JP2015019445A - Abnormality detection device for solar cell module - Google Patents

Abnormality detection device for solar cell module Download PDF

Info

Publication number
JP2015019445A
JP2015019445A JP2013143440A JP2013143440A JP2015019445A JP 2015019445 A JP2015019445 A JP 2015019445A JP 2013143440 A JP2013143440 A JP 2013143440A JP 2013143440 A JP2013143440 A JP 2013143440A JP 2015019445 A JP2015019445 A JP 2015019445A
Authority
JP
Japan
Prior art keywords
solar cell
power generation
cell module
generation ratio
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013143440A
Other languages
Japanese (ja)
Other versions
JP2015019445A5 (en
JP6226593B2 (en
Inventor
泰宏 野崎
Yasuhiro Nozaki
泰宏 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP2013143440A priority Critical patent/JP6226593B2/en
Publication of JP2015019445A publication Critical patent/JP2015019445A/en
Publication of JP2015019445A5 publication Critical patent/JP2015019445A5/en
Application granted granted Critical
Publication of JP6226593B2 publication Critical patent/JP6226593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Emergency Alarm Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality detection device for solar cell modules capable of detecting an abnormal solar cell module more accurately.SOLUTION: An abnormality detection device 10 for solar cell modules which detects an abnormal solar cell module among a plurality of solar cell modules 14a to 14c, includes: a power generation ratio calculation processing part 20 for obtaining a power generation ratio R of each of the solar cell modules 14a to 14c by dividing each of power generation output voltages Vp of the solar cell modules 14a to 14c by a corresponding rated output voltage Vs; and an abnormality determination processing part 22 which, when a difference between the smallest power generation ratio Rmin among the power generation ratios and an average value Rave of the remaining power generation ratios other than the smallest power generation ratio Rmin, is equal to or greater than a predetermined threshold Rth, determines the solar cell module corresponding to the smallest power generation ratio Rmin as an abnormal solar cell module.

Description

本発明は、太陽電池モジュールの異常検出装置に係り、特に、複数の太陽電池モジュールの中で異常太陽電池モジュールを検出する太陽電池モジュールの異常検出装置に関する。   The present invention relates to an abnormality detection device for a solar cell module, and more particularly to an abnormality detection device for a solar cell module that detects an abnormal solar cell module among a plurality of solar cell modules.

太陽光発電システムでは、複数の太陽電池モジュールが接続されて構成されている。太陽電池モジュールは、経年劣化や物理的損傷等により、急激に発電出力が低下することがある。このように異常となった太陽電池モジュールは、発電に寄与しないため、早期に発見されて交換されることが望まれる。   The solar power generation system is configured by connecting a plurality of solar cell modules. In the solar cell module, the power generation output may suddenly decrease due to aging or physical damage. Since the solar cell module that has become abnormal in this way does not contribute to power generation, it is desired to be discovered and replaced at an early stage.

本発明に関連する技術として、例えば、特許文献1には、太陽電池モジュール毎の発電出力を比較することにより異常モジュールを検出する構成が開示されている。ここでは、各太陽電池モジュールの発電出力の平均値を算出し、例えば、平均値より20%低下した太陽電池モジュールを異常とみなすことが述べられている。   As a technique related to the present invention, for example, Patent Document 1 discloses a configuration for detecting an abnormal module by comparing the power generation output of each solar cell module. Here, it is described that an average value of the power generation output of each solar cell module is calculated, and for example, a solar cell module that is 20% lower than the average value is regarded as abnormal.

特許第2874156号公報Japanese Patent No. 2874156

上記特許文献1の構成によれば、全ての太陽電池モジュールの発電出力の平均値を算出する。このため、異常な太陽電池モジュールの発電出力が平均値に大きく影響する。この結果、各太陽電池モジュールの発電出力と平均値との差の関係が大幅に変化して、例えば、異常を正常と判断する等の誤判断につながる虞がある。   According to the configuration of Patent Document 1, the average value of the power generation output of all the solar cell modules is calculated. For this reason, the power generation output of the abnormal solar cell module greatly affects the average value. As a result, the relationship between the difference between the power generation output of each solar cell module and the average value may change significantly, leading to an erroneous determination such as determining that the abnormality is normal.

本発明の目的は、より精度良く異常の太陽電池モジュールを検出することができる太陽電池モジュールの異常検出装置を提供することである。   The objective of this invention is providing the abnormality detection apparatus of the solar cell module which can detect an abnormal solar cell module more accurately.

本発明に係る太陽電池モジュールの異常検出装置は、複数の太陽電池モジュールの中で異常太陽電池モジュールを検出する太陽電池モジュールの異常検出装置であって、前記各太陽電池モジュールの発電出力電圧をそれぞれ対応する定格出力電圧で除算して各太陽電池モジュールの発電割合を求める発電割合算出処理部と、前記各発電割合のうち最も小さい割合の最小発電割合、及び前記最小発電割合の値を除いた残りの発電割合の平均値の差が所定の閾値以上となるときに前記最小発電割合に対応する太陽電池モジュールを異常太陽電池モジュールと断定する異常判断処理部と、を備えることを特徴とする。   An abnormality detection device for a solar cell module according to the present invention is an abnormality detection device for a solar cell module that detects an abnormal solar cell module among a plurality of solar cell modules, and the generated output voltage of each of the solar cell modules, respectively. A power generation ratio calculation processing unit that calculates the power generation ratio of each solar cell module by dividing by the corresponding rated output voltage, the minimum power generation ratio of the smallest ratio among the power generation ratios, and the rest excluding the value of the minimum power generation ratio And an abnormality determination processing unit for determining that the solar cell module corresponding to the minimum power generation rate is an abnormal solar cell module when the difference between the average values of the power generation rates exceeds a predetermined threshold value.

また、本発明に係る太陽電池モジュールの異常検出装置であって、前記異常判断処理部は、前記最小発電割合と前記平均値との差が所定の時間継続して前記閾値以上となっているときに前記異常太陽電池モジュールの断定を行うことが好ましい。   Moreover, in the abnormality detection device for a solar cell module according to the present invention, the abnormality determination processing unit is configured such that the difference between the minimum power generation ratio and the average value is continuously equal to or greater than the threshold value for a predetermined time. It is preferable to determine the abnormal solar cell module.

本発明によれば、各太陽電池モジュールの発電割合のうち、最も小さい割合の最小発電割合の値を除いた残りの発電割合の平均値を用いて異常の検出を行っている。これにより、平均値は最小発電割合の値に影響されることがない。したがって、より精度良く異常の太陽電池モジュールを検出することができる。   According to the present invention, abnormality detection is performed using the average value of the remaining power generation ratios excluding the smallest power generation ratio value among the power generation ratios of the solar cell modules. Thereby, the average value is not influenced by the value of the minimum power generation ratio. Therefore, an abnormal solar cell module can be detected with higher accuracy.

本発明に係る実施の形態における太陽光発電システムの構成図である。It is a block diagram of the solar energy power generation system in embodiment which concerns on this invention. 本発明に係る実施の形態において、太陽電池モジュールの異常を検出する手順を示すフローチャートである。In embodiment which concerns on this invention, it is a flowchart which shows the procedure which detects abnormality of a solar cell module. 従来技術の異常検出装置と本発明に係る実施の形態の異常検出装置との比較結果を示す図である。It is a figure which shows the comparison result of the abnormality detection apparatus of a prior art, and the abnormality detection apparatus of embodiment which concerns on this invention.

以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。また、以下では、全ての図面において対応する要素には同一の符号を付し、重複する説明を省略する。   Embodiments according to the present invention will be described below in detail with reference to the drawings. Also, in the following, corresponding elements in all drawings are denoted by the same reference numerals, and redundant description is omitted.

図1は、異常検出装置10を備える太陽光発電システム12の構成図である。太陽光発電システム12は、複数の太陽電池モジュール14a〜14cを備えている。太陽電池モジュール14a〜14cによって発電された出力電圧は、DC−AC変換器16に供給される。DC−AC変換器16は、太陽電池モジュール14a〜14cからの直流電圧を交流電圧に変換し、その出力交流電圧を負荷18に供給する。なお、以下では、複数の太陽電池モジュール14の数は、3個であるとして説明するが、3個以外であってもよい。   FIG. 1 is a configuration diagram of a photovoltaic power generation system 12 including an abnormality detection device 10. The solar power generation system 12 includes a plurality of solar cell modules 14a to 14c. The output voltage generated by the solar cell modules 14 a to 14 c is supplied to the DC-AC converter 16. The DC-AC converter 16 converts the DC voltage from the solar cell modules 14 a to 14 c into an AC voltage and supplies the output AC voltage to the load 18. In the following description, the number of the plurality of solar cell modules 14 is assumed to be three, but may be other than three.

太陽電池モジュール14a〜14cは、太陽光発電システム12が設置される施設の屋上等に並べて取り付けられ、好適な発電出力電圧Vpが出力されるように、太陽光の入射角度等の動作環境の条件を考慮して配置される。太陽電池モジュール14a〜14cは、天候が良い等の最適な動作環境の条件下で発電された出力電圧を定格出力電圧Vsとして予め算出されている。   The solar cell modules 14a to 14c are mounted side by side on the rooftop of the facility where the solar power generation system 12 is installed, and the operating environment conditions such as the incident angle of sunlight so that a suitable power generation output voltage Vp is output. Is placed in consideration. The solar cell modules 14a to 14c are calculated in advance as the rated output voltage Vs, which is the output voltage generated under conditions of an optimal operating environment such as good weather.

太陽電池モジュール14a〜14cの出力端子には、それぞれ電圧計19が接続されている。各電圧計19によって計測された電圧値は、異常検出装置10の発電割合算出処理部20に伝送される。   A voltmeter 19 is connected to each of the output terminals of the solar cell modules 14a to 14c. The voltage value measured by each voltmeter 19 is transmitted to the power generation ratio calculation processing unit 20 of the abnormality detection device 10.

発電割合算出処理部20は、電圧計19によって計測された太陽電池モジュール14a〜14cの発電出力電圧Vpをそれぞれ対応する定格出力電圧Vsで除算して各太陽電池モジュールの発電割合Rを求める。ここで、太陽電池モジュール14a〜14cが最適な動作条件下で発電した場合には、定格出力電圧Vsと同じ電圧が出力されるため、発電割合Rが100%となる。また、各太陽電池モジュール14a〜14cが故障している場合には、発電出力が低下し、最悪の場合、全く発電されていないことがある。この場合の発電出力電圧Vpは0Vとなるため、発電割合Rが0%となる。   The power generation ratio calculation processing unit 20 determines the power generation ratio R of each solar cell module by dividing the power generation output voltage Vp of the solar cell modules 14a to 14c measured by the voltmeter 19 by the corresponding rated output voltage Vs. Here, when the solar cell modules 14a to 14c generate power under the optimum operating conditions, the same voltage as the rated output voltage Vs is output, so the power generation ratio R is 100%. In addition, when each of the solar cell modules 14a to 14c is out of order, the power generation output is reduced, and in the worst case, no power is generated at all. Since the power generation output voltage Vp in this case is 0 V, the power generation ratio R is 0%.

異常検出装置10の異常判断処理部22は、各発電割合Rのうち最も小さい割合の最小発電割合Rminと、最小発電割合Rminの値を除いた残りの発電割合Rの平均値Raveとの差が所定の時間継続して閾値Rth以上となるときに最小発電割合Rminに対応する太陽電池モジュール14a〜14cを異常太陽電池モジュールと断定する機能を有する。   The abnormality determination processing unit 22 of the abnormality detection device 10 calculates the difference between the smallest power generation ratio Rmin of the smallest power generation ratio R and the average value Rave of the remaining power generation ratio R excluding the value of the minimum power generation ratio Rmin. The solar cell modules 14a to 14c corresponding to the minimum power generation ratio Rmin are determined to be abnormal solar cell modules when the threshold value Rth continues for a predetermined time.

続いて、上記構成の太陽電池モジュール14a〜14cの異常検出装置10の動作について説明する。図2は、異常検出装置10が太陽電池モジュール14a〜14cの異常を検出する手順を示すフローチャートである。   Then, operation | movement of the abnormality detection apparatus 10 of the solar cell modules 14a-14c of the said structure is demonstrated. FIG. 2 is a flowchart illustrating a procedure in which the abnormality detection device 10 detects abnormality of the solar cell modules 14a to 14c.

最初に、太陽電池モジュール14a〜14cの発電割合Rを算出する(S2)。この工程は、発電割合算出処理部20の機能によって実行される。   First, the power generation ratio R of the solar cell modules 14a to 14c is calculated (S2). This step is executed by the function of the power generation ratio calculation processing unit 20.

次に、S2の工程によって求められた各発電割合Rのうち、最も小さい割合の最小発電割合Rminを除いた残りの発電割合で平均値Raveを求める(S4)。この工程は、異常判断処理部22の機能によって実行される。   Next, an average value Rave is obtained from the remaining power generation ratios excluding the smallest power generation ratio Rmin among the respective power generation ratios R obtained in the step S2 (S4). This step is executed by the function of the abnormality determination processing unit 22.

次いで、平均値Raveと最小発電割合Rminとの差が閾値Rth以上となるか否かを判断する(S6)。この工程は、異常判断処理部22の機能によって実行される。S6の工程で、平均値Raveと最小発電割合Rminとの差が閾値Rth以上でないと判断された場合には、再び、S2の工程へと戻る。   Next, it is determined whether or not the difference between the average value Rave and the minimum power generation ratio Rmin is equal to or greater than the threshold value Rth (S6). This step is executed by the function of the abnormality determination processing unit 22. If it is determined in step S6 that the difference between the average value Rave and the minimum power generation ratio Rmin is not equal to or greater than the threshold value Rth, the process returns to step S2.

S6の工程で、平均値Raveと最小発電割合Rminとの差が閾値Rth以上であると判断されれば、閾値Rth以上との判断が所定の時間継続したか否かを判断する(S8)。この工程は、異常判断処理部22の機能によって実行される。S8の工程において、所定の時間経過していないと判断された場合には、再びS6の工程へと戻る。   If it is determined in step S6 that the difference between the average value Rave and the minimum power generation ratio Rmin is greater than or equal to the threshold value Rth, it is determined whether or not the determination that the threshold value Rth or greater has continued for a predetermined time (S8). This step is executed by the function of the abnormality determination processing unit 22. If it is determined in step S8 that the predetermined time has not elapsed, the process returns to step S6.

S8の工程において、閾値Rth以上との判断が所定の時間継続したと判断したときは、最小発電割合Rminに対応する太陽電池モジュール14a〜14cを異常太陽電池モジュールとして断定し、図示しない監視センタに通報する(S10)。この工程は、異常判断処理部22の機能によって実行される。これにより、太陽電池モジュール14a〜14cの異常が発見されるため、保守作業員は、迅速に取り換え対応等を行うことができるという利点がある。   In the step S8, when it is determined that the determination that the threshold value Rth or more has continued for a predetermined time, the solar cell modules 14a to 14c corresponding to the minimum power generation ratio Rmin are determined as abnormal solar cell modules, and the monitoring center (not shown) Report (S10). This step is executed by the function of the abnormality determination processing unit 22. Thereby, since abnormality of solar cell module 14a-14c is discovered, there exists an advantage that a maintenance worker can perform replacement | exchange response etc. rapidly.

次に、従来技術の異常検出装置と本発明の実施形態の異常検出装置10の両方で太陽電池モジュール14a〜14cの異常を検出した場合について比較検討する。従来技術の異常検出装置は、全ての太陽電池モジュール14の発電割合Rの平均値Raveを求め、各発電割合Rと平均値Raveの差が所定の閾値Rth以上となる太陽電池モジュール14a〜14cを異常と断定する。以下では、従来技術の異常検出装置及び本発明の実施形態の異常検出装置10の閾値Rthは、25%として説明する。   Next, the case where the abnormality of the solar cell modules 14a to 14c is detected by both the abnormality detection device of the prior art and the abnormality detection device 10 of the embodiment of the present invention will be compared and examined. The abnormality detection device of the prior art obtains the average value Rave of the power generation ratios R of all the solar cell modules 14, and the solar cell modules 14a to 14c in which the difference between each power generation ratio R and the average value Rave is equal to or greater than a predetermined threshold Rth. Assume abnormal. In the following description, the threshold value Rth of the abnormality detection device of the prior art and the abnormality detection device 10 of the embodiment of the present invention is assumed to be 25%.

最初に、従来技術の異常検出装置について述べる。図3(a)に示されるように、太陽電池モジュール14a〜14cにおいて、正常な太陽電池モジュール14a,14bの発電割合Rが75%であり、異常な太陽電池モジュール14cの発電割合Rが45%である場合について検討する。このとき、従来技術の異常検出装置では、平均値Raveの値が65%となり、各太陽電池モジュール14a〜14cの発電割合Rと平均値Raveとの差を求めると、図3(a)に示されるように、10%、10%、20%となる。この結果、太陽電池モジュール14cにおいても閾値Rthが25%以上とならないため、太陽電池モジュール14cを正常と誤判断される可能性がある。したがって、異常な太陽電池モジュール14cを検出するためには、例えば、所定の閾値Rthを15%に設定する必要がある。   First, a prior art abnormality detection apparatus will be described. As shown in FIG. 3A, in the solar cell modules 14a to 14c, the power generation rate R of the normal solar cell modules 14a and 14b is 75%, and the power generation rate R of the abnormal solar cell module 14c is 45%. Consider the case. At this time, in the conventional abnormality detection device, the average value Rave is 65%, and the difference between the power generation ratio R and the average value Rave of each of the solar cell modules 14a to 14c is obtained as shown in FIG. 10%, 10%, and 20%. As a result, since the threshold value Rth does not become 25% or more in the solar cell module 14c, the solar cell module 14c may be erroneously determined to be normal. Therefore, in order to detect an abnormal solar cell module 14c, for example, it is necessary to set the predetermined threshold Rth to 15%.

また、図3(b)に示されるように、太陽電池モジュール14a〜14cにおいて、正常な太陽電池モジュール14a,14bの発電割合Rが75%であり、異常な太陽電池モジュールの発電割合Rが0%である場合について検討する。このとき、従来技術の異常検出装置では、平均値Raveの値が50%となり、太陽電池モジュール14a〜14cの発電割合Rとの差を求めると、図3(b)に示されるように、25%、25%、50%となる。この場合、上述したように、仮に所定の閾値Rthを25%から15%に変更すると、今度は、全ての太陽電池モジュール14a〜14cが閾値Rth以上となって全てが異常と誤判断される可能性がある。すなわち、従来技術では、平均値Raveが最小発電割合Rminの値に大きく影響されて、各発電割合Rと平均値Raveとの差が正常と異常との間で狭くなり、閾値Rthの設定が困難である。このため、精度良く異常の検出を行うことが難しい。   Further, as shown in FIG. 3B, in the solar cell modules 14a to 14c, the power generation rate R of the normal solar cell modules 14a and 14b is 75%, and the power generation rate R of the abnormal solar cell module is 0. % Is considered. At this time, in the abnormality detection device of the prior art, the value of the average value Rave is 50%, and when the difference from the power generation ratio R of the solar cell modules 14a to 14c is obtained, as shown in FIG. %, 25%, and 50%. In this case, as described above, if the predetermined threshold value Rth is changed from 25% to 15%, all the solar cell modules 14a to 14c may become equal to or higher than the threshold value Rth and all may be erroneously determined to be abnormal. There is sex. That is, in the prior art, the average value Rave is greatly influenced by the value of the minimum power generation ratio Rmin, and the difference between each power generation ratio R and the average value Rave is narrowed between normal and abnormal, making it difficult to set the threshold value Rth. It is. For this reason, it is difficult to detect an abnormality with high accuracy.

続いて、本発明の実施形態の異常検出装置10において、上記と同様の事例について検討する。図3(a)の例では、平均値Raveの値が75%となり、各太陽電池モジュール14の発電割合Rとの差を求めると、図3(a)に示されるように、0%、0%、30%となる。したがって、閾値Rth(25%)を超えている太陽電池モジュール14cが異常であると断定できる。   Subsequently, in the abnormality detection apparatus 10 according to the embodiment of the present invention, the same example as described above will be examined. In the example of FIG. 3A, the average value Rave is 75%, and when the difference from the power generation ratio R of each solar cell module 14 is obtained, as shown in FIG. 3A, 0%, 0 %, 30%. Therefore, it can be determined that the solar cell module 14c exceeding the threshold value Rth (25%) is abnormal.

図3(b)の例でも、平均値Raveの値に変化はなく、各太陽電池モジュール14の発電割合Rとの差を求めると、図3(a)に示されるように、0%、0%、75%となる。したがって、閾値Rth(25%)を超えている太陽電池モジュール14cが異常であると断定できる。   Even in the example of FIG. 3B, there is no change in the value of the average value Rave, and when the difference from the power generation ratio R of each solar cell module 14 is determined, as shown in FIG. 3A, 0%, 0 %, 75%. Therefore, it can be determined that the solar cell module 14c exceeding the threshold value Rth (25%) is abnormal.

上記のように、異常検出装置10では、各発電割合Rのうち、最小発電割合Rminの値を除いた残りの発電割合の平均値Raveを用いて異常の検出を行っている。このため、平均値Raveは最小発電割合Rminの値に影響されることがない。これにより、従来技術に比べると、発電割合Rと平均値Raveとの差が正常と異常との間で広くなり、閾値Rthの設定が容易である。したがって、より精度良く異常の太陽電池モジュールを検出することができる。   As described above, the abnormality detection device 10 detects an abnormality using the average value Rave of the remaining power generation ratios, excluding the value of the minimum power generation ratio Rmin, of each power generation ratio R. For this reason, the average value Rave is not affected by the value of the minimum power generation ratio Rmin. Thereby, compared with a prior art, the difference of the electric power generation ratio R and average value Rave becomes large between normal and abnormal, and threshold value Rth is easy to set. Therefore, an abnormal solar cell module can be detected with higher accuracy.

10 異常検出装置、12 太陽光発電システム、14a,14b,14c 太陽電池モジュール、16 AC−DC変換器、18 負荷、19 電圧計、20 発電割合算出処理部、22 異常判断処理部。   DESCRIPTION OF SYMBOLS 10 Abnormality detection apparatus, 12 Solar power generation system, 14a, 14b, 14c Solar cell module, 16 AC-DC converter, 18 Load, 19 Voltmeter, 20 Power generation ratio calculation process part, 22 Abnormality judgment process part.

Claims (2)

複数の太陽電池モジュールの中で異常太陽電池モジュールを検出する太陽電池モジュールの異常検出装置であって、
前記各太陽電池モジュールの発電出力電圧をそれぞれ対応する定格出力電圧で除算して各太陽電池モジュールの発電割合を求める発電割合算出処理部と、
前記各発電割合のうち最も小さい割合の最小発電割合、及び前記最小発電割合の値を除いた残りの発電割合の平均値の差が所定の閾値以上となるときに前記最小発電割合に対応する太陽電池モジュールを異常太陽電池モジュールと断定する異常判断処理部と、
を備えることを特徴とする太陽電池モジュールの異常検出装置。
An abnormality detection device for a solar cell module that detects an abnormal solar cell module among a plurality of solar cell modules,
A power generation ratio calculation processing unit that determines the power generation ratio of each solar cell module by dividing the power generation output voltage of each solar cell module by the corresponding rated output voltage, and
The solar power corresponding to the minimum power generation ratio when the difference between the minimum power generation ratio of the smallest power generation ratio and the average value of the remaining power generation ratios excluding the minimum power generation ratio is equal to or greater than a predetermined threshold. An abnormality determination processing unit for determining a battery module as an abnormal solar cell module;
An abnormality detection device for a solar cell module, comprising:
請求項1に記載の太陽電池モジュールの異常検出装置であって、
前記異常判断処理部は、
前記最小発電割合と前記平均値との差が所定の時間継続して前記閾値以上となっているときに前記異常太陽電池モジュールの断定を行うことを特徴とする太陽電池モジュールの異常検出装置。
An abnormality detection device for a solar cell module according to claim 1,
The abnormality determination processing unit
An abnormality detecting device for a solar cell module, wherein the abnormal solar cell module is determined when a difference between the minimum power generation ratio and the average value is equal to or greater than the threshold value continuously for a predetermined time.
JP2013143440A 2013-07-09 2013-07-09 Solar power system Active JP6226593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143440A JP6226593B2 (en) 2013-07-09 2013-07-09 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143440A JP6226593B2 (en) 2013-07-09 2013-07-09 Solar power system

Publications (3)

Publication Number Publication Date
JP2015019445A true JP2015019445A (en) 2015-01-29
JP2015019445A5 JP2015019445A5 (en) 2016-03-03
JP6226593B2 JP6226593B2 (en) 2017-11-08

Family

ID=52439958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143440A Active JP6226593B2 (en) 2013-07-09 2013-07-09 Solar power system

Country Status (1)

Country Link
JP (1) JP6226593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026909A (en) * 2016-08-08 2018-02-15 住友電気工業株式会社 Power generation state determination device, monitoring device, power generation state determination method and determination program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2874156B2 (en) * 1994-04-13 1999-03-24 キヤノン株式会社 Power generation system
JP2002152976A (en) * 2000-11-13 2002-05-24 Sharp Corp Power supply system for distributed source
JP2002289883A (en) * 2001-03-23 2002-10-04 Sharp Corp System for diagnosing solar cell panel
JP2011134862A (en) * 2009-12-24 2011-07-07 Tokai Ec Kk Photovoltaic power generation system
JP2012186263A (en) * 2011-03-04 2012-09-27 Daikin Ind Ltd Diagnostic device and diagnostic method of photovoltaic power generation unit, and photovoltaic power generation system
JP2012205078A (en) * 2011-03-25 2012-10-22 Sumitomo Electric Ind Ltd Monitoring system for photovoltaic power generation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2874156B2 (en) * 1994-04-13 1999-03-24 キヤノン株式会社 Power generation system
JP2002152976A (en) * 2000-11-13 2002-05-24 Sharp Corp Power supply system for distributed source
JP2002289883A (en) * 2001-03-23 2002-10-04 Sharp Corp System for diagnosing solar cell panel
JP2011134862A (en) * 2009-12-24 2011-07-07 Tokai Ec Kk Photovoltaic power generation system
JP2012186263A (en) * 2011-03-04 2012-09-27 Daikin Ind Ltd Diagnostic device and diagnostic method of photovoltaic power generation unit, and photovoltaic power generation system
JP2012205078A (en) * 2011-03-25 2012-10-22 Sumitomo Electric Ind Ltd Monitoring system for photovoltaic power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026909A (en) * 2016-08-08 2018-02-15 住友電気工業株式会社 Power generation state determination device, monitoring device, power generation state determination method and determination program

Also Published As

Publication number Publication date
JP6226593B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
TWI548195B (en) Inverting apparatus and alternating current power system using the same
KR101491013B1 (en) Solar generating system with solar cell connecting apparatus having leakage current and fire signatures monitoring function
US10503126B2 (en) Access control method for parallel direct current power supplies and device thereof
US20170279279A1 (en) Power converter
KR101535056B1 (en) Fault Detection And Diagnosis Apparatus Of Grid-Connected Photovoltaic System And Method thereof
US10024928B2 (en) Inverter and detection method for an inverter for detecting a network fault
JP2012191000A (en) Diagnostic device, photovoltaic power generation system and diagnostic method
KR20130047898A (en) Photovoltaic monitoring device that can be default diagnosis each module and method of diagnosing photovoltaic power generator
JP5546507B2 (en) Failure diagnosis device, power conversion device, and failure diagnosis method
KR101667914B1 (en) Photovoltaics system having a function of foreknowledge failture intelligently
KR101728690B1 (en) Real-time anomaly notice system and method in solar energy generation
JP2013239629A (en) Device and method for detecting failure in photovoltaic power generation, and photovoltaic power generation device
TWI533593B (en) Optoelectronic management systems, devices, and modules
WO2016199445A1 (en) Method and device for testing photovoltaic generation system
KR101868488B1 (en) Photovoltaics power generation system equipped with apparatus having a function of detecting the dc leakage current without noise current
JP6226593B2 (en) Solar power system
KR101279554B1 (en) Solar cell array capable of bypassing bad module and photovoltaic system using it
JP2021063663A (en) Arc detection device, breaker, power conditioner, photovoltaic panel, photovoltaic panel attachment module, junction box, arc detection system, and arc detection method
US20150244251A1 (en) Inverting apparatus and detection method of islanding operation
JP5712951B2 (en) Abnormality detection device for solar panel
JP6023458B2 (en) Solar cell system
JP2019146297A (en) Operation voltage control device for solar cell
JP7095734B2 (en) Judgment device, photovoltaic system and judgment method
JP6134462B2 (en) Power generation facility monitoring system
KR101283649B1 (en) String Error Detection method for the String Box in PV Generation System

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171010

R150 Certificate of patent or registration of utility model

Ref document number: 6226593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250