JP2015017967A - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
JP2015017967A
JP2015017967A JP2014109275A JP2014109275A JP2015017967A JP 2015017967 A JP2015017967 A JP 2015017967A JP 2014109275 A JP2014109275 A JP 2014109275A JP 2014109275 A JP2014109275 A JP 2014109275A JP 2015017967 A JP2015017967 A JP 2015017967A
Authority
JP
Japan
Prior art keywords
signal
amplifier
target
frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014109275A
Other languages
Japanese (ja)
Other versions
JP6264194B2 (en
Inventor
泰三 磯野
Yasuzo Isono
泰三 磯野
隆 川相
Takashi Kawaai
隆 川相
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014109275A priority Critical patent/JP6264194B2/en
Publication of JP2015017967A publication Critical patent/JP2015017967A/en
Application granted granted Critical
Publication of JP6264194B2 publication Critical patent/JP6264194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a radar device that monitors a broad distance range with a broad dynamic range.SOLUTION: The radar device includes: a mixer to which a frequency-modulated modulated signal and a received signal from a target are input, and which generates a beat signal having a frequency corresponding to a distance between the target and the radar device; frequency component elimination means for eliminating a component of the frequency corresponding to a prescribed distance range of a beat signal to be output from one branching output of the mixer; a first amplifier that amplifies the beat signal to be output from the frequency component elimination means; a second amplifier that amplifies a beat signal to be output from the other branching output of the mixer; and a signal processor that analyzes beat signals to be output from the first amplifier and the second amplifier, detects the target in the prescribed distance range from the beat signal to be output from the second amplifier, and detects the target at a distance other than the prescribed distance range.

Description

本発明は、観測海域に周波数変調した送信波を送信し、その目標物による反射波を受信することで、海洋上に存在する目標物を検出するレーダ装置に関する。   The present invention relates to a radar apparatus that detects a target existing on the ocean by transmitting a transmission wave that is frequency-modulated to an observation sea area and receiving a reflected wave from the target.

周波数変調された送信波を送信し、その目標物からの反射波を使用して目標物の検出と測距を行なうFMCW(Frequency Modurated Continuous Wave)方式や、FMICW(Frequency Modurated Interrupted Continuous Wave)方式のレーダ装置では、送信波と反射波とを合成することで得られるビート信号を処理することにより、目標物の検出と距離の算出を行なう。送信波には周波数変調がされているため、送信波と反射波の間の時間遅れによって生じる周波数差により、ビート信号の周波数は、目標物までの距離に応じたものとなる。このため、このようなレーダ装置では、目標物が検出されるビート信号の周波数を測定することにより、目標物までの距離を算出する。また、ビート信号の信号強度は、反射波の信号強度と比例するため、反射波の強度が微弱な場合、ビート信号の強度も微弱なものとなる。FMCW方式やFMICW方式のレーダ装置は、同じビート信号の同じ周波数の成分を、送信波の周波数変調の周期にわたり集めて処理することができるため、短時間の信号であるパルスを使用するレーダ装置に比べ、微弱なビート信号からも目標検出を行なうことが可能である。このため、FMCW方式やFMICW方式のレーダ装置は、遠距離から到達する微弱な反射信号から目標物を検出することも可能である。この特徴を利用し、電波を反射する海水面を目標物とし、遠方の海洋上などの広範囲に存在する海水面から反射する反射波を受信することで、FMCW方式やFMICW方式のレーダ装置により海面の海水の流れや津波の観測を行ない、防災に関する情報を得ることができる。   An FMCW (Frequency Modulated Continuous Wave) method that transmits a frequency-modulated transmission wave, and uses the reflected wave from the target to detect and measure a distance, and an FMICW (Frequency Modified Interrupted Wirth method) The radar apparatus detects a target and calculates a distance by processing a beat signal obtained by combining a transmission wave and a reflected wave. Since the transmission wave is frequency-modulated, the frequency of the beat signal depends on the distance to the target due to the frequency difference caused by the time delay between the transmission wave and the reflected wave. For this reason, in such a radar apparatus, the distance to the target is calculated by measuring the frequency of the beat signal at which the target is detected. Further, since the signal intensity of the beat signal is proportional to the signal intensity of the reflected wave, when the intensity of the reflected wave is weak, the intensity of the beat signal is also weak. Since the FMCW and FMICW radar devices can collect and process the same frequency components of the same beat signal over the frequency modulation period of the transmission wave, the radar device uses a pulse that is a short-time signal. In comparison, it is possible to perform target detection even from a weak beat signal. For this reason, the FMCW or FMICW radar device can also detect a target from a weak reflected signal that reaches from a long distance. Utilizing this feature, the sea surface that reflects radio waves is targeted, and the reflected wave reflected from the sea surface that exists over a wide area, such as on a distant ocean, is received, so that the FMCW and FMICW radar devices can Observing the flow of seawater and tsunami, you can get information on disaster prevention.

レーダ装置により海面の海水の流れや津波の観測を行なう場合、電波の反射面である海水面の状況は、観測対象である海洋の現象のほか、気象や海底の地形などの条件によっても影響を受ける。このため、海水面の電波を反射する面積は様々なものとなり、電波を反射する面積に応じて反射波は様々な信号強度になる。また、防災に関する情報を得るために使用する場合、レーダ装置は、近距離から水平線以遠までの遠距離にわたる、広範囲を監視することに用いられることが多い。このため、受信される反射波は、目標物からの反射波の空間伝搬ロスの距離による違いにより、目標物が遠距離の場合は信号強度が弱く、目標物が近距離では信号強度が強く、目標物の距離により変動する。目標物の電波を反射する面積の違いと目標物までの距離の違いとにより、海洋上で防災に関する情報を得るために使用されるレーダ装置は、信号強度のばらつきが大きい反射波を受信し、分析することが要求される。また、防災に関する情報を得る場合、災害に対する対応に十分な時間を確保するため、津波などの災害となる現象が遠方にあるうちから探知することが必要である。さらに、海洋の状態を監視する手段として、遠距離を監視できるセンサは、他に無いことから、防災に使用するレーダ装置においては、遠距離における海洋の現象を正確に検出することは、特に重要である。このため、レーダ装置は、目標物の距離が遠方であるほど、より信号強度のばらつきが大きい反射波を受信し分析する、ダイナミックレンジの広いものであることが要求される。   When the seawater flow and tsunami are observed with a radar device, the state of the seawater, which is the reflection surface of radio waves, is affected by conditions such as the weather and the topography of the seabed, as well as the ocean phenomena being observed. receive. For this reason, the area which reflects the radio wave on the sea surface varies, and the reflected wave has various signal intensities according to the area which reflects the radio wave. In addition, when used to obtain information on disaster prevention, the radar apparatus is often used to monitor a wide range from a short distance to a distance beyond the horizon. For this reason, the received reflected wave has a weak signal strength when the target is a long distance, and a strong signal strength when the target is a short distance due to the difference in the spatial propagation loss of the reflected wave from the target. It varies depending on the distance of the target. The radar device used to obtain information on disaster prevention on the ocean receives the reflected wave with a large variation in signal intensity due to the difference in the area that reflects the radio waves of the target and the difference in the distance to the target. It is required to analyze. In addition, when obtaining information on disaster prevention, it is necessary to detect the phenomenon that causes a disaster, such as a tsunami, from a distance, in order to ensure sufficient time for dealing with the disaster. Furthermore, since there are no other sensors that can monitor the long distance as a means of monitoring the state of the ocean, it is particularly important to accurately detect ocean phenomena at a long distance in radar devices used for disaster prevention. It is. For this reason, the radar apparatus is required to have a wide dynamic range for receiving and analyzing a reflected wave having a larger variation in signal intensity as the distance of the target is farther.

従来のレーダ装置では、広いダイナミックレンジを実現するために、分析するビート信号を周波数フィルタにより周波数ごとに分割し、限られた距離の信号毎に分割して扱う例がある(例えば、特許文献1参照)。限られた距離毎の信号に分割されたビート信号は、目標物までの距離の違いにより生じる、反射波の空間伝搬ロスの距離による違いが低減され、分割される前のビート信号に比べて信号強度のばらつきは、相対的に狭いものとなる。このため、ビート信号全体を受信する構成に比べて、ダイナミックレンジの狭い受信器で受信することが可能になる。この構成では、レーダ装置は、ビート信号を周波数フィルタにより周波数ごとに分割し、分割した周波数毎にダイナミックレンジの狭い受信器により、必要な周波数範囲と信号強度の範囲の信号を受信する。   In a conventional radar apparatus, in order to realize a wide dynamic range, there is an example in which a beat signal to be analyzed is divided for each frequency by a frequency filter and is divided for each signal of a limited distance (for example, Patent Document 1). reference). The beat signal divided into signals for each limited distance reduces the difference due to the spatial propagation loss distance of the reflected wave caused by the difference in the distance to the target, and is compared with the beat signal before being divided. The intensity variation is relatively narrow. For this reason, it becomes possible to receive with a receiver with a narrow dynamic range compared with the structure which receives the whole beat signal. In this configuration, the radar apparatus divides the beat signal for each frequency by the frequency filter, and receives a signal in a necessary frequency range and signal intensity range by a receiver having a narrow dynamic range for each divided frequency.

また、従来のレーダ装置において、広いダイナミックレンジを実現するための他の構成としては、信号強度の強いレーダ信号を受信する低利得系と、信号強度の弱いレーダ信号を受信する高利得系の2つの受信系統で受信を行い、1つの受信器で受信する場合に比べ、広いダイナミックレンジを得ている例がある(例えば、特許文献2参照)。   Further, in the conventional radar apparatus, other configurations for realizing a wide dynamic range include a low gain system that receives a radar signal having a high signal strength and a high gain system that receives a radar signal having a low signal strength. There is an example in which a wide dynamic range is obtained as compared with a case where reception is performed by one reception system and reception is performed by one receiver (see, for example, Patent Document 2).

特開2011−237268号公報(第32〜42段落、図6)JP 2011-237268 A (paragraphs 32-42, FIG. 6) 特開2008−72506号公報(第13〜20段落、図1)JP 2008-72506 A (13th to 20th paragraphs, FIG. 1)

吉田孝監修、「改訂レーダ技術」、電子情報通信学会編、平成8年10月1日発行(pp273−275)Supervised by Takashi Yoshida, "Revised Radar Technology", edited by IEICE, October 1, 1996 (pp273-275)

特許文献1のように、レーダ装置により目標物を検出する際に、分析するビート信号を周波数フィルタにより周波数ごとに分割し、限られた距離の信号毎に分割して受信する方法では、周波数フィルタにより区切られたそれぞれの周波数で、ダイナミックレンジの狭い受信器を使用する。このため、防災に使用するレーダ装置に適用しようとすると、遠方の目標物の探知において、十分に広いダイナミックレンジが得られない可能性があるという問題点があった。また、受信信号を周波数ごとに分割するため、監視しようとする距離範囲全体を同時に監視することができなくなるという問題点があった。   As in Patent Document 1, when detecting a target by a radar apparatus, a beat signal to be analyzed is divided for each frequency by a frequency filter, and is divided for each signal of a limited distance. Use a receiver with a narrow dynamic range at each frequency delimited by. For this reason, when trying to apply to a radar apparatus used for disaster prevention, there is a problem that a sufficiently wide dynamic range may not be obtained in detecting a distant target. Further, since the received signal is divided for each frequency, there is a problem that it becomes impossible to simultaneously monitor the entire distance range to be monitored.

また、一般に、レーダ装置の受信器に用いられる増幅器に入力される、信号の合計の電力が十分大きなものであることにより増幅器が飽和すると、増幅器の増幅率が低下したり、入力信号の増幅出力とともに、入力には無い周波数の混変調による信号が出力されたりするなどの現象が発生する。このため、帯域幅を持つ信号強度の強い信号や、大域幅が狭い場合でも、特定の周波数に甚だしく信号強度が集中している信号が存在すると、増幅器の出力については、目標物からの反射信号に対する増幅率が低下したり、目標物からの反射信号の周辺の周波数に混変調によるノイズ状の信号出力が発生したりする。この、目標信号の増幅率の低下や、ノイズ状の信号出力の発生は、レーダ装置での、目標物の検出を困難にする。海洋上の目標物を検出するレーダ装置では、近距離の海面からの強度の強い反射信号が常にノイズとして増幅器に入力している。この近距離の海面からの反射信号は、上記のような、増幅器に対する、帯域幅を持つ信号強度の強い信号となる。このため、増幅器の増幅率が低下したり、増幅器の出力の、目標物からの反射信号の周波数付近に混変調によるノイズ状の信号出力が発生したりする原因となり、レーダ装置での目標物の検出を困難にする。   In general, when the amplifier is saturated because the total power of the signals input to the amplifier used in the receiver of the radar device is sufficiently large, the amplification factor of the amplifier is reduced or the amplified output of the input signal is output. At the same time, a phenomenon such as output of a signal due to intermodulation at a frequency not included in the input occurs. For this reason, if there is a signal with a strong signal strength with a bandwidth or a signal whose signal strength is concentrated at a specific frequency even when the global bandwidth is narrow, the reflected signal from the target will be output for the amplifier output. Amplification factor of the signal is reduced, or a noise-like signal output due to cross modulation is generated at frequencies around the reflected signal from the target. The reduction in the amplification factor of the target signal and the generation of noise-like signal output make it difficult to detect the target in the radar apparatus. In a radar device that detects a target on the ocean, a reflected signal having a high intensity from a sea surface at a short distance is always input to the amplifier as noise. The reflected signal from the sea surface at a short distance is a signal having a high signal strength with a bandwidth for the amplifier as described above. For this reason, the amplification factor of the amplifier is reduced, or noise-like signal output due to cross modulation occurs near the frequency of the reflected signal from the target of the output of the amplifier. Make detection difficult.

このことから、特許文献2のように、低利得系と高利得系の2系統の受信器で受信することにより広いダイナミックレンジを得る方法を適用する場合、近距離の海面からの強度の強いノイズ状の反射信号により、高利得系の受信器については信号の検出が困難になり、広いダイナミックレンジを得ることが困難になるという問題点があった。   From this, when applying a method of obtaining a wide dynamic range by receiving with two receivers of low gain system and high gain system as in Patent Document 2, strong noise from the sea surface at a short distance is applied. Due to the shape of the reflected signal, it is difficult to detect a signal for a high gain receiver, and it is difficult to obtain a wide dynamic range.

本発明は、上記の問題点を解決する為のもので、広い距離範囲について同時に監視が可能で、広いダイナミックレンジを持つレーダ装置を得ることを目的とする。   An object of the present invention is to solve the above-described problems, and an object of the present invention is to obtain a radar apparatus that can simultaneously monitor a wide distance range and has a wide dynamic range.

上述した課題を解決するため、本発明に係るレーダ装置は、周波数変調した変調信号とこの変調信号を基にした送信波の目標物からの反射を受信した受信信号とが入力され、前記目標物との間の距離に対応した周波数のビート信号を生成するミクサと、このミクサの出力が2分岐され、一方の分岐出力から出力されるビート信号の前記目標物との間の所定の距離範囲に対応する周波数の成分を除去する周波数成分除去手段と、この周波数成分除去手段から出力されるビート信号を増幅する第1の増幅器と、前記ミクサの他方の分岐出力から出力されるビート信号を増幅する第2の増幅器と、前記第1の増幅器および前記第2の増幅器から出力されるビート信号を分析し、前記第2の増幅器から出力されるビート信号から前記所定の距離範囲の前記目標物を検出し、前記第1の増幅器および前記第2の増幅器から出力されるビート信号から前記所定の距離範囲以外の距離にある前記目標物を検出する信号処理器とを備えるようにしたものである。   In order to solve the above-described problem, a radar apparatus according to the present invention receives a frequency-modulated modulation signal and a reception signal that receives a reflection from a target of a transmission wave based on the modulation signal, and the target A mixer that generates a beat signal having a frequency corresponding to the distance between and the output of the mixer is branched into two, and the beat signal output from one branch output is within a predetermined distance range between the target and the target. Frequency component removing means for removing a corresponding frequency component, a first amplifier for amplifying a beat signal output from the frequency component removing means, and a beat signal output from the other branch output of the mixer Analyzing a beat signal output from the second amplifier, the first amplifier and the second amplifier, and detecting the beat signal output from the second amplifier within the predetermined distance range. A signal processor for detecting the target and detecting the target at a distance other than the predetermined distance range from the beat signals output from the first amplifier and the second amplifier. Is.

この発明に係るレーダ装置は、所定の周波数範囲を除くビート信号を増幅する第1の増幅器と、ビート信号全体の周波数範囲を増幅する第2の増幅器とにより増幅した信号から信号検出器で目標を検出するため、広い距離範囲について同時に監視が可能である。また、信号強度の強い反射波が入力される周波数範囲については、周波数成分除去手段により第1の増幅器の入力から除去することで第1の増幅器の飽和を回避するため、第1の増幅器と第2の増幅器とにより、広いダイナミックレンジを得ることができる。このため、広い距離範囲について同時に監視が可能で、広いダイナミックレンジを持つレーダ装置を得ることができる。   In the radar apparatus according to the present invention, a target is detected by a signal detector from a signal amplified by a first amplifier that amplifies a beat signal excluding a predetermined frequency range and a second amplifier that amplifies the frequency range of the entire beat signal. In order to detect, it is possible to simultaneously monitor a wide distance range. In addition, the frequency range in which the reflected wave having a strong signal intensity is input is removed from the input of the first amplifier by the frequency component removing means, so that the saturation of the first amplifier is avoided, so that the first amplifier and the first amplifier With the two amplifiers, a wide dynamic range can be obtained. For this reason, it is possible to simultaneously monitor a wide distance range, and to obtain a radar apparatus having a wide dynamic range.

この発明の実施の形態1に係るレーダ装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the radar apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るレーダ装置の距離測定の原理を表す図である。It is a figure showing the principle of the distance measurement of the radar apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るレーダ装置の距離測定の原理を表す図である。It is a figure showing the principle of the distance measurement of the radar apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るレーダ装置のビート信号の周波数と信号強度との関係を表す図である。It is a figure showing the relationship between the frequency of a beat signal and signal strength of the radar apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るレーダ装置の高利得系および低利得系が処理するビート信号の信号強度を表す図である。It is a figure showing the signal strength of the beat signal which the high gain system and low gain system of the radar apparatus concerning Embodiment 1 of this invention process. この発明の実施の形態2に係るレーダ装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the radar apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るレーダ装置の高利得系および低利得系が処理するビート信号の信号強度を表す図である。It is a figure showing the signal strength of the beat signal which the high gain system and low gain system of the radar apparatus concerning Embodiment 2 of this invention process. この発明の実施の形態2に係るレーダ装置の高利得系および低利得系が処理するビート信号の信号強度を表す図である。It is a figure showing the signal strength of the beat signal which the high gain system and low gain system of the radar apparatus concerning Embodiment 2 of this invention process. この発明の実施の形態3に係るレーダ装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the radar apparatus which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係るレーダ装置の高利得系および低利得系が処理するビート信号の信号強度を表す図である。It is a figure showing the signal strength of the beat signal which the high gain system and low gain system of the radar apparatus concerning Embodiment 3 of this invention process.

実施の形態1.
図1は、この発明の実施の形態1に係るレーダ装置の構成を示す機能ブロック図である。図1に示すとおり、実施の形態1に係るレーダ装置は、送信器1、送信アンテナ2、複数の受信アンテナ3、受信器4、信号処理器5、および表示器6を備えている。この構成により、実施の形態1に係るレーダ装置は、周波数変調された変調波を送信器1で増幅して送信波とし、この送信波を送信アンテナ2により海洋上の空間に送信する。レーダ装置は、FMCW又は、FMICW方式を用いるが、FMCW方式の場合は、送信機1は、変調波を連続的に増幅して送信し、FMICW方式の場合は、送信機1は、変調波を断続的に増幅して送信する。レーダ装置は、送信波が目標物により反射した反射波を複数の受信アンテナ3で受信した受信信号を受信器4で増幅及び信号変換し、信号変換された反射波から、信号処理器5で目標物からの反射信号を検出し、検出した結果を表示器6で表示する。
Embodiment 1 FIG.
1 is a functional block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the radar apparatus according to Embodiment 1 includes a transmitter 1, a transmission antenna 2, a plurality of reception antennas 3, a receiver 4, a signal processor 5, and a display 6. With this configuration, the radar apparatus according to the first embodiment amplifies the frequency-modulated modulated wave by the transmitter 1 to be a transmission wave, and transmits the transmission wave to the ocean space by the transmission antenna 2. The radar apparatus uses the FMCW or FMICW system. In the case of the FMCW system, the transmitter 1 continuously amplifies and transmits the modulated wave. In the FMICW system, the transmitter 1 transmits the modulated wave. Transmit intermittently amplified. The radar apparatus amplifies and converts a received signal obtained by reflecting a reflected wave of a transmitted wave reflected by a target with a plurality of receiving antennas 3 with a receiver 4, and a signal processor 5 generates a target from the reflected wave after the signal conversion. A reflected signal from the object is detected, and the detected result is displayed on the display 6.

受信器4は、信号発生器11と、複数の受信処理器12とを備えている。信号発生器11は、送信器1と複数の受信処理器12に、周波数変調した変調信号を供給している。送信器1に供給された変調信号は、前述の通り、送信器1で増幅されて送信波とされ、送信アンテナ2により海洋上の空間に送信される。複数の受信処理器12に供給された変調信号は、ビート信号を生成するために使用される。受信処理器12は、受信アンテナ3と同数存在し、それぞれが受信アンテナ3の一つ一つに接続し、受信アンテナ3で受信した受信信号から生成したビート信号を低利得系、高利得系の受信系に分けて増幅し、信号変換し、その結果を受信系毎に出力する。それぞれの受信処理器12は、変調信号と受信信号からビート信号を生成するミクサ13、ビート信号を低利得系と高利得系に分岐させる分配器14、低利得系のビート信号を処理する減衰器15、増幅器16、AD変換器17、ならびに高利得系のビート信号を処理するバンドリジェクションフィルタ18、減衰器19、増幅器20、AD変換器21を備えている。   The receiver 4 includes a signal generator 11 and a plurality of reception processors 12. The signal generator 11 supplies a frequency-modulated modulated signal to the transmitter 1 and the plurality of reception processors 12. As described above, the modulated signal supplied to the transmitter 1 is amplified by the transmitter 1 to be a transmission wave, and is transmitted to the ocean space by the transmission antenna 2. The modulated signals supplied to the plurality of reception processors 12 are used to generate beat signals. There are as many reception processors 12 as there are reception antennas 3. Each of the reception processors 12 is connected to each of the reception antennas 3, and beat signals generated from reception signals received by the reception antennas 3 are low gain and high gain. Amplification is performed for each reception system, signal conversion is performed, and the result is output for each reception system. Each reception processor 12 includes a mixer 13 that generates a beat signal from the modulated signal and the received signal, a distributor 14 that branches the beat signal into a low gain system and a high gain system, and an attenuator that processes the low gain system beat signal. 15, an amplifier 16, an AD converter 17, a band rejection filter 18 for processing a high-gain beat signal, an attenuator 19, an amplifier 20, and an AD converter 21.

それぞれの受信処理器12では、ミクサ13が、受信アンテナ3で受信された受信信号を、信号発生器11から供給される変調信号と合成してビート信号を生成する。ミクサ13の出力は、分配器14で2分岐される。2分岐された一方に接続する高利得系では、ビート信号は、バンドリジェクションフィルタ18により所定の周波数成分が除去され、増幅器20に入力される信号強度が減衰器19により調整され、増幅器20で増幅された後、AD変換器21でデジタル信号に変換される。2分岐された他方に接続する低利得系では、ビート信号は、増幅器16に入力される信号強度が減衰器15により調整され、増幅器16で増幅された後、AD変換器17でデジタル信号に変換される。   In each reception processor 12, the mixer 13 combines the reception signal received by the reception antenna 3 with the modulation signal supplied from the signal generator 11 to generate a beat signal. The output of the mixer 13 is branched into two by the distributor 14. In the high gain system connected to one of the two branches, a predetermined frequency component is removed from the beat signal by the band rejection filter 18, and the signal intensity input to the amplifier 20 is adjusted by the attenuator 19. After being amplified, it is converted into a digital signal by the AD converter 21. In the low gain system connected to the other of the two branches, the beat signal is converted into a digital signal by the AD converter 17 after the signal strength input to the amplifier 16 is adjusted by the attenuator 15 and amplified by the amplifier 16. Is done.

信号処理器5は、受信器4のそれぞれの受信処理器12が出力する高利得系の出力を目標物の方位、距離、ドップラで分離する信号分析器32と、受信器4のそれぞれの受信処理器12が出力する低利得系の出力を目標物の方位、距離、ドップラで分離する信号分析器31と、信号分析器31、32の出力より目標物からの反射波を検出する目標検出器33を備えている。   The signal processor 5 separates the output of the high gain system output from each reception processor 12 of the receiver 4 by the azimuth, distance, and Doppler of the target, and each reception processing of the receiver 4. A signal analyzer 31 that separates the output of the low gain system output from the analyzer 12 by the orientation, distance, and Doppler of the target, and a target detector 33 that detects a reflected wave from the target from the outputs of the signal analyzers 31 and 32. It has.

信号分析器32は、DBF処理37、距離分離処理38、ドップラ処理39を備え、複数の受信処理器12の高利得系のビート信号の出力を集め、ビート信号を、電波を反射する目標物の方位、距離、ドップラで分離する。DBF処理37は、DBF(Digital Beam Forming)処理により、ビート信号を受信アンテナ3からの方位毎に分離する。ビート信号の周波数は、目標物の距離に対応したものである。このため、距離分離処理38は、方向毎に分離されたビート信号を、FFTなどにより周波数で分離する。これは、目標物からの反射波を距離ごとに分離することに相当する。ドップラ処理39では、DBF処理37および距離分離処理38により方位、距離ごとに分離されたビート信号の時間変化を分析し、ドップラ周波数を求めることで、目標物の速度を算出する。   The signal analyzer 32 includes a DBF process 37, a distance separation process 38, and a Doppler process 39. The signal analyzer 32 collects the outputs of the high-gain beat signals of the plurality of reception processors 12, and converts the beat signal into a target that reflects radio waves. Separate by direction, distance, Doppler. The DBF process 37 separates the beat signal for each azimuth from the receiving antenna 3 by a DBF (Digital Beam Forming) process. The frequency of the beat signal corresponds to the distance of the target. For this reason, the distance separation process 38 separates beat signals separated for each direction by frequency using FFT or the like. This is equivalent to separating the reflected wave from the target for each distance. In the Doppler process 39, the time change of the beat signal separated for each direction and distance by the DBF process 37 and the distance separation process 38 is analyzed, and the speed of the target is calculated by obtaining the Doppler frequency.

信号分析器31は、DBF処理34、距離分離処理35、ドップラ処理36を備え、複数の受信処理器12の低利得系から出力されるビート信号の出力を集め、ビート信号を、電波を反射する目標物の方位、距離、ドップラで分離する。DBF処理34は、DBF(Digital Beam Forming)処理により、ビート信号を受信アンテナ3からの方位毎に分離する。ビート信号の周波数は、目標物の距離に対応したものである。このため、距離分離処理35は、方向毎に分離されたビート信号を、FFTなどにより周波数で分離する。これは、目標物からの反射波を距離ごとに分離することに相当する。ドップラ処理36では、DBF処理34および距離分離処理35により方位、距離ごとに分離されたビート信号の時間変化を分析し、ドップラ周波数を求めることで、目標物の速度を算出する。DBF処理34、距離分離処理35、ドップラ処理36の構成は、低利得系のビート信号の出力を処理すること以外は、信号分析器32におけるDBF処理37、距離分離処理38、ドップラ処理39と同様である。   The signal analyzer 31 includes a DBF process 34, a distance separation process 35, and a Doppler process 36. The signal analyzer 31 collects the output of beat signals output from the low gain systems of the plurality of reception processors 12, and reflects the beat signals into radio waves. Separate by target direction, distance and Doppler. The DBF process 34 separates the beat signal for each direction from the reception antenna 3 by a DBF (Digital Beam Forming) process. The frequency of the beat signal corresponds to the distance of the target. For this reason, the distance separation process 35 separates beat signals separated for each direction by frequency using FFT or the like. This is equivalent to separating the reflected wave from the target for each distance. In the Doppler processing 36, the time change of the beat signal separated for each direction and distance by the DBF processing 34 and the distance separation processing 35 is analyzed, and the speed of the target is calculated by obtaining the Doppler frequency. The configurations of the DBF process 34, the distance separation process 35, and the Doppler process 36 are the same as the DBF process 37, the distance separation process 38, and the Doppler process 39 in the signal analyzer 32 except that the output of the low gain system beat signal is processed. It is.

目標検出器33は、信号分析器32が出力する、目標物の方位、距離、ドップラで分離された高利得系のビート信号と、信号分析器31が出力する、目標物の方位、距離、ドップラで分離された低利得系のビート信号から、それぞれ目標を検出し、検出した目標を表示するためのデータを表示器6に出力する。   The target detector 33 outputs a high-gain beat signal separated by the azimuth, distance, and Doppler of the target output from the signal analyzer 32, and the azimuth, distance, and Doppler of the target output from the signal analyzer 31. Each target is detected from the beat signal of the low gain system separated in step, and data for displaying the detected target is output to the display 6.

次に、動作について説明する。図2および図3は、この発明の実施の形態1に係るレーダ装置の距離測定の原理を表す図である。図2(a)は、レーダ装置をFMCW方式としたときの、信号発生器11が発生させる変調信号の周波数の時間変化の例を示す。FMCW方式のレーダ装置では、送信器1は、図2(a)の信号発生器11が発生させる信号をそのまま増幅し、送信する。このため、送信器1の送信波形もまた、図2(a)で表す通り、変調信号と同様である。   Next, the operation will be described. 2 and 3 are diagrams showing the principle of distance measurement of the radar apparatus according to Embodiment 1 of the present invention. FIG. 2A shows an example of the time change of the frequency of the modulation signal generated by the signal generator 11 when the radar apparatus is an FMCW system. In the FMCW radar device, the transmitter 1 amplifies the signal generated by the signal generator 11 in FIG. For this reason, the transmission waveform of the transmitter 1 is also the same as that of the modulated signal as shown in FIG.

信号発生器11は、掃引時間Tごとに掃引周波数幅Bの周波数範囲を繰り返し掃引し、図2(a)に示すように周波数変調した変調信号を発生させる。信号発生器11が発生させた変調信号は、送信器1で増幅され、送信アンテナ2より送信波として空中に送信される。他方、信号発生器11が発生させた変調信号は、受信器4の各受信処理器12のミクサ13に入力され、受信アンテナ3から入力される受信信号と合成される。 The signal generator 11 repeatedly sweeps the frequency range of the sweep frequency width B every sweep time TB, and generates a frequency-modulated modulated signal as shown in FIG. The modulated signal generated by the signal generator 11 is amplified by the transmitter 1 and transmitted from the transmission antenna 2 to the air as a transmission wave. On the other hand, the modulation signal generated by the signal generator 11 is input to the mixer 13 of each reception processor 12 of the receiver 4 and is combined with the reception signal input from the reception antenna 3.

図2(b)は、反射波が受信器4のそれぞれの受信処理器12に入力する受信信号と、信号発生器11が発生している変調信号の関係を表す。目標物からの反射波は、電波が目標物までの距離Rを往復する時間Tだけ遅れる。送信信号が周波数変調を行っている場合、図2(b)のように、反射波による受信信号が送信信号に対して時間T遅れることにより、変調信号と受信信号との間に周波数差Δfが発生する。このため、目標物までの距離Rは、次の式(1)で表すことができる。但し、式(1)において、Cは光速を表す。   FIG. 2B shows the relationship between the reception signal that the reflected wave is input to each reception processor 12 of the receiver 4 and the modulation signal generated by the signal generator 11. The reflected wave from the target is delayed by a time T during which the radio wave travels back and forth the distance R to the target. When the transmission signal is frequency-modulated, as shown in FIG. 2B, the reception signal by the reflected wave is delayed by time T with respect to the transmission signal, so that a frequency difference Δf is generated between the modulation signal and the reception signal. Occur. For this reason, the distance R to the target can be expressed by the following equation (1). However, in Formula (1), C represents the speed of light.

Figure 2015017967
Figure 2015017967

式(1)からもわかる通り、本発明の実施の形態1に係るレーダ装置では、反射波の受信信号と変調信号の周波数差から、電波を送信してから受信するまでに要した時間を算出し、これにより目標物までの距離を算出する。このため、図1に示すレーダ装置では、信号発生器11で発生した変調信号と、受信アンテナ3から入力される受信信号を、各受信処理器12のミクサ13で合成する。ミクサ13の出力であるビート信号は、図2(b)に示した原理により、反射波を反射する目標物までの距離に対応した周波数の信号となる。   As can be seen from equation (1), in the radar apparatus according to Embodiment 1 of the present invention, the time required to transmit and receive the radio wave is calculated from the frequency difference between the reflected wave reception signal and the modulation signal. Thus, the distance to the target is calculated. Therefore, in the radar apparatus shown in FIG. 1, the modulation signal generated by the signal generator 11 and the reception signal input from the reception antenna 3 are combined by the mixer 13 of each reception processor 12. The beat signal that is the output of the mixer 13 is a signal having a frequency corresponding to the distance to the target that reflects the reflected wave according to the principle shown in FIG.

ところで、図2(a)で示すFMCW方式のように、レーダ電波を連続的に送信する場合、送信アンテナ2と受信アンテナ3の間のアイソレーションが十分でないと、送信アンテナ2が送信する電波が直接受信アンテナ3に回り込み、反射波を受信する上で、障害となることがある。FMCW方式のこのような課題を解決するため、FMICW方式では、送信と受信の時間を分け、送信アンテナ2から直接受信アンテナ3に回りこむ電波を受信しないようにする。図3(a)に、FMICW方式のレーダ装置の変調信号の波形と送信波の波形を示す。FMICW方式の場合、図3(a)のように、変調信号の波形を一定時間ごとに区切り、断続的に送信を行い、送信アンテナ2により送信を行う送信時間、送信アンテナ2からの送信を行わず、受信アンテナ3による受信のみを行なう受信時間を交互に繰り返す。   By the way, when the radar radio wave is continuously transmitted as in the FMCW system shown in FIG. 2A, if the isolation between the transmission antenna 2 and the reception antenna 3 is not sufficient, the radio wave transmitted by the transmission antenna 2 It may be an obstacle to go around the receiving antenna 3 directly and receive the reflected wave. In order to solve such a problem of the FMCW system, the FMICW system divides transmission and reception times so as not to receive radio waves that wrap around the receiving antenna 3 directly from the transmitting antenna 2. FIG. 3A shows the waveform of the modulation signal and the waveform of the transmission wave of the FMICW radar device. In the case of the FMICW system, as shown in FIG. 3A, the modulation signal waveform is divided at regular intervals, transmission is performed intermittently, transmission is performed by the transmission antenna 2, and transmission from the transmission antenna 2 is performed. Instead, the reception time during which only reception by the reception antenna 3 is performed is repeated alternately.

図3(b)は、FMICW方式において、反射波が受信器4のそれぞれの受信処理器12に入力する受信信号と、信号発生器11が発生している変調信号との関係を表す。FMICW方式においても、目標物からの反射波は、電波が目標物までの距離Rを往復する時間Tだけ遅れる。FMICW方式においても、反射波による受信信号が変調信号に対して時間T遅れることにより、変調信号と反射信号との間に周波数差Δfが発生する。このため、目標物までの距離Rは、FMCW方式と同様、式(1)で表すことができる。FMICW方式では、受信時間に受信アンテナ3から入力される反射波から、各受信処理器12のミクサ13でビート信号を合成し、反射波を反射する目標物までの距離に対応した周波数の信号を得る。   FIG. 3B shows a relationship between a reception signal that a reflected wave is input to each reception processor 12 of the receiver 4 and a modulation signal generated by the signal generator 11 in the FMICW system. Also in the FMICW system, the reflected wave from the target is delayed by a time T during which the radio wave travels back and forth the distance R to the target. Also in the FMICW system, a frequency difference Δf is generated between the modulated signal and the reflected signal when the received signal by the reflected wave is delayed by time T with respect to the modulated signal. For this reason, the distance R to the target can be expressed by Expression (1) as in the FMCW system. In the FMICW system, a beat signal is synthesized by a mixer 13 of each reception processor 12 from a reflected wave input from the receiving antenna 3 at a reception time, and a signal having a frequency corresponding to the distance to the target that reflects the reflected wave is obtained. obtain.

図4は、ミクサ13で生成されるビート信号の周波数と信号強度の概念図である。図4は、前述のFMCW方式、FMICW方式に共通である。斜線部が、ビート信号の周波数と信号強度の取りうる範囲である。式(1)のとおり、ビート信号の周波数は、反射する目標物からの距離に対応し、目標物の距離が遠くなると、ビート信号の周波数が高くなり、目標物の距離が近くなると、ビート信号の周波数が低くなる。また、ビート信号の信号強度は、反射波の信号強度に対応する。反射波は、反射波が空間を伝搬する伝搬ロスにより、目標物までの距離が遠くなるほど、伝搬ロスは大きくなり信号強度は弱くなり、目標物までの距離が近くなるほど、伝搬ロスは小さくなり信号強度は強くなる。このような反射波の信号強度に対応し、図4に示すように、ミクサ13で生成されるビート信号の信号強度は、ビート信号の周波数が高くなるほど信号強度は弱くなり、ビート信号の周波数が低くなるほど信号強度は強くなる。   FIG. 4 is a conceptual diagram of the frequency and signal strength of the beat signal generated by the mixer 13. FIG. 4 is common to the aforementioned FMCW method and FMICW method. The shaded area is the range of the beat signal frequency and signal intensity. As shown in equation (1), the frequency of the beat signal corresponds to the distance from the target to be reflected, the beat signal frequency increases as the target distance increases, and the beat signal decreases as the target distance decreases. The frequency of becomes lower. The signal intensity of the beat signal corresponds to the signal intensity of the reflected wave. The reflected wave has a propagation loss that propagates through space, and the longer the distance to the target, the larger the propagation loss and the weaker the signal strength. The closer the distance to the target, the smaller the propagation loss and the signal. Strength increases. Corresponding to the signal strength of such a reflected wave, as shown in FIG. 4, the signal strength of the beat signal generated by the mixer 13 decreases as the frequency of the beat signal increases, and the frequency of the beat signal decreases. The lower the signal strength, the stronger the signal strength.

海洋上でレーダを使用する場合、常に海水面は電波を反射するため、ビート信号には、船舶や、観測対象である海洋の現象などの目標物からの反射のほか、各周波数において、常に海面クラッタなどの地表からのノイズを含む。ミクサ13で生成されるビート信号の信号強度は、目標物による反射信号のレベルも、地表からのノイズのレベルも同様に、電波が反射する距離に従い、ビート信号の周波数が高くなるほど信号強度は弱くなり、ビート信号の周波数が低くなるほど信号強度は強くなる。   When using radar on the ocean, the sea surface always reflects radio waves, so the beat signal is always reflected by the sea surface at each frequency in addition to reflection from ships and targets such as ocean phenomena to be observed. Includes noise from the ground, such as clutter. The signal intensity of the beat signal generated by the mixer 13 is similar to the level of the reflected signal from the target and the level of noise from the ground surface. Thus, the lower the beat signal frequency, the stronger the signal intensity.

また、ビート信号の強度は、目標物までの距離が同じであっても、目標物の反射面積の違いや反射物の向きによる変動などのため、変動する。図4では、ビート信号の変動の上限を最高信号強度として示している。これに対し、図4に示す最低信号強度については、ビート信号に含まれる、ノイズの強度をもとに決められる。レーダ装置では、目標物からの反射信号であっても、ノイズに埋もれた信号の検出は困難である。このため、最低信号強度は、ノイズレベル又は、ノイズレベルから一定レベル強い信号強度等を基準とした強度に定められる。受信処理器12は、ビート信号の周波数範囲内での信号強度の下限から、ビート信号の周波数範囲内での信号強度の上限までの強度範囲の信号を受信する。目標の信号も、ノイズも、そのレーダ装置からの距離による伝搬ロスの影響を同様に受けるため、それぞれの周波数における受信対象の信号の強度は、図4にAで示す幅となる。   Further, the intensity of the beat signal varies even if the distance to the target is the same due to the difference in the reflection area of the target or the variation due to the direction of the reflector. In FIG. 4, the upper limit of the fluctuation of the beat signal is shown as the maximum signal intensity. On the other hand, the minimum signal strength shown in FIG. 4 is determined based on the strength of noise included in the beat signal. In the radar device, it is difficult to detect a signal buried in noise even if it is a reflected signal from a target. For this reason, the minimum signal strength is determined based on a noise level or a signal strength that is a certain level stronger than the noise level. The reception processor 12 receives a signal having a strength range from the lower limit of the signal strength within the frequency range of the beat signal to the upper limit of the signal strength within the frequency range of the beat signal. Since the target signal and the noise are similarly affected by the propagation loss due to the distance from the radar apparatus, the intensity of the signal to be received at each frequency has a width indicated by A in FIG.

図5に、ビート信号の信号強度と、受信処理器12の低利得系と高利得系のそれぞれの処理する信号強度を表す。一般に増幅器は、入力される信号に対して増幅を行なうことのできるダイナミックレンジが限られている。増幅器に入力する信号の信号強度が強まり、増幅器ごとの飽和レベルに近づくにつれ、増幅器の出力は頭打ちとなり、飽和する。入力信号の信号強度の範囲が、増幅器のダイナミックレンジ以上の広がりを持つ場合は、増幅器を信号強度に合わせて複数使用するなどの構成が必要となる。このため、実施の形態1に係るレーダ装置では、図5のBに示す信号範囲を増幅器20で増幅する高利得系と、図5のCで示す信号範囲を増幅器16で増幅する低利得系との2つの受信系によりビート信号の増幅を行なう。   FIG. 5 shows the signal strength of the beat signal and the signal strength processed by each of the low gain system and the high gain system of the reception processor 12. In general, an amplifier has a limited dynamic range in which an input signal can be amplified. As the signal intensity of the signal input to the amplifier increases and approaches the saturation level of each amplifier, the output of the amplifier reaches a peak and saturates. When the range of the signal strength of the input signal is wider than the dynamic range of the amplifier, a configuration in which a plurality of amplifiers are used in accordance with the signal strength is required. Therefore, in the radar apparatus according to the first embodiment, a high gain system that amplifies the signal range shown in B of FIG. 5 by the amplifier 20, and a low gain system that amplifies the signal range shown by C in FIG. The beat signal is amplified by the two receiving systems.

高利得系は、遠方における信号強度の弱い目標からの反射波を検出することを目的とする。このため、高利得系の増幅器20は、その飽和レベル以下の、ビート信号の信号強度の下限を含む信号強度の範囲を高い利得で増幅する。低利得系は、高利得系では受信不可能な、信号強度の強い、目標からの反射波を検出することを目的とする。このため、低利得系の増幅器16は、増幅器20が飽和する信号強度の信号も増幅する。増幅器16は、ビート信号の信号強度の上限を含む信号強度の範囲を高利得系に比べて低い利得で飽和せずに増幅する。増幅器16と増幅器20により、連続した信号強度のビート信号を増幅できるようにする為、増幅器16が増幅するビート信号の強度の範囲と、増幅器20が増幅するビート信号の強度の範囲は、重複するように設計することが望ましい。   The purpose of the high gain system is to detect a reflected wave from a target having a low signal intensity in the distance. For this reason, the high-gain amplifier 20 amplifies the signal intensity range including the lower limit of the signal intensity of the beat signal below the saturation level with a high gain. The low gain system is intended to detect a reflected wave from a target having a high signal intensity that cannot be received by a high gain system. Therefore, the low-gain amplifier 16 also amplifies a signal having a signal strength that saturates the amplifier 20. The amplifier 16 amplifies the signal intensity range including the upper limit of the signal intensity of the beat signal at a lower gain than in the high gain system without being saturated. In order that the amplifier 16 and the amplifier 20 can amplify beat signals having continuous signal strength, the range of the strength of the beat signal amplified by the amplifier 16 and the range of the strength of the beat signal amplified by the amplifier 20 overlap. It is desirable to design as follows.

ビート信号は、近距離にある目標からの反射波に対応する周波数の低い範囲では、その信号強度が増大する。図5のDに示す周波数fは、近距離からのノイズのレベルが増幅器20の飽和レベルに達する距離を表す。周波数がf以下の周波数範囲には、近距離の海面からの反射波によるノイズが、増幅器20の飽和レベル以上の信号として常に存在する。このため、高利得系にあるバンドリジェクションフィルタ18は、f以下の周波数範囲の、増幅器20を飽和させる信号を除去することにより、増幅器20が飽和することを防止する。 The signal intensity of the beat signal increases in a low frequency range corresponding to a reflected wave from a target at a short distance. A frequency f 1 shown in FIG. 5D represents a distance at which the noise level from a short distance reaches the saturation level of the amplifier 20. In the frequency range where the frequency is equal to or less than f 1, noise due to a reflected wave from the sea surface at a short distance always exists as a signal equal to or higher than the saturation level of the amplifier 20. Therefore, the band rejection filter 18 in the high gain system prevents the amplifier 20 from being saturated by removing a signal that saturates the amplifier 20 in a frequency range of f 1 or less.

この構造により、周波数がf以上となる成分を含むビート信号は、高利得系、低利得系それぞれで次のように処理される。高利得系では、ビート信号から増幅器を飽和させる成分がバンドリジェクションフィルタ18により除去され、増幅器20により増幅され、信号分析器31で方位、距離、ドップラごとに分離された信号が、目標物を検出するため、目標検出器33に出力される。低利得系では、増幅器16により増幅され、信号分析器32で方位、距離、ドップラごとに分離され信号が、目標物を検出するため、目標検出器33に出力される。このため、ビート信号の、周波数がf以上となる成分については、目標検出器33では、高利得系、低利得系の両方の受信系で処理した信号から目標を検出することにより、広いダイナミックレンジを得ることができる。目標検出器33は、目標物からの信号レベルが低い場合は高利得系から、目標物からの信号レベルが高利得系の飽和レベルをこえる場合は、低利得系からそれぞれ目標物を検出する。 This structure beat signal including a component whose frequency is f 1 or more, high gain system, is processed by a low gain systems, respectively, as follows. In the high gain system, a component that saturates the amplifier from the beat signal is removed by the band rejection filter 18, amplified by the amplifier 20, and separated by the signal analyzer 31 for each direction, distance, and Doppler, In order to detect, it is output to the target detector 33. In the low gain system, the signal is amplified by the amplifier 16 and separated by the signal analyzer 32 for each direction, distance, and Doppler, and the signal is output to the target detector 33 in order to detect the target. Therefore, for the components of the beat signal frequency is f 1 or more, the target detector 33, high gain system, by detecting the target from the processed signal in the receiving system of both the low gain systems, wide dynamic You can get a range. The target detector 33 detects the target from the high gain system when the signal level from the target is low, and from the low gain system when the signal level from the target exceeds the saturation level of the high gain system.

また、周波数がfより低いビート信号の成分については、高利得系の対象とする信号強度の信号は存在しないため、低利得系で増幅器16により増幅された信号がそれぞれ信号分析器31で方位、距離、ドップラごとに分離された信号が、目標物を検出するため、目標検出器33に出力される。このため、ビート信号の、周波数がfより低い成分については、目標検出器33では、低利得系の受信系で処理した信号から目標を検出することにより、高利得系では飽和レベルであるビート信号から目標を検出し、必要なダイナミックレンジを得ることができる。目標検出器33は、常に目標物からの信号レベルが高利得系の飽和レベルをこえるため、低利得系から目標物を検出する。 For the beat signal component having a frequency lower than f 1, there is no signal having a signal strength targeted for the high gain system, and thus the signal amplified by the amplifier 16 in the low gain system is directed by the signal analyzer 31. The signal separated for each distance and Doppler is output to the target detector 33 in order to detect the target. For this reason, for the component of the beat signal whose frequency is lower than f 1 , the target detector 33 detects the target from the signal processed by the low-gain receiving system, and thus beats that are at the saturation level in the high-gain system. The target can be detected from the signal and the required dynamic range can be obtained. Since the signal level from the target always exceeds the saturation level of the high gain system, the target detector 33 detects the target from the low gain system.

なお、上記説明では、バンドリジェクションフィルタ18は、図5のDに示すように、周波数がfより低いビート信号の成分を除去するよう構成したが、増幅器16が増幅するビート信号の強度の範囲と、増幅器20が増幅するビート信号の強度の範囲が重複するように設計されている場合は、Dに示すように、低利得系の信号強度の下限が低利得系の最低信号強度と一致する、周波数がfより低いビート信号の成分を除去するように構成しても良い。このように設定しても、f>fであるため、高利得系への入力から、高利得系を飽和させるノイズがバンドリジェクションフィルタ18により除去され、また、目標を検出する周波数範囲全体にわたり、高利得系および低利得系によりビート信号の信号強度の範囲を全て増幅でき、必要なダイナミックレンジを得る事ができる。 In the above description, the band rejection filter 18 is configured to remove beat signal components whose frequency is lower than f 1 as shown in FIG. 5D, but the intensity of the beat signal amplified by the amplifier 16 is reduced. and range, if the range of the intensity of the beat signal is amplifier 20 amplifies is designed to overlap, as shown in D 1, the lower limit of the signal strength of the low gain systems and minimum signal strength of the low-gain system matching, frequency may also be configured to remove components of lower beat signal from f 2. Even in this setting, since f 2 > f 1 , noise that saturates the high gain system is removed from the input to the high gain system by the band rejection filter 18, and the frequency range in which the target is detected Throughout, the entire signal intensity range of the beat signal can be amplified by the high gain system and the low gain system, and the necessary dynamic range can be obtained.

以上により、本発明の実施の形態1に係るレーダ装置は、周波数がfより低い、近距離の目標物からの信号に対しては、低利得系の増幅器16の増幅する信号から目標物を検出することにより、所要のダイナミックレンジを得ることができる。また、周波数がf以上となる、遠距離の目標物からの信号に対しては、バンドリジェクションフィルタ18により高利得系の飽和を回避した増幅器20が増幅する信号と低利得系の増幅器16が増幅する信号とから目標物を検出することにより、所要のダイナミックレンジを得ることができる。このため、本発明の実施の形態1に係るレーダ装置は、周波数がfより低い、近距離の目標物からの信号と、周波数がf以上となる、遠距離の目標物からの信号とを上記のように受信する構成により、広い距離範囲について同時に広いダイナミックレンジで目標物を監視することができる。 As described above, the radar apparatus according to Embodiment 1 of the present invention detects a target from a signal amplified by the low-gain amplifier 16 for a signal from a short-range target whose frequency is lower than f 1. By detecting, a required dynamic range can be obtained. In addition, for a signal from a long-distance target having a frequency of f 1 or more, the signal amplified by the amplifier 20 that avoids saturation of the high gain system by the band rejection filter 18 and the amplifier 16 of the low gain system. The required dynamic range can be obtained by detecting the target from the signal that is amplified by. Therefore, the radar apparatus according to the first embodiment of the present invention, the frequency is lower than f 1, and the signal from the short distance of the target, frequency is f 1 or more, and the signal from the distant target Can be monitored with a wide dynamic range for a wide distance range at the same time.

また、上記の、本発明の実施の形態1に係るレーダ装置では、高利得系について、バンドリジェクションフィルタ18により、近距離からの信号強度の強い反射を除去する構成としたが、バンドリジェクションフィルタ18の替わりに、ハイパスフィルタを使用することにより、近距離からのノイズを除去する構成としても良い。   In the radar apparatus according to the first embodiment of the present invention, the high gain system is configured to remove the reflection having a strong signal intensity from a short distance by the band rejection filter 18. Instead of the filter 18, a high-pass filter may be used to remove noise from a short distance.

実施の形態2.
位置を固定して使用する固定型のレーダ装置などでは、レーダ装置の覆域内に島や構造物などの大型の反射物が存在する場合、大型の反射物からの反射信号によっても、高利得系の増幅器が飽和することがある。実施の形態2では、このような大型の反射物からの反射信号による高利得系の飽和を回避する構成を示す。
Embodiment 2. FIG.
In a fixed radar device that uses a fixed position, if there is a large reflector such as an island or a structure in the coverage area of the radar device, a high gain system can be obtained even by a reflected signal from the large reflector. May be saturated. The second embodiment shows a configuration that avoids saturation of a high gain system due to a reflection signal from such a large reflector.

図6は、この発明の実施の形態2に係るレーダ装置の構成を示す機能ブロック図である。図6に示すとおり、実施の形態2に係るレーダ装置は、送信器1、送信アンテナ2、複数の受信アンテナ3、受信器4a、信号処理器5、および表示器6を備えている。図6に示すレーダ装置の図1の構成との違いは、受信器4の代わりに受信器4aを備えることであり、送信器1、送信アンテナ2、複数の受信アンテナ3、信号処理器5、および表示器6については同様であるため、説明を省略する。   FIG. 6 is a functional block diagram showing the configuration of the radar apparatus according to Embodiment 2 of the present invention. As shown in FIG. 6, the radar apparatus according to the second embodiment includes a transmitter 1, a transmission antenna 2, a plurality of reception antennas 3, a receiver 4 a, a signal processor 5, and a display 6. The radar apparatus shown in FIG. 6 is different from the configuration of FIG. 1 in that a receiver 4a is provided instead of the receiver 4, and a transmitter 1, a transmission antenna 2, a plurality of reception antennas 3, a signal processor 5, Since the same applies to the display 6, the description thereof is omitted.

受信器4aは、信号発生器11と、複数の受信処理器12aとを備えている。それぞれの受信処理器12aでは、図1における受信処理器12と同様、ミクサ13の出力は、分配器14で2分岐され、それぞれの分岐は、低利得系と高利得系に接続される。受信処理器12aでは、高利得系の構成が図1における受信処理器12と異なり、高利得系のビート信号を処理するバンドリジェクションフィルタ18、減衰器19、増幅器20、AD変換器21に加え、バンドリジェクションフィルタ18xを備えている。バンドリジェクションフィルタ18は、前述の通り、ビート信号から近距離からのクラッタを除去するものであるのに対し、バンドリジェクションフィルタ18xは、ビート信号から大型の反射物の反射信号を除去するものである。   The receiver 4a includes a signal generator 11 and a plurality of reception processors 12a. In each reception processor 12a, as in the reception processor 12 in FIG. 1, the output of the mixer 13 is bifurcated by a distributor 14, and each branch is connected to a low gain system and a high gain system. In the reception processor 12a, the configuration of the high gain system is different from that of the reception processor 12 in FIG. 1, and in addition to the band rejection filter 18, the attenuator 19, the amplifier 20, and the AD converter 21 for processing the high gain system beat signal. A band rejection filter 18x is provided. The band rejection filter 18 removes clutter from a short distance from the beat signal as described above, while the band rejection filter 18x removes the reflection signal of a large reflector from the beat signal. It is.

図7に、ビート信号の信号強度と、受信処理器12aの低利得系と高利得系のそれぞれの処理する信号強度を表す。図7に示すように、近距離からのノイズの他に、島や構造物などの大型の反射物からの、甚だしく信号強度が集中する反射信号がEのように存在する場合、Eの部分の合計電力により、高利得系が常に飽和する。島や構造物などの大型の反射物のレーダ装置からの距離は常に一定であるため、Eの部分の信号は、当該の反射物とレーダ装置との間の距離に該当するfからfの範囲の周波数成分となる。このため、ビート信号からfからfの範囲の周波数成分を除去するバンドリジェクションフィルタ18xにより大型の反射物からの信号であるEの部分の信号を除去することにより、増幅器20が飽和することを防止する。 FIG. 7 shows the signal strength of the beat signal and the signal strength processed by each of the low gain system and the high gain system of the reception processor 12a. As shown in FIG. 7, when there is a reflected signal like E from a large reflector such as an island or a structure in addition to noise from a short distance, as shown by E, The total gain always saturates the high gain system. Since the distance from the radar device of a large reflecting object, such as islands or structure is always constant, the signal of the portion of E is, f 4 from f 3 corresponding to the distance between the reflective object and the radar apparatus It becomes the frequency component of the range. Therefore, by removing the signal of the portion of E is the signal from the large reflector by the band rejection filter 18x for removing frequency components in the range of the beat signal from f 3 of the f 4, amplifier 20 is saturated To prevent that.

以上により、本発明の実施の形態2に係るレーダ装置は、島や構造物などの大型の反射物からの反射信号により高利得系を飽和させる信号入力が有る場合も、バンドリジェクションフィルタ18に加えて大型の反射物の距離に該当する周波数成分を除去するバンドリジェクションフィルタ18xを使用し高利得系の飽和を回避した増幅器20が増幅する信号と低利得系の増幅器16が増幅する信号とから目標物を検出することにより、所要のダイナミックレンジを得ることができる。   As described above, the radar apparatus according to Embodiment 2 of the present invention also includes the band rejection filter 18 in the band rejection filter 18 even when there is a signal input that saturates the high gain system with a reflection signal from a large reflector such as an island or a structure. In addition, a signal that is amplified by an amplifier 20 that avoids saturation of a high gain system using a band rejection filter 18x that removes a frequency component corresponding to the distance of a large reflector, and a signal that is amplified by a low gain system amplifier 16 The required dynamic range can be obtained by detecting the target from.

なお、図6では、高利得系を飽和させる信号入力として、近距離からのノイズおよび、大型の反射物からの反射信号の両方がある場合のレーダ信号の構成を示したが、例えば、レーダ装置が目標物を観測する距離範囲が狭く、図8の様に、大型の反射物からの反射信号のみが高利得系を飽和させる場合は、図6におけるバンドリジェクションフィルタ18を用いず、バンドリジェクションフィルタ18xのみによりビート信号から飽和レベルの信号を除去する構成としても良い。   FIG. 6 shows the configuration of the radar signal when there is both noise from a short distance and a reflected signal from a large reflector as a signal input for saturating the high gain system. When the distance range for observing the target is narrow and only the reflected signal from the large reflector saturates the high gain system as shown in FIG. 8, the band rejection filter 18 in FIG. Alternatively, a saturation level signal may be removed from the beat signal only by the motion filter 18x.

実施の形態3.
実施の形態1、2では、高利得系と低利得系の2つの受信系により必要なダイナミックレンジを得る構成だが、レーダ装置が目標物を観測する距離範囲が広く、より高利得で増幅することが必要な信号も受信する必要等により、ダイナミックレンジが更に広くなり、2つの受信系のみでは、十分でない場合がある。そのような場合は、3つ又はそれ以上の受信系により必要なダイナミックレンジを得る構成とすることができる。
Embodiment 3 FIG.
In the first and second embodiments, the required dynamic range is obtained by the two receiving systems of the high gain system and the low gain system. However, the radar apparatus has a wide distance range for observing the target and amplifies with higher gain. However, the dynamic range is further widened due to the necessity of receiving a signal that needs to be received, and the two receiving systems alone may not be sufficient. In such a case, a configuration in which a necessary dynamic range is obtained by three or more receiving systems can be employed.

図9は、この発明の実施の形態3に係るレーダ装置の構成を示す機能ブロック図である。図9に示すとおり、実施の形態3に係るレーダ装置は、送信器1、送信アンテナ2、複数の受信アンテナ3、受信器4b、信号処理器5a、および表示器6を備えている。図9に示すレーダ装置の図1や図6の構成との違いは、受信器4や4aの代わりに受信器4bを備え、信号処理器5の代わりに信号処理器5aを備えることであり、送信器1、送信アンテナ2、複数の受信アンテナ3、および表示器6については同様であるため、説明を省略する。   FIG. 9 is a functional block diagram showing the configuration of the radar apparatus according to Embodiment 3 of the present invention. As shown in FIG. 9, the radar apparatus according to the third embodiment includes a transmitter 1, a transmission antenna 2, a plurality of reception antennas 3, a receiver 4b, a signal processor 5a, and a display 6. 9 differs from the configuration of the radar apparatus shown in FIG. 1 or 6 in that a receiver 4b is provided instead of the receiver 4 or 4a, and a signal processor 5a is provided instead of the signal processor 5. Since the transmitter 1, the transmission antenna 2, the plurality of reception antennas 3, and the display 6 are the same, the description thereof is omitted.

受信器4bは、信号発生器11と、複数の受信処理器12bとを備えている。それぞれの受信処理器12bでは、ミクサ13の出力は、分配器14aで3分岐され、それぞれの分岐は、高利得系1、高利得系2、および低利得系に接続される。高利得系1は、バンドリジェクションフィルタ18a、減衰器19a、増幅器20a、AD変換器21aを備え、高利得系2は、バンドリジェクションフィルタ18b、減衰器19b、増幅器20b、AD変換器21bを備え、低利得系は、減衰器15、増幅器16、AD変換器17を備えている。   The receiver 4b includes a signal generator 11 and a plurality of reception processors 12b. In each reception processor 12b, the output of the mixer 13 is branched into three by the distributor 14a, and each branch is connected to the high gain system 1, the high gain system 2, and the low gain system. The high gain system 1 includes a band rejection filter 18a, an attenuator 19a, an amplifier 20a, and an AD converter 21a. The high gain system 2 includes a band rejection filter 18b, an attenuator 19b, an amplifier 20b, and an AD converter 21b. The low gain system includes an attenuator 15, an amplifier 16, and an AD converter 17.

信号処理器5aは、受信器4bのそれぞれの受信処理器12bが出力する高利得系1の出力を目標物の方位、距離、ドップラで分離する信号分析器32a、受信器4bのそれぞれの受信処理器12bが出力する高利得系2の出力を目標物の方位、距離、ドップラで分離する信号分析器32b、受信器4bのそれぞれの受信処理器12bが出力する低利得系の出力を目標物の方位、距離、ドップラで分離する信号分析器31、および信号分析器31、32a、32bの出力より目標物からの反射波を検出する目標検出器33aを備えている。   The signal processor 5a receives each of the reception processing of the signal analyzer 32a and the receiver 4b that separates the output of the high gain system 1 output from the respective reception processors 12b of the receiver 4b by the azimuth, distance, and Doppler of the target. The output of the high gain system 2 output from the receiver 12b is separated by the azimuth, distance and Doppler of the target, and the output of the low gain system output from the respective reception processors 12b of the receiver 4b A signal analyzer 31 that separates by azimuth, distance, and Doppler, and a target detector 33a that detects a reflected wave from the target from the outputs of the signal analyzers 31, 32a, and 32b are provided.

図10に、ビート信号の信号強度と、受信処理器12bの低利得系と高利得系のそれぞれの処理する信号強度を表す。高利得系1は、信号強度の下限付近を含む、レベルの低い信号を処理するものであり、図10のB1に示す信号範囲を増幅器20aで増幅する。高利得系2は、高利得系1で飽和する信号を処理するものであり、図10のB2に示す信号範囲を増幅器20bで増幅する。低利得系は、高利得系1および高利得系2で飽和する信号レベルから、ビート信号の信号強度の上限を含む信号を処理するものであり、図10のCで示す信号範囲を増幅器16で増幅する。増幅器16と増幅器20aと増幅器20bにより、連続した信号強度のビート信号を増幅できるようにする為、増幅器20aが増幅するビート信号の強度の範囲と、増幅器20bが増幅するビート信号の強度の範囲、増幅器20bが増幅するビート信号の強度の範囲と、増幅器16が増幅するビート信号の強度の範囲は、重複するように設計することが望ましい。これら3つの受信系により、B1、B2、Cをあわせたダイナミックレンジを得ることができる。   FIG. 10 shows the signal strength of the beat signal and the signal strength processed by each of the low gain system and the high gain system of the reception processor 12b. The high gain system 1 processes a low-level signal including the vicinity of the lower limit of the signal strength, and amplifies the signal range indicated by B1 in FIG. 10 by the amplifier 20a. The high gain system 2 processes a signal saturated by the high gain system 1, and amplifies the signal range indicated by B2 in FIG. 10 by the amplifier 20b. The low gain system processes a signal including the upper limit of the signal strength of the beat signal from the signal level saturated in the high gain system 1 and the high gain system 2. The signal range indicated by C in FIG. Amplify. In order that the amplifier 16, the amplifier 20 a, and the amplifier 20 b can amplify beat signals having continuous signal strength, the beat signal strength range amplified by the amplifier 20 a and the beat signal strength range amplified by the amplifier 20 b, It is desirable that the beat signal intensity range amplified by the amplifier 20b and the beat signal intensity range amplified by the amplifier 16 are designed to overlap. With these three receiving systems, a dynamic range combining B1, B2, and C can be obtained.

図10のD2に示す、周波数がf以下の周波数範囲には、近距離の海面などの地表からの反射によるノイズのビート信号が、増幅器20aに対する、帯域幅を持つ信号強度の高い信号として常に存在する。このため、高利得系1にあるバンドリジェクションフィルタ18aは、f以下の周波数範囲の、増幅器20aを飽和させる信号を除去することにより、増幅器20aが飽和することを防止する。 Indicated by D2 in FIG. 10, in the frequency range between f 5 or less, a beat signal of the noise due to reflection from the surface of the short-range of sea level, for the amplifier 20a, as always high signal intensity with a bandwidth signal Exists. Therefore, the band rejection filter 18a in the high gain system 1 by removing a signal to saturate the f 5 following frequency range, an amplifier 20a, to prevent the amplifier 20a is saturated.

図10のD3に示す、周波数がf以下の周波数範囲には、近距離の海面などの地表からの反射によるノイズのビート信号が、増幅器20bに対する、帯域幅を持つ信号強度の高い信号として常に存在する。このため、高利得系2にあるバンドリジェクションフィルタ18bは、f以下の周波数範囲の、増幅器20bを飽和させる信号を除去することにより、増幅器20bが飽和することを防止する。 Shown in D3 in FIG. 10, in the frequency range between f 6 or less, a beat signal of the noise due to reflection from the surface of the short-range of sea level, for the amplifier 20b, always as high signal intensity with a bandwidth signal Exists. Therefore, the band rejection filter 18b in the high gain system 2, the f 6 following frequency range, by removing signal saturating the amplifier 20b, to prevent the amplifier 20b is saturated.

なお、上記の説明では、高利得系1、高利得系2、低利得系の3つの受信系により受信処理器を構成する例を示したが、必要なダイナミックレンジが、3つの受信系で得られるダイナミックレンジ以上の場合は、更に、高利得系2で飽和する信号を処理する高利得系3を、低利得系との間に設け、対応する高利得系3の信号分析器を設けるように構成しても良い。このようにして、必要なダイナミックレンジが得られるまで、高利得系nで飽和する信号を処理する高利得系n+1を追加し、高利得系1〜n+1、低利得系の合計n+2の受信系により受信処理器を構成し、対応するn+2の信号分析器により信号処理器を構成することにより、必要なダイナミックレンジを得ることができる。   In the above description, the example in which the reception processor is configured by the three reception systems of the high gain system 1, the high gain system 2, and the low gain system is shown. However, a necessary dynamic range is obtained by the three reception systems. In the case where the dynamic range is not less than that, a high gain system 3 for processing a signal saturated in the high gain system 2 is further provided between the low gain system and a corresponding signal analyzer for the high gain system 3 is provided. It may be configured. In this way, until a necessary dynamic range is obtained, a high gain system n + 1 for processing a signal saturated in the high gain system n is added, and the high gain systems 1 to n + 1 and the low gain system total n + 2 receiving systems. A necessary dynamic range can be obtained by configuring a reception processor and configuring the signal processor with a corresponding n + 2 signal analyzer.

以上により、本発明の実施の形態3に係るレーダ装置は、レーダ装置が目標物を観測する距離範囲が広いなどにより、2つの受信系のみでは、十分なダイナミックレンジが得られない場合でない場合について、3つ又はそれ以上の受信系を用いて必要なダイナミックレンジを得ることができる。実施の形態3に係るレーダ装置は、1つの低利得系と2つまたはそれ以上の、互いに異なる信号レベルのビート信号を受信する高利得系を含む構成とし、それぞれの高利得系を飽和させる周波数成分を、それぞれの高利得系のバンドリジェクションフィルタ18により除去することにより、増幅器の飽和を回避する。   As described above, the radar apparatus according to Embodiment 3 of the present invention is not a case where a sufficient dynamic range cannot be obtained with only two receiving systems due to a wide distance range over which the radar apparatus observes a target. The required dynamic range can be obtained using three or more receiving systems. The radar apparatus according to Embodiment 3 includes one low gain system and two or more high gain systems that receive beat signals having different signal levels, and saturates each high gain system. The components are removed by the respective high gain band rejection filters 18 to avoid amplifier saturation.

1 送信器
2 送信アンテナ
3 受信アンテナ
4、4a、4b 受信器
5、5a 信号処理器
6 表示器
11 信号発生器
12、12a、12b 受信処理器
13 ミクサ
14、14a 分配器
15、19、19a、19b 減衰器
16、20、20a、20b 増幅器
17、21 AD変換器
18、18a、18b、18x バンドリジェクションフィルタ
31 信号分析器(低利得系)
32、32a、32b 信号分析器(高利得系)
33、33a 目標検出器
34、37、37a、37b DBF処理
35、38、38a、38b 距離分離処理
36、39、39a、39b ドップラ処理
DESCRIPTION OF SYMBOLS 1 Transmitter 2 Transmit antenna 3 Receive antenna 4, 4a, 4b Receiver 5, 5a Signal processor 6 Display 11 Signal generator 12, 12a, 12b Receive processor 13 Mixer 14, 14a Divider 15, 19, 19a, 19b Attenuators 16, 20, 20a, 20b Amplifiers 17, 21 AD converters 18, 18a, 18b, 18x Band rejection filter 31 Signal analyzer (low gain system)
32, 32a, 32b Signal analyzer (high gain system)
33, 33a Target detector 34, 37, 37a, 37b DBF processing 35, 38, 38a, 38b Distance separation processing 36, 39, 39a, 39b Doppler processing

Claims (2)

周波数変調した変調信号とこの変調信号を基にした送信波の目標物からの反射を受信した受信信号とが入力され、前記目標物との間の距離に対応した周波数のビート信号を生成するミクサと、このミクサの出力が2分岐され、一方の分岐出力から出力されるビート信号の所定の距離範囲に対応する周波数の成分を除去する周波数成分除去手段と、この周波数成分除去手段から出力されるビート信号を増幅する第1の増幅器と、前記ミクサの他方の分岐出力から出力されるビート信号を増幅する第2の増幅器と、前記第1の増幅器および前記第2の増幅器から出力されるビート信号を分析し、前記第2の増幅器から出力されるビート信号から前記所定の距離範囲の前記目標物を検出し、前記第1の増幅器および前記第2の増幅器から出力されるビート信号から前記所定の距離範囲以外の距離にある前記目標物を検出する信号処理器とを備えたレーダ装置。 A mixer for generating a beat signal having a frequency corresponding to a distance between the target and a frequency-modulated modulation signal and a reception signal received from a transmission wave based on the modulation signal. The mixer output is bifurcated, and the frequency component removing means for removing the frequency component corresponding to the predetermined distance range of the beat signal outputted from one of the branch outputs, and the frequency component removing means outputs the result. A first amplifier for amplifying a beat signal; a second amplifier for amplifying a beat signal output from the other branch output of the mixer; and a beat signal output from the first amplifier and the second amplifier And detecting the target within the predetermined distance range from the beat signal output from the second amplifier, and outputting from the first amplifier and the second amplifier. Radar apparatus provided with the over preparative signal and a signal processor for detecting the target at a distance other than the predetermined distance range. 前記第2の増幅器は、前記一方の分岐出力から出力されるビート信号が前記第1の増幅器の飽和レベル以上となる前記ミクサの出力の、前記他方の分岐出力のビート信号を増幅することを特徴とする請求項1に記載のレーダ装置。 The second amplifier amplifies the beat signal of the other branch output of the mixer output in which the beat signal output from the one branch output is equal to or higher than the saturation level of the first amplifier. The radar apparatus according to claim 1.
JP2014109275A 2013-06-11 2014-05-27 Radar equipment Active JP6264194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014109275A JP6264194B2 (en) 2013-06-11 2014-05-27 Radar equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013122954 2013-06-11
JP2013122954 2013-06-11
JP2014109275A JP6264194B2 (en) 2013-06-11 2014-05-27 Radar equipment

Publications (2)

Publication Number Publication Date
JP2015017967A true JP2015017967A (en) 2015-01-29
JP6264194B2 JP6264194B2 (en) 2018-01-24

Family

ID=52439071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014109275A Active JP6264194B2 (en) 2013-06-11 2014-05-27 Radar equipment

Country Status (1)

Country Link
JP (1) JP6264194B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132742A1 (en) * 2015-02-18 2016-08-25 日本電気株式会社 Signal-processing device and processing method, recording medium, and target detection device and detection method
JP2018059827A (en) * 2016-10-06 2018-04-12 京セラ株式会社 Range finder, ranging method, and vehicle
JP2019184339A (en) * 2018-04-05 2019-10-24 株式会社デンソー Radar receiver
JP7055491B1 (en) 2020-12-21 2022-04-18 WaveArrays株式会社 Radar device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198379A (en) * 1989-01-28 1990-08-06 Fujitsu Ten Ltd Radar apparatus using frequency-modulated wave
JPH04142486A (en) * 1990-10-02 1992-05-15 Fujitsu Ten Ltd Two-frequency fm-cw radar device
DE4324745A1 (en) * 1993-07-23 1995-01-26 Deutsche Aerospace Method and arrangement for conditioning radar signals
JPH11174143A (en) * 1997-12-11 1999-07-02 Mitsubishi Electric Corp Method and device for controlling dynamic range
JP2007170845A (en) * 2005-12-19 2007-07-05 Toshiba Corp Radar system
JP2008072506A (en) * 2006-09-14 2008-03-27 Toshiba Corp Radio receiver and radio receiving method
JP2011237268A (en) * 2010-05-10 2011-11-24 Mitsubishi Electric Corp Fm-cw radar device
JP2013088273A (en) * 2011-10-18 2013-05-13 Mitsubishi Electric Corp Fmcw radar device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198379A (en) * 1989-01-28 1990-08-06 Fujitsu Ten Ltd Radar apparatus using frequency-modulated wave
JPH04142486A (en) * 1990-10-02 1992-05-15 Fujitsu Ten Ltd Two-frequency fm-cw radar device
DE4324745A1 (en) * 1993-07-23 1995-01-26 Deutsche Aerospace Method and arrangement for conditioning radar signals
JPH11174143A (en) * 1997-12-11 1999-07-02 Mitsubishi Electric Corp Method and device for controlling dynamic range
JP2007170845A (en) * 2005-12-19 2007-07-05 Toshiba Corp Radar system
JP2008072506A (en) * 2006-09-14 2008-03-27 Toshiba Corp Radio receiver and radio receiving method
JP2011237268A (en) * 2010-05-10 2011-11-24 Mitsubishi Electric Corp Fm-cw radar device
JP2013088273A (en) * 2011-10-18 2013-05-13 Mitsubishi Electric Corp Fmcw radar device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132742A1 (en) * 2015-02-18 2016-08-25 日本電気株式会社 Signal-processing device and processing method, recording medium, and target detection device and detection method
JPWO2016132742A1 (en) * 2015-02-18 2017-12-21 日本電気株式会社 Signal processing device, processing method and program, target detection device, and detection method
US10761185B2 (en) 2015-02-18 2020-09-01 Nec Corporation Signal processing device, signal processing method, recording medium, target detection device, and target detection method
JP2018059827A (en) * 2016-10-06 2018-04-12 京セラ株式会社 Range finder, ranging method, and vehicle
JP2021101192A (en) * 2016-10-06 2021-07-08 京セラ株式会社 Signal processing apparatus, signal processing method, vehicle, distance measuring device, and distance measuring method
JP7159381B2 (en) 2016-10-06 2022-10-24 京セラ株式会社 Signal processing device, signal processing method, vehicle, ranging device and ranging method
JP2019184339A (en) * 2018-04-05 2019-10-24 株式会社デンソー Radar receiver
JP7187804B2 (en) 2018-04-05 2022-12-13 株式会社デンソー radar receiver
JP7055491B1 (en) 2020-12-21 2022-04-18 WaveArrays株式会社 Radar device
JP2022098395A (en) * 2020-12-21 2022-07-01 WaveArrays株式会社 Radar device

Also Published As

Publication number Publication date
JP6264194B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
US10989589B2 (en) Interferometric vibration observation device, vibration observation program, recording medium, vibration observation method and vibration observation system
EP2584373B1 (en) Radar device
US9952311B2 (en) Radar apparatus and method of reducing interference
JP6264194B2 (en) Radar equipment
JP2013238474A (en) Laser radar device
JP2008014837A (en) Radar system and its signal processing method
JP2007322331A (en) Radar device
JP6462365B2 (en) Radar apparatus and radar signal processing method thereof
JP4053542B2 (en) Laser radar equipment
KR101184622B1 (en) Apparatus and method for avoiding interference among car radars based on fmcw waveform
JP2007085758A (en) Lidar device
JP4932378B2 (en) Coherent rider device
US11041953B2 (en) Object detecting device and sensor device
KR100979284B1 (en) Radar transmitter receiver
US11914021B2 (en) Velocity measurement device, velocity measurement program, recording medium, and velocity measurement method
JP5104425B2 (en) Distance measuring method and distance measuring device
JP5544737B2 (en) Radar receiver
KR100661748B1 (en) Apparatus for removing leakage signal of fmcw radar
EP3260880B1 (en) Signal-processing device and processing method, recording medium, and target detection device and detection method
US8639462B2 (en) Method and system for determining the time-of-flight of a signal
JP2015158435A (en) Ocean radar device
JP5925264B2 (en) Radar equipment
EP3783391A1 (en) Wind field information measurement method and engine room-type laser radar
JP6175894B2 (en) Radar equipment
JP4660437B2 (en) Radar equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R151 Written notification of patent or utility model registration

Ref document number: 6264194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250