicinity of the outer peripheral surface of the shaft member, and outer spline teeth are formed by cold forging on the outer periphery,
The reduction driven gear structure according to claim 1, wherein a forged line formed by cold forging is formed on the outer spline teeth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013150815A JP2015021569A (en) | 2013-07-19 | 2013-07-19 | Reduction driven gear structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013150815A JP2015021569A (en) | 2013-07-19 | 2013-07-19 | Reduction driven gear structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015021569A true JP2015021569A (en) | 2015-02-02 |
Family
ID=52486198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013150815A Pending JP2015021569A (en) | 2013-07-19 | 2013-07-19 | Reduction driven gear structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015021569A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273543A (en) * | 2001-03-19 | 2002-09-25 | Ooka Giken Kk | Parking gear having shaft, and manufacturing method thereof |
JP2002364735A (en) * | 2001-04-05 | 2002-12-18 | Fuji Heavy Ind Ltd | Bearing structure of transmission |
JP2009101366A (en) * | 2007-10-19 | 2009-05-14 | Fuji Heavy Ind Ltd | Apparatus and method for forge-forming transmission gear |
JP2013092177A (en) * | 2011-10-25 | 2013-05-16 | O-Oka Corp | Transmission gear formed with protruding part having stopper function in vicinity of dog clutch tooth |
-
2013
- 2013-07-19 JP JP2013150815A patent/JP2015021569A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273543A (en) * | 2001-03-19 | 2002-09-25 | Ooka Giken Kk | Parking gear having shaft, and manufacturing method thereof |
JP2002364735A (en) * | 2001-04-05 | 2002-12-18 | Fuji Heavy Ind Ltd | Bearing structure of transmission |
JP2009101366A (en) * | 2007-10-19 | 2009-05-14 | Fuji Heavy Ind Ltd | Apparatus and method for forge-forming transmission gear |
JP2013092177A (en) * | 2011-10-25 | 2013-05-16 | O-Oka Corp | Transmission gear formed with protruding part having stopper function in vicinity of dog clutch tooth |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3854517A1 (en) | Novel hollow shaft manufacturing method | |
US9446445B2 (en) | Method for manufacturing hollow shafts | |
CN108290600B (en) | Method for producing toothed bars | |
KR101522651B1 (en) | hub overdriver clutch and manufacturing method thereof | |
CN104741875A (en) | Processing process of axle shaft sleeve | |
CN105041838A (en) | Motor shaft with inner spline and manufacturing method of motor shaft | |
EP3002212B1 (en) | Aerospace component and method for producing an aerospace component | |
JP2017519642A (en) | Method for forming variable wall lightweight axle shaft with friction weld flange | |
CN103769825B (en) | Planet carrier for automobile and cold-forging forming process thereof | |
KR101671716B1 (en) | Input shaft and the manufacture method for car gearbox | |
KR101715518B1 (en) | Spline gear manufacturing method using cold former | |
CN106949167A (en) | Shaping and the method for machining clutch hub | |
JP3787767B2 (en) | Method for manufacturing hooked connecting shaft | |
KR20180029300A (en) | Method for manufacturing long hollow type drive shaft through cold forging precess | |
JP5609291B2 (en) | Mandrel for manufacturing internal gear and method and apparatus for manufacturing internal gear using the mandrel | |
JP5134360B2 (en) | Integrated molded internal gear | |
JP2009156449A (en) | Integrally molded gear with gear and spline shaft | |
JP2015021569A (en) | Reduction driven gear structure | |
JP5269001B2 (en) | Reverse gear | |
JP5701180B2 (en) | Synchronous clutch gear for double cone sync | |
JP5995629B2 (en) | Gear with flange | |
US2308344A (en) | Method of making airplane propellers | |
JP6398659B2 (en) | Tooth profile part manufacturing method and tooth profile part manufacturing apparatus | |
JP4840238B2 (en) | Manufacturing method of flanged member and work member used therefor | |
KR200458880Y1 (en) | Forging shape for the lower part spline of one way clutch inner race in 6-speed automatic transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170321 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170926 |