JP2015018729A - 燃料電池コージェネレーションシステム - Google Patents

燃料電池コージェネレーションシステム Download PDF

Info

Publication number
JP2015018729A
JP2015018729A JP2013146121A JP2013146121A JP2015018729A JP 2015018729 A JP2015018729 A JP 2015018729A JP 2013146121 A JP2013146121 A JP 2013146121A JP 2013146121 A JP2013146121 A JP 2013146121A JP 2015018729 A JP2015018729 A JP 2015018729A
Authority
JP
Japan
Prior art keywords
heat storage
fuel cell
power generation
heat
generation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013146121A
Other languages
English (en)
Other versions
JP6171169B2 (ja
Inventor
田中 良和
Yoshikazu Tanaka
良和 田中
中村 彰成
Akinari Nakamura
彰成 中村
吉村 晃久
Akihisa Yoshimura
晃久 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013146121A priority Critical patent/JP6171169B2/ja
Publication of JP2015018729A publication Critical patent/JP2015018729A/ja
Application granted granted Critical
Publication of JP6171169B2 publication Critical patent/JP6171169B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】冬期などの発電運転において、蓄熱槽に回収される蓄熱媒体温度で循環流量を制御することができず、蓄熱槽入口温度を所定の範囲に維持できないという課題があった。【解決手段】燃料電池1と、燃料電池1の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路4と、冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路7と、冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器6と、蓄熱媒体を蓄える蓄熱槽10と、熱交換器6での熱回収後に蓄熱槽10に戻る蓄熱媒体の温度を計測する蓄熱温度センサ11と、制御器12とを備えた燃料電池システムにおいて、制御器12は、前記蓄熱温度センサ11により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、燃料電池1に許容される最低発電量を増加させることを特徴とする燃料電池コージェネレーションシステム。【選択図】図1

Description

本発明は、固体高分子形やリン酸形、固体電解質形などの燃料電池を備え、電気および熱の供給を行なう燃料電池システムおよびその運転方法に関するものである。
固体高分子形やリン酸形などの燃料電池を用いた燃料電池システムは、主にコージェネレーションシステムなどで使用されており、発電と同時に発生する熱をお湯として回収することでエネルギを有効に活用でき、高効率の分散型電源として注目されている。一般的に電力負荷は常時発生し熱負荷は断続的に発生するという特性を持ち、さらにコージェネレーションシステムの発電により瞬間的に回収できる熱量は断続的に発生する熱負荷の需要量に比べて少ない。このため、前述のコージェネレーションシステムでは、発電に伴って回収した熱を直接供給するのではなく、一度蓄熱槽に貯えた後、必要な量を負荷に供給している。
このような従来の燃料電池システムは、図9に示すように、発電を実施する燃料電池ユニット100と、熱を蓄える貯湯ユニット200で構成される。燃料電池ユニット100は、還元剤ガスと酸化剤ガスを用いて発電を行う燃料電池1と、都市ガスやプロパン、灯油などの炭化水素系原料に水蒸気を添加して改質し、水素を多く含んだ還元剤ガスを生成する水素生成装置2と、酸化剤ガスとしての空気を燃料電池1に供給する空気供給装置3と、燃料電池1で発電と同時に発生した熱を冷却する冷却媒体を流通する冷却経路4および冷却水ポンプ5と、経路に接続され冷却媒体から蓄熱媒体に熱を回収する熱交換器6と、蓄熱媒体を流通する蓄熱経路7および蓄熱水ポンプ8と、燃料電池1で発電された直流電力を交流電力に変換し、家庭の電化製品などの電力負荷に供給する電力変換装置9とで構成され、貯湯ユニット200は、蓄熱経路7に接続され熱交換器6により熱を回収した蓄熱媒体を蓄える蓄熱槽10と、蓄熱槽に蓄えられる蓄熱媒体の温度を計測する蓄熱温度センサ11と、燃料電池システム内のこれら各機器を制御する制御器12とで構成される。
燃料電池1は、水素生成装置2により生成された水素を多く含んだ還元剤ガスと、空気供給装置3が供給する空気を電気化学反応させて電力を発生させる。水素生成装置2は、都市ガスなどの炭化水素系原料に水蒸気を添加し、改質反応させて水素を多く含んだ還元剤ガスを生成する。燃料電池1には、発電で発生する熱を除去するため、冷却経路4を通じて冷却媒体としての冷却水を冷却水ポンプ5にて通流する。冷却水は、燃料電池1で加熱された後、熱交換器6にて蓄熱媒体としての蓄熱水に熱を伝達して冷却され、再び燃料電池1へと供給される。蓄熱槽10には、燃料電池ユニットより発生した熱を回収するための蓄熱水が蓄えられる。蓄熱水は、発電時には蓄熱水ポンプ8により蓄熱槽10の底部付近から取水され、熱交換器6を経由して熱回収した後、蓄熱槽10の上部近くに回帰する。燃料電池ユニット100と貯湯ユニット200をつなぐ蓄熱経路7は外気にさらされることが多く、冬期などの外気温が低い場合には蓄熱経路7における放熱ロスが大きくなり、蓄熱槽入口温度(蓄熱温度センサ11における温度)が低下するという課題があった。
このような燃料電池システムにおいて、制御器12は、水温、外気温や燃料電池ユニットが設置された家庭の熱負荷需要、電力負荷需要、蓄熱槽入口温度、放熱率などの過去の実績と予測対象日の運転条件に基づいて、予測対象日の蓄熱槽入口温度を設定し、蓄熱槽入口温度が設定値になるように、蓄熱水ポンプ8を制御する技術が提案されている(例えば、特許文献1)。
特開2008−241145号公報
前記従来の燃料電池システムが、燃料電池1の発電運転時の温度維持を、冷却水および熱交換器6を通じて蓄熱水で調整するだけの構成では、貯湯タンクに回収される温水温度で循環流量を制御することができず、蓄熱槽入口温度を所定の範囲に維持できないという課題があった。
本発明は、前記従来の課題を解決するものであり、発電ユニットを所定の性能に保つための冷却装置として熱回収を実施している場合において、冬期に、低出力を長時間継続する場合や、蓄熱経路の距離が長い場合などでも、蓄熱槽入口温度を所定の値に維持することが可能な燃料電池システムを供給することを目的とする。
上記従来の課題を解決するために、本発明の燃料電池システムは、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、制御器とを備え、前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させるとしたものである。
これによって、最低発電量における熱回収量(最低熱回収量)と比較して蓄熱経路の放熱が大きく、蓄熱槽に蓄えられる蓄熱媒体の温度が低下する場合、最低発電量を増加させるので、最低熱回収量が増加して放熱の影響が小さくなり、蓄熱槽入口温度の低下が防止される。
本発明の燃料電池システムおよびその運転方法において、とくに冬期に、低出力を長時間継続する場合や、蓄熱経路の距離が長い場合などでも、蓄熱槽入口温度を所定の値に維持することが可能な燃料電池システムを実現できる。
本発明の実施の形態1における燃料電池システムのブロック図 本発明の実施の形態1における燃料電池システムの動作フローチャート 本発明の実施の形態1における燃料電池システムの動作フローチャート 本発明の実施の形態2における燃料電池システムのブロック図 本発明の実施の形態2における燃料電池システムの動作フローチャート 本発明の実施の形態2における燃料電池システムの動作フローチャート 本発明の実施の形態2における燃料電池システムの動作フローチャート 本発明の実施の形態2における燃料電池システムの動作フローチャート 従来の燃料電池システムのブロック図
第1の発明は、水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路
と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、制御器とを備える。
前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させることにより、蓄熱槽入口温度計測手段で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させるので、最低発電量における熱回収量が増加して放熱の影響が小さくなり、蓄熱槽入口温度の低下を防止することができる。
第2の発明は、前記制御器は、前記最低発電量を増加させた後、蓄熱槽入口温度が、前記第一の閾値より高く設定された第二の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることにより、最低発電量を増加させた後、時間が経過して放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止することができるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能を向上することができる。
第3の発明は、気温を計測する外気温計測手段をさらに備え、前記制御器は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温度が第三の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることにより、冬期の運転などで最低発電量を増加させた後、外気温度が上昇し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能を向上することができる。
第4の発明は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温が、最低発電量を増加させた際に計測した外気温よりも、第四の閾値以上高い状態を所定時間継続した場合、前記燃料電池に許容される最低発電量を低下させることにより、 最低発電量を初期化させるので、冬期の運転などで最低発電量を増加させた後、外気温度が上昇し放熱の影響が小さくなった時間帯の運転において、個別の燃料電池システムの設置状態や環境に応じて最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能をより向上することができる。
第5の発明は、前記最低発電量を増加させた後、所定の時間が経過した場合、前記最低発電量を低下させることにより、冬期の運転などで最低発電量を増加させた後、時間が経過し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、外気温計測手段を有することなくより低い発電量での運転が可能となり、簡潔な構成で燃料電池システムの省エネ性能を向上することができる。
第6の発明は、前記最低発電量を増加させた後、発電運転を停止した場合、前記最低発電量を初期値に戻すことにより、冬期の運転などで最低発電量を増加させた後、簡易的な手段で最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より簡潔な構成で燃料電池システムの省エネ性能を向上することができる。
第7の発明は、前記燃料電池と前記熱交換器と前記制御機と前記冷却経路とを発電ユニットとして構成し、前記蓄熱槽と前記蓄熱槽入口温度計測手段とを貯湯ユニットとして構成して、前記蓄熱経路は、前記発電ユニットと前記貯湯ユニットとの間を通流するよう構成することにより、燃料電池システムの設置自由度が向上することができ、蓄熱槽入口温度の低下も防止できる。
以下、本発明の実施形態について具体的に説明する。なお、同一または相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するために必要となる構成要素のみを抜粋して図示しており、その他の構成要素については図示を省略している。なお、本実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1における燃料電池システムの構成を模式的に示すブロック図である。
図1に示すように、本発明の実施の形態1の燃料電池システムは、燃料電池ユニット100と、貯湯ユニット200で構成される。燃料電池ユニット100の主な要素として、燃料電池1、水素生成装置2、空気供給装置3、冷却経路4、冷却水ポンプ5、熱交換器6、蓄熱経路7、蓄熱水ポンプ8、電力変換装置9、制御器12、冷却温度センサ13、及び余剰電力消費ヒータ14を備えている。また、貯湯ユニット200の主な要素として、蓄熱経路7、蓄熱槽10及び蓄熱温度センサ11を備えている。
燃料電池1は、水素を含有する還元剤ガスと、空気などの酸素を含有する酸化剤ガスとを、電気化学的に反応させることにより、電力と熱とを同時に発生させる。燃料電池1は、水素イオンを選択的に輸送する高分子電解質膜、および高分子電解質膜の両面に形成された一対の電極、すなわち燃料極(アノード)と空気極(カソード)を複数積層し構成される。アノード及びカソードは、例えば、白金系の金属触媒を担持したカーボン粉末を主成分とし、高分子電解質膜の両面に形成される触媒層、および前記触媒層の外面に形成される、通気性と電子導電性とを併せ持つガス拡散層から構成される。燃料電池1としては、例えば、固体高分子形やリン酸形、固体酸化物形などが用いられる。
燃料電池1のアノードには、還元剤ガス供給経路16の下流端が接続されている。還元剤ガス供給経路16の上流端は、水素生成装置2に接続されている。これにより、水素生成装置2で生成された水素を多く含む還元剤ガスがアノードに供給される。
燃料電池1のカソードには、酸化剤ガス供給経路15の下流端が接続されている。酸化剤ガス供給経路15の上流端は、空気供給装置3に接続されている。これにより、空気供給装置3からカソードに酸化剤ガスが供給される。酸化剤ガスとしては、主に空気が用いられる。空気供給装置3としては、例えば、遠心ポンプや往復ポンプ、スクロールポンプなどが用いられる。
水素生成装置2は、燃料電池の発電に必要な水素を多く含む還元剤ガスを、都市ガスなどの炭化水素系原料に水蒸気を添加し、改質反応させて生成する。水素生成装置2は、メタンを主成分とする天然ガスや都市ガス、ブタン、プロパンなどを主成分とするLPG、灯油、アルコール(メタノール)、ジメチルエーテルといった原料を改質することにより水素を生成してもよい。
冷却経路4は、冷却水ポンプ5、冷却温度センサ13、燃料電池1、余剰電力消費ヒータ14、熱交換器6と接続され再び冷却水ポンプ5に接続されている。これにより、冷却媒体が燃料電池1に供給され、発電とともに発生する熱を除去する。冷却経路4の接続は前述の順番に限るものではなく、燃料電池1からの熱を蓄熱経路7に伝達できる位置であればよい。冷却水ポンプ5には、主に遠心ポンプや斜流ポンプ、往復ポンプなどが用いられ、熱交換器6には、主にプレート式熱交換器や二重管式熱交換器、フィンチューブ式熱交換器などが用いられる。余剰電力消費ヒータ14は、発電により余った電力を熱にして消費するものであり、配管内に挿入され直接的に冷却媒体を加熱してもよく、配管外に設
置され間接的に冷却媒体を加熱してもよい。さらに、冷却経路4に設置されてもよく、蓄熱経路7に設置されてもよい。
蓄熱経路7は、蓄熱槽10の底部付近、蓄熱水ポンプ8、熱交換器6、蓄熱槽入口温度計測手段としての蓄熱温度センサ11と接続され再び蓄熱槽10の上部付近に接続されている。これにより、蓄熱槽10の底部の冷たい蓄熱媒体が熱交換器6に供給され、燃料電池1の熱を回収した高温の蓄熱媒体が蓄熱槽10の上部に回収される積層沸き上げ方式としている。蓄熱水ポンプ8には、主に遠心ポンプや斜流ポンプ、往復ポンプなどが用いられる。蓄熱経路7の接続は前述の順番に限るものではなく、燃料電池1からの熱を蓄熱槽10に回収できる位置であればよく、蓄熱水ポンプ8は、貯湯ユニット200に設置されてもよい。
制御器12は、燃料電池システム内の各機器と信号線により接続されており、各機器からの情報に応じて、水素生成装置2や各種センサ(図示せず)などを含む燃料電池システム全体の動作を制御する。制御器12は、単独の制御器で集中制御を行うよう構成されてもよく、複数の制御器で分散制御を行うよう構成されてもよい。制御器12は、制御機能を有すればよく、例えば、マイクロコンピュータ、プロセッサ、論理回路等で構成される。また、制御器12は、貯湯ユニット200に設置されても良い。
更に燃料電池1には、直流電力経路17の一端が接続されている。直流電力経路17の他端は電力変換装置9に接続される。
更に電力変換装置9には、交流電力経路18の一端が接続されている。交流電力経路18の他端は家庭の電化製品などの電力負荷(図示せず)や商用電源に接続される。電力変換装置9では、燃料電池1で発電された直流電力を交流電力に変換して電力負荷に供給する。
以上のように構成された燃料電池システムの発電時の動作(燃料電池システムの運転方法)を、図1から図3を参照しながら説明する。この運転制御は、通常の発電運転時に、制御器12によって遂行される。
図2および図3は図1の燃料電池システムの運転制御の一例を示すフローチャートである。
制御器12は負荷追従運転を実施し、電力負荷の需要量を計測する電力負荷計測器(図示せず)で計測された電力負荷需要量が、燃料電池システムの定格出力以上の場合、燃料電池システムを定格出力にて発電運転し、電力負荷に電力を供給する。電力負荷需要量の残りの不足分は、交流電力経路18に接続された商用電源により賄う。一方、電力負荷需要量が燃料電池システムの定格出力未満の場合、燃料電池システムを電力負荷需要量相当で発電運転し、電力負荷へ電力を供給する。さらに、電力負荷需要量が燃料電池システムの最低発電量未満の場合、燃料電池システムを最低発電量で発電運転し、電力負荷へ電力を供給するとともに、余剰電力消費ヒータ14により残りの電力(余剰電力)を熱として変換・回収し、熱負荷へ供給する。場合によっては、商用電源に逆潮流することで売電してもよい。
この際、制御器12は冷却温度センサ13により計測される冷却媒体温度が、燃料電池1の制御温度である所定の値になるように、蓄熱水ポンプ8を動作させ、蓄熱経路7の蓄熱媒体流量を制御する。
次に冬期、低出力を長時間継続する場合や、蓄熱経路の距離が長い場合など、ある特定
の状況で蓄熱経路の放熱が大きく蓄熱槽入口温度の低下が発生する場合の動作について説明する。この運転制御は、発電運転時に上記の事象が発生した場合に、制御器12によって遂行される。
前述した通常の発電運転時において制御器12は、蓄熱温度センサ11により計測した蓄熱槽入口の蓄熱媒体の温度(つまり、蓄熱槽に蓄えられる蓄熱媒体の温度)が第一の閾値(例えば、50℃)以下に低下したかどうか判断する(図2ステップS11)。蓄熱槽入口温度が第一の閾値以下に低下した場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図2ステップS12)。燃料電池システムにおいて、発電量の変化および発電量の変化による蓄熱槽入口温度の変化は瞬時には起こらないため、以後、所定の時間間隔(例えば30分)で同様の動作を実施する(図2ステップS13)。
本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させるので、例えば蓄熱経路の距離が長い設置形態における冬期の運転において、最低発電量における熱回収量(最低熱回収量)と比較して蓄熱経路の放熱が大きく、蓄熱槽に蓄えられる蓄熱媒体の温度が低下する場合、最低熱回収量が増加して放熱の影響が小さくなり、蓄熱槽入口温度の低下が防止できる。
さらに、燃料電池システムを最低発電量で発電運転した際に、電力負荷へ供給した残りの電力を余剰電力消費ヒータ14で熱として変換・回収する構成の場合、最低発電量を増加させることにより、余剰電力も増加し、発電量の増加分以上に最低熱回収量が増加する効果がある。このため、より少ない最低発電量の増加で蓄熱槽入口温度の低下を防止することができる。
[変形例1]
本実施の形態1の変形例1において、制御器12は、最低発電量における発電が第二の所定時間継続したか(例えば、60分)、さらには、その間の蓄熱温度センサ11により計測した蓄熱槽入口の蓄熱媒体の温度が第一の閾値よりも高い第二の閾値(例えば、60℃)以上を継続したかどうか判断する(図3ステップS21)。条件を満足した場合、現在の燃料電池システムの最低発電量が初期設定値(例えば200W)であるかどうかを判断する(図3ステップS22)。初期設定値でない場合、最低発電量を所定量(例えば、50W)低下させ負荷追従運転を継続する(図3ステップS23)。一方、ステップS21において条件を満足しない場合、蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以上を第一の所定時間(例えば30分)継続したかどうか判断する(図3ステップS24)。条件を満足する場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図3ステップS25)。
本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させ、第二の閾値以上を継続した場合、最低発電量を低下させるので、冬期の運転で最低発電量を増加させた後、時間が経過し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能を向上することができる。
(実施の形態2)
図4は本発明の実施の形態2に係る燃料電池システムの構成を模式的に示すブロック図である。
図4に示すように、本実施の形態2の燃料電池システムは、外気温計測手段としての外気温度センサ19を備える点が実施の形態1の燃料電池システムと相違し、その他の点は実施の形態1の燃料電池システムと同じである。
以上のように構成された燃料電池システムの発電時の動作(燃料電池システムの運転方法)を、図4から図8を参照しながら説明する。この運転制御は、通常の発電運転時に、制御器12によって遂行される。
図5から図8は図4の燃料電池システムの運転制御の一例を示すフローチャートである。
前述した通常の発電運転時において制御器12は、外気温度センサ19により計測した外気温が第三の閾値(例えば、10℃)以上を第三の所定時間継続したか(例えば、60分)どうかを判断する(図5ステップS31)。条件を満足した場合、燃料電池システムの最低発電量を初期設定値に変更し負荷追従運転を継続する(図5ステップS32)。一方、ステップS31において条件を満足しない場合、蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以上を第一の所定時間(例えば30分)継続したかどうか判断する(図5ステップS33)。条件を満足する場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図5ステップS34)。
本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させ、外気温度センサ19で計測された外気温度が第三の閾値以上を継続した場合、最低発電量を初期化させるので、冬期の運転で最低発電量を増加させた後、外気温度が上昇し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能を向上することができる。
[変形例1]
本実施の形態2の変形例1において、最低発電量を増加させた時点で外気温度センサ19により計測された外気温度を記憶する記憶装置(図示せず)を制御器12に備え、最低発電量を増加させた時点から外気温度が所定値以上上昇した場合、最低発電量の設定を初期化するものである。
具体的には、制御器12は、蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以上を第一の所定時間(例えば30分)継続したかどうか判断する(図6ステップS43)。条件を満足する場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図6ステップS44)。次に、その時点で外気温度センサ19により計測した外気温T1を記憶装置に記憶する(図6ステップS45)。外気温度センサ19により計測した外気温T4と、記憶した外気温T1との温度差(=T4-T1)が第四の閾値(例えば、10℃)以上を第三の所定時間継続したか(例えば、60分)どうかを判断する(図6ステップS41)。条件を満足した場合、燃料電池システムの最低発電量を初期設定値に変更し負荷追従運転を継続する(図6ステップS42)。一方、ステップS41において条件を満足しない場合、ステップS43へと続く。
本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させ、外気温度センサ19で計測された外気温度が、記憶装置に記憶された最低発電量を低下させた時点での外気温より第四の閾値以上状態が継続した場合、最低発電量を初期化させるので、冬期の運転で最低発電量を増加させた後、外気温度が上昇し放熱の影響が小
さくなった時間帯の運転において、個別の燃料電池システムの設置状態や環境に応じて最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より低い発電量での運転が可能となり、燃料電池システムの省エネ性能をより向上することができる。
[変形例2]
本実施の形態2の変形例2において、最低発電量を増加させた時刻を記憶する記憶装置(図示せず)を制御器12に備え、最低発電量を増加させた時点から所定時間経過した場合、最低発電量の設定を増加させるものである。
具体的には、制御器12は、蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以上を第一の所定時間(例えば30分)継続したかどうか判断する(図7ステップS54)。条件を満足する場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図7ステップS55)。次に、その時刻t1を記憶装置に記憶する(図7ステップS56)。最低発電量を増加させてからの発電運転(現在時刻をtとするとt−t1)が第五の所定時間(例えば、180分)継続したかどうか判断する(図7ステップS51)。条件を満足した場合、現在の燃料電池システムの最低発電量が初期設定値(例えば200W)であるかどうかを判断する(図7ステップS52)。初期設定値でない場合、最低発電量を所定量(例えば、50W)低下させ負荷追従運転を継続する(図7ステップS53)。一方、ステップS51において条件を満足しない場合、ステップS54へと続く。
本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させ、最低発電量を増加させる運転が第五の所定時間を継続した場合、最低発電量を低下させるので、冬期の運転で最低発電量を増加させた後、時間が経過し放熱の影響が小さくなった時間帯の運転において、最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、外気温度センサ19を有することなくより低い発電量での運転が可能となり、簡潔な構成で燃料電池システムの省エネ性能を向上することができる。
[変形例3]
本実施の形態2の変形例3において、制御器12は、燃料電池システムが発電運転か否かを判断する(図8ステップS61)。ステップS61において、発電運転の場合、蓄熱温度センサ11により計測した蓄熱槽入口の蓄熱媒体の温度が第一の閾値(例えば、50℃)以下に低下したかどうか判断する(図8ステップS62)。蓄熱槽入口温度が第一の閾値以下に低下した場合、燃料電池システムの最低発電量を所定量(例えば、50W)増加させ負荷追従運転を継続する(図8ステップS63)。以後、所定の時間間隔(例えば30分)で同様の動作を実施する(図8ステップS64)。一方、ステップS61において発電運転でない場合、制御器12は、燃料電池システムの最低発電量を初期設定地に変更し、次回発電運転時に再びステップS61から動作を実施する(図8ステップS65)。
本実施の燃料電池システムの構成およびその動作により、制御器12は、蓄熱温度センサ11で計測された蓄熱槽入口温度が第一の閾値以下に低下した場合、最低発電量を増加させた後、次回発電運転時において最低発電量を初期化するので、冬期の運転で最低発電量を増加させた後、簡易的な手段で最低発電量を低下させるため、蓄熱槽入口温度の低下を防止できるとともに、より簡潔な構成で燃料電池システムの省エネ性能を向上することができる。
本発明の燃料電池システムおよびその動作によれば、蓄熱経路の距離が長い設置形態に
おける冬期の運転などにおいて、蓄熱槽入口温度の低下が防止でき、例えば家庭用の燃料電池コージェネレーションシステム等として有用である。
1 燃料電池
2 水素生成装置
3 空気供給装置
4 冷却経路
5 冷却水ポンプ
6 熱交換器
7 蓄熱経路
8 蓄熱水ポンプ
9 電力変換装置
10 蓄熱槽
11 蓄熱温度センサ
12 制御器
13 冷却温度センサ
14 余剰電力消費ヒータ
15 酸化剤ガス供給経路
16 還元剤ガス供給経路
17 直流電力経路
18 交流電力経路
19 外気温度センサ
100 燃料電池ユニット
200 貯湯ユニット

Claims (7)

  1. 水素を含む還元剤ガスと、空気などの酸化剤ガスとを電気化学反応させて発電する燃料電池と、前記燃料電池の発電にともなって発生する熱を回収する冷却媒体を通流する冷却経路と、前記冷却媒体から熱を回収し蓄熱する蓄熱媒体を通流する蓄熱経路と、前記冷却媒体と蓄熱媒体の間で熱交換を行う熱交換器と、前記蓄熱媒体を蓄える蓄熱槽と、前記熱交換器での熱回収後に前記蓄熱槽に戻る前記蓄熱媒体の温度を計測する蓄熱槽入口温度計測手段と、制御器とを備え、前記制御器は、前記蓄熱槽入口温度計測手段により計測された蓄熱槽入口温度が第一の閾値よりも低い場合、前記燃料電池に許容される最低発電量を増加させることを特徴とする燃料電池コージェネレーションシステム。
  2. 前記制御器は、前記最低発電量を増加させた後、蓄熱槽入口温度が、前記第一の閾値より高く設定された第二の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることを特徴とする請求項1に記載の燃料電池コージェネレーションシステム。
  3. 気温を計測する外気温計測手段をさらに備え、前記制御器は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温度が第三の閾値よりも高い状態を所定時間継続した場合、前記最低発電量を低下させることを特徴とする請求項1に記載の燃料電池コージェネレーションシステム。
  4. 気温を計測する外気温計測手段をさらに備え、前記制御器は、前記最低発電量を増加させた後、前記外気温計測手段により計測された外気温が、最低発電量を増加させた際に計測した外気温よりも、第四の閾値以上高い状態を所定時間継続した場合、前記燃料電池に許容される最低発電量を低下させることを特徴とする請求項1に記載の燃料電池コージェネレーションシステム。
  5. 前記制御器は、前記最低発電量を増加させた後、所定の時間が経過した場合、前記最低発電量を低下させることを特徴とする請求項1に記載の燃料電池コージェネレーションシステム。
  6. 前記制御器は、前記最低発電量を増加させた後、発電運転を停止した場合、前記最低発電量を初期値に戻すことを特徴とする請求項1に記載の燃料電池コージェネレーションシステム。
  7. 前記燃料電池と前記熱交換器と前記制御機と前記冷却経路とを発電ユニットとして構成し、前記蓄熱槽と前記蓄熱槽入口温度計測手段とを貯湯ユニットとして構成して、前記蓄熱経路は、前記発電ユニットと前記貯湯ユニットとの間を通流するよう構成されている請求項1〜6記載の燃料電池コージェネレーションシステム。
JP2013146121A 2013-07-12 2013-07-12 燃料電池コージェネレーションシステム Active JP6171169B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146121A JP6171169B2 (ja) 2013-07-12 2013-07-12 燃料電池コージェネレーションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013146121A JP6171169B2 (ja) 2013-07-12 2013-07-12 燃料電池コージェネレーションシステム

Publications (2)

Publication Number Publication Date
JP2015018729A true JP2015018729A (ja) 2015-01-29
JP6171169B2 JP6171169B2 (ja) 2017-08-02

Family

ID=52439555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146121A Active JP6171169B2 (ja) 2013-07-12 2013-07-12 燃料電池コージェネレーションシステム

Country Status (1)

Country Link
JP (1) JP6171169B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207289A (ja) * 2015-04-15 2016-12-08 アイシン精機株式会社 燃料電池システム
WO2024116696A1 (ja) * 2022-11-29 2024-06-06 パナソニックIpマネジメント株式会社 燃料電池装置の制御方法、制御装置および発電システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100023A (ja) * 2004-09-28 2006-04-13 Institute Of National Colleges Of Technology Japan 燃料電池エネルギネットワークシステム及びその運転方法
JP2006275478A (ja) * 2005-03-30 2006-10-12 Osaka Gas Co Ltd コージェネレーションシステム
JP2007280790A (ja) * 2006-04-07 2007-10-25 Toshiba Corp 燃料電池コジェネレーションシステム
JP2008164191A (ja) * 2006-12-27 2008-07-17 Toshiba Fuel Cell Power Systems Corp コージェネレーションシステム
JP2011105795A (ja) * 2009-11-13 2011-06-02 Jx Nippon Oil & Energy Corp 触媒反応容器のヒータ制御装置、触媒反応容器のヒータ制御方法及び燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100023A (ja) * 2004-09-28 2006-04-13 Institute Of National Colleges Of Technology Japan 燃料電池エネルギネットワークシステム及びその運転方法
JP2006275478A (ja) * 2005-03-30 2006-10-12 Osaka Gas Co Ltd コージェネレーションシステム
JP2007280790A (ja) * 2006-04-07 2007-10-25 Toshiba Corp 燃料電池コジェネレーションシステム
JP2008164191A (ja) * 2006-12-27 2008-07-17 Toshiba Fuel Cell Power Systems Corp コージェネレーションシステム
JP2011105795A (ja) * 2009-11-13 2011-06-02 Jx Nippon Oil & Energy Corp 触媒反応容器のヒータ制御装置、触媒反応容器のヒータ制御方法及び燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207289A (ja) * 2015-04-15 2016-12-08 アイシン精機株式会社 燃料電池システム
WO2024116696A1 (ja) * 2022-11-29 2024-06-06 パナソニックIpマネジメント株式会社 燃料電池装置の制御方法、制御装置および発電システム

Also Published As

Publication number Publication date
JP6171169B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
Xing et al. Modeling and operation of the power-to-gas system for renewables integration: a review
JP4473269B2 (ja) コージェネレーションシステム
US8470484B2 (en) Fuel cell system
Zhang et al. Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production
JP6575867B2 (ja) 燃料電池システム
US10246787B2 (en) Control of a high temperature electrolyzer
JP5976950B1 (ja) 電力供給システムおよびその制御方法
JP2007323843A (ja) 燃料電池の運転方法及び燃料電池システム
JP2005100873A (ja) 燃料電池システム
Zhao et al. Dynamic behaviour and control strategy of high temperature proton exchange membrane electrolyzer cells (HT-PEMECs) for hydrogen production
US20070042249A1 (en) System for preventing freezing of fuel cell
KR101897500B1 (ko) 연료극 가스 또는 연료극 배가스를 이용한 열교환기를 포함하는 연료전지 시스템
JP2017027936A (ja) 電力供給システムおよびその制御方法
JP6171169B2 (ja) 燃料電池コージェネレーションシステム
JP2016515190A (ja) 加熱設備および加熱設備の動作方法
JP2011208242A (ja) 廃熱利用水素製造装置および廃熱利用水素製造方法
CN203907723U (zh) 一种燃料电池建筑发电供暖系统
JP2000018718A (ja) 発電機能付き温水器
JP2008066016A (ja) 燃料電池システムの運転方法及び燃料電池システム
KR100700548B1 (ko) 연료전지의 난방/온수 제어 장치 및 그 방법
JP2006299323A (ja) 水電解装置
KR101362445B1 (ko) 연료 변환기의 폐열을 이용하는 연료전지 시스템 및 그 운전방법
JPWO2011093066A1 (ja) 燃料電池システム及びその運転方法
JP5068291B2 (ja) 燃料電池システム
US20180069250A1 (en) Fuel cell system and its operation method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160421

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6171169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151