JP2015017661A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2015017661A
JP2015017661A JP2013145117A JP2013145117A JP2015017661A JP 2015017661 A JP2015017661 A JP 2015017661A JP 2013145117 A JP2013145117 A JP 2013145117A JP 2013145117 A JP2013145117 A JP 2013145117A JP 2015017661 A JP2015017661 A JP 2015017661A
Authority
JP
Japan
Prior art keywords
mass
rolling
raceway
bearing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013145117A
Other languages
Japanese (ja)
Inventor
祐介 森藤
yusuke Morifuji
祐介 森藤
宇山 英幸
Hideyuki Uyama
英幸 宇山
紘樹 山田
Koki Yamada
紘樹 山田
雅子 堤
Masako Tsutsumi
雅子 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013145117A priority Critical patent/JP2015017661A/en
Publication of JP2015017661A publication Critical patent/JP2015017661A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolling bearing for suppressing white tissue separation while reducing its cost, even when used under conditions that current flows between an outer ring 3 and an inner ring 5.SOLUTION: The outer ring 3 as part of a ball bearing 1 is formed of steel containing 0.2-0.6 mass% C, 0.1-0.6 mass% Si, 0.6-1.5 mass% Mn, 0.6-1.8 Cr, and Fe and inevitable impurities for the rest, and subjected to either carburizing or nitrocarburizing treatment and tempering treatment. A residual austenite amount on the top surface of an outer ring raceway 2 is 20-45 vol.%, a C+N amount at a position of a depth X being 1% of the diameter of each of balls 6 and 6 is 0.80-2.00 mass%, and compressive residual stress at the position of the depth X with respect to the peripheral direction of the outer ring 3 and that with respect to the axial direction thereof are 100-500 MPa and 50-500 MPa, respectively.

Description

この発明は、ラジアル軸受、スラスト軸受等の一般的な転がり軸受、直動軸受(リニアガイド)やボールねじ等の特殊な転がり軸受を含めた、各種転がり軸受の耐久性向上を図るものである。より具体的には、発電機、3相モータ、サーボモータの如き電動モータや発電機等の回転軸を備えた回転電気機器の回転軸をハウジングに対し回転自在に支持する為の転がり軸受の如く、当該転がり軸受を構成する1対の軌道輪部材同士の間に電位差が発生し、これら両軌道輪部材同士の間に電流が流れる様な厳しい使用条件下でも、これら両軌道輪及び複数個の転動体を含む軸受部品(特に条件が厳しい軌道輪)を構成する鋼の組織変化を抑え、当該軸受部品を含む前記転がり軸受の耐久性向上を図るものである。   The present invention is intended to improve the durability of various rolling bearings, including general rolling bearings such as radial bearings and thrust bearings, and special rolling bearings such as linear motion bearings (linear guides) and ball screws. More specifically, such as a rolling bearing for rotatably supporting the rotating shaft of a rotating electrical apparatus having a rotating shaft such as an electric motor such as a generator, a three-phase motor, or a servo motor, or a generator. Even under severe use conditions where a potential difference is generated between a pair of bearing ring members constituting the rolling bearing and a current flows between these two bearing ring members, It is intended to improve the durability of the rolling bearing including the bearing component by suppressing the structural change of the steel constituting the bearing component including the rolling element (particularly the raceway having severe conditions).

各種回転電気機器の回転支持部に、例えば本発明の対象となる転がり軸受の1種である、図1に示す様なラジアル玉軸受1が組み込まれている。このラジアル玉軸受1は、内周面に外輪軌道2を有する外輪3と、外周面に内輪軌道4を有する内輪5と、これら外輪軌道2と内輪軌道4との間に設けた、それぞれが転動体である複数個の玉6、6とを備える。これら各玉6、6は、円周方向に等間隔に配置された状態で、保持器7により、転動自在に保持されている。   A radial ball bearing 1 as shown in FIG. 1, which is one type of rolling bearing that is an object of the present invention, is incorporated in a rotation support portion of various rotating electrical devices. The radial ball bearing 1 includes an outer ring 3 having an outer ring raceway 2 on an inner peripheral surface, an inner ring 5 having an inner ring raceway 4 on an outer peripheral surface, and an outer ring raceway 2 and an inner ring raceway 4 provided between the outer ring raceway 2 and the inner ring raceway 4. A plurality of balls 6 and 6 which are moving bodies are provided. These balls 6, 6 are held by a cage 7 so as to be able to roll while being arranged at equal intervals in the circumferential direction.

又、大きなラジアル荷重が加わる回転支持部には、やはり本発明の対象となる転がり軸受の1種である、例えば図2に示す様な、転動体として円筒ころ8、8を使用したラジアル円筒ころ軸受9が組み込まれている。このラジアル円筒ころ軸受9は、内周面に円筒凹面状の外輪軌道2aを有する外輪3aと、外周面に円筒凸面状の内輪軌道4aを有する内輪5aと、これら外輪軌道2aと内輪軌道4aとの間に、保持器7aに保持された状態で転動自在に設けられた、それぞれが転動体である前記各円筒ころ8、8とを備える。又、前記外輪3aの両端部内周面に内向鍔部10、10を、前記内輪5aの一端部外周面に外向鍔部11を、それぞれ形成している。   Further, the rotary support portion to which a large radial load is applied is also a kind of a rolling bearing which is a subject of the present invention, for example, a radial cylindrical roller using cylindrical rollers 8 and 8 as rolling elements as shown in FIG. A bearing 9 is incorporated. The radial cylindrical roller bearing 9 includes an outer ring 3a having a cylindrical concave outer ring raceway 2a on an inner peripheral surface, an inner ring 5a having a cylindrical convex inner ring raceway 4a on an outer peripheral surface, the outer ring raceway 2a and the inner ring raceway 4a. In between, each said cylindrical roller 8 and 8 each provided as a rolling element was provided so that rolling was possible in the state hold | maintained at the holder | retainer 7a. Further, inward flange portions 10 and 10 are formed on the inner peripheral surfaces of both ends of the outer ring 3a, and outward flange portions 11 are formed on the outer peripheral surface of one end portion of the inner ring 5a.

又、大きなラジアル荷重に加えてスラスト荷重が加わる回転支持部には、やはり本発明の対象となる転がり軸受の1種である、例えば図3に示す様な、転動体として円すいころ12、12を使用したラジアル円すいころ軸受13が組み込まれている。このラジアル円すいころ軸受13は、内周面に円すい凹面状の外輪軌道2bを有する外輪3bと、外周面に円すい凸面状の内輪軌道4bを有する内輪5bと、これら外輪軌道2bと内輪軌道4bとの間に、保持器7bに保持された状態で転動自在に設けられた、前記各円すいころ12、12とを備える。又、前記内輪5bの外周面両端部のうち、大径側端部には大径側鍔部14を、小径側端部には小径側鍔部15を、それぞれ形成している。尚、この小径側鍔部15は省略する場合もある。   In addition, the rotating support portion to which a thrust load is applied in addition to a large radial load is also a kind of rolling bearing that is a subject of the present invention, for example, tapered rollers 12 and 12 as rolling elements as shown in FIG. The used radial tapered roller bearing 13 is incorporated. The radial tapered roller bearing 13 includes an outer ring 3b having a tapered outer ring raceway 2b on the inner peripheral surface, an inner ring 5b having a tapered outer ring raceway 4b on the outer peripheral surface, the outer ring raceway 2b and the inner ring raceway 4b. In the meantime, the tapered rollers 12 and 12 are provided so as to be able to roll while being held by the cage 7b. Further, out of both ends of the outer peripheral surface of the inner ring 5b, a large-diameter side flange 14 is formed at the large-diameter end, and a small-diameter flange 15 is formed at the small-diameter end. The small diameter side flange 15 may be omitted.

更に、大きなラジアル荷重を受ける状態で運転され、しかも、外輪の中心軸と内輪の中心軸とを厳密に一致させたままにする事が難しい条件下では、やはり本発明の対象となる転がり軸受の1種である、図4に示す様な自動調心ころ軸受16が使用されている。この自動調心ころ軸受16では、転動体として、母線形状が部分円弧状であり、全体がビヤ樽型の、球面ころ17、17を使用している。又、外輪3cの内周面に設ける外輪軌道2cは、この外輪3cの中心軸上の点を曲率中心とする、部分球面状凹面としている。又、内輪5cの外周面には、複列の内輪軌道4c、4cを設けている。これら両内輪軌道4c、4cの母線形状は、前記各球面ころ17、17の自転中心軸に関して、前記外輪軌道2cの母線形状と対称である。更に、これら各球面ころ17、17は、それぞれ保持器7c、7cにより保持された状態で、前記外輪軌道2cと前記両内輪軌道4c、4cとの間に、転動自在に設けられている。   Furthermore, under the condition that it is operated in a state of receiving a large radial load and it is difficult to keep the center axis of the outer ring and the center axis of the inner ring in exact agreement, the rolling bearing that is the subject of the present invention is also used. One type of self-aligning roller bearing 16 as shown in FIG. 4 is used. In this self-aligning roller bearing 16, spherical rollers 17 and 17 are used as rolling elements, the bus bar shape of which is a partial arc shape, and the whole is a beer barrel type. Further, the outer ring raceway 2c provided on the inner peripheral surface of the outer ring 3c has a partially spherical concave surface with a point on the central axis of the outer ring 3c as the center of curvature. In addition, double-row inner ring raceways 4c and 4c are provided on the outer peripheral surface of the inner ring 5c. The generatrix shape of both the inner ring raceways 4c and 4c is symmetric with respect to the generatrix shape of the outer ring raceway 2c with respect to the rotation center axis of the spherical rollers 17 and 17. Further, each of the spherical rollers 17 and 17 is rotatably provided between the outer ring raceway 2c and the inner ring raceways 4c and 4c while being held by the cages 7c and 7c, respectively.

上述の図1〜4に示す様な各種転がり軸受1、9、13、16を、前述した様な回転電気機器の回転支持部に使用すると、前記1対の軌道輪部材である外輪3、3a、3b、3cと内輪5、5a、5b、5cとの間に、微小な電流である迷走電流が流れる場合がある。そして、この様な迷走電流が流れると、前記両軌道輪部材である外輪3、3a、3b、3c及び内輪5、5a、5b、5cの軌道面である、前記外輪軌道2、2a、2b、2cや前記内輪軌道4、4a、4b、4c、更には、それぞれが前記各転動体である前記各玉6、6、前記各円筒ころ8、8、前記各円すいころ12、12、前記各球面ころ17、17の表面のうちで、前記外輪軌道2、2a、2b、2c及び前記内輪軌道4、4a、4b、4cと転がり接触する部分である転動面に、電気化学的に金属が溶け出す腐食形態である、電食が発生する場合がある。この様にして発生する電食は、前記各軌道面や前記各転動面の表面粗さを悪化させ(平滑面ではなく粗面とし)て「表面起点型剥離」を誘発する。又、通電は、互いに転がり接触する面同士の間、即ち、転がり軸受の内部に存在する複数の転がり接触部で安定的に行われるとは限らず、スパークを伴って行われる場合が多い。そして、何れかの転がり接触部でスパークが発生すると、当該転がり接触部に介在する潤滑剤を構成する炭化水素系潤滑油の分解に基づき、水素(特に水素原子)が発生する。この様にして発生した水素が前記各転がり接触部で前記各軸受部品を構成する金属材料(鋼)中に侵入すると、当該軸受部品の表面部分に、具体的には、軌道面と転動体の転動面との転がり接触に基づいて発生する、周方向の摩擦力に基づく剪断応力が最大となる転動体直径の約1%深さの部分に於いて、転がり軸受の技術分野で広く知られている様な、当該部分が白色に変化する、「白色組織変化」が発生する。この様な変化に基づいて発生した白色組織部分で水素脆性が発生し、この白色組織を起点として、白色組織剥離と呼ばれる早期剥離が発生し易くなる。   When the various rolling bearings 1, 9, 13, and 16 as shown in FIGS. 1 to 4 are used in the rotation support portion of the rotary electric device as described above, the outer rings 3, 3a that are the pair of bearing ring members. 3b, 3c and the inner rings 5, 5a, 5b, 5c may flow a stray current that is a minute current. When such a stray current flows, the outer ring raceways 2, 2a, 2b, which are the raceways of the outer races 3, 3a, 3b, 3c and the inner races 5, 5a, 5b, 5c, which are both raceway members, 2c, the inner ring raceways 4, 4a, 4b, 4c, and the balls 6, 6, the cylindrical rollers 8, 8, the tapered rollers 12, 12, and the spherical surfaces. Of the surfaces of the rollers 17 and 17, metal is electrochemically melted on the rolling surface which is a portion in rolling contact with the outer ring raceways 2, 2a, 2b and 2c and the inner ring raceways 4, 4a, 4b and 4c. Electric corrosion, which is a form of corrosion that occurs, may occur. The electrolytic corrosion generated in this manner deteriorates the surface roughness of each raceway surface and each rolling surface (rather than a smooth surface) and induces “surface-initiated peeling”. In addition, energization is not always performed stably between the surfaces that are in rolling contact with each other, that is, at a plurality of rolling contact portions existing inside the rolling bearing, and is often performed with sparks. And when a spark generate | occur | produces in any rolling contact part, hydrogen (especially hydrogen atom) will generate | occur | produce based on decomposition | disassembly of the hydrocarbon-type lubricating oil which comprises the lubricant which intervenes in the said rolling contact part. When the hydrogen generated in this way enters the metal material (steel) constituting each bearing component at each rolling contact portion, specifically on the surface portion of the bearing component, specifically, the raceway surface and the rolling element. It is widely known in the technical field of rolling bearings at a depth of about 1% of the rolling element diameter where the shear stress based on the circumferential frictional force generated based on the rolling contact with the rolling surface is maximized. As shown, a “white tissue change” occurs in which the portion changes to white. Hydrogen embrittlement occurs in the white structure portion generated based on such a change, and early exfoliation called white structure exfoliation is likely to occur starting from this white structure.

軸受部品の表面が早期剥離する原因としては、上述の様な表面起点型剥離や白色組織剥離の他にも、当該軸受部品を構成する材料内部の介在物を起点として生じる「介在物起点型剥離」等が知られている。又、表面起点型剥離に就いても、塵等の異物を噛み込んだ圧痕を起点として生じる事が知られている。これら各剥離は、それぞれ異なるメカニズムで生じる為、それぞれに就いて、互いに異なる対策が必要である。本発明は、主として、このうちの電食に基づく表面の荒れに起因する表面起点型剥離と、白色組織剥離とを抑える事を目的としているが、これらの電食に基づく表面の荒れや白色剥離を抑える為には、転がり軸受に電流が流れない様にする事が有効である。この為、例えば特許文献1に記載されている様に、何れかの軌道輪を、絶縁層を介してハウジングや回転軸に組み付ける事が行われているが、当該軌道輪の加工が面倒でコストが嵩む。又、特許文献2〜3に記載されている様に、転がり軸受内に充填する潤滑剤や転がり軸受に組み付けるシールリングとして導電性を有するものを使用し、1対の軌道輪同士の間に生じる電位差に基づく電流のうちの多くの割合を、前記導電性を有する前記潤滑剤若しくはシールリングを通じて流し、鋼製の軸受部品の表面同士が当接する転がり接触部を流れる電流の割合を低く抑える事も行われている。但し、この様な対策では、前述した回転電気機器の回転軸を支持する為の転がり軸受の如く、1対の軌道輪同士の間に生じる電位差が大きくなり、これら両軌道輪同士の間を流れる電流の絶対値が多くなる様な厳しい使用条件下では、前述した様な白色組織剥離を、必ずしも十分には抑えられない。例えば、風力発電機の回転支持部に組み込む転がり軸受の場合、内輪と外輪との間に大きな電位差が発生し易く、要求される耐久性(メンテナンスフリーでの運転時間)に関しても、20〜30年と非常に長い為、前記潤滑剤やシールリングによる対策のみでは不十分である。   The cause of the early peeling of the surface of the bearing part is not only the surface-origin type peeling or white structure peeling as described above, but also “inclusion-origin-type peeling that occurs from the inclusion in the material constituting the bearing part. Is known. In addition, it is known that even when surface-origin type peeling is performed, an indentation in which foreign matter such as dust is bitten is generated as a starting point. Since each of these peelings occurs by different mechanisms, different measures are required for each. The present invention is mainly intended to suppress surface-origin-type peeling caused by surface roughness based on electric corrosion and white structure peeling, and surface roughness and white peeling based on these electric corrosion. In order to suppress this, it is effective to prevent current from flowing through the rolling bearing. For this reason, for example, as described in Patent Document 1, any of the race rings is assembled to a housing or a rotating shaft via an insulating layer. However, the machining of the race rings is troublesome and costly. Is bulky. Also, as described in Patent Documents 2 to 3, a lubricant that fills the rolling bearing and a seal ring that is assembled to the rolling bearing are used, and the gap is generated between a pair of race rings. A large proportion of the current based on the potential difference is allowed to flow through the conductive lubricant or seal ring, and the ratio of the current flowing through the rolling contact portion where the surfaces of the steel bearing parts come into contact with each other can be kept low. Has been done. However, with such a countermeasure, the potential difference generated between a pair of race rings becomes large like the rolling bearing for supporting the rotating shaft of the rotating electrical device described above, and the current flows between the two race rings. Under severe use conditions in which the absolute value of the current increases, white tissue peeling as described above cannot be sufficiently suppressed. For example, in the case of a rolling bearing incorporated in a rotation support portion of a wind power generator, a large potential difference is likely to occur between the inner ring and the outer ring, and the required durability (maintenance-free operation time) is also 20 to 30 years. For this reason, it is not sufficient to take only measures using the lubricant and the seal ring.

特開2009−287658号公報JP 2009-287658 A 特開2009−210079号公報JP 2009-210079 A 特開2009−264401号公報JP 2009-264401 A

本発明は、上述の様な事情に鑑みて、電気機器の回転軸を支持する為の転がり軸受の如く、1対の軌道輪同士の間に生じる電位差が大きくなる様な厳しい条件下で使用される場合でも、コストを抑えつつ電食に基づく表面起点型剥離及び白色組織剥離を十分に抑えられる転がり軸受を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is used under severe conditions in which a potential difference generated between a pair of race rings becomes large, such as a rolling bearing for supporting a rotating shaft of an electric device. Even in this case, the present invention has been invented to realize a rolling bearing capable of sufficiently suppressing surface-origin type peeling and white structure peeling based on electrolytic corrosion while suppressing cost.

本発明の転がり軸受は、前述の図1〜4に示したラジアル玉軸受1、ラジアル円筒ころ軸受9、ラジアル円すいころ軸受13、自動調心ころ軸受16を含み、従来から知られている各種転がり軸受と同様に、何れかの面に第一の軌道面を有する第一の軌道輪と、この第一の軌道面と対向する面に第二の軌道面を有する第二の軌道輪と、これら第一、第二の両軌道面同士の間に転動自在に設けられた複数個の転動体とを備える。又、これら各転動体は、必要に応じて、保持器により転動自在に保持している。   The rolling bearing according to the present invention includes the radial ball bearing 1, the radial cylindrical roller bearing 9, the radial tapered roller bearing 13, and the self-aligning roller bearing 16 shown in FIGS. As with the bearing, a first race ring having a first raceway surface on any surface, a second race ring having a second raceway surface on a surface opposite to the first raceway surface, and these A plurality of rolling elements provided between the first and second raceway surfaces so as to be freely rollable. Moreover, each of these rolling elements is hold | maintained so that rolling is possible with a holder | retainer as needed.

特に、本発明の転がり軸受に於いては、前記第一、第二両軌道輪のうちの少なくとも一方の軌道輪が、Cを0.20〜0.60質量%、Siを0.10〜0.60質量%、Mnを0.60〜1.50質量%、Crを0.60〜1.80質量%、Moを0.00〜0.40質量%、Niを0.00〜0.20質量%、Cuを0.00〜0.20質量%含み、残部をFeと不可避的不純物とした鋼製である。前記不可避不純物のうち、S、PおよびOに就いては、その含有量を規制する事が好ましい。具体的には、Sを0.020質量%以下、Pを0.020質量%以下、Oを15質量ppm以下に規制する事が好ましい。   In particular, in the rolling bearing of the present invention, at least one of the first and second bearing rings has C of 0.20 to 0.60 mass% and Si of 0.10 to 0. .60 mass%, Mn 0.60 to 1.50 mass%, Cr 0.60 to 1.80 mass%, Mo 0.00 to 0.40 mass%, Ni 0.00 to 0.20 The steel is made of steel containing 0.00% to 0.20% by mass of Cu and the balance being Fe and inevitable impurities. Among the inevitable impurities, the content of S, P and O is preferably regulated. Specifically, it is preferable to regulate S to 0.020 mass% or less, P to 0.020 mass% or less, and O to 15 massppm or less.

そして、前記少なくとも一方の軌道輪に、浸炭処理と浸炭窒化処理との何れかである焼き入れ処理と、焼き戻し処理とを施す事により、前記少なくとも一方の軌道輪に設けた軌道面の最表面の残留オーステナイト量を、20〜45容量%としている。
又、前記各転動体の直径(玉の場合には最大径、ころの場合には軌道面と転がり接触する部分の直径)の1%の長さをXとした場合に、前記少なくとも一方の軌道輪に設けた軌道面の表面からの深さXの位置のCの含有量とNの含有量との和であるC+N量を、0.80〜2.00質量%としている。
更に、前記少なくとも一方の軌道輪に設けた軌道面の表面からの深さXの位置での、当該軌道輪の周方向に関する圧縮残留応力を100〜500MPaとし、同じく軸方向の圧縮残留応力を50〜500MPaとしている。
Then, the outermost surface of the raceway surface provided on the at least one raceway by subjecting the at least one raceway to quenching treatment and tempering treatment which are either carburizing treatment or carbonitriding treatment. The amount of retained austenite is 20 to 45% by volume.
Further, when X is a length of 1% of the diameter of each rolling element (the maximum diameter in the case of balls, the diameter of the rolling contact portion in the case of rollers), the at least one of the raceways The C + N amount, which is the sum of the C content and the N content at the position of depth X from the surface of the raceway surface provided in the ring, is 0.80 to 2.00% by mass.
Further, the compressive residual stress in the circumferential direction of the raceway at the position of the depth X from the surface of the raceway surface provided on the at least one raceway is set to 100 to 500 MPa, and the compressive residual stress in the axial direction is also set to 50. ˜500 MPa.

上述の様な本発明を実施する場合に好ましくは、請求項2に記載した発明の様に、前記各転動体を、Cを0.80〜1.20質量%、Siを0.10〜0.70質量%、Mnを0.20〜1.20質量%、Crを0.90〜1.80質量%、Moを0.00〜0.25質量%、Niを0.00〜0.20質量%、Cuを0.00〜0.20質量%含み、残部をFeと不可避的不純物とから成る鋼製とする。前記不可避不純物のうち、S、PおよびOに就いては、その含有量を規制する事が好ましい。具体的には、Sを0.020質量%以下、Pを0.020質量%以下、Oを10質量ppm以下に規制する事が好ましい。   When carrying out the present invention as described above, preferably, as in the invention described in claim 2, each of the rolling elements is composed of 0.80 to 1.20% by mass of C and 0.10 to 0 of Si. 70 mass%, Mn 0.20 to 1.20 mass%, Cr 0.90 to 1.80 mass%, Mo 0.00 to 0.25 mass%, Ni 0.00 to 0.20 The steel is made of steel containing Fe and unavoidable impurities. Among the inevitable impurities, the content of S, P and O is preferably regulated. Specifically, it is preferable to regulate S to 0.020 mass% or less, P to 0.020 mass% or less, and O to 10 mass ppm or less.

そして、この様な組成を有する鋼製の前記各転動体に、浸炭窒化焼き入れ処理と焼き戻し処理とを施す事により、これら各転動体の転動面の表面硬さをHRC63〜67とすると共に、これら各転動体の最表面の残留オーステナイト量を、20〜40容量%とする。又、前記各転動体の直径の1%の長さをXとした場合に、これら各転動体表面からの深さXの位置のN量を0.05〜2.00質量%とし、この深さXの位置の圧縮残留応力を500〜900MPとする。   And by subjecting each rolling element made of steel having such a composition to carbonitriding and quenching treatment and tempering treatment, the surface hardness of the rolling surface of each rolling element is set to HRC 63 to 67. At the same time, the amount of retained austenite on the outermost surface of each rolling element is set to 20 to 40% by volume. Further, when the length of 1% of the diameter of each rolling element is X, the N amount at the position of the depth X from the surface of each rolling element is 0.05 to 2.00% by mass. The compressive residual stress at the position X is set to 500 to 900 MP.

又、本発明を実施する場合に好ましくは、前記各転動体を設置した軸受内部空間に、潤滑剤であるグリースを充填する。そして、このグリースの増ちょう剤をジウレア化合物とし、同じく防錆剤をナフテン酸塩とコハク酸とこれらの誘導体とのうちから選択される1種又は2種以上とし、同じく酸化防止剤をフェノール系化合物とアミン系化合物とのうちから選択される1種又は2種以上とし、極圧添加剤を有機金属塩であるジアルキルジチオカルバミン酸(DTC)系化合物とジアルキルジチオリン酸(DTP)系化合物とのうちから選択される1種又は2種以上とする。   Moreover, when implementing this invention, Preferably the grease which is a lubrication agent is filled into the bearing internal space in which each said rolling element was installed. The thickener of this grease is a diurea compound, the rust inhibitor is one or more selected from naphthenate, succinic acid, and derivatives thereof, and the antioxidant is also phenolic. One or more selected from a compound and an amine compound, and the extreme pressure additive is an organometallic salt of a dialkyldithiocarbamic acid (DTC) compound and a dialkyldithiophosphate (DTP) compound It is set as 1 type or 2 types or more selected from.

又、本発明を実施する場合に好ましくは、前記各転動体を設置した軸受内部空間に充填する潤滑剤として、導電性物質であり平均粒径が10〜300nmであるカーボンブラックを、0.5〜20質量%含有するグリース組成物を使用する。
又、本発明を実施する場合に好ましくは、前記各転動体を設置した軸受内部空間の開口端部を塞ぐ為に、導電性を有するシール板を、前記第一、第二両軌道輪同士の間に掛け渡す状態で設置し、これら両軌道輪同士を、前記シール板を介して通電可能とする。
In carrying out the present invention, it is preferable that carbon black having an average particle diameter of 10 to 300 nm, which is a conductive substance, is used as a lubricant that fills the bearing internal space in which the rolling elements are installed. A grease composition containing ˜20% by weight is used.
In carrying out the present invention, preferably, in order to close the opening end of the bearing internal space where the rolling elements are installed, a conductive sealing plate is used between the first and second raceways. It is installed in a state where it is hung between them, and these both race rings can be energized through the seal plate.

上述の様に本発明の転がり軸受は、少なくとも何れか一方の軌道輪に浸炭処理又は浸炭窒化処理を行い、当該軌道輪の最表面の残留オーステナイト量と、軌道輪の表面から転動体の直径の1%の深さ位置に於ける圧縮残留応力を増加させているので、生産コストの上昇を抑えつつ、電食に基づく表面の荒れや白色組織の発生後も、この荒れを起点とする表面起点型剥離や、白色組織を起点とする白色組織剥離を抑え、転がり軸受全体としての長寿命化を図れる。   As described above, the rolling bearing of the present invention performs carburizing or carbonitriding on at least one of the bearing rings, and determines the amount of retained austenite on the outermost surface of the bearing ring and the diameter of the rolling element from the surface of the bearing ring. Since the compressive residual stress at the depth of 1% is increased, the surface starting point starting from this rough surface after the occurrence of rough surface and white structure due to electrolytic corrosion while suppressing the increase in production cost. The mold peeling and white texture peeling starting from the white texture can be suppressed, and the life of the entire rolling bearing can be extended.

本発明の対象となる転がり軸受の一種であるラジアル玉軸受の部分切断斜視図。1 is a partially cut perspective view of a radial ball bearing which is a kind of rolling bearing that is an object of the present invention. FIG. 同じくラジアル円筒ころ軸受の部分切断斜視図。The partial cutaway perspective view of a radial cylindrical roller bearing. 同じくラジアル円すいころ軸受の部分切断斜視図。The partial cut perspective view of a radial tapered roller bearing. 同じく自動調心ころ軸受の部分切断斜視図。The partial cutaway perspective view of a self-aligning roller bearing.

本発明者等は、多くの実験を繰り返してそれぞれの結果を比較検証する事により、軌道輪の表面であり、複数の転動体の転動面から、繰り返し転がり接触に基づく剪断応力を受ける軌道面の最表面の残留オーステナイト量を高くすると、この最表面部分での金属疲労を緩和する効果があり、「表面起点型剥離」を発生し難くできて、この表面起点型剥離に関する、転がり軸受の寿命を延長できる事を見出した。又、軌道輪の表面部分のうち、軌道面から転動体の直径の1%の深さ位置(各転動体の直径の1%の長さをXとした場合における、軌道輪表面からの深さXの位置)に高い圧縮残留応力を付与すると、電食に伴って内部で発生した白色組織変化部から発生するクラックの進展を抑制する効果があり、白色組織剥離に関する、転がり軸受の寿命を延長できる事を見出した。   The inventors of the present invention have repeated a number of experiments and comparatively verified the respective results to thereby determine the surface of the raceway, which is subjected to shear stress based on repeated rolling contact, from the rolling surfaces of a plurality of rolling elements. Increasing the amount of retained austenite on the outermost surface of the steel has the effect of alleviating metal fatigue at the outermost surface, making it difficult for “surface-origin-type delamination” to occur. I found that I can extend Further, of the surface portion of the raceway, the depth position of 1% of the diameter of the rolling element from the raceway surface (the depth from the raceway surface when X is the length of 1% of the diameter of each rolling element) When high compressive residual stress is applied to the X position, it has the effect of suppressing the progress of cracks generated from the white structure change that occurred internally due to electrolytic corrosion, extending the life of rolling bearings related to white structure peeling. I found what I could do.

具体的には、浸炭処理又は浸炭窒化処理によって、軌道輪のうちで、軌道面の最表面の残留オーステナイト量を20〜45容量%に規制する事により、前記表面起点型剥離に関する、転がり軸受の寿命を延長できる。又、軌道輪の表面部分のうちで軌道面の表面から転動体の直径の1%の深さ位置でのC+N量(CとNの含有量)を0.80〜2.00質量%とするとともに、この位置での圧縮残留応力を、軌道輪の周方向で100〜500MPaとし、同じく軸方向で50〜500MPaとすれば、前記白色組織剥離に関する、転がり軸受の寿命を延長できる。   Specifically, by controlling the amount of retained austenite on the outermost surface of the raceway surface to 20 to 45% by volume by carburizing treatment or carbonitriding treatment, Life can be extended. Further, the C + N amount (content of C and N) at a depth position of 1% of the diameter of the rolling element from the surface of the raceway surface in the surface portion of the raceway is 0.80 to 2.00% by mass. At the same time, if the compressive residual stress at this position is set to 100 to 500 MPa in the circumferential direction of the race, and similarly set to 50 to 500 MPa in the axial direction, the life of the rolling bearing related to the white tissue peeling can be extended.

尚、この様な、転がり軸受の寿命低下に結び付く表面起点型剥離や白色組織剥離は、転がり軸受の使用条件が同じである限り、転がり接触面が変化する複数個の転動体(特に自転軸が変化する玉)の転動面に比べ、常に同じ部分(軸方向位置が一定である全周面)でこれら各転動体の転動面と転がり接触する、前記両軌道輪の軌道面(特に、円周方向に関する形状が凸面であり、転がり接触部の面圧が高くなる内輪軌道)で発生し易い。従って、本発明の如く、最表面の残留オーステナイト量や表面部分の圧縮残留応力の値を調整する軸受部品は、転動体よりも軌道輪とする事で、顕著な効果を得られる。   In addition, such surface-origin type peeling and white structure peeling that lead to a reduction in the life of the rolling bearing, as long as the usage conditions of the rolling bearing are the same, a plurality of rolling elements whose rolling contact surface changes (especially the rotating shaft is Compared with the rolling surface of the changing ball), the raceway surfaces of both the raceways that are in rolling contact with the rolling surface of each of these rolling elements at the same part (the entire circumferential surface where the axial position is constant) (in particular, The shape in the circumferential direction is a convex surface and is likely to occur in an inner ring raceway where the surface pressure of the rolling contact portion increases. Therefore, as in the present invention, a bearing part that adjusts the amount of retained austenite on the outermost surface and the value of the compressive residual stress on the surface portion can obtain a remarkable effect by using a bearing ring rather than a rolling element.

但し、前記表面起点型剥離や白色組織剥離に結び付く電食は、複数の転動体の表面(転動面)でも発生し、発生した場合には、軌道輪の軌道面に発生した場合と同様の機構で、転がり軸受の寿命を低下させる可能性がある。この様な、転動面の電食に起因する転がり軸受の寿命低下を抑える為には、前記各転動体にも、前記軌道と同様の性状を持たせる事が有効である。即ち、これら各転動体に就いても浸炭窒化焼き入れ処理と焼き戻し処理とを含む熱処理を施して、転動面の性状を整える事により、転がり軸受の寿命をより延長できる。具体には、請求項2に記載した発明の様に、所定の組成を有する鋼製の転動体に前記熱処理を施して、これら各転動体の表面硬さをHRC63〜67とし、これら各転動体の最表面の残留オーステナイト量を20〜40容量%とし、前記各転動体表面から転動体の直径の1%の深さ位置(各転動体の直径の1%の長さをXとした場合における、各転動体表面からの深さXの位置)のN量(Nの含有量)を0.05〜2.00質量%とし、同位置での圧縮残留応力を500〜900MPaとする事が好ましい。   However, the electrolytic corrosion that leads to the surface-origin peeling and the white tissue peeling also occurs on the surface (rolling surface) of a plurality of rolling elements, and when it occurs, it is the same as when it occurs on the raceway surface of the raceway ring. The mechanism may reduce the life of the rolling bearing. In order to suppress such a decrease in the life of the rolling bearing due to the electrolytic corrosion of the rolling surface, it is effective to give the rolling elements the same properties as the raceway. That is, even if each of these rolling elements is subjected to a heat treatment including a carbonitriding quenching process and a tempering process to adjust the properties of the rolling surface, the life of the rolling bearing can be further extended. Specifically, as in the invention described in claim 2, the steel rolling elements having a predetermined composition are subjected to the heat treatment, and the surface hardness of each of these rolling elements is set to HRC 63 to 67. The amount of retained austenite on the outermost surface is 20-40% by volume, and the depth position of 1% of the diameter of the rolling element from the surface of each rolling element (when the length of 1% of the diameter of each rolling element is X) The N amount (the content of N) at the depth X from the surface of each rolling element is preferably 0.05 to 2.00% by mass, and the compressive residual stress at the same position is preferably 500 to 900 MPa. .

更に、白色組織剥離の原因となる水素は、転がり軸受内部に充填した状態で各転がり接触部に存在するグリースの、基油等の成分がこれら各転がり接触部で発生するスパークにより分解される事で発生するので、前記グリースとして、このスパークにより分解され難い、安定したものを使用する事も、前記軌道面及び転動面の、電食に起因する転がり軸受の寿命低下を抑える面からは好ましい。具体的には、前記グリースの添加剤として、ジウレア化合物から成る増ちょう剤、ナフテン酸塩とコハク酸塩とこれらの誘導体とから選択される1種又は2種以上から成る防錆材、フェノール系化合物とアミン系化合物とのうちから選択される1種又は2種以上から成る酸化防止剤、有機金属塩であるジアルキルジチオカルバミン酸系化合物とジアルキルジチオリン酸系化合物とのうちから選択される1種又は2種以上から成る極圧添加剤を配合したものを使用する。この様なグリースを潤滑剤として用いる事で、この潤滑剤からの水素の発生を抑制でき、より長寿命の転がり軸受を提供できる。   Furthermore, the hydrogen that causes white structure peeling is decomposed by the sparks generated at the rolling contact portions of the base oil and other components of the grease existing in the rolling contact portions in a state where the rolling bearing is filled. Therefore, it is also preferable to use a stable grease that is difficult to be decomposed by this spark as the grease, from the viewpoint of suppressing a decrease in the life of the rolling bearing due to electrolytic corrosion of the raceway surface and the rolling surface. . Specifically, as an additive for the grease, a thickener composed of a diurea compound, a rust preventive material composed of one or more selected from naphthenates, succinates and derivatives thereof, phenolic One or more antioxidants selected from among compounds and amine compounds, one selected from dialkyldithiocarbamic acid compounds and dialkyldithiophosphate compounds that are organometallic salts, or A mixture of two or more extreme pressure additives is used. By using such a grease as a lubricant, generation of hydrogen from the lubricant can be suppressed, and a rolling bearing having a longer life can be provided.

又、前記スパークは、前記両軌道輪同士の間に存在する電位差に基づいて発生するので、これら両軌道輪同士を電気的に導通させて、これら両軌道輪同士の間に存在する電位差を、低減又は解消する事も、前記軌道面及び転動面の電食に起因する転がり軸受の寿命低下を抑える面からは好ましい。具体的には、導電性物質として、平均粒径10〜300nmのカーボンブラックを0.5〜20質量%含有するグリース組成物を潤滑剤として用いる。或いは、導電性のシール板を用い、内輪と外輪の間を通電可能とする。   Further, since the spark is generated based on a potential difference existing between the two race rings, the potential difference existing between the two race rings is obtained by electrically connecting the two race rings. Reduction or elimination is also preferable from the viewpoint of suppressing a decrease in the life of the rolling bearing due to the electric corrosion of the raceway surface and the rolling surface. Specifically, a grease composition containing 0.5 to 20% by mass of carbon black having an average particle diameter of 10 to 300 nm is used as a lubricant as a conductive material. Alternatively, a conductive seal plate is used to enable energization between the inner ring and the outer ring.

以下、本発明に就いて、更に詳細に説明するが、本発明の特徴は、上述した様に転がり軸受を構成する軸受部品のうちの少なくとも軌道輪に就いて、この軌道輪を構成する鋼の組成、軌道面の最表面の残留オーステナイト量、軌道面に関して所定位置のC+N量及び圧縮残留応力の値を適切に規制する事により、水素の侵入に基づく白色組織を起点として発生する白色組織剥離を抑える点にある。一方、図面に現れる構造に関しては、前述の図1〜4に示したラジアル玉軸受1、ラジアル円筒ころ軸受9、ラジアル円すいころ軸受13、自動調心ころ軸受16を含み、従来から知られている各種転がり軸受と同様であるから、重複する説明を省略する。   Hereinafter, the present invention will be described in more detail. The feature of the present invention is that, as described above, at least of the bearing parts constituting the rolling bearing, the steel constituting the bearing ring is used. By appropriately regulating the composition, the amount of retained austenite on the outermost surface of the raceway surface, the amount of C + N at a predetermined position on the raceway surface, and the value of compressive residual stress, the white tissue peeling that occurs from the white structure based on hydrogen penetration It is in the point to suppress. On the other hand, the structures appearing in the drawings include the radial ball bearing 1, the radial cylindrical roller bearing 9, the radial tapered roller bearing 13, and the self-aligning roller bearing 16 shown in FIGS. Since it is the same as that of various rolling bearings, the overlapping description is omitted.

(1)両軌道輪に就いて
先ず、請求項1に記載した発明に対応し、前記両軌道輪に関して説明する。
(1) Regarding both races First, the races corresponding to the first aspect of the invention will be described.

[軌道面の最表面の残留オーステナイト量:20〜45容量%]
残留オーステナイトは通常軟質な組織である。この為、軌道面に付いた傷や圧痕の周辺のエッジ部に発生する応力集中を緩和し、クラックの発生を抑える効果を有する。この様な効果は、機械的に生じた傷や圧痕の場合に限らず、電気化学的な腐食により生じた微小な凹みである電食痕によって荒れた軌道面でも得られる。この場合に、残留オーステナイト量が多い程、表面起点型剥離を抑制する効果が大きくなる。前記軌道面の最表面の残留オーステナイト量が20容量%未満の場合には、上述の様に、エッジ部に発生する前記応力集中を緩和する効果が不十分となり、例えば前述した様な、風力発電機の回転支持部に組み込む転がり軸受の場合には、十分な耐久性を得られない。これに対して、前記軌道面の最表面の残留オーステナイト量が45容量%を超えると、応力集中を緩和する効果が飽和するだけでなく、軌道面の硬さが過剰に低下し、この軌道面の転がり疲れ寿命の確保が難しくなり、却って転がり軸受の耐久性の確保が難しくなる。そこで、浸炭処理又は浸炭窒化処理とのうちの何れかである焼き入れ処理を施した後の軌道面の最表面の残留オーステナイト量を、20〜45容量%の範囲に規制した。
尚、本発明に於いて、軌道面の最表面の残留オーステナイト量とは、X線回折装置を用いて、該軌道面の最表面から10μmまでの残留オーステナイト量を測定する事により求められる値を意味する。
[Amount of retained austenite on the outermost surface of the raceway: 20 to 45% by volume]
Residual austenite is usually a soft structure. For this reason, it has the effect of relieving the stress concentration generated at the edge portion around the scratches and indentations on the raceway surface and suppressing the occurrence of cracks. Such an effect can be obtained not only in the case of mechanically generated scratches and indentations, but also on the raceway surface roughened by the electrolytic corrosion marks which are minute dents caused by electrochemical corrosion. In this case, the greater the amount of retained austenite, the greater the effect of suppressing surface-origin separation. When the amount of retained austenite on the outermost surface of the raceway surface is less than 20% by volume, the effect of relaxing the stress concentration generated at the edge portion is insufficient as described above. For example, wind power generation as described above In the case of a rolling bearing incorporated in the rotary support portion of the machine, sufficient durability cannot be obtained. In contrast, when the amount of retained austenite on the outermost surface of the raceway surface exceeds 45% by volume, not only the effect of relaxing the stress concentration is saturated, but also the hardness of the raceway surface is excessively reduced. Therefore, it is difficult to secure a rolling fatigue life, and it is difficult to ensure the durability of the rolling bearing. Therefore, the amount of retained austenite on the outermost surface of the raceway surface after performing the quenching process which is one of the carburizing process or the carbonitriding process is restricted to a range of 20 to 45% by volume.
In the present invention, the amount of retained austenite on the outermost surface of the raceway surface is a value obtained by measuring the amount of retained austenite from the outermost surface of the orbital surface to 10 μm using an X-ray diffractometer. means.

[軌道面の表面から転動体の直径の1%深さ位置のC+N量:0.80〜2.00質量%]
この部分のC+N量は、この部分の硬さを確保すると共に、この部分の残留オーステナイト量を適正値とする為に規制する。即ち、鋼製の軌道輪に焼き入れ処理である浸炭処理又は浸炭窒化処理及び焼き戻し処理を施した後に於ける、前記軌道輪の軌道面部分の硬さや残留オーステナイト量には、浸炭処理又は浸炭窒化処理により鋼中に浸入したC+N量が影響する。特に、軌道面の表面から転動体の直径の1%の深さ位置(以下、「1%深さ位置」という)は、この軌道面と転動体の転動面との転がり接触に基づいて発生する、周方向の摩擦力に基づく剪断応力が、ほぼ最大になる。そして、この最大剪断応力位置の硬さが不十分であると、前記軌道輪の軌道面の転がり疲れ寿命を低下させてしまう。
又、前記1%深さ位置のC+N量を0.80〜2.00質量%とする事によって、この1%深さ位置の残留オーステナイト量を好適にする事が可能になる。即ち、この1%深さ位置の残留オーステナイト量を、好適値である15〜40容量%にできる。この1%深さ位置の残留オーステナイトは、水素をトラップして局所的な集積を防ぎ、白色組織の発生を抑制する効果がある。
[Amount of C + N from the surface of the raceway surface to a 1% depth position of the diameter of the rolling element: 0.80 to 2.00% by mass]
The amount of C + N in this portion is regulated to ensure the hardness of this portion and to make the amount of retained austenite in this portion an appropriate value. That is, the hardness and residual austenite amount of the raceway surface of the raceway after the carburizing treatment or carbonitriding treatment and tempering treatment, which is a quenching treatment, are applied to the steel raceway. The amount of C + N penetrated into the steel by nitriding treatment is affected. In particular, a depth position of 1% of the diameter of the rolling element from the surface of the raceway surface (hereinafter referred to as “1% depth position”) is generated based on the rolling contact between the raceway surface and the rolling surface of the rolling element. The shear stress based on the circumferential frictional force is substantially maximized. If the hardness at the maximum shear stress position is insufficient, the rolling fatigue life of the raceway surface of the raceway is reduced.
Further, by setting the amount of C + N at the 1% depth position to 0.80 to 2.00% by mass, it is possible to make the amount of retained austenite at the 1% depth position suitable. That is, the amount of retained austenite at the 1% depth position can be set to a preferable value of 15 to 40% by volume. The retained austenite at the 1% depth position has an effect of trapping hydrogen to prevent local accumulation and suppressing the generation of white structure.

尚、前記1%深さ位置のC+N量が0.80質量%未満の場合には、前記の硬さが不十分になり、前記軌道面の転がり疲れ寿命の確保が難しくなるだけでなく、前記1%深さ位置の残留オーステナイト量を確保する事が難しくなる。これに対し、前記1%深さ位置のC+N量が2.00質量%を超えると、効果が飽和するだけでなく、浸炭処理又は浸炭窒化処理に要する時間が徒に長くなり、且つ、前記軌道面が不必要に硬くなって、この軌道面の仕上加工が面倒になる等、コスト上昇の原因となる。そこで、前記1%深さ位置のC+N量を0.80〜2.00質量%、好ましくは0.80〜1.10質量%の範囲に規制する。   In addition, when the amount of C + N at the 1% depth position is less than 0.80% by mass, the hardness becomes insufficient, and it is difficult to ensure the rolling fatigue life of the raceway surface. It becomes difficult to ensure the amount of retained austenite at the 1% depth position. On the other hand, when the amount of C + N at the 1% depth exceeds 2.00% by mass, not only the effect is saturated, but also the time required for the carburizing process or the carbonitriding process becomes long, and the trajectory The surface becomes unnecessarily hard, and the finishing of the raceway surface becomes troublesome, which causes an increase in cost. Therefore, the C + N amount at the 1% depth position is restricted to a range of 0.80 to 2.00% by mass, preferably 0.80 to 1.10% by mass.

[軌道輪の表面部分の圧縮残留応力に関して、前記1%深さ位置での軌道輪の周方向の値:100〜500MPa、同じく軸方向の値:50〜500MPa]
前述した通り、電食に基づいて前記軌道輪を構成する鋼中に水素が局所的に侵入する事で、この軌道輪の表面部分に前記白色組織が発生する。この白色組織が発生すると、正常組織との界面から微小亀裂が発生する。但し、これら白色組織と正常組織との境界を含む、前記軌道輪の表面部分に圧縮残留応力が存在すると、この圧縮残留応力が前記亀裂の進展(大きくなる事)を抑制し、前記軌道輪の軌道面の表面部分に存在している白色組織と起点とした、白色組織剥離に至るまでの時間を著しく延長する効果がある。
白色組織剥離を含み、転がり軸受を構成する軸受部品の軌道面や転動面に亀裂が発生し、進展するのは、一般的には、転動体の移動(公転運動)に伴った剪断応力の変化による。従って、軌道輪の周方向の圧縮残留応力を確保する(大きくする)事が効果的である。但し、白色組織変化を伴った亀裂は、一部がランダムな方向に進展する為、総ての方向の白色組織剥離を十分に抑える為には、軌道輪の軸方向の圧縮残留応力も、或る程度は必要となる。
[Regarding the compressive residual stress of the surface portion of the bearing ring, the circumferential value of the bearing ring at the 1% depth position: 100 to 500 MPa, also the axial value: 50 to 500 MPa]
As described above, hydrogen penetrates locally into the steel constituting the raceway based on electrolytic corrosion, so that the white structure is generated on the surface portion of the raceway. When this white structure is generated, microcracks are generated from the interface with the normal structure. However, if compressive residual stress exists on the surface portion of the raceway, including the boundary between the white tissue and normal tissue, the compressive residual stress suppresses the progress (increase) of the crack, and the raceway ring There is an effect of remarkably extending the time from the white texture existing on the surface portion of the raceway surface to the white texture peeling.
In general, cracks occur on the raceway surface and rolling surface of the bearing parts that make up the rolling bearing, including the white texture separation, and the growth is generally due to the shear stress associated with the movement of the rolling element (revolution motion). By change. Therefore, it is effective to secure (increase) the compressive residual stress in the circumferential direction of the race. However, cracks with white texture changes partially develop in random directions, and in order to sufficiently suppress white texture peeling in all directions, the axial residual compressive stress is also This is necessary.

前記各方向の圧縮残留応力のうちで軌道輪周方向の圧縮残留応力は、浸炭処理或いは浸炭窒化処理によって、軌道面の基地組織へのCの固溶濃度に、表面と内部との間で勾配を持たせる(表面程C濃度を高くして容積を大きくする)事に基づいて付与する事ができる。従って、前記周方向の圧縮残留応力の大きさは、浸炭処理或いは浸炭窒化処理である熱処理時の保持温度と時間とのうちの一方又は双方を変えて、固溶炭素の濃度勾配を変化させる事によって調整できる。何れにしても、前記周方向の圧縮残留応力の値が100MPa未満では、前記白色組織剥離の抑制効果を十分には得られない。一方、前記熱処理に基づいて軌道面部分に発生させる圧縮残留応力が高過ぎる事は、この軌道面部分が過浸炭となっている事を意味する。軌道面部分が過浸炭になると、この軌道面の研削性や靱性が低下して、製造コストの上昇や耐久性低下の原因となる。そこで、前記周方向の圧縮残留応力の最大値を、前記軌道面部分が過浸炭とならない範囲で付与できる500MPaとした。   Of the compressive residual stress in each direction, the compressive residual stress in the circumferential direction of the raceway is gradient between the surface and the interior to the solid solution concentration of C in the base structure of the raceway surface by carburizing or carbonitriding. (By increasing the surface C concentration and increasing the volume) can be applied. Therefore, the magnitude of the compressive residual stress in the circumferential direction changes the concentration gradient of the solute carbon by changing one or both of the holding temperature and time during the heat treatment that is carburizing or carbonitriding. Can be adjusted by. In any case, if the value of the compressive residual stress in the circumferential direction is less than 100 MPa, the effect of suppressing the white tissue peeling cannot be sufficiently obtained. On the other hand, if the compressive residual stress generated in the raceway surface portion based on the heat treatment is too high, it means that this raceway surface portion is over-carburized. When the raceway surface portion is overcarburized, the grindability and toughness of the raceway surface are lowered, which causes an increase in manufacturing cost and a decrease in durability. Therefore, the maximum value of the compressive residual stress in the circumferential direction is set to 500 MPa that can be applied in a range in which the raceway surface portion does not become overcarburized.

一方、前記軸方向の圧縮残留応力の大きさに関しても、浸炭処理或いは浸炭窒化処理である熱処理時の保持温度と時間とのうちの一方又は双方を変えて、固溶炭素の濃度勾配を変化させる事によって調整できる。前記軸方向の圧縮残留応力に関しては、前記周方向の圧縮残留応力の値程大きくする必要はない。但し、前記軸方向の圧縮残留応力の値が50MPa未満の場合には、総ての方向の白色組織剥離を十分に抑える面からの効果が不十分となる。これに対して、前記軸方向の圧縮残留応力が高過ぎる場合には、前記周方向の圧縮残留応力が高過ぎる場合と同様の問題を生じるので、前記軸方向の圧縮残留応力の最大値を500MPaとした。
尚、白色組織剥離をより効果的に抑える観点から、前記軌道輪の周方向に関する圧縮残留応力を300〜500MPaとし、同じく軸方向の圧縮残留応力を300〜500MPaとする事が好ましい。
On the other hand, also regarding the magnitude of the compressive residual stress in the axial direction, one or both of the holding temperature and time during the heat treatment that is carburizing treatment or carbonitriding treatment is changed to change the concentration gradient of solute carbon. It can be adjusted by things. The axial compressive residual stress need not be as large as the circumferential compressive residual stress value. However, when the value of the compressive residual stress in the axial direction is less than 50 MPa, the effect from the aspect of sufficiently suppressing white tissue peeling in all directions becomes insufficient. On the other hand, when the axial compressive residual stress is too high, the same problem occurs as when the circumferential compressive residual stress is too high. Therefore, the maximum value of the axial compressive residual stress is set to 500 MPa. It was.
From the viewpoint of more effectively suppressing white tissue peeling, it is preferable to set the compressive residual stress in the circumferential direction of the raceway to 300 to 500 MPa and the axial compressive residual stress to 300 to 500 MPa.

以下、本発明の軌道輪を構成する鋼の必須の添加成分、具体的には、C、Si、Mn及びCrの添加量(含有量)に就いて説明する。
[軌道輪を構成する鋼中のCの含有量:0.20〜0.60質量%]
Cは、焼き入れによって基地に固溶し、硬さを向上させる元素であり、軸受部品に必要な硬さを確保する為に添加する。鋼中のCの含有量が0.20質量%未満であると、焼き入れ後に於ける芯部の硬さが不足して、軌道輪の剛性が低下(不足)する。そこで、Cを0.20質量%以上、好ましくは0.25質量%以上含有させる。一方、前記鋼中のCの含有量が0.60質量%を超えると、得られる軸受部品が硬くなり過ぎて、研削性の低下や、芯部の靭性不足に基づく破壊靭性値の低下を生じる。そこでCの含有量を0.60質量%以下、好ましくは0.55質量%以下とする。尚、浸炭処理或いは浸炭窒化処理を行うと表面が硬く、内部に行くほど硬さが下がっていくが、本明細書では、硬さが下がりきって一定になった部分を芯部とする。
Hereinafter, an essential additive component of steel constituting the bearing ring of the present invention, specifically, an additive amount (content) of C, Si, Mn and Cr will be described.
[C content in steel constituting the bearing ring: 0.20 to 0.60 mass%]
C is an element that dissolves in the base by quenching and improves the hardness, and is added to ensure the hardness required for the bearing parts. If the C content in the steel is less than 0.20% by mass, the hardness of the core after quenching is insufficient, and the rigidity of the raceway is reduced (insufficient). Therefore, C is contained in an amount of 0.20% by mass or more, preferably 0.25% by mass or more. On the other hand, if the C content in the steel exceeds 0.60% by mass, the resulting bearing part becomes too hard, resulting in a decrease in grindability and a decrease in fracture toughness value due to insufficient toughness of the core. . Therefore, the C content is set to 0.60% by mass or less, preferably 0.55% by mass or less. In addition, although the surface is hard when carburizing or carbonitriding is performed, the hardness decreases toward the inside, but in this specification, the portion where the hardness is reduced and becomes constant is defined as the core.

[軌道輪を構成する鋼中のSiの含有量:0.10〜0.60質量%]
Siは、基地に固溶して焼き入れ性及び焼き戻し軟化抵抗性を向上させる効果がある為、軸受部品に必要な硬さを確保する為に添加する。且つ、Siは、基地組織中のマルテンサイトを安定化させ、水素による前軌道輪の軌道面部分の白色組織変化を遅延させて、前記白色組織剥離の発生を遅延させ、この軌道輪を組み込んだ転がり軸受の寿命延長に寄与する。この様な、白色組織変化の遅延による寿命延長効果は、Siの含有量が0.10質量%未満の場合には十分には得られない。一方、Siの含有量が0.60質量%を超えると、浸炭性及び浸炭窒化性が低下するだけでなく、球状化焼鈍後の硬さが上昇する為、旋削性及び冷間加工性が低下する。浸炭性、浸炭窒化性、球状化焼鈍後の硬さを適正範囲に抑え、安定した旋削性及び冷間加工性を得る為に、好ましくは、Siの含有量を、0.50質量%以下に抑える。
[Si content in steel constituting the bearing ring: 0.10 to 0.60 mass%]
Si has the effect of improving the hardenability and temper softening resistance by dissolving in the base and is added to ensure the necessary hardness for the bearing parts. In addition, Si stabilizes martensite in the base structure, delays the white texture change of the raceway surface portion of the front raceway due to hydrogen, delays the occurrence of the white tissue peeling, and incorporates this raceway. Contributes to extending the life of rolling bearings. Such a life extension effect due to the delay of the white structure change cannot be sufficiently obtained when the Si content is less than 0.10% by mass. On the other hand, when the Si content exceeds 0.60% by mass, not only carburization and carbonitriding properties are deteriorated, but also the hardness after spheroidizing annealing is increased, so that turning properties and cold workability are reduced. To do. In order to suppress the hardness after carburizing, carbonitriding, and spheroidizing annealing to an appropriate range, and to obtain stable turning and cold workability, the Si content is preferably 0.50% by mass or less. suppress.

[軌道輪を構成する鋼中のMnの含有量:0.60〜1.50質量%]
Mnは、基地に固溶して焼き入れ性を向上させる効果がある為、軌道輪に必要な硬さを確保する為に添加する。且つ、Mnも、上述したSiの場合と同様に、本発明の重要な目的である、白色組織剥離の発生を抑える効果がある。即ち、Mnも、基地組織中のマルテンサイトを安定化させ、非金属介在物周辺に生じる白色組織変化を遅延させて、前記軌道輪に白色組織剥離が発生する事を抑え、この軌道輪を組み込んだ転がり軸受の寿命延長に寄与する。更に、Mnは、熱処理後に残留オーステナイトを生成し易くする効果がある。残留オーステナイトは、比較的軟らかい組織であり、前述した表面起点型剥離を抑えて、別の観点から、前記軌道輪を組み込んだ転がり軸受の寿命延長に寄与する。この様な効果は、Mnの含有量が0.60質量%未満の場合には、十分には得られない。一方、Mnの含有量が1.50質量%を超えると、熱間鍛造時の変形抵抗が上昇して、軌道輪を造る際の熱間鍛造性を低下させる。又、鋼中の残留オーステナイトは、比較的軟らかい組織であり、過剰に存在する事は、軌道輪のうちで軌道面の転がり疲れ寿命確保の面からは不利になる。更に、軌道輪を構成する鋼中の残留オーステナイトは、転がり軸受の使用に伴って少しずつ分解し、分解に伴って、僅かとは言え体積が膨張する。この為、Mnの含有量を多くする事で残留オーステナイト量が過剰になると、前記軌道面の転がり疲れ寿命を確保し難くなるだけでなく、軌道輪の形状及び寸法の安定性が低下する。そこで、この軌道輪を構成する鋼中のMnの含有量を、0.60〜1.50質量%、好ましくは0.70〜1.40質量%の範囲とする。
[Mn content in steel constituting the raceway: 0.60 to 1.50 mass%]
Mn has the effect of improving the hardenability by dissolving in the base, so it is added to ensure the necessary hardness for the race. Mn also has the effect of suppressing the occurrence of white tissue peeling, which is an important object of the present invention, as in the case of Si described above. That is, Mn also stabilizes the martensite in the base structure, delays the white structure change that occurs around the non-metallic inclusions, suppresses the occurrence of white structure peeling on the track ring, and incorporates this track ring. Contributes to extending the life of rolling bearings. Further, Mn has an effect of easily generating retained austenite after heat treatment. Residual austenite is a relatively soft structure, and suppresses the above-described surface-origin type peeling, and contributes to extending the life of the rolling bearing incorporating the raceway from another viewpoint. Such an effect cannot be sufficiently obtained when the Mn content is less than 0.60 mass%. On the other hand, when the content of Mn exceeds 1.50% by mass, the deformation resistance during hot forging increases, and the hot forgeability at the time of manufacturing the raceway is reduced. In addition, the retained austenite in the steel is a relatively soft structure, and the presence of excess austenite is disadvantageous in terms of ensuring the rolling fatigue life of the raceway surface in the raceway. Furthermore, the retained austenite in the steel constituting the bearing ring is gradually decomposed with the use of the rolling bearing, and the volume expands, albeit slightly, with the decomposition. For this reason, if the amount of retained austenite becomes excessive by increasing the content of Mn, not only will it be difficult to ensure the rolling fatigue life of the raceway surface, but the stability of the shape and dimensions of the raceway will be reduced. Therefore, the content of Mn in the steel constituting the race is set to a range of 0.60 to 1.50% by mass, preferably 0.70 to 1.40% by mass.

[軌道輪を構成する鋼中のCrの含有量:0.60〜1.80質量%]
Crは、基地のマルテンサイト中に固溶する分と、球状化炭化物中に固溶する分とに分配される。基地のマルテンサイト中に固溶したCrは、焼き入れ性を向上させて、軌道輪の軌道面の硬さを確保する効果がある。又、Cと結合して炭化物を形成し、耐摩耗性及び転がり疲れ寿命を向上させる効果がある。更に、Crも、前述したSi及び上述したMnの場合と同様に、炭化物と基地組織のマルテンサイトを安定化させる為、水素による組織変化を遅延させて、寿命を延長する効果がある。この様な効果は、Crの含有量が0.60質量%未満の場合には、十分には得られない。一方、Crの含有量が1.80質量%を超えると、浸炭性及び浸炭窒化性が低下し、軌道面の硬さを確保する為に要する温度が高くなって、軌道輪の生産性を低下させるだけでなく、球状化焼鈍後の硬さが上昇する為、旋削性及び冷間加工性が低下する。そこで、前記軌道輪を構成する鋼中のCrの含有量を0.60〜1.80質量%の範囲とする。尚、旋削性及び冷間加工性をより安定させる為に、好ましくは、Crの含有量を1.70質量%以下とする。
[Cr content in steel constituting the raceway: 0.60 to 1.80 mass%]
Cr is distributed into a part that dissolves in the base martensite and a part that dissolves in the spheroidized carbide. Cr dissolved in the martensite at the base has the effect of improving the hardenability and ensuring the hardness of the raceway surface of the raceway. Moreover, it combines with C to form carbides, and has the effect of improving wear resistance and rolling fatigue life. Furthermore, Cr also has the effect of extending the life by delaying the structural change caused by hydrogen in order to stabilize the carbide and martensite of the base structure, as in the case of Si and Mn. Such an effect cannot be sufficiently obtained when the Cr content is less than 0.60 mass%. On the other hand, if the Cr content exceeds 1.80% by mass, the carburizing properties and carbonitriding properties decrease, the temperature required to ensure the hardness of the raceway surface increases, and the productivity of the raceway decreases. In addition to increasing the hardness after spheroidizing annealing, the turning and cold workability are reduced. Therefore, the Cr content in the steel constituting the bearing ring is set to a range of 0.60 to 1.80 mass%. In order to further stabilize the turning property and the cold workability, the Cr content is preferably 1.70% by mass or less.

続いて、本発明の軌道輪を構成する鋼の選択的な添加成分(Mo、Ni、Cu)の含有量、及び、不可避不純物のうち、特にその含有量を規制することが好ましい成分(S、P、O)の含有量に就いて説明する。
[軌道輪を構成する鋼中のMoの含有量:0.00〜0.40質量%]
Moは、基地に固溶して、焼き入れ性及び焼き戻し軟化抵抗性を向上させ、軌道輪の軌道面の硬さを確保する効果がある。又、Moも、前述したSi、Mn及び上述したCrの場合と同様に、白色組織剥離の発生を抑える効果がある。即ち、Moも、基地組織中のマルテンサイトを安定化させ、水素による白色組織変化を遅延させる効果がある。又、酸化物系介在物や硫化物系介在物周辺に生じるバタフライ型組織変化を遅延させて、軌道輪に介在物起点型剥離が発生する事を抑え、この軌道輪を組み込んだ転がり軸受の寿命延長に寄与する。但し、Moの含有量が0.40質量%を超えると、Moの一部が硬い炭化物を形成し、研削性を低下させる。又、高価な元素である為、前記軌道輪を含む転がり軸受の製造コストを高くする原因となる。そこで、Moの含有量を0.00〜0.40質量%と規制した。尚、製造コストを抑制しつつ、上記効果を十分に得る観点から、Moの含有量は0.01〜0.15質量%とする事が好ましい。
Subsequently, among the contents of selective additive components (Mo, Ni, Cu) of steel constituting the bearing ring of the present invention, and the inevitable impurities, it is particularly preferable to regulate the content (S, The content of P, O) will be described.
[Mo content in steel constituting the bearing ring: 0.00 to 0.40 mass%]
Mo is dissolved in the base and has the effect of improving the hardenability and temper softening resistance and ensuring the hardness of the raceway surface of the raceway. Further, Mo also has an effect of suppressing the occurrence of white tissue peeling as in the case of Si, Mn, and Cr described above. That is, Mo also has an effect of stabilizing martensite in the base structure and delaying the white structure change due to hydrogen. In addition, by delaying the butterfly structure change that occurs around oxide inclusions and sulfide inclusions, it is possible to suppress the occurrence of inclusion-origin separation on the bearing ring, and the life of rolling bearings incorporating this bearing ring Contributes to extension. However, if the Mo content exceeds 0.40% by mass, a part of Mo forms a hard carbide, which reduces grindability. Moreover, since it is an expensive element, it causes an increase in the manufacturing cost of the rolling bearing including the raceway. Therefore, the Mo content was regulated to 0.00 to 0.40 mass%. In addition, it is preferable to make content of Mo into 0.01-0.15 mass% from a viewpoint of acquiring the said effect fully, suppressing manufacturing cost.

[軌道輪を構成する鋼中のNiの含有量:0.00〜0.20質量%]
Niは、焼き入れ性を向上させる効果とオーステナイトを安定化させる効果とを持つ元素であり、更に、多量に添加すると靱性が向上する。但し、高価な元素である為、前記軌道輪を含む転がり軸受の製造コストを高くする原因となる。そこで、Niの含有量を0.00〜0.20質量%に規制した。尚、製造コストを抑制しつつ、上記効果を十分に得る観点から、Niの含有量は0.01〜0.18質量%とする事が好ましい。
[Ni content in steel constituting the bearing ring: 0.00 to 0.20% by mass]
Ni is an element having an effect of improving hardenability and an effect of stabilizing austenite. Further, when added in a large amount, Ni improves toughness. However, since it is an expensive element, it causes an increase in the manufacturing cost of the rolling bearing including the raceway. Therefore, the Ni content is regulated to 0.00 to 0.20 mass%. In addition, it is preferable that content of Ni shall be 0.01-0.18 mass% from a viewpoint which fully obtains the said effect, suppressing manufacturing cost.

[軌道輪を構成する鋼中のCuの含有量:0.20質量%以下]
Cuは、焼き入れ性を向上させる効果と、粒界強度を向上させる効果とがある。但し、Cuの含有量が多くなると熱間鍛造性が低下する。そこで、Cuの含有量を0.00〜0.20質量%に規制した。尚、上記効果を十分に得るためには、Cuの含有量を0.01質量%以上とする事が必要となる。
[Cu content in steel constituting the bearing ring: 0.20 mass% or less]
Cu has the effect of improving the hardenability and the effect of improving the grain boundary strength. However, when the Cu content increases, hot forgeability decreases. Therefore, the Cu content was regulated to 0.00 to 0.20 mass%. In addition, in order to acquire the said effect fully, it is necessary to make Cu content 0.01 mass% or more.

[軌道輪を構成する鋼中のSの含有量:0.020質量%以下]
Sは、MnSを形成し、このMnSは、介在物として作用し、介在物起点型剥離の起点となる為、鋼中に含まれるS量は少ない程良い。但し、Sは自然界に多く存在する元素であり、Sの含有量を極端に少なく抑えようとすると、軌道輪を造る為の鋼製の素材(鋼材)の生産性が低下し、鋼材の製造コストが上昇する為、工業上広く利用する事が難しくなる。一方、Sを0.020質量%程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、前記介在物起点型剥離の発生を抑え、軌道輪に必要とされる耐久性を確保できる。そこで、Sの含有量の上限値を0.020質量%とした。
[S content in steel constituting raceway ring: 0.020 mass% or less]
Since S forms MnS, and this MnS acts as an inclusion and becomes the starting point of inclusion starting type peeling, the smaller the amount of S contained in the steel, the better. However, S is an element that exists abundantly in nature, and trying to keep the S content extremely low reduces the productivity of steel materials (steel materials) for making bearing rings, and the manufacturing costs of steel materials. Increases, making it difficult to use widely in industry. On the other hand, even if S is contained in an amount of about 0.020% by mass, the content of other elements and the heat treatment method can be made appropriate to suppress the occurrence of the inclusion-origin-type separation, and the durability required for the bearing ring can be improved. It can be secured. Therefore, the upper limit of the S content is set to 0.020% by mass.

[軌道輪を構成する鋼中のPの含有量:0.020質量%以下]
Pは、結晶粒界に偏析して、粒界強度や破壊靱性値を低下させるので、少ない程良い。但し、Pも自然界に多く存在する元素であり、Pの含有量を極端に少なく抑えようとすると、鋼材の製造コストが上昇する。一方、Pを0.020質量%程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、軌道輪に必要とされる耐久性を確保できる。そこで、Pの含有量の上限値を0.020質量%とした。
[P content in steel constituting the bearing ring: 0.020 mass% or less]
P is preferably as small as possible because it segregates at the grain boundaries and lowers the grain boundary strength and fracture toughness value. However, P is also an element that exists in a large amount in nature. If an attempt is made to keep the P content extremely low, the manufacturing cost of the steel material will increase. On the other hand, even if P is contained in an amount of about 0.020% by mass, durability required for the race can be ensured by making the content of other elements and the heat treatment method appropriate. Therefore, the upper limit of the P content is set to 0.020% by mass.

[軌道輪を構成する鋼中のOの含有量:15質量ppm以下]
Oは、鋼中でAl23等の酸化物系介在物を形成する。酸化物系介在物は、硬く、介在物起点型剥離の起点となり、軌道面の転がり疲れ寿命に大きな悪影響を及ぼすので、Oの含有量は少ない程良い。但し、Oに関しても、含有量を極端に少なくすると鋼材コストが上昇するのに対して、Oを15質量ppm程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、軌道輪に必要とされる耐久性を確保できる。そこで、Oの含有量の上限値を15質量ppmとした。
[Content of O in steel constituting raceway ring: 15 mass ppm or less]
O forms oxide inclusions such as Al 2 O 3 in the steel. Oxide inclusions are hard and serve as starting points for inclusion-origin separation, and have a great adverse effect on the rolling fatigue life of the raceway surface. Therefore, the smaller the O content, the better. However, with regard to O as well, the steel material cost increases when the content is extremely reduced. On the other hand, even if O is contained in an amount of about 15 mass ppm, the content of other elements and the heat treatment method can be made appropriate. The required durability can be ensured. Therefore, the upper limit of the O content was set to 15 ppm by mass.

(2)各転動体に就いて
次に、請求項2に記載した発明に対応し、前記各転動体に関して説明する。
これら各転動体に関して、基本的には、一般的な、高炭素クロム軸受鋼2種(SUJ2、JIS G 4805)材に、一般的な焼き入れ(ズブ焼き入れ)処理及び焼き戻し処理したものを使用できる。但し、これら各転動体面の様に前記軌道面と転がり接触する部分が変化しない等の厳しい使用条件下で、転がり軸受全体としての長寿命化をより十分に図る為には、前記各転動体を構成する鋼の組成を請求項2に記載した発明の如く限定し、更にこの鋼製の素材に浸炭窒化焼き入れ処理を施し、この請求項2に規定した性状を有するものとする事が好ましい。以下に、請求項2に記載した発明の特定事項に就いて説明する。
(2) About each rolling element Next, it respond | corresponds to the invention described in Claim 2, and demonstrates each said rolling element.
For each of these rolling elements, basically, a general high-carbon chromium bearing steel type 2 (SUJ2, JIS G 4805) material subjected to general quenching (tempering) treatment and tempering treatment. Can be used. However, in order to extend the life of the rolling bearing as a whole under severe conditions such as the rolling contact surfaces of these rolling contact surfaces do not change, the rolling elements can be sufficiently expanded. It is preferable that the composition of the steel constituting the steel is limited as in the invention described in claim 2, and the steel material is further subjected to carbonitriding and quenching to have the properties defined in claim 2. . The specific matters of the invention described in claim 2 will be described below.

[転動体の表面硬さ:HRC63〜67]
白色組織は、鋼製の軸受部品(前記軌道輪及び前記各転動体)を構成する鋼中の水素が局所的な塑性変形を引き起こす事によって、この鋼の基地組織のマルテンサイトが、超微細粒フェライト組織に変化したものである。従って、前記各転動体の表面での白色組織の形成を遅延させる為には、これら各転動体の表面硬さを高くして、塑性変形し難くする事が有効である。この様な効果は、この表面硬さがHRC63未満の場合には十分には得られない。安定的に白色組織の形成を遅延させる効果を得る為に、より好ましくは、前記各転動体の表面硬さをHRC64.5以上とする。但し、この表面硬さがHRC67を超えると、前記各転動体の転動面の靱性が低下して、これら各転動体の転動面に亀裂等の損傷が発生し易くなり、転がり軸受全体としての耐久性確保の面から不利になる。そこで、転動体の表面硬さをHRC63〜67とした。
尚、前記各転動体の表面硬さは、浸炭窒化焼き入れ処理による炭素濃度と窒素濃度、焼き入れ温度、焼き戻し温度、ボールピーニングの加工条件によって調整可能である。
[Surface hardness of rolling elements: HRC63-67]
In the white structure, hydrogen in the steel constituting the steel bearing parts (the bearing ring and the rolling elements) causes local plastic deformation, so that the martensite of the base structure of the steel becomes ultrafine particles. It has changed to a ferrite structure. Therefore, in order to delay the formation of the white texture on the surface of each rolling element, it is effective to increase the surface hardness of each rolling element to make it difficult to plastically deform. Such an effect cannot be sufficiently obtained when the surface hardness is less than HRC63. In order to obtain the effect of stably delaying the formation of the white structure, more preferably, the surface hardness of each rolling element is set to HRC 64.5 or more. However, if the surface hardness exceeds HRC67, the toughness of the rolling surface of each rolling element is reduced, and the rolling surface of each rolling element is likely to be damaged, such as a crack. This is disadvantageous in terms of ensuring durability. Therefore, the surface hardness of the rolling elements was set to HRC63-67.
The surface hardness of each rolling element can be adjusted by the carbon and nitrogen concentrations, the quenching temperature, the tempering temperature, and the ball peening processing conditions by the carbonitriding and quenching treatment.

[転動体の最表面の残留オーステナイト量:20〜40容量%]
先の軌道輪部分でも述べた通り、残留オーステナイトは通常軟質な組織である為、転動体の最表面である転動面に付いた傷や圧痕、更には電食により荒れた転動面に存在する電食痕の周辺のエッジ部に発生する応力集中を緩和し、クラックの発生を抑制する。この様な効果は、前記軌道輪の場合と同様に、残留オーステナイト量が20容量%未満の場合には十分には得られない。一方、前記各転動体は、前記軌道輪に比べて高い剛性を必要とする為、炭素を多く含んだ材料を用いて芯部まで硬化させる。その為、最表面の残留オーステナイト量が40容量%を超えると、内部の残留オーステナイト量も増大してしまい、前述の軌道輪部分で説明した理由により、寸法安定性及び形状安定性が低下してしまう場合がある。
尚、クラックの発生をより効果的に抑制する観点から前記残留オーステナイト量を30〜40容量%とする事が好ましい。
又、本発明に於いて、転動体の最表面の残留オーステナイト量とは、X線回折装置を用いて、該転動体の最表面から10μmまでの残留オーステナイト量を測定する事により求められる値を意味する。
[Amount of retained austenite on the outermost surface of the rolling element: 20 to 40% by volume]
As described in the previous section of the raceway, retained austenite is usually a soft structure, so it exists on the rolling surface that is roughened by electrolytic corrosion, as well as scratches and indentations on the rolling surface that is the outermost surface of the rolling element. The stress concentration generated at the edge portion around the galvanic corrosion mark is alleviated and the generation of cracks is suppressed. Such an effect cannot be sufficiently obtained when the amount of retained austenite is less than 20% by volume, as in the case of the raceway. On the other hand, since each rolling element requires higher rigidity than the raceway, the core is hardened using a material containing a large amount of carbon. Therefore, if the amount of retained austenite on the outermost surface exceeds 40% by volume, the amount of retained austenite inside also increases, and for the reason explained in the above-mentioned raceway part, dimensional stability and shape stability are lowered. May end up.
In addition, it is preferable to make the said retained austenite amount into 30-40 volume% from a viewpoint of suppressing generation | occurrence | production of a crack more effectively.
In the present invention, the amount of retained austenite on the outermost surface of the rolling element is a value obtained by measuring the amount of retained austenite from the outermost surface of the rolling element to 10 μm using an X-ray diffractometer. means.

[転動体表面からの前記1%深さ位置のN量:0.05〜2.00質量%]
前記各転動体の転動面を硬化する為の浸炭窒化焼き入れ処理によって、これら各転動体の表面から侵入拡散したNは、表面では濃度が高くなり、内部に向かって濃度が低くなっていく。表面付近の高濃度のNは、Si−Mn系窒化物を形成する。一方、内部に拡散した低濃度のNには残留オーステナイトを安定化させる効果がある。従って、前記1%深さ位置まで微量のNを拡散させる事によって、その位置の残留オーステナイトを安定化させ、前述した様な、残留オーステナイトによる白色組織変化を遅延させる効果を高める事ができる。この様な効果は、前記1%深さ位置のN量が0.05質量%未満の場合には十分には得られない。この為、前記1%深さ位置のN量は、0.05質量%以上とする。一方、前記1%深さ位置のN量が2.00質量%を超えると、効果が飽和する。この為、前記1%深さ位置のN量は、2.00質量%以下、好ましくは0.30質量%以下とする。
尚、この1%深さ位置のN量(濃度)は、前記各転動体に浸炭窒化焼き入れ処理をする際の、雰囲気ガス中の窒素ポテンシャルと保持時間とのうちの少なくとも一方を変える事により調整できる。
[N content at 1% depth from the rolling element surface: 0.05 to 2.00% by mass]
By carbonitriding and quenching for hardening the rolling surface of each rolling element, N that has entered and diffused from the surface of each rolling element has a higher concentration on the surface and lowers toward the inside. . High concentration of N near the surface forms Si-Mn nitride. On the other hand, the low concentration of N diffused inside has an effect of stabilizing the retained austenite. Therefore, by diffusing a small amount of N up to the 1% depth position, the retained austenite at that position can be stabilized, and the effect of delaying the white structure change due to the retained austenite as described above can be enhanced. Such an effect cannot be sufficiently obtained when the N amount at the 1% depth position is less than 0.05 mass%. For this reason, the N amount at the 1% depth position is set to 0.05% by mass or more. On the other hand, when the N amount at the 1% depth position exceeds 2.00% by mass, the effect is saturated. For this reason, the N amount at the 1% depth position is 2.00% by mass or less, preferably 0.30% by mass or less.
The N amount (concentration) at the 1% depth position is obtained by changing at least one of the nitrogen potential and the holding time in the atmospheric gas when the rolling elements are subjected to carbonitriding and quenching. Can be adjusted.

[転動体表面からの前記1%深さ位置の圧縮残留応力:500〜900MPa]
前記各転動体の転動面に関しても、前記軌道輪の軌道面の場合と同様に、前記1%深さ位置に圧縮残留応力を存在させる事により、白色組織と正常組織との境界部分で亀裂の進展を抑制し、前記各転動体の転動面の表面部分に存在している白色組織を起点とした、白色組織剥離に至るまでの時間を延長させる効果がある。
前記各転動体の場合、圧縮残留応力はそれぞれの転動面の研磨後に行うボールピーニング加工による塑性加工の効果によっても付与できる。この為、前記各転動体の転動面部分に付与できる圧縮残留応力の値は、前記軌道輪の軌道面に付与できる圧縮残留応力と比較して高くなる。又、この圧縮残留応力の大きさは、浸炭窒化焼き入れ処理時の保持温度と時間とのうちの少なくとも一方を変えて、固溶炭素の濃度勾配を変える事に加え、ボールピーニング加工時のドラムの回転速度と加工時間とのうちの少なくとも一方を変える事によっても調整できる。前述した様に、白色組織と正常組織との界面から発生する微小亀裂の進展は、前記1%深さ位置に圧縮残留応力を存在させる事により抑えられる。但し、この圧縮残留応力の値が500MPa未満の場合には、前記各転動体の転動面に関する限り、前記亀裂進展を抑制する効果が十分には得られない。これに対して、前記圧縮残留応力の値が900MPaを超えると、前記1%深さ位置での圧縮残留応力と釣り合う大きさで前記各転動体の内部に発生する引張応力の作用によって、亀裂の進展が促進される可能性が生じる。そこで、前記各転動体の前記1%深さ位置の圧縮残留応力を500〜900MPa、好ましくは600〜850MPaとした。尚、これら各転動体の前記1%深さ位置の圧縮残留応力の値を、前記軌道輪の場合に比較して高くする理由は、前記各転動体は、非負荷圏に存在する為、荷重を支承せず、公転速度に応じた速度で自転しない状態から、荷重を支承する為、公転速度に応じた速度で自転する必要がある負荷圏に入る際に、局所的に大きな滑りを受ける為、亀裂が進展し易い為である。
[Compressive residual stress at 1% depth from the rolling element surface: 500 to 900 MPa]
As for the rolling surfaces of the rolling elements, as in the case of the raceway surface of the raceway, cracks are formed at the boundary between the white structure and the normal structure by causing a compressive residual stress to exist at the 1% depth position. This has the effect of suppressing the progress of the above and extending the time until the white tissue is peeled off starting from the white tissue existing on the surface portion of the rolling surface of each rolling element.
In the case of each rolling element, the compressive residual stress can be imparted also by the effect of plastic working by ball peening performed after polishing of the respective rolling surfaces. For this reason, the value of the compressive residual stress that can be applied to the rolling surface portion of each rolling element is higher than the compressive residual stress that can be applied to the raceway surface of the raceway. In addition to changing the concentration gradient of the solute carbon by changing at least one of the holding temperature and time during the carbonitriding and quenching treatment, the magnitude of this compressive residual stress is also the drum during ball peening processing. It can also be adjusted by changing at least one of the rotation speed and the machining time. As described above, the development of the microcrack generated from the interface between the white structure and the normal structure can be suppressed by causing a compressive residual stress to exist at the 1% depth position. However, when the value of this compressive residual stress is less than 500 MPa, the effect of suppressing the crack propagation cannot be sufficiently obtained as far as the rolling surface of each rolling element is concerned. On the other hand, when the value of the compressive residual stress exceeds 900 MPa, cracks are caused by the action of tensile stress generated in each of the rolling elements with a size that balances the compressive residual stress at the 1% depth position. There is a possibility that progress will be promoted. Therefore, the compressive residual stress at the 1% depth position of each rolling element is set to 500 to 900 MPa, preferably 600 to 850 MPa. The reason why the value of the compressive residual stress at the 1% depth position of each rolling element is higher than that in the case of the raceway is that each rolling element is in a non-load zone, In order to support a load from a state where it does not rotate at a speed corresponding to the revolution speed, and to receive a large slip locally when entering a load zone that needs to rotate at a speed corresponding to the revolution speed. This is because cracks tend to develop.

以下、本発明の各転動体を構成する鋼の必須の添加成分、具体的には、C、Si、Mn及びCrの添加量(含有量)に就いて説明する。
[各転動体を構成する鋼中のCの含有量:0.80〜1.20質量%]
Cは、前述の軌道輪部分で述べた様に、焼き入れによって基地に固溶し、硬さを向上させる元素であるが、鋼中のCの含有量が0.80質量%未満の場合には、前記各転動体の転動面の硬さを十分には確保できず、これら各転動体の転動面の耐摩耗性や転がり疲れ寿命の確保が難しくなる。又、これら各転動体に浸炭窒化焼き入れ処理を施す場合には、浸炭窒化焼き入れ処理に要する時間が長くなり、これら各転動体の生産性が低下する。これに対して、Cを過剰(1.20質量%を超えて)に添加すると、前記各転動体が硬くなり過ぎて、これら各転動体に関して、研削性や破壊靱性値の低下を生じる.これらの事を考慮して、前記各転動体を構成する鋼中のCの含有量を0.80〜1.20質量%(上述した効果を安定的に得る為に、より好ましくは0.90〜1.10質量%)とした。
Hereinafter, an essential additive component of steel constituting each rolling element of the present invention, specifically, an additive amount (content) of C, Si, Mn, and Cr will be described.
[C content in steel constituting each rolling element: 0.80 to 1.20 mass%]
C is an element that improves the hardness by solid solution by quenching as described above in the raceway part, but when the C content in the steel is less than 0.80% by mass. However, the hardness of the rolling surface of each rolling element cannot be sufficiently ensured, and it becomes difficult to secure the wear resistance and rolling fatigue life of the rolling surface of each rolling element. Further, when the carbonitriding and quenching treatment is performed on each of these rolling elements, the time required for the carbonitriding and quenching process becomes long, and the productivity of these rolling elements is reduced. On the other hand, when C is added excessively (exceeding 1.20% by mass), the respective rolling elements become too hard, and the grindability and fracture toughness value of these rolling elements are reduced. In consideration of these matters, the C content in the steel constituting each rolling element is 0.80 to 1.20% by mass (in order to stably obtain the above-described effect, more preferably 0.90). To 1.10% by mass).

[各転動体を構成する鋼中のSiの含有量:0.10〜0.70質量%]
Siは、前述の軌道輪部分でも述べた様に、基地に固溶して焼き入れ性及び焼き戻し軟化抵抗性を向上させる効果がある為、軸受部品に必要な硬さを確保する為に添加する。且つ、Siは、基地組織中のマルテンサイトを安定化させ、水素による前記各転動体の転動面部分の白色組織変化を遅延させて、前記白色組織剥離の発生を遅延させ、これら転動体を組み込んだ転がり軸受の寿命延長に寄与する。この様な、白色組織変化の遅延による寿命延長効果は、Siの含有量が0.10質量%未満の場合には十分には得られない。一方、Siの含有量が0.70質量%を超えると、旋削性及び冷間加工性が低下する。そこでSiの含有量0.10〜0.70質量%、好ましくは0.20〜0.60質量%とする。
[Si content in steel constituting each rolling element: 0.10 to 0.70 mass%]
Si is added to secure the necessary hardness for bearing parts because it has the effect of improving the hardenability and temper softening resistance by dissolving in the base as described above in the race. To do. And Si stabilizes the martensite in the base structure, delays the white texture change of the rolling surface portion of each rolling element due to hydrogen, delays the occurrence of the white tissue peeling, these rolling elements Contributes to extending the life of the built-in rolling bearing. Such a life extension effect due to the delay of the white structure change cannot be sufficiently obtained when the Si content is less than 0.10% by mass. On the other hand, when the Si content exceeds 0.70% by mass, turning properties and cold workability are deteriorated. Therefore, the Si content is set to 0.10 to 0.70 mass%, preferably 0.20 to 0.60 mass%.

[各転動体を構成する鋼中のMnの含有量:0.20〜1.20質量%]
Mnは、やはり前述の軌道輪部分で述べた様に、基地に固溶して焼き入れ性を向上させる効果がある為、前記各転動体に必要な硬さを確保する為に添加する。且つ、Mnも、上述したSiの場合と同様に、本発明の重要な目的である、白色組織剥離の発生を抑える効果がある。即ち、Mnも、基地組織中のマルテンサイトを安定化させ、非金属介在物周辺に生じる白色組織変化を遅延させて、前記各転動体に白色組織剥離が発生する事を抑え、これら各転動体を組み込んだ転がり軸受の寿命延長に寄与する。更に、Mnは、熱処理後に残留オーステナイトを生成し易くする効果がある。残留オーステナイトは、比較的軟らかい組織であり、前述した表面起点型剥離を抑えて、別の観点から、前記各転動体を組み込んだ転がり軸受の寿命延長に寄与する。この様な効果は、Mnの含有量が0.20質量%未満の場合には、十分には得られない。一方、Mnの含有量が1.20質量%を超え、残留オーステナイト量が過剰になると、前記各転動体の転動面の転がり疲れ寿命を確保し難くなるだけでなく、前記各転動体の形状及び寸法の安定性が低下する。そこで、これら各転動体を構成する鋼中のMnの含有量を、0.20〜1.20質量%の範囲とする。
[Mn content in steel constituting each rolling element: 0.20 to 1.20 mass%]
Mn is added to secure the necessary hardness for each rolling element because it has the effect of improving the hardenability by dissolving in the base as described in the above-mentioned raceway part. Mn also has the effect of suppressing the occurrence of white tissue peeling, which is an important object of the present invention, as in the case of Si described above. That is, Mn also stabilizes the martensite in the base structure, delays the white structure change that occurs around the non-metallic inclusions, and suppresses the occurrence of white tissue peeling on each of the rolling elements. Contributes to extending the life of rolling bearings incorporating Further, Mn has an effect of easily generating retained austenite after heat treatment. Residual austenite is a relatively soft structure, and suppresses the above-described surface-originating separation, and contributes to extending the life of the rolling bearing incorporating the rolling elements from another viewpoint. Such an effect cannot be sufficiently obtained when the Mn content is less than 0.20% by mass. On the other hand, if the content of Mn exceeds 1.20% by mass and the amount of retained austenite becomes excessive, it is difficult not only to ensure the rolling fatigue life of the rolling surface of each rolling element, but also the shape of each rolling element. And dimensional stability is reduced. Therefore, the Mn content in the steel constituting each of the rolling elements is set to a range of 0.20 to 1.20 mass%.

[各転動体を構成する鋼中のCrの含有量:0.90〜1.80質量%]
Crは、やはり前述の軌道輪部分で述べた様に、基地のマルテンサイト中に固溶し、焼き入れ性を向上させて、前記各転動体の転動面の硬さを確保する効果がある。又、Cと結合して炭化物を形成し、耐摩耗性及び転がり疲れ寿命を向上させる効果がある。更に、Crも、前述したSi及び上述したMnの場合と同様に、炭化物と基地組織のマルテンサイトを安定化させる為、水素による組織変化を遅延させて、寿命を延長する効果がある。この様な効果は、Crの含有量が0.90質量%未満の場合には、十分には得られない。一方、Crの含有量が1.80質量%を超えると、旋削性及び冷間加工性が低下する。そこで、前記各転動体を構成する鋼中のCrの含有量を、0.90〜1.80質量%の範囲とする。尚、旋削性及び冷間加工性をより安定させる為に、好ましくは、Crの含有量を1.70質量%以下とする。
[Cr content in steel constituting each rolling element: 0.90 to 1.80 mass%]
As described in the above-mentioned raceway part, Cr is also dissolved in the martensite of the base, improving the hardenability and ensuring the hardness of the rolling surface of each rolling element. . Moreover, it combines with C to form carbides, and has the effect of improving wear resistance and rolling fatigue life. Furthermore, Cr also has the effect of extending the life by delaying the structural change caused by hydrogen in order to stabilize the carbide and martensite of the base structure, as in the case of Si and Mn. Such an effect cannot be sufficiently obtained when the Cr content is less than 0.90 mass%. On the other hand, when the content of Cr exceeds 1.80% by mass, the turning property and the cold workability are deteriorated. Therefore, the Cr content in the steel constituting each rolling element is set to a range of 0.90 to 1.80 mass%. In order to further stabilize the turning property and the cold workability, the Cr content is preferably 1.70% by mass or less.

続いて、本発明の各転動体を構成する鋼の選択的な添加成分(Mo、Ni、Cu)の含有量、及び、不可避不純物のうち、特にその含有量を規制する事が好ましい成分(S、P、O)の含有量に就いて説明する。
[各転動体を構成する鋼中のMoの含有量:0.00〜0.25質量%]
Moは、やはり前述の軌道輪部分で述べた様に、基地に固溶して、焼き入れ性及び焼き戻し軟化抵抗性を向上させ、前記各転動体の転動面の硬さを確保する効果がある。又、Moも、基地組織中のマルテンサイトを安定化させ、水素による白色組織変化を遅延させる効果がある。但し、Moの含有量が0.25質量%を超えると、Moの一部が硬い炭化物を形成し、研削性を低下させる。又、高価な元素である為、前記各転動体を含む転がり軸受の製造コストを高くする原因となる。そこで、Moの含有量を0.00〜0.25質量%と規制した。尚、製造コストを抑制しつつ、上記効果を十分に得る観点から、Moの含有量は0.01〜0.15質量%とする事が好ましい。
Subsequently, among the contents of selective additive components (Mo, Ni, Cu) of steel constituting each rolling element of the present invention and unavoidable impurities, it is particularly preferable to regulate the content (S , P, O) will be described.
[Mo content in steel constituting each rolling element: 0.00 to 0.25% by mass]
As described in the above-mentioned raceway part, Mo is also dissolved in the base to improve the hardenability and temper softening resistance and to ensure the hardness of the rolling surface of each rolling element. There is. Mo also has the effect of stabilizing martensite in the base structure and delaying the change in white structure due to hydrogen. However, when the content of Mo exceeds 0.25% by mass, a part of Mo forms a hard carbide and reduces grindability. Moreover, since it is an expensive element, it causes an increase in the manufacturing cost of the rolling bearing including the rolling elements. Therefore, the Mo content was regulated to 0.00 to 0.25% by mass. In addition, it is preferable to make content of Mo into 0.01-0.15 mass% from a viewpoint of acquiring the said effect fully, suppressing manufacturing cost.

[各転動体を構成する鋼中のNiの含有量:0.00〜0.20質量%]
Niは、やはり前述の軌道輪部分で述べた様に、焼き入れ性を向上させる効果と残留オーステナイトを安定化させる効果とを持つ元素であり、更に、多量に添加すると靱性が向上する。但し、高価な元素である為、前記各転動体を含む転がり軸受の製造コストを高くする原因となる。そこで、Niの含有量を0.00〜0.20質量%と規制した。尚、製造コストを抑制しつつ、上記効果を十分に得る観点から、Niの含有量は0.01〜0.18質量%とする事が好ましい。
[Ni content in steel constituting each rolling element: 0.00 to 0.20 mass%]
Ni is an element having the effect of improving the hardenability and the effect of stabilizing the retained austenite as described in the above-described raceway ring portion. Further, when added in a large amount, Ni improves the toughness. However, since it is an expensive element, it causes an increase in the manufacturing cost of the rolling bearing including the rolling elements. Therefore, the content of Ni is regulated to 0.00 to 0.20% by mass. In addition, it is preferable that content of Ni shall be 0.01-0.18 mass% from a viewpoint which fully obtains the said effect, suppressing manufacturing cost.

[各転動体を構成する鋼中のCuの含有量:0.00〜0.20質量%]
Cuは、やはり前述の軌道輪部分で述べた様に、焼き入れ性を向上させる効果と、粒界強度を向上させる効果とがある。但し、Cuの含有量が多くなると熱間鍛造性が低下する。そこで、Cuの含有量を0.00〜0.20質量%と規制した。尚、上記効果を十分に得るためには、Cuの含有量を0.01質量%以上とする事が必要となる。
[Cu content in steel constituting each rolling element: 0.00 to 0.20 mass%]
Cu has the effect of improving the hardenability and the effect of improving the grain boundary strength, as described above for the raceway part. However, when the Cu content increases, hot forgeability decreases. Therefore, the Cu content was regulated to 0.00 to 0.20 mass%. In addition, in order to acquire the said effect fully, it is necessary to make Cu content 0.01 mass% or more.

[各転動体を構成する鋼中のSの含有量:0.020質量%以下]
Sは、やはり前述の軌道輪部分で述べた様に、介在物として作用するMnSを形成する為、鋼中に含まれるS量は少ない程良い。但し、Sは自然界に多く存在する元素であり、Sの含有量を極端に少なく抑えようとすると、前記各転動体を造る為の鋼製の素材(鋼材)の生産性が低下し、鋼材の製造コストが上昇する為、工業上広く利用する事が難しくなる。一方、Sを0.020量%程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、前記各転動体に必要とされる耐久性を確保できる。そこで、Sの含有量の上限値を0.020質量%とした。
[S content in steel constituting each rolling element: 0.020% by mass or less]
As described in the above-described raceway portion, S forms MnS that acts as an inclusion, so the smaller the amount of S contained in the steel, the better. However, S is an element that exists abundantly in nature. If the content of S is to be suppressed to an extremely low level, the productivity of steel materials (steel materials) for producing the rolling elements will be reduced. Since the manufacturing cost rises, it becomes difficult to use it widely industrially. On the other hand, even if S is contained in an amount of about 0.020% by mass, the durability required for each rolling element can be ensured by making the content of other elements and the heat treatment method appropriate. Therefore, the upper limit of the S content is set to 0.020% by mass.

[各転動体を構成する鋼中のPの含有量:0.020質量%以下]
Pは、やはり前述の軌道輪部分で述べた様に、結晶粒界に偏析して、粒界強度や破壊靱性値を低下させるので、少ない程良い。但し、Pも自然界に多く存在する元素であり、Pの含有量を極端に少なく抑えようとすると、鋼材の製造コストが上昇する。一方、Pを0.020質量%程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、前記各転動体に必要とされる耐久性を確保できる。そこで、Pの含有量の上限値を0.020質量%とした。
[P content in steel constituting each rolling element: 0.020 mass% or less]
As described above with respect to the raceway part, P is segregated at the crystal grain boundaries and lowers the grain boundary strength and fracture toughness value. However, P is also an element that exists in a large amount in nature. If an attempt is made to keep the P content extremely low, the manufacturing cost of the steel material will increase. On the other hand, even if P is contained in an amount of about 0.020% by mass, the durability required for each rolling element can be secured by making the content of other elements and the heat treatment method appropriate. Therefore, the upper limit of the P content is set to 0.020% by mass.

[前記各転動体を構成する鋼中のOの含有量:10質量ppm%以下]
Oは、やはり前述の軌道輪部分で述べた様に、鋼中でAl23等の酸化物系介在物を形成する。酸化物系介在物は、硬く、介在物起点型剥離の起点となり、転動面の転がり疲れ寿命に大きな悪影響を及ぼすので、Oの含有量は少ない程良い。但し、Oに関しても、含有量を極端に少なくすると鋼材コストが上昇するのに対して、Oを10質量ppm程度含んでも、他の元素の含有量及び熱処理方法を適切にする事で、前記各転動体に必要とされる耐久性を確保できる。そこで、Oの含有量の上限値を10質量ppmとした。
[O content in steel constituting each rolling element: 10 mass ppm or less]
O also forms oxide inclusions such as Al 2 O 3 in the steel, as described above for the raceway portion. Oxide inclusions are hard and serve as starting points for inclusion-origin separation, and have a significant adverse effect on the rolling fatigue life of the rolling surface. Therefore, the smaller the O content, the better. However, regarding O, if the content is extremely reduced, the steel material cost increases, but even if O is contained in an amount of about 10 ppm by mass, the content of other elements and the heat treatment method can be made appropriate. The durability required for the rolling elements can be secured. Therefore, the upper limit of the O content was set to 10 mass ppm.

(3)グリースに就いて
次に、前記各転動体を設置した軸受内部空間に充填するグリースの組成に就いて説明する。即ち、本発明の転がり軸受を実施する場合に、このグリースとして、下記の様な適切な添加物を添加したものを使用する事により、前記軌道面及び前記各転動面とに安定して保護被膜を形成し、前記軌道輪及び前記各転動体を構成する鋼内への水素の侵入を抑制し、白色組織剥離の進展を抑えられる。
(3) Regarding Grease Next, the composition of grease filled in the bearing internal space where the rolling elements are installed will be described. That is, when the rolling bearing according to the present invention is carried out, the grease is added with an appropriate additive as described below, thereby stably protecting the raceway surface and each rolling surface. A coating is formed to suppress the intrusion of hydrogen into the steel constituting the race and the rolling elements, and the progress of white structure peeling can be suppressed.

[増ちょう剤:ジウレア化合物]
ジウレア化合物は、グリース中に増ちょう剤として添加されるものであり、優れた耐熱性を有する為、転がり軸受の使用環境温度が高く、前記軌道面と前記各転動面との転がり接触部の温度が上昇した場合にも、これら各転がり接触部に安定した保護被膜(油膜)を形成できる。尚、前記増ちょう剤の配合割合は、好ましくは、グリース組成物全量に対して5〜25質量%とする。この増ちょう剤の配合割合が25質量%を超えると、前記グリース組成物が過剰に硬くなって十分な潤滑性能を得る事が難しくなる。これに対して、前記増ちょう剤の配合割合が5質量%未満の場合には、前記グリースを十分にグリース状にできなくなる(前記各転がり接触部に強固な保護被膜を形成する為に必要な粘度を確保できなくなる)。
[Thickener: Diurea compound]
The diurea compound is added as a thickener to the grease and has excellent heat resistance, so that the operating environment temperature of the rolling bearing is high, and the rolling contact portion between the raceway surface and each rolling surface is Even when the temperature rises, a stable protective film (oil film) can be formed on each of the rolling contact portions. The blending ratio of the thickener is preferably 5 to 25% by mass with respect to the total amount of the grease composition. If the blending ratio of the thickener exceeds 25% by mass, the grease composition becomes excessively hard and it becomes difficult to obtain sufficient lubrication performance. On the other hand, when the blending ratio of the thickener is less than 5% by mass, the grease cannot be made sufficiently grease-like (necessary for forming a strong protective film on each rolling contact portion. Viscosity cannot be ensured).

増ちょう剤として好適に使用できるジウレア化合物としては、下記の化学式:[化1]〜[化3]で表されるものが好ましい例として挙げられる。   Preferred examples of the diurea compound that can be suitably used as a thickener include those represented by the following chemical formulas: [Chemical Formula 1] to [Chemical Formula 3].

Figure 2015017661
Figure 2015017661

Figure 2015017661
Figure 2015017661

Figure 2015017661
Figure 2015017661

尚、上記[化1]〜[化3]に於いて、R1は芳香環を含有する炭化水素基(炭素数は全体で7〜12)を、R2は2価の芳香環を含有する炭化水素基(炭素数は全体で6〜15)を、R3はシクロヘキシル基又はアルキルシクロヘキシル基(炭素数は全体で7〜12)を表す。 In the above [Chemical Formula 1] to [Chemical Formula 3], R 1 contains an aromatic ring-containing hydrocarbon group (7 to 12 carbon atoms in total), and R 2 contains a divalent aromatic ring. A hydrocarbon group (the number of carbon atoms is 6 to 15 in total), and R 3 is a cyclohexyl group or an alkylcyclohexyl group (the number of carbon atoms is 7 to 12 in total).

[防錆剤:ナフテン酸塩、コハク酸又はこれらの誘導体]
ナフテン酸塩、コハク酸又はこれらの誘導体は、グリース中に防錆剤として添加されるものであり、前記軌道輪及び前記各転動体を構成する鋼の表面である、前記軌道面及び前記各転動面に吸着して保護被膜を形成する。そして、これら各面に関して、防錆作用を発揮すると同時に、これら各面での水素の発生と侵入とを抑制する効果を発揮する。これらの防錆剤として機能する物質は、1種を単独で使用しても、或いは2種以上を組み合わせて使用しても良い。安定的に上記の効果を得る為には、ナフテン酸塩、コハク酸又はその誘導体の添加量の合計は、グリース組成物全量に対して0.25〜5質量%とする事が好ましい。
[Rust preventive: Naphthenate, succinic acid or derivatives thereof]
Naphthenic acid salt, succinic acid or derivatives thereof are added as a rust preventive agent in grease, and the raceway surfaces and the rolling elements are the surfaces of steel constituting the bearing rings and the rolling elements. Adsorb to the moving surface to form a protective coating. And about each of these surfaces, while exhibiting a rust prevention effect, the effect which suppresses generation | occurrence | production and penetration | invasion of hydrogen in these each surface is exhibited. These substances that function as rust inhibitors may be used alone or in combination of two or more. In order to stably obtain the above effects, the total amount of naphthenic acid salt, succinic acid or a derivative thereof is preferably 0.25 to 5% by mass based on the total amount of the grease composition.

ナフテン酸塩としては、ナフテン核を有するカルボン酸塩であれば特に制限されないが、ナフテン核を有する飽和カルボン酸塩である事が好ましい。この様なナフテン酸塩としては、飽和単環カルボン酸塩(Cn2n-1COOM)、飽和複環カルボン酸塩(Cn2n-3COOM)及びこれらの誘導体が挙げられる。例えば、飽和単環カルボン酸塩としては、下記の化学式:[化4]又は[化5]で表されるものが好ましい例として挙げられる。 The naphthenic acid salt is not particularly limited as long as it is a carboxylate having a naphthene nucleus, but a saturated carboxylate having a naphthene nucleus is preferable. Examples of such naphthenates include saturated monocyclic carboxylates (C n H 2n-1 COOM), saturated bicyclic carboxylates (C n H 2n-3 COOM), and derivatives thereof. For example, preferable examples of the saturated monocyclic carboxylate include those represented by the following chemical formula: [Chemical Formula 4] or [Chemical Formula 5].

Figure 2015017661
Figure 2015017661

Figure 2015017661
Figure 2015017661

尚、上記[化4]及び[化5]に於いて、R4は炭化水素基を表し、具体的には、アルキル基、アルケニル基、アリール基、アルカリール基、アラルキル基等が挙げられる。又、Mは金属元素を表し、具体的には、Co、Mn、Zn、Al、Ca、Ba、Li、Mg、Cu等が挙げられる。又、コハク酸又はその誘導体としては、コハク酸、アルキルコハク酸、アルキルコハク酸ハーフエステル、アルケニルコハク酸、アルケニルコハク酸ハーフエステル、コハク酸イミド等を挙げる事ができる。 In the above [Chemical Formula 4] and [Chemical Formula 5], R 4 represents a hydrocarbon group, and specific examples include an alkyl group, an alkenyl group, an aryl group, an alkaryl group, and an aralkyl group. M represents a metal element, and specifically includes Co, Mn, Zn, Al, Ca, Ba, Li, Mg, Cu and the like. Examples of succinic acid or derivatives thereof include succinic acid, alkyl succinic acid, alkyl succinic acid half ester, alkenyl succinic acid, alkenyl succinic acid half ester, and succinimide.

[酸化防止剤:フェノール系化合物又はアミン系化合物]
フェノール系化合物又はアミン系化合物は、グリース中に酸化防止剤として添加されるものであり、グリースの基油の酸化を防止すると同時に、前記軌道輪及び前記各転動体を構成する鋼の表面に吸着する事により、前記軌道面及び前記各転動面に保護被膜を形成し、これら軌道面及び各転動面部分での水素の発生と、これら軌道面及び各転動面への水素の侵入を抑制する効果を発揮する。これらの効果を得る為には、フェノール系化合物とアミン系化合物とのうちから選択される1種を単独で使用しても、或いは2種以上を組み合わせて使用しても良い。上記の効果を安定的に得る為には、フェノール系化合物とアミン系化合物とのうちから選択される1種又は2種以上の酸化防止剤の添加量の合計を、グリース全量に対して2〜10質量%とする事が好ましい。
[Antioxidants: phenolic compounds or amine compounds]
A phenolic compound or an amine compound is added to the grease as an antioxidant, and prevents the base oil of the grease from being oxidized, and at the same time, adsorbs to the surface of the steel constituting the race and the rolling elements. By forming a protective coating on the raceway surface and each rolling surface, hydrogen is generated on the raceway surface and each rolling surface portion, and hydrogen enters the raceway surface and each rolling surface. Demonstrate the effect. In order to obtain these effects, one selected from a phenol compound and an amine compound may be used alone, or two or more may be used in combination. In order to stably obtain the above effect, the total amount of one or more antioxidants selected from phenolic compounds and amine compounds is 2 to 2 with respect to the total amount of grease. It is preferable to set it as 10 mass%.

(a)フェノール系化合物
フェノール系化合物としては、潤滑油の酸化防止剤として用いられる任意のアルキルフェノール系化合物が使用可能であり、特に、下記の化学式:[化6]で表されるアルキルフェノール化合物を好適に用いる事ができる。
(A) Phenol-based compound As the phenol-based compound, any alkylphenol-based compound used as an antioxidant for lubricating oil can be used, and in particular, an alkylphenol compound represented by the following chemical formula: Can be used for

Figure 2015017661
Figure 2015017661

尚、上記[化6]に於いて、R5は炭素数1〜4のアルキル基を、R6は水素原子又は炭素数1〜4のアルキル基を、R7は水素原子、炭素数1〜4のアルキル基又は下記の化学式:[化7]で表される基をそれぞれ表す。 In the above [Chemical Formula 6], R 5 is an alkyl group having 1 to 4 carbon atoms, R 6 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 7 is a hydrogen atom, 4 represents an alkyl group or a group represented by the following chemical formula:

Figure 2015017661
Figure 2015017661

尚、上記[化7]に於いて、R8は炭素数1〜6のアルキレン基又は硫黄原子を、R9は炭素数1〜4のアルキル基を示し、R10は水素原子又は炭素数1〜4のアルキル基をそれぞれ表す。又、kは0又は1を表す。 In the above [Chemical Formula 7], R 8 represents an alkylene group or sulfur atom having 1 to 6 carbon atoms, R 9 represents an alkyl group having 1 to 4 carbon atoms, and R 10 represents a hydrogen atom or 1 carbon atom. Represents an alkyl group of ˜4, respectively. K represents 0 or 1.

上記[化6]に於いて、R7が炭素数1〜4のアルキルである場合の化合物の例としては、2,6−ジ−tert−ブチル−p−クレゾール、2,6−ジ−tert−ブチル−4−エチルフェノール等を挙げる事ができる。
又、上記[化6]に於いて、R7が上記[化7]で表される基である化合物の例としては、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)メタン、1,1−ビス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)エタン、1,2−ビス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)エタン、1,1−ビス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロパン、1,2−ビス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロパン、1,3−ビス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロパン等、4,4−チオビス(3−メチル−6−tert−ブチルフェノール)及びこれらの混合物等が挙げられる。
In the above [Chemical Formula 6], examples of the compound when R 7 is alkyl having 1 to 4 carbon atoms include 2,6-di-tert-butyl-p-cresol, 2,6-di-tert. -Butyl-4-ethylphenol can be mentioned.
In the above [Chemical Formula 6], examples of the compound in which R 7 is a group represented by the above [Chemical Formula 7] include bis (3,5-di-tert-butyl-4-hydroxyphenyl), Bis (3,5-di-tert-butyl-4-hydroxyphenyl) methane, 1,1-bis (3,5-di-tert-butyl-4-hydroxyphenyl) ethane, 1,2-bis (3 5-di-tert-butyl-4-hydroxyphenyl) ethane, 1,1-bis (3,5-di-tert-butyl-4-hydroxyphenyl) propane, 1,2-bis (3,5-di-) tert-butyl-4-hydroxyphenyl) propane, 1,3-bis (3,5-di-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-di-tert-butyl- 4-hydroxyphenyl) Propane and the like, such as 4,4-thiobis (3-methyl -6-tert-butylphenol) and mixtures thereof.

(b)アミン系化合物
アミン系化合物としては、潤滑油の酸化防止剤として用いられる任意の芳香族アミン系化合物が使用可能であり、特に、下記の化学式:[化8]で表されるα−ナフチルアミン類及び[化10]で表されるジフェニルアミン類から選ばれる1種又は2種以上の芳香族アミンが好ましい例として挙げられる。
(B) Amine-based compound As the amine-based compound, any aromatic amine-based compound used as an antioxidant for lubricating oil can be used, and in particular, α-- represented by the following chemical formula: Preferred examples include one or more aromatic amines selected from naphthylamines and diphenylamines represented by [Chemical Formula 10].

Figure 2015017661
Figure 2015017661

尚、上記[化8]に於いて、R11は水素原子又は下記の化学式:[化9]で表される基
を表す。これらのうち、R11が下記[化9]で表される基である事が好ましい。
In the above [Chemical Formula 8], R 11 represents a hydrogen atom or a group represented by the following chemical formula: [Chemical Formula 9]. Of these, R 11 is preferably a group represented by the following [Chemical 9].

Figure 2015017661
Figure 2015017661

尚、上記[化9]に於いて、R12は水素原子又は炭素数1〜16のアルキル基を表す。
炭素数1〜16のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシ基、トリデシル基、テトラデシル基、ペンタデシル基及びヘキサデシル基等が挙げられる。これらのアルキル基は直鎖状であってもよく、分岐状であっても良い。これらの中で、炭素数が8〜16の分岐状のアルキル基が好ましい。
In the above [Chemical Formula 9], R 12 represents a hydrogen atom or an alkyl group having 1 to 16 carbon atoms.
Examples of the alkyl group having 1 to 16 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, Examples include a tetradecyl group, a pentadecyl group, and a hexadecyl group. These alkyl groups may be linear or branched. Among these, a branched alkyl group having 8 to 16 carbon atoms is preferable.

Figure 2015017661
Figure 2015017661

尚、上記[化10]に於いて、同一分子中のR13は同一でも異なってもよい。R13とし
ては、水素原子又は炭素数1〜16のアルキル基を挙げる事ができ、これらのうち、炭素数1〜16のアルキル基が好ましい。R13で表されるアルキル基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシ基、トリデシル基、テトラデシル基、ペンタデシル基及びヘキサデシル基等が挙げられる。これらのアルキル基は直鎖状であってもよく、分岐状であっても良い。これらの中で、炭素数が3〜16の分岐状のアルキル基が好ましい。
又、アミン系酸化防止剤としては、上記[化8]及び[化10]で表されるアミン系化合物の他、N−n―ブチル−pアミノフェノール、4,4’−テトラメチル−ジ−アミノジフェニルメタン、N,N’−ジサリチルデン−1,2−プロピレンジアミン等を使用する事ができる。
In the above [Chemical Formula 10], R 13 in the same molecule may be the same or different. As R < 13 >, a hydrogen atom or a C1-C16 alkyl group can be mentioned, Among these, a C1-C16 alkyl group is preferable. Specific examples of the alkyl group represented by R 13 include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, and dodecyl. Group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group and the like. These alkyl groups may be linear or branched. Among these, a branched alkyl group having 3 to 16 carbon atoms is preferable.
Examples of amine antioxidants include Nn-butyl-paminophenol, 4,4′-tetramethyl-di-, as well as amine compounds represented by the above [Chemical Formula 8] and [Chemical Formula 10]. Aminodiphenylmethane, N, N′-disalicylidene-1,2-propylenediamine and the like can be used.

[極圧添加剤:DTC系化合物又はDTP系化合物]
有機金属塩であるジアルキルジチオカルバミン酸(DTC)系化合物又はジアルキルジチオリン酸(DTP)系化合物は、グリース中に極圧添加剤として添加されるものであり、前記転がり軸受の運転に伴って、前記軌道輪の軌道面と前記各転動体の転動面とが金属接触した際に、金属表面と化学反応して、これら軌道面及び各転動面に保護被膜を形成し、これら軌道面及び各転動面部分での水素の発生と、これら軌道面及び各転動面への水素の侵入を抑制する効果を発揮する。又、これら軌道面及び各転動面の耐摩耗性及び耐焼付き性も向上させる。これらの効果を得る為には、DTC系化合物とDTP系化合物とを単独で使用しても良く、組み合わせて使用しても良い。上記の効果を安定的に得る為に好ましくは、DTC系化合物とDTP系化合物とのうちから選択される1種又は2種以上の添加量は、グリース全量に対して0.5〜10質量%とする事が好ましい。
[Extreme pressure additive: DTC compound or DTP compound]
A dialkyldithiocarbamic acid (DTC) -based compound or a dialkyldithiophosphoric acid (DTP) -based compound, which is an organic metal salt, is added as an extreme pressure additive to grease, and the raceway is moved along with the operation of the rolling bearing. When the raceway surface of the ring and the rolling contact surface of each rolling element make metal contact, it chemically reacts with the metal surface to form a protective film on the raceway surface and each rolling surface. It exhibits the effect of suppressing the generation of hydrogen at the moving surface portion and the entry of hydrogen into the raceway surface and each rolling surface. Further, the wear resistance and seizure resistance of the raceway surfaces and the respective rolling surfaces are also improved. In order to obtain these effects, the DTC compound and the DTP compound may be used alone or in combination. In order to stably obtain the above effect, the amount of addition of one or more selected from DTC compounds and DTP compounds is preferably 0.5 to 10% by mass with respect to the total amount of grease. Is preferable.

DTC系化合物としては、下記の化学式:[化11]で表される有機金属塩を、DTP系化合物としては下記の化学式:[化12]で表される有機金属塩を好適に使用する事ができる。   As the DTC-based compound, an organic metal salt represented by the following chemical formula: [Chemical Formula 11] is preferably used, and as the DTP-based compound, an organic metal salt represented by the following chemical formula: [Chemical Formula 12] is preferably used. it can.

Figure 2015017661
Figure 2015017661

Figure 2015017661
Figure 2015017661

尚、上記[化11]及び[化12]に於いて、Mは金属原子を表し、具体的には、Sb、Bi、Sn、Ni、Te、Se、Fe、Cu、Mo及びZnなどが挙げられる。又、R14は炭素数1〜18の炭化水素基を表し、同一分子中のR14は同一でも異なってもよい。R14で表される炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基、アリール基、アルキルアリール基、アリールアルキル基などが挙げられる。これらの中でも1,1,3,3−テトラメチルブチル基、1,1,3,3−テトラメチルヘキシル基、1,1,3−トリメチルヘキシル基、1,3−ジメチルブチル基、1−メチルウンデカン基、1−メチルヘキシル基、1−メチルペンチル基、2−エチルブチル基、2−エチルヘキシル基、2−メチルシクロヘキシル基、3−ヘプチル基、4−メチルシクロヘキシル基、n−ブチル基、イソブチル基、イソプロピル基、イソヘプチル基、イソペンチル基、ウンデシル基、エイコシル基、エチル基、オクタデシル基、オクチル基、シクロオクチル基、シクロドデシル基、シクロペンチル基、ジメチルシクロヘキシル基、デシル基、テトラデシル基、ドコシル基、ドデシル基、トリデシル基、トリメチルシクロヘキシル基、ノニル基、プロピル基、ヘキサデシル基、ヘキシル基、ヘニコシル基、ヘプタデシル基、ヘプチル基、ペンタデシル基、ペンチル基、メチル基、tert−ブチルシクロヘキシル基、tert−ブチル基、2−ヘキセニル基、2−メタリル基、アリル基、ウンデセニル基、オレイル基、デセニル基、ビニル基、ブテニル基、ヘキセニル基、ヘプタデセニル基、トリル基、エチルフェニル基、イソプロピルフェニル基、tert−ブチルフェニル基、Sec−ペンチルフェニル基、n−ヘキシルフェニル基、第三オクチルフェニル基、イソノニルフェニル基、n−ドデシルフェニル基、フェニル基、ベンジル基、1−フェニルメチル基、2−フェニルエチル基、3−フェニルプロピル基、1,1−ジメチルベンジル基、2−フェニルイソプロピル基、3−フェニルヘキシル基、ベンズヒドリル基、ビフェニル基が好ましい。これらの炭化水素基はエーテル結合を有しても良い。 In the above [Chemical Formula 11] and [Chemical Formula 12], M represents a metal atom, and specifically includes Sb, Bi, Sn, Ni, Te, Se, Fe, Cu, Mo, Zn, and the like. It is done. Also, R 14 represents a hydrocarbon group having 1 to 18 carbon atoms, R 14 in the same molecule may be the same or different. Examples of the hydrocarbon group represented by R 14 include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an alkylaryl group, and an arylalkyl group. Among these, 1,1,3,3-tetramethylbutyl group, 1,1,3,3-tetramethylhexyl group, 1,1,3-trimethylhexyl group, 1,3-dimethylbutyl group, 1-methyl Undecane group, 1-methylhexyl group, 1-methylpentyl group, 2-ethylbutyl group, 2-ethylhexyl group, 2-methylcyclohexyl group, 3-heptyl group, 4-methylcyclohexyl group, n-butyl group, isobutyl group, Isopropyl group, isoheptyl group, isopentyl group, undecyl group, eicosyl group, ethyl group, octadecyl group, octyl group, cyclooctyl group, cyclododecyl group, cyclopentyl group, dimethylcyclohexyl group, decyl group, tetradecyl group, docosyl group, dodecyl group , Tridecyl group, trimethylcyclohexyl group, nonyl group, propyl , Hexadecyl group, hexyl group, henicosyl group, heptadecyl group, heptyl group, pentadecyl group, pentyl group, methyl group, tert-butylcyclohexyl group, tert-butyl group, 2-hexenyl group, 2-methallyl group, allyl group, undecenyl Group, oleyl group, decenyl group, vinyl group, butenyl group, hexenyl group, heptadecenyl group, tolyl group, ethylphenyl group, isopropylphenyl group, tert-butylphenyl group, Sec-pentylphenyl group, n-hexylphenyl group, 3-octylphenyl group, isononylphenyl group, n-dodecylphenyl group, phenyl group, benzyl group, 1-phenylmethyl group, 2-phenylethyl group, 3-phenylpropyl group, 1,1-dimethylbenzyl group, 2- Phenylisopropyl group, 3-phenylhexyl group, benzhydride Group, biphenyl group. These hydrocarbon groups may have an ether bond.

[導電性物質:カーボンブラック]
前記グリース中に、導電性物質を含有させる事で、前記1対の軌道輪同士の間で常に電流を流し、これら両軌道輪同士の間に、前記各転がり接触部で放電(スパーク)を発生させる程の電位差を生じる事を抑えられる。即ち、前述した通り、通常、転がり軸受の回転中には、前記軌道面輪と前記各転動面との間にはグリースによる油膜が存在する為、前記両軌道輪同士の間は絶縁状態になっている。この様な状態で、これら両軌道輪同士の間に電位差が発生し、振動や滑りによって瞬間的に油膜が切れて、前記軌道面と前記各転動面とが直接接触する金属接触が生じると、当該接触部で放電が生じ、前記軌道面や前記各転動面に電食が発生すると同時に、放電(スパーク)によって潤滑剤や水の分解が加速されて水素の発生が加速される。これに対して、前記グリース中に導電性物質であるカーボンブラックを添加する事により、前記両軌道輪同士の間の電位差を僅少又は零にできて、前記各転がり接触部で放電が生じ難くし、電食や水素の発生を抑える事ができる。この結果、前記軌道輪及び前記各転動体を構成する鋼中への水素の侵入を抑制し、白色組織剥離の進展を抑制する事ができる。
[Conductive substance: Carbon black]
By containing a conductive substance in the grease, a current is always passed between the pair of race rings, and a discharge (spark) is generated between the two race rings at the rolling contact portions. It is possible to suppress the occurrence of a potential difference that is sufficient to cause the That is, as described above, normally, during the rotation of the rolling bearing, an oil film by grease exists between the raceway ring and each of the rolling surfaces, so that the two raceways are in an insulated state. It has become. In such a state, when a potential difference is generated between these two race rings, an oil film is momentarily cut by vibration or slip, and a metal contact is produced in which the raceway surface and each rolling surface are in direct contact with each other. A discharge is generated at the contact portion, and electrolytic corrosion is generated on the raceway surface and each rolling surface. At the same time, the decomposition of the lubricant and water is accelerated by the discharge (spark), and the generation of hydrogen is accelerated. On the other hand, by adding carbon black, which is a conductive substance, to the grease, the potential difference between the two races can be made small or zero, making it difficult for discharge to occur at each rolling contact portion. , Can suppress the generation of electrolytic corrosion and hydrogen. As a result, the penetration of hydrogen into the steel constituting the race and the rolling elements can be suppressed, and the progress of white structure peeling can be suppressed.

カーボンブラックの含有量は、グリース組成物全量に対して0.5〜20質量%とする事が、他の添加剤の添加量を確保しつつ、必要とする通電量を確保する面からは好ましく、1.0〜15質量%とする事がより好ましい。又、カーボンブラックの粒子径は、グリース組成物中での分散性と音響特性の点から、平均粒径で10〜300nmとする事が好ましく、10〜200nmとする事がより好ましい。
尚、本発明を実施する場合に軸受内部空間に充填するグリースとしては、以上に述べた各種添加剤の効果を損なわない範囲で、各種添加剤を添加したグリースを使用する事もできる。
The content of carbon black is preferably 0.5 to 20% by mass with respect to the total amount of the grease composition, from the viewpoint of securing the necessary amount of electricity while securing the amount of other additives to be added. 1.0 to 15% by mass is more preferable. The particle size of the carbon black is preferably 10 to 300 nm, more preferably 10 to 200 nm in terms of average particle size, from the viewpoint of dispersibility in the grease composition and acoustic characteristics.
In addition, as the grease filled in the bearing internal space when the present invention is carried out, grease added with various additives can be used as long as the effects of the various additives described above are not impaired.

(4)導電性シール板
次に、前記各転動体を設置した軸受内部空間の端部開口を塞ぐシール板として導電性を有するものを使用する場合に就いて説明する。即ち、本発明の転がり軸受を実施する場合に、前記シール板として導電性を有するものを使用する事により、前記軌道輪及び前記各転動体との転がり接触部で放電が発生する事を抑え、この転がり接触部での水素の発生、並びに前記軌道輪及び前記各転動体を構成する鋼内への水素の侵入を抑制し、白色組織剥離の進展を抑えられる。
(4) Conductive Seal Plate Next, the case where a conductive seal plate is used as a seal plate that closes the end opening of the bearing internal space where the rolling elements are installed will be described. That is, when carrying out the rolling bearing of the present invention, by using a conductive material as the sealing plate, it is possible to suppress the occurrence of discharge at the rolling contact portion between the race and the rolling elements, The generation of hydrogen at the rolling contact portion and the penetration of hydrogen into the steel constituting the race and the rolling elements can be suppressed, and the progress of white structure peeling can be suppressed.

即ち、本発明の転がり軸受を実施する場合に、前記シール板として導電性を有するものを使用する事で、前記グリースとして導電性を有するものを使用した場合と同様に、前記両軌道輪同士の間の電位差を僅少又は零にできて、前記各転がり接触部で放電が生じ難くし、電食や水素の発生を抑える事ができる。尚、導電性を有するシール板としては、前述の特許文献2に記載される等により、従来から知られている各種のもの、例えば、金属製の芯金と導電性を有するエラストマー製のシールリップとを組み合わせたものを使用できる。   That is, when carrying out the rolling bearing of the present invention, by using a conductive material as the seal plate, as in the case of using a conductive material as the grease, between the two race rings. The potential difference between them can be made small or zero, and it is difficult for electric discharge to occur at the respective rolling contact portions, and generation of electrolytic corrosion and hydrogen can be suppressed. In addition, as a sealing plate which has electroconductivity, it describes by the above-mentioned patent document 2, etc., various things conventionally known, for example, metal metal cores and electroconductive elastomer seal lips, for example Can be used in combination.

本発明を為す過程で行い、合わせて本発明の効果を確認した複数の実験に就いて説明する。これら各実験は、所定の組成を有する鋼により1対の軌道輪(内輪及び外輪)とそれぞれが転動体である複数個の玉を造ってこれらに所定の熱処理を施し、それぞれに就いて品質を調べる[試作及び熱処理品質試験]と、試作した軌道輪と転動体とを組み立てて成る転がり軸受(単列深溝型のラジアル玉軸受)の白色組織剥離に関する寿命を求める[白色組織剥離寿命試験]との、2種類の試験を行った。   A plurality of experiments conducted in the course of making the present invention and confirming the effects of the present invention will be described. In each of these experiments, a pair of race rings (inner ring and outer ring) and a plurality of balls, each of which is a rolling element, are made of steel having a predetermined composition and subjected to a predetermined heat treatment. Examining [Prototype and heat treatment quality test], and obtaining the life related to white tissue peeling of a rolling bearing (single-row deep groove type radial ball bearing) formed by assembling the prototype raceway and rolling element [White tissue peeling life test] Two types of tests were conducted.

[試作及び熱処理品質試験]
前記両軌道輪を造る為の材料(鋼)として、表1のA〜Jに示す組成を有する10種類の鋼を、前記各転動体を造る為の材料(鋼)として、表2のK〜Tに示す組成を有する10種類の鋼を、それぞれ用意した。これら表1、2中の数値は、Oを除き、質量%を表している(Oは質量ppm)。又、括弧書きで表した数値は、当該数値が特許請求の範囲で規定した範囲から外れている事を表している。
[Prototype and heat treatment quality test]
As materials (steel) for making the both race rings, 10 types of steel having the compositions shown in A to J of Table 1 are used as materials (steel) for making the rolling elements. Ten types of steel having the composition shown in T were prepared. The numerical values in Tables 1 and 2 represent mass% excluding O (O is mass ppm). The numerical value shown in parentheses indicates that the numerical value is out of the range defined in the claims.

Figure 2015017661
Figure 2015017661

Figure 2015017661
Figure 2015017661

[軌道輪に関して]
前記表1に示した10種類の鋼に、所定の鍛造加工、切削加工、研磨加工を施す事により、それぞれ呼び番号が6303である、前述の図1に示す様な単列深溝型の玉軸受1(外径:47mm、内径17mm、幅14mm)の外輪3及び内輪5を、各組成を有する鋼毎に7個ずつ造った(N=7)。次いで、それぞれが軌道輪である前記外輪3及び内輪5に、900〜960℃で浸炭窒化処理を施した後、820〜860℃まで温度低下させた状態で油焼き入れ処理を施し、その後、160〜200℃で焼き戻し処理を施した。製作した試験片である、前記外輪3及び内輪5の断面組織を観察したところ、表層部に炭化物及び窒化物の析出が確認された。又、オーステナイト粒の結晶粒度を測定したところ、結晶粒度番号9〜10であった。尚、表1中の鋼種Jは、JIS G 4805に規定されている、SUJ2に相当する、高炭素クロム軸受鋼である。
[Regarding the bearing ring]
The single row deep groove type ball bearing as shown in FIG. 1 described above, which has a nominal number of 6303 by subjecting the ten types of steel shown in Table 1 to predetermined forging, cutting and polishing. Seven outer rings 3 and inner rings 5 of 1 (outer diameter: 47 mm, inner diameter 17 mm, width 14 mm) were made for each steel having each composition (N = 7). Next, after carbonitriding at 900 to 960 ° C., the outer ring 3 and the inner ring 5, each of which is a race, are subjected to oil quenching in a state where the temperature is decreased to 820 to 860 ° C., and then 160 Tempering was performed at ˜200 ° C. When the cross-sectional structures of the outer ring 3 and the inner ring 5, which were the manufactured test pieces, were observed, precipitation of carbide and nitride was confirmed in the surface layer portion. Moreover, when the crystal grain size of the austenite grain was measured, it was crystal grain size number 9-10. In addition, the steel type J in Table 1 is a high carbon chromium bearing steel corresponding to SUJ2 defined in JIS G 4805.

互いに組成が異なる、前記10種類の鋼により、それぞれが試験片である前記外輪3及び内輪5を造った後、次いで、これら各試験片の熱処理品質、即ち、軌道面である外輪軌道2及び内輪軌道4の最表面の残留オーステナイト量、前記1%深さ位置に於ける、軌道輪の周方向及び軸方向の残留応力並びに同位置のC+N量を測定した。このうち、残留オーステナイト量の測定は、軌道面である外輪軌道2及び内輪軌道4の最表面の残留オーステナイト量をX線回折装置により測定する事で行った。又、残留応力の測定は、前記各試験片のうちの軌道面(前記外輪軌道2又は前記内輪軌道4)の表面から85〜90μmの深さ(前記1%深さ位置)分電解研磨して露出させた面の残留応力をX線回折装置により測定する事で行った。更に、前記1%深さ位置のC+N量は、前記外輪軌道2及び内輪軌道4の表面を85〜90μmの深さ(前記1%深さ位置)分電解研磨して露出させた面に関して、電子線マイクロアナライザ(EPMA)を用い、加速電圧を15kVとして測定する事により求めた。これらの熱処理品質に関する測定結果を、次の表3中に示した。尚、残留応力の値が負(−)である事は、当該残留応力が圧縮応力である事を示している。   After the outer ring 3 and the inner ring 5 which are test pieces are made of the ten kinds of steels having different compositions from each other, the heat treatment quality of each of the test pieces, that is, the outer ring raceway 2 and the inner ring which are raceway surfaces is then obtained. The amount of retained austenite on the outermost surface of the track 4, the residual stress in the circumferential direction and axial direction of the track ring at the 1% depth position, and the C + N amount at the same position were measured. Among these, the amount of retained austenite was measured by measuring the amount of retained austenite on the outermost surface of the outer ring raceway 2 and the inner ring raceway 4 as the raceway surface with an X-ray diffractometer. The residual stress is measured by electropolishing the surface of the raceway surface (the outer ring raceway 2 or the inner ring raceway 4) of each test piece to a depth of 85 to 90 μm (the 1% depth position). The measurement was performed by measuring the residual stress of the exposed surface with an X-ray diffractometer. Further, the amount of C + N at the 1% depth position is the electron with respect to the surface exposed by electropolishing the surfaces of the outer ring raceway 2 and the inner ring raceway 4 to a depth of 85 to 90 μm (the 1% depth position). Using an electron microanalyzer (EPMA), the acceleration voltage was measured at 15 kV. The measurement results regarding these heat treatment qualities are shown in Table 3 below. A residual stress value of negative (-) indicates that the residual stress is a compressive stress.

Figure 2015017661
Figure 2015017661

[前記各転動体(玉6)に関して]
前記表2に示した10種類の鋼に、所定の切削加工、鍛造加工を施す事より、それぞれが直径8.731mmの玉に加工し、これら各玉に820〜860℃で浸炭窒化焼き入れ処理を施してから、160〜200℃で焼き戻し処理を施した後、ボールピーニング、仕上研削を施して、図1に示した玉軸受1用の玉6、6として、以下に述べる白色剥離寿命を求める試験に供した。但し、前記表2中の鋼種Pに関してはSiの含有量が、同じく鋼種Rに関してはCrの含有量が、それぞれ請求項2に記載した発明の範囲から外れ、当該鋼製の素材を球状化して(素材である線材を所定長さに切断した中間素材を球状に丸めて)から焼鈍した後の硬さが高く、必要とする寸法精度及び形状精度を有する玉6、6への加工が困難であった為、白色剥離寿命試験の対象から外した。残りの鋼種K〜O、Q、S〜Tにより造った玉6、6の断面組織を観察したところ、表層部に炭化物及び窒化物の析出が確認された。又、オーステナイト粒の結晶粒度を測定したところ、結晶粒度番号9〜10であった。尚、前記表2中の鋼種Kの成分は、JIS G 4805に規定されている、SUJ2に相当する、高炭素クロム軸受鋼である。
[Regarding each rolling element (ball 6)]
Ten types of steel shown in Table 2 above are subjected to predetermined cutting and forging processes, each of which is processed into balls having a diameter of 8.731 mm, and each of these balls is subjected to carbonitriding and quenching at 820 to 860 ° C. Then, after tempering at 160 to 200 ° C., ball peening and finish grinding are performed, and the balls 6 and 6 for the ball bearing 1 shown in FIG. It was subjected to the required test. However, regarding the steel type P in Table 2, the Si content and the Cr content regarding the steel type R are out of the scope of the invention described in claim 2, respectively, and the steel material is spheroidized. Hardness after annealing from the raw material (intermediate material cut to a predetermined length into a spherical shape) is high, and it is difficult to process balls 6 and 6 having the required dimensional accuracy and shape accuracy. Therefore, it was excluded from the subject of the white peel life test. Observation of the cross-sectional structure of the balls 6 and 6 made of the remaining steel types K to O, Q, and S to T confirmed that carbide and nitride were deposited on the surface layer. Moreover, when the crystal grain size of the austenite grain was measured, it was crystal grain size number 9-10. In addition, the component of the steel type K in the said Table 2 is high-carbon chromium bearing steel equivalent to SUJ2 prescribed | regulated to JISG4805.

次に、前記各玉6、6の熱処理品質を測定した。これら各玉6、6の表面(転動面)の硬さは、ロックウェル硬さCスケールを用いて、これら各玉6、6の表面から圧子を押し付けて測定した。この測定の際、JIS Z 2245の附属書Dに記載されている球形試験面の硬さ補正方法に従って補正値を求め、この補正値を測定値に加えたものを、前記各玉6、6の表面である転動面の硬さとした。   Next, the heat treatment quality of each of the balls 6 and 6 was measured. The hardness of the surface (rolling surface) of each ball 6, 6 was measured by pressing an indenter from the surface of each ball 6, 6 using the Rockwell hardness C scale. In this measurement, a correction value is obtained according to the method for correcting the hardness of the spherical test surface described in Annex D of JIS Z 2245, and the correction value is added to the measurement value. The hardness of the rolling surface that is the surface.

次いで、前記各玉6、6の転動面の最表面の残留オーステナイト量、前記1%深さ位置に於ける残留応力を測定した。このうち、残留オーステナイト量の測定は、前記各玉6、6の転動面の最表面の残留オーステナイト量をX線回折装置により測定する事で行った。又、残留応力の測定は、前記各玉6、6の転動面から85〜90μmの深さ(前記1%深さ位置)分電解研磨して露出させた面の残留応力をX線回折装置により測定する事で行った。これらの熱処理品質に関する測定結果を、前記表3中に示した。尚、残留応力の値が負(−)である事は、当該残留応力が圧縮応力である事を示している。   Next, the amount of retained austenite on the outermost surface of the rolling surfaces of the balls 6 and 6 and the residual stress at the 1% depth position were measured. Among these, the amount of retained austenite was measured by measuring the amount of retained austenite on the outermost surface of the rolling surfaces of the balls 6 and 6 with an X-ray diffractometer. The residual stress is measured by measuring the residual stress on the surface exposed by electrolytic polishing by a depth of 85 to 90 μm (the 1% depth position) from the rolling surfaces of the balls 6 and 6. It was done by measuring by. The measurement results regarding the heat treatment quality are shown in Table 3. A residual stress value of negative (-) indicates that the residual stress is a compressive stress.

[白色組織剥離寿命試験]
前記表1に記載した鋼により造った外輪3及び内輪5と、前記表2に記載した鋼により造った玉6、6とを組み立てて、軸受寿命に供する為の試験軸受とした。この試験軸受は、前記表1に記載した鋼により造った前記外輪3の内周面に設けた外輪軌道3と前記内輪5の外周面に設けた内輪軌道4との間に前記各玉6、6を配置し、これら各玉6、6を、ポリアミド樹脂製の冠型保持器により転動自在に保持して成る。又、前記外輪3の内周面と前記内輪5の外周面との間で前記各玉6、6を組み込んだ軸受内部空間にグリースを充填し、1対のシールリングによりこの軸受内部空間の両端開口部を塞いで、前記各試験軸受とした。尚、前記グリースは、前記表1、2に記載した各鋼種自身の耐白色組織剥離性能を評価する為、PAO系の基油にジウレア化合物から成る増ちょう剤を配合し、その他の添加物は配合しないグリースを用いた。(前記表3中には、このグリースを「無添加グリース」として記載した。)
[White tissue peeling life test]
The outer ring 3 and the inner ring 5 made of the steel shown in Table 1 and the balls 6 and 6 made of the steel shown in Table 2 were assembled to obtain a test bearing for use in bearing life. This test bearing includes the balls 6 between the outer ring raceway 3 provided on the inner peripheral surface of the outer ring 3 and the inner ring raceway 4 provided on the outer peripheral surface of the inner ring 5 made of steel described in Table 1. 6, each of these balls 6 and 6 is held by a crown-shaped cage made of polyamide resin so as to be freely rollable. In addition, grease is filled in the bearing inner space in which the balls 6, 6 are incorporated between the inner peripheral surface of the outer ring 3 and the outer peripheral surface of the inner ring 5, and both ends of the bearing inner space are formed by a pair of seal rings. Each of the test bearings was formed by closing the opening. The grease is blended with a thickening agent composed of a diurea compound in a PAO base oil in order to evaluate the white structure peeling resistance of each steel type described in Tables 1 and 2 above. An unblended grease was used. (In Table 3 above, this grease is described as “no additive grease”.)

前記白色組織剥離寿命を測定する為の試験機は、出願人会社が発行している、「NSK Technical Journal No.679、 p.28」に開示されているオルタネータシミュレート試験機を改良して用いた。具体的には、試験軸受のうちで回転しない外輪に+電極を、試験軸受の内輪を外嵌固定した状態で回転する金属製のシャフトの端部にスリップリングを用いて−電極を、それぞれ取り付け、試験中に直流安定化電源より、前記外輪と前記内輪との間に0.5Aの電流を流しながら前記シャフトに所定方向(作用方向が一定で変化しない)のラジアル荷重(約1300N)を付与し続けて寿命試験を行なった。従って、前記内輪軌道4には全周に亙って繰り返し荷重が加わるが、前記外輪軌道2には、円周方向の一部分にのみ荷重が加わり続ける。従って前記両軌道である前記外輪軌道2と前記内輪軌道4と前記各転動面とのうち、外輪軌道2が、剥離寿命に対して最も厳しい状態となる。本試験機は、転がり軸受の寿命試験中にこの転がり軸受を構成する1対の軌道輪同士の間(外輪1と内輪5との間)に複数個の転動体(玉6.6)を介して電流を流す事により、試験軸受である前記転がり軸受に、電食による表面性状の悪化や、グリースの分解による水素の発生が生じ易い条件を実現する。この様な試験機を使用し、表3に示した実施例1〜17と比較例18〜19、21〜24との23種類の試験軸受に関して、それぞれ7個ずつ(N=7)の白色組織剥離寿命試験を行ない、累積破損確率が50%となる寿命を求めた。この様にして行った前記白色組織剥離寿命の結果を、前記表3中に示す。   The tester for measuring the white tissue peeling life is an improved alternator simulation tester disclosed in “NSK Technical Journal No.679, p.28” published by the applicant company. It was. Specifically, a positive electrode is attached to the outer ring that does not rotate among the test bearings, and a negative electrode is attached to the end of the metal shaft that rotates with the inner ring of the test bearing fitted and fixed. During the test, a radial load (about 1300 N) in a predetermined direction (the operation direction is constant and does not change) is applied to the shaft while a current of 0.5 A is passed between the outer ring and the inner ring from a DC stabilized power supply. The life test was then continued. Therefore, a load is repeatedly applied to the inner ring raceway 4 over the entire circumference, but a load is continuously applied to the outer ring raceway 2 only in a part in the circumferential direction. Therefore, among the outer ring raceway 2, the inner ring raceway 4, and the respective rolling surfaces, which are the both raceways, the outer ring raceway 2 is in the most severe state with respect to the peeling life. This testing machine uses a plurality of rolling elements (balls 6.6) between a pair of bearing rings constituting the rolling bearing (between the outer ring 1 and the inner ring 5) during the life test of the rolling bearing. In this way, the rolling bearing as the test bearing is subjected to conditions that are liable to cause deterioration of surface properties due to electrolytic corrosion and generation of hydrogen due to decomposition of grease. Using such a testing machine, seven (N = 7) white structures were used for each of the 23 types of test bearings of Examples 1 to 17 and Comparative Examples 18 to 19 and 21 to 24 shown in Table 3. A peel life test was conducted to determine the life at which the cumulative failure probability was 50%. The results of the white tissue peeling life performed in this manner are shown in Table 3.

この様な、表3中にその結果を示した白色組織剥離寿命試験の結果から明らかな通り、特許請求の範囲中の請求項1に記載した発明の特定事項を備えた実施例1〜5の条件で製作した軸受は、1対の軌道輪(外輪輪3及び内輪5)の軌道面(外輪軌道2及び内輪軌道4)には剥離が生じなかった。これは、前記実施例1〜5に関しては、前記両軌道輪を構成する鋼の組成、これら両軌道輪の最表面(軌道面である前記輪軌道3及び内輪軌道4の最表面)の残留オーステナイト量、前記1%深さ位置のC+N量、及び各方向の圧縮残留応力の値が適切であった為と考えられる。但し、前記実施例1〜5に関しては、前記各玉6、6が、特許請求の範囲中の請求項2に記載した発明の特定事項(前記1%深さ位置のN量:0.05質量%以上)を備えていないので、200〜280hで、何れかの玉6、6の転動面が剥離した。   As is clear from the results of the white tissue peeling life test whose results are shown in Table 3, the results of Examples 1 to 5 having the specific matters of the invention described in claim 1 in the claims are as follows. In the bearing manufactured under the conditions, no separation occurred on the raceway surfaces (the outer ring raceway 2 and the inner ring raceway 4) of the pair of raceways (the outer ring raceway 3 and the inner ring raceway 5). Regarding Examples 1 to 5, the composition of the steel constituting the both races and the residual austenite on the outermost surfaces of these races (the outermost surfaces of the raceway 3 and the inner raceway 4 which are raceway surfaces). This is because the amount, the C + N amount at the 1% depth position, and the value of the compressive residual stress in each direction were appropriate. However, regarding Examples 1 to 5, the balls 6 and 6 are specified matters of the invention described in claim 2 in the claims (N amount at the 1% depth position: 0.05 mass) % Or more), the rolling surfaces of any of the balls 6 and 6 were peeled in 200 to 280 hours.

次に、特許請求の範囲中の請求項1に記載した発明の特定事項を備えた実施例6〜9の条件で製作した軸受は、1対の軌道輪(外輪3及び内輪5)の軌道面(外輪軌道2及び内輪軌道4)には剥離が生じなかった。但し、前記実施例6〜9に関しては、前記各玉6、6が、特許請求の範囲中の請求項2に記載した発明の特定事項(鋼の組成、表面硬さ:HRC63〜67、前記1%深さ位置のN量:0.05質量%以上、同じく残留引っ張り応力の値:500〜900MPa)のうちの何れか1つ以上を備えていなかったので、240〜330hで、何れかの玉6、6の転動面が剥離した。即ち、前記各実施例6〜9では、前記した実施例1〜5で、品質が良好であった鋼種Eにより造られた軌道輪を組み込んだ試験軸受に対して、前記各転動体(玉6、6)に施す熱処理を異ならせた(ズブ焼き入れ→浸炭窒化)。但し、実施例6の場合に前記1%深さ位置に於ける圧縮残留応力が、実施例7の場合には鋼中のMnの含有量、表面硬さ、鋼中のSi、Mnの含有量、及び最表面の残留オーステナイト量が、実施例8の場合には表面硬さ、最表面の残留オーステナイト量並びに前記1%深さ位置のN量及び圧縮残留応力が、実施例9の場合には、鋼中のSi、Crの含有量が適切ではなく、この鋼の組織変化への抵抗力が不足する為、前記何れかの玉6、6の転動面が、比較的早期に剥離した。   Next, the bearing manufactured under the conditions of Examples 6 to 9 including the specific matters of the invention described in claim 1 is the raceway surface of a pair of race rings (outer ring 3 and inner ring 5). No peeling occurred on the outer ring raceway 2 and the inner ring raceway 4. However, with regard to Examples 6 to 9, the balls 6 and 6 are specified matters of the invention described in claim 2 in the claims (steel composition, surface hardness: HRC 63 to 67, 1 % Depth position N amount: 0.05% by mass or more, and the value of residual tensile stress: 500 to 900 MPa) was not provided. The rolling surfaces of 6 and 6 were peeled off. That is, in each of the above Examples 6 to 9, the rolling elements (balls 6) were compared with the test bearings incorporating the bearing rings made of the steel type E that had good quality in the above Examples 1 to 5. 6) The heat treatment applied to 6) was varied (submerged quenching → carbonitriding). However, in the case of Example 6, the compressive residual stress at the 1% depth position, in the case of Example 7, the content of Mn in the steel, the surface hardness, the content of Si and Mn in the steel In the case of Example 8, the surface hardness, the amount of residual austenite on the outermost surface, the amount of N at the 1% depth position, and the compressive residual stress are in the case of Example 9. The contents of Si and Cr in the steel are not appropriate, and the resistance to structural change of this steel is insufficient, so that the rolling surfaces of any of the balls 6 and 6 peeled off relatively early.

次に、特許請求の範囲中の請求項1及び請求項2に記載した発明の特定事項を備えた実施例10〜13の条件で製作した試験軸受は、450〜520hで軌道輪の軌道面が剥離し、各転動体の転動面には剥離が発生しなかった。前記各実施例10〜13の場合には、軌道輪を構成する鋼の組成、軌道面の残留オーステナイト量及び前記1%深さ位置のC+N量、前記各方向の圧縮残留応力の値が適切であり、更に、前記各転動体の表面(転動面)の硬さ、最表面の残留オーステナイト量並びに前記1%深さ位置のN量及び圧縮残留応力の値が適切であった為、転がり軸受の寿命が長くなった。   Next, the test bearing manufactured under the conditions of Examples 10 to 13 having the specific matters of the invention described in claims 1 and 2 of the claims has a raceway surface of the raceway of 450 to 520 h. It peeled and peeling did not generate | occur | produce on the rolling surface of each rolling element. In each of Examples 10 to 13, the composition of steel constituting the race, the amount of retained austenite on the raceway surface, the amount of C + N at the 1% depth position, and the value of compressive residual stress in each direction are appropriate. Further, since the hardness of the surface (rolling surface) of each rolling element, the amount of retained austenite on the outermost surface, the amount of N at the 1% depth position and the compressive residual stress are appropriate, the rolling bearing The lifespan of has increased.

又、特許請求の範囲中の請求項1及び請求項2に記載した発明の特定事項を備え、更に、前記軸受内部空間に充填するグリースとして、該グリース中に、防錆剤としてナフテン酸亜鉛、酸化防止剤としてベンゾトリアゾール、極圧添加剤としてジチオカルバミンサン酸亜鉛を添加したもの(表3中には、「改良グリース」と記載した)を使用した実施例14の試験軸受は、耐久試験の継続時間である1000hの間には、前記両軌道輪の軌道面及び前記各転動体の転動面に剥離が生じなかった為、1000hで耐久試験を打ち切った。但し、未剥離の軌道輪を切断し、断面を観察したところ白色組織が発生していた。   Further, the grease includes the specific matters of the invention described in claims 1 and 2 in the claims, and further, as grease to be filled in the inner space of the bearing, in the grease, zinc naphthenate as a rust preventive agent, The test bearing of Example 14 using benzotriazole as an antioxidant and zinc dithiocarbamine sanate added as an extreme pressure additive (described as “improved grease” in Table 3) continued the durability test. During 1000 hours, which was the time, no peeling occurred on the raceway surfaces of the both race rings and the rolling surfaces of the rolling elements, so the durability test was terminated at 1000 hours. However, when the unpeeled raceway was cut and the cross section was observed, a white structure was generated.

更に、特許請求の範囲中の請求項1及び請求項2に記載した発明の特定事項を備え、前記軸受内部空間に充填するグリースとして、該グリース中に、導電性物質として平均粒径が10〜300nmのカーボンブラックを5.0質量%以上添加したもの(表3中には、「導電性グリース」と記載した)と、導電性を有するシール板とのうちの少なくとも一方を使用した実施例15〜17の試験軸受は、耐久試験の継続時間である1000hの間には、前記両軌道輪の軌道面及び前記各転動体の転動面の何れにも剥離が生じず、1000hで耐久試験を打ち切った。実施例15〜17では、上記導電性グリース及び/又は導電性を有するシール板の作用により、前記両軌道輪の軌道面及び前記各転動体の転動面に電食が発生する事を遅らせて、試験軸受の寿命が長くなった。しかも、未剥離の軌道輪を切断し、断面を観察したところ、白色組織は発生していなかった。   Further, the grease having the specific matters of the invention described in claims 1 and 2 in the claims, and having an average particle diameter of 10 to 10 as a conductive substance in the grease as the grease filling the bearing internal space. Example 15 using at least one of carbon black of 300 nm added in an amount of 5.0% by mass or more (described as “conductive grease” in Table 3) and a conductive sealing plate In the test bearings No. 17 to No. 1000, which is the duration of the endurance test, neither the raceway surfaces of the raceways nor the rolling surfaces of the rolling elements are separated, and the endurance test is conducted at 1000 hours. Censored. In Examples 15 to 17, the action of the conductive grease and / or the conductive seal plate delays the occurrence of electrolytic corrosion on the raceway surfaces of the raceways and the rolling surfaces of the rolling elements. The life of the test bearing has been extended. Moreover, when the unpeeled raceway was cut and the cross section was observed, no white structure was generated.

これに対して、鋼の組成が本発明の範囲から外れる1対の軌道輪を備えた、比較例18〜24の試験軸受の場合には、各試験軸受毎に7個ずつの試験軸受の総てで外輪軌道が剥離した。又、試験後の外輪断面を観察すると、外輪軌道部分に白色組織が発生していた。
前記各比較例18〜24の試験軸受のうちの比較例18は、前記両軌道輪の熱処理品質は、ほぼ本発明(請求項1に記載した発明の特定事項)で規定する範囲内であるが、前記鋼中のSiの含有量が少ない為、水素による基地組織の組織変化が生じ易く、前記各試験軸受の寿命が短くなった。
On the other hand, in the case of the test bearings of Comparative Examples 18 to 24 having a pair of raceways whose steel composition deviates from the scope of the present invention, a total of 7 test bearings for each test bearing. The outer ring raceway separated. Further, when the cross section of the outer ring after the test was observed, a white structure was generated in the outer ring raceway portion.
In Comparative Example 18 out of the test bearings of Comparative Examples 18 to 24, the heat treatment quality of the both races is substantially within the range defined by the present invention (the specific matter of the invention described in Claim 1). Since the Si content in the steel is small, the base structure is easily changed by hydrogen, and the life of each test bearing is shortened.

又、比較例19は、前記両軌道輪の熱処理品質が本発明で規定する範囲外であった(発明特定事項から外れた)。具体的には、軌道面部分の残留オーステナイト量が不足し、表面の応力集中を緩和する効果が十分に得られず、前記試験軸受の寿命が短くなった。
又、比較例20は、前記両軌道輪の熱処理品質が本発明で規定する範囲外であった(発明特定事項から外れた)。具体的には、軌道面部分の残留オーステナイト量が過剰であり、前記軌道面の転がり疲れ寿命の確保が難しく、又、この軌道面の寸法安定性及び形状安定性を確保できなかった。この為比較例20では、試験軸受を試作せず、試験軸受の寿命試験も行わなかった。
又、比較例21は、軌道輪に関して、前記1%深さ位置での周方向の圧縮残留応力が本発明で規定する範囲外であった(発明特定事項から外れた)。具体的には前記1%深さ位置での周方向の圧縮残留応力が不足していた為、試験軸受の転がり接触部で発生した水素によって基地組織の組織変化が生じ、発生した亀裂が進展し易く、前記試験軸受の寿命が短くなった。
又、比較例22は、軌道輪に関して、前記1%深さ位置での軸方向の圧縮残留応力が本発明で規定する範囲外であった(発明特定事項から外されていた)。具体的には、前記1%深さ位置での軸方向の圧縮残留応力が不足していた為、試験軸受の転がり接触部で発生した水素によって基地組織の組織変化が生じ、発生した亀裂が進展し易く、前記試験軸受の寿命が短くなった。
又、比較例23は、前記両軌道輪の熱処理後の性状は本発明で規定する範囲内であったが、これら両軌道輪を構成する鋼中のCrの含有量が少ない為、試験軸受の転がり接触部で発生した水素によって基地組織の組織変化が生じ易く、前記試験軸受の寿命が短くなった。
更に、比較例24は、JISに規定するSUJ2に相当する材料を通常の熱処理で、軌道輪及び転動体に用いた場合(極一般的な単列ラジアル玉軸受に関する)の白色組織剥離寿命試験の結果である。この様な比較例24に関する試験軸受の寿命と、前記各実施例14〜17に関する試験軸受の寿命とを比較すれば、これら各実施例14〜17に関する試験軸受の寿命は、極一般的な単列ラジアル玉軸受の寿命の10倍以上ある事が分かる。
Further, in Comparative Example 19, the heat treatment quality of both the races was outside the range defined by the present invention (departed from the invention specific matters). Specifically, the amount of retained austenite in the raceway surface portion is insufficient, and the effect of relaxing the stress concentration on the surface cannot be obtained sufficiently, and the life of the test bearing is shortened.
Further, in Comparative Example 20, the heat treatment quality of both the races was outside the range defined by the present invention (departed from the invention specific matters). Specifically, the amount of retained austenite at the raceway surface is excessive, it is difficult to ensure the rolling fatigue life of the raceway surface, and the dimensional stability and shape stability of the raceway surface cannot be ensured. For this reason, in Comparative Example 20, a test bearing was not prototyped and a life test of the test bearing was not performed.
Further, in Comparative Example 21, with respect to the race, the circumferential compressive residual stress at the 1% depth position was outside the range defined by the present invention (departed from the invention specific matters). Specifically, because the compressive residual stress in the circumferential direction at the 1% depth position was insufficient, the hydrogen generated at the rolling contact portion of the test bearing caused a structural change of the base structure, and the generated cracks progressed. The life of the test bearing was shortened.
Further, in Comparative Example 22, the axial compressive residual stress at the 1% depth position was out of the range defined by the present invention with respect to the raceway (excluded from the invention specific matters). Specifically, since the compressive residual stress in the axial direction at the 1% depth position is insufficient, the structure change of the base structure occurs due to the hydrogen generated at the rolling contact portion of the test bearing, and the generated crack progresses. The life of the test bearing was shortened.
Further, in Comparative Example 23, the properties after heat treatment of both the races were within the range specified in the present invention. However, since the Cr content in the steel constituting these races is small, The base structure was easily changed by hydrogen generated at the rolling contact portion, and the life of the test bearing was shortened.
Furthermore, in Comparative Example 24, a material corresponding to SUJ2 specified in JIS was used for a bearing ring and a rolling element in a normal heat treatment (for an extremely general single row radial ball bearing). It is a result. By comparing the life of the test bearing with respect to the comparative example 24 and the life of the test bearing with respect to each of the examples 14 to 17, the life of the test bearing with respect to each of the examples 14 to 17 is extremely common. It can be seen that there is more than 10 times the life of the row radial ball bearing.

以上に説明した実験の結果から明らかな通り、特許請求の範囲に記載した本件各発明のうちの請求項1に記載した発明の特定事項を備えた軌道輪を組み込んだ転がり軸受は、内部に電流が流れる様な用途に使用して、耐久性の確保を図れる。特に、請求項2で規定する特定事項を備えた転動体を用い、導電性グリースや導電性シール板を加えた発明によれば、転がり軸受の内部に或る程度の量の電流が流れる様な厳しい環境下で使用される場合であっても、前記導電性グリースや前記導電性シール板により、前記各転がり接触部を構成する、前記両軌道輪の軌道面と前記各転動体の転動面とに発生する電食、延いてはこの電食に基づく白色組織の発生が抑制される。しかも本発明によれば、仮に前記両軌道輪の軌道面や前記各転動体の転動面に、電食が発生して前記両軌道輪の軌道面や前記各転動体の転動面が荒れた場合でも、これら各面の最表面の残留オーステナイトにより、これら各面の表面でクラックが発生する事を抑制し、前記各転がり接触部の転がり疲れ寿命の低下を抑えられる。更に、放電(スパーク)による潤滑剤の分解により水素が発生して、前記両軌道輪の軌道面や前記各転動体の転動面の表面に白色組織が発生しても、この白色組織の境界部分に発生するクラックの進展を圧縮残留応力により抑制して、この白色組織の存在に基づく、転がり軸受寿命低下を抑制できる。   As is apparent from the results of the experiments described above, the rolling bearing incorporating the bearing ring having the specific matters of the invention described in claim 1 out of the inventions described in the claims, It can be used for applications where the air flows, ensuring durability. In particular, according to the invention in which a rolling element having the specific matters defined in claim 2 is used and a conductive grease or a conductive seal plate is added, a certain amount of current flows inside the rolling bearing. Even when used in a harsh environment, the raceway surfaces of the raceways and the rolling surfaces of the rolling elements constitute the rolling contact portions by the conductive grease and the conductive seal plate. In addition, the occurrence of electric corrosion that occurs and the occurrence of white tissue based on this electric corrosion is suppressed. In addition, according to the present invention, erosion occurs on the raceway surfaces of the raceways and the rolling surfaces of the rolling elements, and the raceway surfaces of the raceways and the rolling surfaces of the rolling bodies become rough. Even in this case, the remaining austenite on the outermost surfaces of these surfaces can suppress the occurrence of cracks on the surfaces of these surfaces, and the decrease in the rolling fatigue life of each of the rolling contact portions can be suppressed. Furthermore, even if hydrogen is generated by the decomposition of the lubricant by discharge (spark) and a white structure is generated on the raceway surfaces of the both race rings and the rolling surfaces of the rolling elements, the boundary between the white structures is generated. By suppressing the progress of cracks generated in the portion by compressive residual stress, it is possible to suppress the rolling bearing life reduction based on the presence of the white structure.

本発明は、運転時に電流が流れ、この電流によって1対の軌道面や各転動面に電食が発生する可能性がある、前記両軌道輪及び前記各転動体を鋼製とした、各種転がり軸受に適用できる。例えば、各種電気モータ用軸受は、電気モータからの微量の電流が回転軸を通じて軸受内部に流れ、電食により表面粗さの悪化、或いは潤滑油の分解による水素の発生が促進される。従って、本発明を実施する事による、転がり軸受の寿命延長効果が大きい。
又、前述した軸受寿命試験は、本発明を深溝型のラジアル玉軸受に適用した場合に就いて行ったが、本発明は、アンギュラ玉軸受やスラスト玉軸受等のその他の玉軸受、風力発電機の回転支持部に組み込まれる円筒ころ軸受、円すいころ軸受や自動調心ころ軸受、ニードル軸受等のころ軸受、ボールねじやリニアガイド等の特殊な転がり軸受に適用しても、同様の効果が得られる。
In the present invention, a current flows during operation, and the electric corrosion may occur on the pair of raceway surfaces and the respective rolling surfaces due to the current. The two raceways and the respective rolling elements are made of steel. Applicable to rolling bearings. For example, in various types of electric motor bearings, a small amount of current from the electric motor flows into the bearing through the rotating shaft, and deterioration of surface roughness due to electrolytic corrosion or generation of hydrogen due to decomposition of lubricating oil is promoted. Accordingly, the effect of extending the life of the rolling bearing by implementing the present invention is great.
The bearing life test described above was performed when the present invention was applied to a deep groove type radial ball bearing. However, the present invention is not limited to other ball bearings such as angular ball bearings and thrust ball bearings, and wind power generators. The same effects can be obtained when applied to cylindrical roller bearings, tapered roller bearings, spherical roller bearings, roller bearings such as needle bearings, and special rolling bearings such as ball screws and linear guides. It is done.

1 ラジアル玉軸受
2、2a、2b、2c 外輪軌道
3、3a、3b、3c 外輪
4、4a、4b、4c 内輪軌道
5、5a、5b、5c 内輪
6 玉
7、7a、7b、7c 保持器
8 円筒ころ
9 ラジアル円筒ころ軸受
10 内向鍔部
11 外向鍔部
12 円すいころ
13 ラジアル円すいころ軸受
14 大径側鍔部
15 小径側鍔部
16 自動調心ころ軸受
17 球面ころ
DESCRIPTION OF SYMBOLS 1 Radial ball bearing 2, 2a, 2b, 2c Outer ring raceway 3, 3a, 3b, 3c Outer ring 4, 4a, 4b, 4c Inner ring raceway 5, 5a, 5b, 5c Inner ring 6 Ball 7, 7a, 7b, 7c Cage 8 Cylindrical roller 9 Radial cylindrical roller bearing 10 Inward flange 11 Outward flange 12 Tapered roller 13 Radial tapered roller bearing 14 Large diameter flange 15 Small diameter flange 16 Spherical roller bearing 17 Spherical roller

Claims (4)

何れかの面に第一の軌道面を有する第一の軌道輪と、この第一の軌道面と対向する面に第二の軌道面を有する第二の軌道輪と、これら第一、第二の両軌道面同士の間に転動自在に設けられた複数個の転動体とを備えた転がり軸受に於いて、
前記第一、第二両軌道輪のうちの少なくとも一方の軌道輪は、Cを0.20〜0.60質量%、Siを0.10〜0.60質量%、Mnを0.60〜1.50質量%、Crを0.60〜1.80質量%、Moを0.00〜0.40質量%、Niを0.00〜0.20質量%、Cuを0.00〜0.20質量%含み、残部がFeと不可避的不純物とから成る鋼製であり、
前記少なくとも一方の軌道輪に、浸炭処理と浸炭窒化処理とのうちの何れかである焼き入れ処理と焼き戻し処理とを施す事により、
前記少なくとも一方の軌道輪に設けた軌道面の最表面の残留オーステナイト量を、20〜45容量%とし、
前記各転動体の直径(軌道面と転がり接触する部分の直径)の1%の長さをXとした場合に、
前記少なくとも一方の軌道輪に設けた軌道面の表面からの深さXの位置のC+N量を、0.80質量%以上2.00質量%以下とし、
前記少なくとも一方の軌道輪に設けた軌道面の表面からの深さXの位置での、当該軌道輪の周方向に関する圧縮残留応力を100〜500MPaとし、同じく軸方向の圧縮残留応力を50〜500MPaとした事を特徴する転がり軸受。
A first raceway having a first raceway surface on any surface, a second raceway having a second raceway surface on a surface opposite to the first raceway surface, and the first and second In a rolling bearing provided with a plurality of rolling elements provided between the raceway surfaces of the two rolling elements,
At least one of the first and second bearing rings has C of 0.20 to 0.60 mass%, Si of 0.10 to 0.60 mass%, and Mn of 0.60 to 1. .50 mass%, Cr 0.60 to 1.80 mass%, Mo 0.00 to 0.40 mass%, Ni 0.00 to 0.20 mass%, Cu 0.00 to 0.20 It is made of steel containing the mass%, the balance being Fe and inevitable impurities,
By applying a quenching process and a tempering process, which is one of a carburizing process and a carbonitriding process, to the at least one raceway ring,
The amount of retained austenite on the outermost surface of the raceway provided on the at least one raceway is 20 to 45% by volume,
When the length of 1% of the diameter of each rolling element (the diameter of the portion in rolling contact with the raceway surface) is X,
The C + N amount at a position of depth X from the surface of the raceway surface provided on the at least one raceway is 0.80 mass% or more and 2.00 mass% or less,
The compressive residual stress in the circumferential direction of the raceway at a position of a depth X from the surface of the raceway surface provided on the at least one raceway is 100 to 500 MPa, and the compressive residual stress in the axial direction is also 50 to 500 MPa. Rolling bearing characterized by that.
前記軌道輪は、Sが0.020質量%以下、Pが0.020質量%以下、Oが15質量ppm以下の鋼製である、請求項1に記載した転がり軸受。   The rolling bearing according to claim 1, wherein the bearing ring is made of steel having S of 0.020 mass% or less, P of 0.020 mass% or less, and O of 15 mass ppm or less. 前記各転動体が、Cを0.80〜1.20質量%、Siを0.10〜0.70質量%、Mnを0.20〜1.20質量%、Crを0.90〜1.80質量%、Moを0.00〜0.25質量%、Niを0.00〜0.20質量%、Cuを0.00〜0.20質量%含み、残部がFeと不可避的不純物とから成る鋼製であり、
この鋼製の前記各転動体に、浸炭窒化焼き入れ処理と焼き戻し処理とを施す事により、これら各転動体の転動面の表面硬さをHRC63〜67とし、
これら各転動体の最表面の残留オーステナイト量を、20〜40容量%とし、
前記各転動体の直径の1%の長さをXとした場合に、
これら各転動体表面からの深さXの位置のN量が0.05質量%以上2.00質量%以下であり、
且つ、前記各転動体表面からの深さXの位置の圧縮残留応力が500〜900MPaである、請求項1又は2に記載した転がり軸受。
In each of the rolling elements, C is 0.80 to 1.20 mass%, Si is 0.10 to 0.70 mass%, Mn is 0.20 to 1.20 mass%, and Cr is 0.90 to 1. 80% by mass, Mo: 0.00-0.25% by mass, Ni: 0.00-0.20% by mass, Cu: 0.00-0.20% by mass, the balance being Fe and inevitable impurities Made of steel,
By applying a carbonitriding quenching treatment and a tempering treatment to the rolling elements made of steel, the surface hardness of the rolling surfaces of these rolling elements is HRC63 to 67,
The amount of retained austenite on the outermost surface of each rolling element is 20 to 40% by volume,
When the length of 1% of the diameter of each rolling element is X,
N amount of the position of the depth X from each rolling element surface is 0.05 mass% or more and 2.00 mass% or less,
And the rolling bearing of Claim 1 or 2 whose compressive residual stress of the position of the depth X from each said rolling element surface is 500-900 MPa.
前記各転動体は、Sが0.020質量%以下、Pが0.020質量%以下、Oが10質量ppm以下の鋼製である、請求項3に記載した転がり軸受。   4. The rolling bearing according to claim 3, wherein each rolling element is made of steel having S of 0.020 mass% or less, P of 0.020 mass% or less, and O of 10 mass ppm or less.
JP2013145117A 2013-07-11 2013-07-11 Rolling bearing Pending JP2015017661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013145117A JP2015017661A (en) 2013-07-11 2013-07-11 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013145117A JP2015017661A (en) 2013-07-11 2013-07-11 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2015017661A true JP2015017661A (en) 2015-01-29

Family

ID=52438842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013145117A Pending JP2015017661A (en) 2013-07-11 2013-07-11 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2015017661A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636942A (en) * 2016-11-09 2017-05-10 芜湖市永帆精密模具科技有限公司 Rolling fatigue resistant bearing steel ball and preparation method thereof
WO2017082421A1 (en) * 2015-11-13 2017-05-18 日本精工株式会社 Multi-row ball bearing
JP2018040771A (en) * 2016-09-09 2018-03-15 Ntn株式会社 Life diagnosis method of bearing component, life diagnosis device of bearing component, and life diagnosis program of bearing component
JP2018040769A (en) * 2016-09-09 2018-03-15 Ntn株式会社 Life diagnosis method of bearing component, life diagnosis device of bearing component, and life diagnosis program of bearing component
WO2018047774A1 (en) * 2016-09-09 2018-03-15 Ntn株式会社 Method for diagnosing service life of bearing component, device for diagnosing service life of bearing component, and program for diagnosing service life of bearing component
JP2018040770A (en) * 2016-09-09 2018-03-15 Ntn株式会社 Life diagnosis method of bearing component, life diagnosis device of bearing component, and life diagnosis program of bearing component
JP2019157935A (en) * 2018-03-09 2019-09-19 Ntn株式会社 Rolling bearing
CN114807759A (en) * 2022-04-25 2022-07-29 江阴兴澄特种钢铁有限公司 New energy automobile gear box bearing steel material and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082421A1 (en) * 2015-11-13 2017-05-18 日本精工株式会社 Multi-row ball bearing
US10578153B2 (en) 2015-11-13 2020-03-03 Nsk Ltd. Multi-row ball bearing
JP2018040771A (en) * 2016-09-09 2018-03-15 Ntn株式会社 Life diagnosis method of bearing component, life diagnosis device of bearing component, and life diagnosis program of bearing component
JP2018040769A (en) * 2016-09-09 2018-03-15 Ntn株式会社 Life diagnosis method of bearing component, life diagnosis device of bearing component, and life diagnosis program of bearing component
WO2018047774A1 (en) * 2016-09-09 2018-03-15 Ntn株式会社 Method for diagnosing service life of bearing component, device for diagnosing service life of bearing component, and program for diagnosing service life of bearing component
JP2018040770A (en) * 2016-09-09 2018-03-15 Ntn株式会社 Life diagnosis method of bearing component, life diagnosis device of bearing component, and life diagnosis program of bearing component
CN106636942A (en) * 2016-11-09 2017-05-10 芜湖市永帆精密模具科技有限公司 Rolling fatigue resistant bearing steel ball and preparation method thereof
JP2019157935A (en) * 2018-03-09 2019-09-19 Ntn株式会社 Rolling bearing
CN114807759A (en) * 2022-04-25 2022-07-29 江阴兴澄特种钢铁有限公司 New energy automobile gear box bearing steel material and manufacturing method thereof
CN114807759B (en) * 2022-04-25 2024-01-09 江阴兴澄特种钢铁有限公司 New energy automobile gear box bearing steel material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2015017661A (en) Rolling bearing
US9394583B2 (en) Rolling bearing
WO2015128973A1 (en) Anti-friction bearing
JP6040700B2 (en) Rolling bearing
WO2007135929A1 (en) Rolling bearing
WO2011122371A1 (en) Rolling bearing
JP2014088893A (en) Rolling bearing and manufacturing method thereof
JP2013249500A (en) Rolling bearing
JP2013160314A (en) Rolling bearing
US20210156420A1 (en) Thrust roller bearing
JP2014122378A (en) Rolling bearing
JP6007562B2 (en) Rolling bearing
JP5736937B2 (en) Rolling bearing
JP2008151236A (en) Rolling bearing
JP6015251B2 (en) Rolling bearing
JP2013241986A (en) Rolling bearing
JPWO2003062657A1 (en) Rolling bearing
JP2009236259A (en) Insulating rolling bearing for electrical corrosion prevention
JP2006328514A (en) Rolling supporting device
JP5857433B2 (en) Method for manufacturing rolling guide device
JP2013245764A (en) Rolling bearing, and manufacturing method of the same
JP5966350B2 (en) Rolling bearing
JP2009287703A (en) Grease filled rolling bearing
JP2014020394A (en) Planetary gear device
JP2012237338A (en) Rolling bearing