JP2015017197A - Method for gasifying organic waste - Google Patents

Method for gasifying organic waste Download PDF

Info

Publication number
JP2015017197A
JP2015017197A JP2013145922A JP2013145922A JP2015017197A JP 2015017197 A JP2015017197 A JP 2015017197A JP 2013145922 A JP2013145922 A JP 2013145922A JP 2013145922 A JP2013145922 A JP 2013145922A JP 2015017197 A JP2015017197 A JP 2015017197A
Authority
JP
Japan
Prior art keywords
mpa
organic waste
pressure
temperature
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013145922A
Other languages
Japanese (ja)
Other versions
JP6156870B2 (en
Inventor
政晴 小宮山
Masaharu Komiyama
政晴 小宮山
高広 石川
Takahiro Ishikawa
高広 石川
英一郎 小林
Eiichiro Kobayashi
英一郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Engineering Co Ltd
University of Yamanashi NUC
Original Assignee
Nisso Engineering Co Ltd
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Engineering Co Ltd, University of Yamanashi NUC filed Critical Nisso Engineering Co Ltd
Priority to JP2013145922A priority Critical patent/JP6156870B2/en
Publication of JP2015017197A publication Critical patent/JP2015017197A/en
Application granted granted Critical
Publication of JP6156870B2 publication Critical patent/JP6156870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method which gasifies organic waste, generated in small amount or intermittently, at a low cost and with high efficiency by maintaining the activity of a catalyst for a long time.SOLUTION: Organic waste is gasified by a method which includes the steps of: pressurizing and heating an object to be treated containing organic waste and water to start a hydrothermal reaction at a pressure of 1.5-50 MPa and at a temperature of 200-500°C; bringing the pressurized and heated object to be treated into contact with a porous granular catalyst containing a metal and having a bulk density of 1-8 g/cmat a pressure of 1.5-50 MPa and at a temperature of 200-500°C to decompose the organic waste; and pressure-reducing or cooling the object to be treated containing the decomposed products to perform gas-liquid separation.

Description

本発明は、有機廃棄物のガス化方法に関する。より詳細に、本発明は、少量でまたは間欠的に発生することがある有機廃棄物を、低コスト且つ高効率で、触媒の活性を長く維持して、ガス化する方法に関する。   The present invention relates to a method for gasifying organic waste. More specifically, the present invention relates to a method for gasifying organic waste that may be generated in a small amount or intermittently at low cost and with high efficiency while maintaining the activity of the catalyst for a long time.

廃プラスチックス、廃ゴム、シュレッダーダスト、家畜糞尿、生ごみ、ビール粕、酒粕、醤油粕、焼酎粕、血液混入廃液、下水汚泥、抗原抗体培養廃液などの有機廃棄物を処分する方法として、焼却処理や生物処理などが知られている。焼却処理では、焼却前に脱水処理や固形分凝集などを行う必要がある。また、不完全燃焼によりダイオキシン類が発生することもある。生物処理は、処理に長い時間を要し、処理後に発生する活性汚泥が新たな廃棄物となる。   Incineration as a method to dispose of organic waste such as waste plastics, waste rubber, shredder dust, livestock manure, garbage, beer lees, sake lees, soy sauce lees, shochu, blood mixed waste, sewage sludge, antigen antibody culture waste Treatment and biological treatment are known. In the incineration process, it is necessary to perform a dehydration process or solid content aggregation before the incineration. Dioxins may be generated due to incomplete combustion. Biological treatment takes a long time for treatment, and activated sludge generated after treatment becomes new waste.

亜臨界水、過熱水蒸気、超臨界水等の熱水中で有機廃棄物を分解処理する方法が知られている。例えば、特許文献1や2は、反応圧力5〜50MPa、反応温度200〜800℃で水素活性化金属からなる金属触媒及び酸化剤またはアルカリ性触媒の存在下において、亜臨界水又は超臨界水と接触させることを特徴とする有機物のガス化方法を開示している。   There are known methods for decomposing organic waste in hot water such as subcritical water, superheated steam, and supercritical water. For example, Patent Documents 1 and 2 are in contact with subcritical water or supercritical water in the presence of a metal catalyst comprising a hydrogen-activated metal and an oxidizing agent or an alkaline catalyst at a reaction pressure of 5 to 50 MPa and a reaction temperature of 200 to 800 ° C. A method for gasifying an organic substance is disclosed.

特開2003−201486号公報JP 2003-201486 A 特開2009− 30071号公報JP 2009-30071 A

特許文献1や2に記載の方法では、触媒活性が短時間のうちに低下して、長期間の運転が困難であり、触媒の再充填などのためにコストが高くなることがある。
本発明の課題は、少量でまたは間欠的に発生することがある有機廃棄物を、低コスト且つ高効率で、触媒の活性を長く維持して、ガス化する方法を提供することである。
In the methods described in Patent Documents 1 and 2, the catalyst activity decreases in a short time, and long-term operation is difficult, and the cost may increase due to recharging of the catalyst.
An object of the present invention is to provide a method for gasifying organic waste, which may be generated in a small amount or intermittently, at low cost and high efficiency while maintaining the activity of the catalyst for a long time.

本発明者らは、上記課題を解決すべく鋭意検討した結果、下記の形態を包含する本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have completed the present invention including the following forms.

〔1〕有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて水熱反応を開始させる工程、
加圧および加熱された被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させる工程、および
該分解生成物を含む被処理物を減圧または冷却して気液分離する工程
を有する有機廃棄物のガス化方法。
[1] Pressurizing and heating an object to be treated containing organic waste and water to start a hydrothermal reaction at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C.
The pressed and heated workpiece is brought into contact with a porous granular metal-containing catalyst having a bulk density of 1 to 8 g / cm 3 at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. An organic waste gasification method comprising: a step of decomposing waste; and a step of gas-liquid separation by depressurizing or cooling an object to be treated containing the decomposition product.

〔2〕有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて水熱反応を開始させる工程、
加圧および加熱された被処理物を活性炭に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を低分子量化する工程、
低分子量化された有機廃棄物を含む被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させる工程、および
該分解生成物を含む被処理物を減圧または冷却して気液分離する工程
を有する有機廃棄物のガス化方法。
[2] A step of pressurizing and heating an object to be treated including organic waste and water to start a hydrothermal reaction at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C.
A step of reducing the molecular weight of the organic waste by bringing the pressurized and heated workpiece into contact with activated carbon at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C .;
An object to be treated containing organic waste reduced in molecular weight has a bulk density of 1 to 8 g / cm 3 , a porous granular metal-containing catalyst at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. An organic waste gasification method comprising: a step of decomposing organic waste by contacting, and a step of depressurizing or cooling an object to be treated containing the decomposition product to perform gas-liquid separation.

〔3〕被処理物に低級アルコールまたは低級カルボン酸を添加する工程をさらに有する、〔1〕または〔2〕に記載の有機廃棄物のガス化方法。 [3] The method for gasifying organic waste according to [1] or [2], further comprising a step of adding a lower alcohol or a lower carboxylic acid to the object to be treated.

〔4〕嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する
圧力1.5MPa〜50MPaおよび温度200〜500℃の水中にて有機廃棄物の分解を促進させるための触媒。
〔5〕金属がニッケルである〔4〕に記載の触媒。
〔6〕前記〔1〕〜〔3〕のいずれかひとつに記載のガス化方法を行う前または後に、低級アルコール水溶液または低級カルボン酸水溶液を圧力1.5MPa〜50MPaおよび温度200〜500℃にて触媒に接触させる工程を有する触媒の賦活方法。
[4] Catalyst for promoting decomposition of organic waste in water having a bulk density of 1 to 8 g / cm 3 , porous particles and containing metal at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. .
[5] The catalyst according to [4], wherein the metal is nickel.
[6] Before or after performing the gasification method according to any one of [1] to [3], a lower alcohol aqueous solution or a lower carboxylic acid aqueous solution is applied at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. A method for activating a catalyst, comprising a step of contacting the catalyst.

〔7〕有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて水熱反応を開始させるための第一反応層、
加圧および加熱された被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させるための分解反応層、および
該分解生成物を含む被処理物を減圧または冷却して気液分離するための分離器を有する有機廃棄物のガス化装置。
[7] A first reaction layer for pressurizing and heating an object to be treated containing organic waste and water to start a hydrothermal reaction at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C.
The pressed and heated workpiece is brought into contact with a porous granular metal-containing catalyst having a bulk density of 1 to 8 g / cm 3 at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. An organic waste gasification apparatus comprising: a decomposition reaction layer for decomposing waste; and a separator for performing gas-liquid separation by depressurizing or cooling an object to be processed containing the decomposition product.

〔8〕有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて水熱反応を開始させるための第一反応層、
加圧および加熱された被処理物を活性炭に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を低分子量化するための第二反応層、
低分子量化された有機廃棄物を含む被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させるための分解反応層、および
該分解生成物を含む被処理物を減圧または冷却して気液分離するための分離器を有する有機廃棄物のガス化装置。
[8] A first reaction layer for pressurizing and heating an object to be treated including organic waste and water to start a hydrothermal reaction at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C.
A second reaction layer for reducing the molecular weight of organic waste by bringing the pressurized and heated workpiece into contact with activated carbon at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C .;
An object to be treated containing organic waste reduced in molecular weight has a bulk density of 1 to 8 g / cm 3 , a porous granular metal-containing catalyst at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. An organic waste gasification apparatus comprising: a decomposition reaction layer for bringing organic waste into contact with each other; and a separator for performing gas-liquid separation by reducing or cooling a material to be treated containing the decomposition product under reduced pressure.

本発明の方法によると、少量でまたは間欠的に発生することがある有機廃棄物を、低コスト且つ高効率で、ガス化することができる。また、本発明の方法によると、触媒寿命が長くなり、触媒の再充填などのために生じるコストを抑えることができる。また、本発明の触媒賦活法によって、触媒寿命を更に延ばすことができる。   According to the method of the present invention, organic waste that may be generated in a small amount or intermittently can be gasified at low cost and high efficiency. In addition, according to the method of the present invention, the catalyst life is extended, and the cost caused by recharging the catalyst can be suppressed. Further, the catalyst life can be further extended by the catalyst activation method of the present invention.

本発明の一実施形態に係る有機廃棄物のガス化装置を示す図である。It is a figure which shows the gasification apparatus of the organic waste which concerns on one Embodiment of this invention. 本発明に使用する反応器の一実施形態を示す図である。It is a figure which shows one Embodiment of the reactor used for this invention. 実施例および比較例で行ったガス化で発生した気体量の推移を示す図である。It is a figure which shows transition of the gas amount produced | generated by the gasification performed in the Example and the comparative example.

図面を参照しながら本発明を説明する。但し、本発明の技術的範囲は以下に説明する形態に限定されず、本発明の主旨から逸脱しない限りその構成を修正、追加および省略したものも本発明の技術的範囲に包含される。   The present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to the embodiments described below, and modifications, additions, and omissions of the configuration are also included in the technical scope of the present invention without departing from the gist of the present invention.

〔実施形態1〕
本発明の実施形態1に係る有機廃棄物のガス化方法は、有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて触媒に接触させずに水熱反応を開始させる工程、加圧および加熱された被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させる工程、および該分解生成物を含む被処理物を減圧または冷却して気液分離する工程を有する。
Embodiment 1
In the method for gasifying organic waste according to Embodiment 1 of the present invention, an object to be treated containing organic waste and water is pressurized and heated at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. The step of starting a hydrothermal reaction without contacting the catalyst, the pressurized and heated object to be treated having a bulk density of 1 to 8 g / cm 3 , a porous granular metal-containing catalyst and a pressure of 1.5 MPa It has a step of decomposing organic waste by bringing it into contact at -50 MPa and a temperature of 200-500 ° C., and a step of gas-liquid separation by depressurizing or cooling the object to be treated containing the decomposition product.

有機廃棄物としては、例えば、廃プラスチックス、廃ゴム、シュレッダーダスト、家畜糞尿、生ごみ、ビール粕、酒粕、醤油粕、焼酎粕、血液混入廃液、下水汚泥、抗原抗体培養廃液などが用いられる。大きな固体の有機廃棄物は、必要に応じて、適当な大きさに破砕される。本発明の一実施形態に係るガス化方法またはガス化装置に供するために、有機廃棄物を水に分散、懸濁、乳化または溶解させて、有機廃棄物と水とを含む被処理物を得ることができる。得られた被処理物は、例えば、タンク4に貯蔵される。タンク4から抜き出された被処理物は加圧ポンプ2で加圧される。加えられる圧力は1.5MPa〜50MPa、好ましくは5MPa〜30MPa、より好ましくは10MPa〜25MPaである。尚、水の臨界圧力は22.06MPaである。   Examples of organic waste include waste plastics, waste rubber, shredder dust, livestock manure, garbage, beer lees, sake lees, soy sauce lees, shochu lees, blood mixed wastes, sewage sludge, antigen antibody culture wastes, etc. . Large solid organic waste is crushed to an appropriate size as required. In order to provide a gasification method or gasification apparatus according to an embodiment of the present invention, an organic waste is dispersed, suspended, emulsified, or dissolved in water to obtain an object to be treated containing the organic waste and water. be able to. The obtained object to be processed is stored in the tank 4, for example. The workpiece extracted from the tank 4 is pressurized by the pressurizing pump 2. The applied pressure is 1.5 MPa to 50 MPa, preferably 5 MPa to 30 MPa, more preferably 10 MPa to 25 MPa. The critical pressure of water is 22.06 MPa.

加圧ポンプで加圧された被処理物は、反応器1の第一反応ゾーン(または第一反応層)1a内に供給される。図1に示す第一反応ゾーン1aは内部に空洞を有し何も充填されていない。第一反応ゾーン1aにおける液は、加圧および加熱によって、圧力が1.5MPa〜50MPaに、温度が200〜500℃、好ましくは300〜450℃、より好ましくは340〜400℃になっている。なお、水の臨界温度は274.1℃である。このような圧力および温度にすることによって、第一反応ゾーン1a内の水は亜臨界水または超臨界水になる。亜臨界水または超臨界水との接触によって有機廃棄物の水熱反応が開始する。第一反応ゾーンにおいて、有機廃棄物の一部が分解して低分子量化する。   The object to be processed pressurized by the pressure pump is supplied into the first reaction zone (or first reaction layer) 1 a of the reactor 1. The first reaction zone 1a shown in FIG. 1 has a cavity inside and is not filled with anything. The liquid in the first reaction zone 1a has a pressure of 1.5 MPa to 50 MPa, a temperature of 200 to 500 ° C., preferably 300 to 450 ° C., more preferably 340 to 400 ° C. by pressurization and heating. In addition, the critical temperature of water is 274.1 degreeC. By setting such pressure and temperature, the water in the first reaction zone 1a becomes subcritical water or supercritical water. Hydrothermal reaction of organic waste is initiated by contact with subcritical water or supercritical water. In the first reaction zone, part of the organic waste is decomposed to lower the molecular weight.

次に加圧および加熱された液は、反応器1の分解反応ゾーン(または分解反応層)1c内に供給される。図1に示す分解反応ゾーン1cは内部に空洞を有し且つ触媒が充填されている。充填される触媒は、嵩密度が1〜8g/cm3であることが好ましく、2〜5g/cm3であることがより好ましい。なお、かさ密度は既知質量の触媒をメスシリンダーに入れてその見掛け体積を測定して算出される見掛け密度である。また、当該触媒は多孔質粒状であることが好ましい。多孔度は、水置換法により測定される値として、好ましくは20〜90%、より好ましくは35〜85%、さらに好ましくは50〜80%である。さらに当該触媒は金属を含有するものである。金属としては、ニッケル、アルミニウム、亜鉛、マグネシウム、錫、ケイ素、チタン、ジルコニウム、ハフニウム、レニウム、銅、金、銀、白金、ロジウム、パラジウム、イリジウム、ルテニウム、鉄、コバルト、タングステン、モリブデン、マンガン、クロムなどが挙げられる。これらのうち、ニッケルを含有するものが好ましい。そのような触媒の具体例として、ラネーニッケル触媒を挙げることができる。ラネーニッケル触媒は、ニッケルとその他の金属とからなる合金(ラネーニッケル合金)からニッケル以外の金属の全部または一部を溶解除去して成るものである。他の金属成分の含有量は、ラネーニッケル触媒中のニッケルに対して、好ましくは1〜50重量%、より好ましくは2〜30重量%である。また、ラネーニッケル触媒は、10オングストロームから100オングストロームの大きさの結晶粒子で構成されていることが好ましい。また、本発明に用いられる触媒はBET比表面積が10m2 /g〜100m2 /gであることが好ましい。本発明に用いられる触媒は、担体に担持したものであってもよい。担体としては、シリカ、アルミナ、マグネシア、チタニアなどが挙げられる。これらのうち、担体は水熱条件において溶出しないものが好ましい。触媒の大きさは反応器への充填の容易さなどの観点から適宜設定される。分解反応ゾーンにおける圧力は1.5MPa〜50MPa、好ましくは5MPa〜30MPa、より好ましくは10MPa〜25MPaであり、温度は200〜500℃、好ましくは300〜450℃、より好ましくは340〜400℃である。分解反応ゾーンにおいて、有機廃棄物の分解がさらに一層進み、H2、CO2、CH4などの低分子化合物が生成する。 Next, the pressurized and heated liquid is supplied into the decomposition reaction zone (or decomposition reaction layer) 1 c of the reactor 1. The decomposition reaction zone 1c shown in FIG. 1 has a cavity inside and is filled with a catalyst. The catalyst to be filled preferably has a bulk density of 1 to 8 g / cm 3 , more preferably 2 to 5 g / cm 3 . The bulk density is an apparent density calculated by putting a known mass of catalyst in a graduated cylinder and measuring its apparent volume. The catalyst is preferably porous and granular. The porosity is preferably 20 to 90%, more preferably 35 to 85%, and still more preferably 50 to 80% as a value measured by a water displacement method. Further, the catalyst contains a metal. Metals include nickel, aluminum, zinc, magnesium, tin, silicon, titanium, zirconium, hafnium, rhenium, copper, gold, silver, platinum, rhodium, palladium, iridium, ruthenium, iron, cobalt, tungsten, molybdenum, manganese, Examples include chrome. Of these, those containing nickel are preferred. A specific example of such a catalyst is Raney nickel catalyst. The Raney nickel catalyst is formed by dissolving and removing all or part of a metal other than nickel from an alloy (Raney nickel alloy) composed of nickel and another metal. The content of the other metal component is preferably 1 to 50% by weight, more preferably 2 to 30% by weight, based on nickel in the Raney nickel catalyst. The Raney nickel catalyst is preferably composed of crystal particles having a size of 10 angstroms to 100 angstroms. Also, the catalyst used in the present invention preferably has a BET specific surface area of 10m 2 / g~100m 2 / g. The catalyst used in the present invention may be supported on a carrier. Examples of the carrier include silica, alumina, magnesia, titania and the like. Of these, it is preferable that the carrier does not elute under hydrothermal conditions. The size of the catalyst is appropriately set from the viewpoint of ease of filling the reactor. The pressure in the decomposition reaction zone is 1.5 MPa to 50 MPa, preferably 5 MPa to 30 MPa, more preferably 10 MPa to 25 MPa, and the temperature is 200 to 500 ° C., preferably 300 to 450 ° C., more preferably 340 to 400 ° C. . In the decomposition reaction zone, the organic waste is further decomposed, and low molecular compounds such as H 2 , CO 2 , and CH 4 are generated.

第一反応ゾーンおよび分解反応ゾーンの容量や滞留時間は、有機廃棄物の種類や、圧力および温度に応じて適宜設定することができる。
なお、図1に示すガス化装置では、反応器1の下流に保圧弁3が設けられている。保圧弁によって反応器1内の圧力を所定値に維持することができる。反応器1から排出された被処理物は冷却または減圧される。冷却または減圧によって分解生成物が気化する。気液分離器5にて気体と液体に分ける。分けられた気体は配管7を通って次工程に供給される。配管7を通る気体にはH2やCH4などの可燃性ガスが含まれているので、燃料として利用することができる。一方、分けられた液体は配管6を通って次工程に供給される。配管6を通る液体は、ほぼ無色透明な水である。この水は、タンク4に戻して有機廃棄物と混ぜる水として再利用することができる。
The capacity and residence time of the first reaction zone and the decomposition reaction zone can be appropriately set according to the type of organic waste, pressure, and temperature.
In the gasifier shown in FIG. 1, a pressure holding valve 3 is provided downstream of the reactor 1. The pressure in the reactor 1 can be maintained at a predetermined value by the holding valve. The workpiece discharged from the reactor 1 is cooled or depressurized. The decomposition product is vaporized by cooling or decompression. The gas-liquid separator 5 separates the gas and the liquid. The divided gas is supplied to the next process through the pipe 7. Since the gas passing through the pipe 7 contains combustible gas such as H 2 and CH 4, it can be used as fuel. On the other hand, the separated liquid is supplied to the next process through the pipe 6. The liquid passing through the pipe 6 is almost colorless and transparent water. This water can be returned to the tank 4 and reused as water mixed with organic waste.

〔実施形態2〕
本発明の実施形態2に係る有機廃棄物のガス化方法は有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて触媒または活性炭に接触させずに水熱反応を開始させる工程、加圧および加熱された被処理物を活性炭に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を低分子量化する工程、低分子量化された有機廃棄物を含む被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させる工程、および該分解生成物を含む被処理物を減圧または冷却して気液分離する工程を有する。
[Embodiment 2]
In the method for gasifying organic waste according to Embodiment 2 of the present invention, an object to be treated containing organic waste and water is pressurized and heated, and a catalyst is produced at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. Alternatively, the step of starting a hydrothermal reaction without contacting activated carbon, the object to be treated that has been pressurized and heated is brought into contact with activated carbon at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. to reduce the organic waste to a low molecular weight Process, a low molecular weight organic waste to be treated having a bulk density of 1 to 8 g / cm 3 , a porous granular metal-containing catalyst, a pressure of 1.5 MPa to 50 MPa, and a temperature of 200 to A step of decomposing the organic waste by contacting at 500 ° C., and a step of gas-liquid separation by depressurizing or cooling the object to be treated containing the decomposition product.

実施形態2が実施形態1に対して相違する点は、第二反応ゾーン(第二反応層)1bを有することである。すなわち、図2に示すように、第一反応ゾーン1aの後で且つ分解反応ゾーン1cの前に、第二反応ゾーン(第二反応層)1bが設けられている。第二反応ゾーン1bは内部に空洞を有し且つ活性炭が充填されている。活性炭は、その嵩密度が0.5〜8g/cm3であることが好ましい。活性炭の比表面積は好ましくは10〜5000m2/gである。第二反応ゾーンにおける圧力は1.5MPa〜50MPa、好ましくは5MPa〜30MPa、より好ましくは10MPa〜25MPaであり、温度は200〜500℃、好ましくは300〜450℃、より好ましくは340〜400℃である。第二反応ゾーンにおいて、ラジカルを捕捉し、有機廃棄物の分解が進みさらに低分子量化する。
第一反応ゾーン、第二反応ゾーンおよび分解反応ゾーンの容量や滞留時間は、有機廃棄物の種類や、圧力および温度に応じて適宜設定することができる。
Embodiment 2 differs from Embodiment 1 in that it has a second reaction zone (second reaction layer) 1b. That is, as shown in FIG. 2, a second reaction zone (second reaction layer) 1b is provided after the first reaction zone 1a and before the decomposition reaction zone 1c. The second reaction zone 1b has a cavity inside and is filled with activated carbon. The activated carbon preferably has a bulk density of 0.5 to 8 g / cm 3 . The specific surface area of the activated carbon is preferably 10 to 5000 m 2 / g. The pressure in the second reaction zone is 1.5 MPa to 50 MPa, preferably 5 MPa to 30 MPa, more preferably 10 MPa to 25 MPa, and the temperature is 200 to 500 ° C., preferably 300 to 450 ° C., more preferably 340 to 400 ° C. is there. In the second reaction zone, radicals are captured, and organic waste is further decomposed to further reduce the molecular weight.
The capacity and residence time of the first reaction zone, the second reaction zone, and the decomposition reaction zone can be appropriately set according to the type of organic waste, pressure, and temperature.

〔ガス化装置の運転停止および始動〕
有機廃棄物は常時発生する場合もあるが、少量でまたは間欠的に発生することがある。
図1に示すタンク8には、低級アルコール水溶液または低級カルボン酸水溶液が貯留されている。タンク4中の有機廃棄物がすべて無くなった場合や、業務上の都合などでガス化装置を停止する場合には、切替弁9を回して、タンク4に繋がる配管の口を閉じ、タンク8に繋がる配管の口を開き、タンク8から低級アルコール水溶液または低級カルボン酸水溶液を反応器1に供給する。このときの、反応器1の圧力は1.5MPa〜50MPa、好ましくは5MPa〜30MPa、より好ましくは10MPa〜25MPaであり、反応器1の温度は200〜500℃、好ましくは300〜450℃、より好ましくは340〜400℃である。反応器1に供給された低級アルコール水溶液または低級カルボン酸水溶液によって、反応器1の内面や活性炭または触媒の表面に付着した、水熱反応で生成したタール状物質や低分子量化し切れなかった有機廃棄物を取り除くことができる。また、水熱反応によって触媒の表面が幾分か酸化した状態になる。低級アルコール水溶液または低級カルボン酸水溶液をタンク6から反応器1に供給すると低級アルコール水溶液または低級カルボン酸水溶液が分解して水素が生成する。この水素の還元作用によって触媒が効果的に賦活される。次いで、タンク8からの低級アルコール水溶液または低級カルボン酸水溶液の供給を継続したままで反応器11内を減圧および冷却して水熱反応が起きない状態にまで圧力および温度を下げる。このようにして本発明に係るガス化装置の運転を停止すると触媒の劣化を抑制でき、触媒寿命を延ばすことができる。
[Stopping and starting the gasifier]
Organic waste may occur constantly, but may occur in small amounts or intermittently.
A tank 8 shown in FIG. 1 stores a lower alcohol aqueous solution or a lower carboxylic acid aqueous solution. When all of the organic waste in the tank 4 is exhausted or when the gasifier is stopped for business reasons, the switching valve 9 is turned to close the port of the piping connected to the tank 4 and to the tank 8. The opening of the connected piping is opened, and a lower alcohol aqueous solution or a lower carboxylic acid aqueous solution is supplied from the tank 8 to the reactor 1. At this time, the pressure in the reactor 1 is 1.5 MPa to 50 MPa, preferably 5 MPa to 30 MPa, more preferably 10 MPa to 25 MPa, and the temperature of the reactor 1 is 200 to 500 ° C., preferably 300 to 450 ° C. Preferably it is 340-400 degreeC. The tar-like substance produced by the hydrothermal reaction and the organic waste that could not be reduced in molecular weight adhered to the inner surface of the reactor 1 or the surface of the activated carbon or the catalyst by the lower alcohol aqueous solution or lower carboxylic acid aqueous solution supplied to the reactor 1 Things can be removed. In addition, the surface of the catalyst is somewhat oxidized by the hydrothermal reaction. When the lower alcohol aqueous solution or the lower carboxylic acid aqueous solution is supplied from the tank 6 to the reactor 1, the lower alcohol aqueous solution or the lower carboxylic acid aqueous solution is decomposed to generate hydrogen. The catalyst is effectively activated by the reduction action of hydrogen. Next, while the supply of the lower alcohol aqueous solution or the lower carboxylic acid aqueous solution from the tank 8 is continued, the pressure in the reactor 11 is reduced and cooled to lower the pressure and temperature to a state where no hydrothermal reaction occurs. When the operation of the gasifier according to the present invention is stopped in this manner, catalyst deterioration can be suppressed and the catalyst life can be extended.

ガス化装置を始動させる場合には、先ず、タンク8から低級アルコール水溶液または低級カルボン酸水溶液を反応器1に供給し、反応器1の圧力および温度を上げていき、反応器1の圧力を1.5MPa〜50MPa、好ましくは5MPa〜30MPa、より好ましくは10MPa〜25MPaに、反応器1の温度を200〜500℃、好ましくは300〜450℃、より好ましくは340〜400℃にする。そして、切替弁9を回して、タンク8に繋がる配管の口を閉じ、タンク4に繋がる配管の口を開き、タンク4から有機廃棄物と水を含む被処理物を反応器1に供給する。このようにして本発明に係るガス化装置の運転を開始すると、有機廃棄物の加熱分解物が反応器1の入り口付近に堆積するのを抑制でき、さらに触媒の劣化を抑制でき、触媒寿命を延ばすことができる。
タンク8に貯留される低級アルコール水溶液または低級カルボン酸水溶液の濃度は特に制限されないが、例えば、低級アルコールまたは低級カルボン酸の濃度を0.1〜10体積%にすることができる。低級アルコールとしては、メタノール、エタノール、プロパノールなどが挙げられる。低級カルボン酸としては、蟻酸、酢酸などが挙げられる。
When starting the gasifier, first, a lower alcohol aqueous solution or a lower carboxylic acid aqueous solution is supplied from the tank 8 to the reactor 1, the pressure and temperature of the reactor 1 are increased, and the pressure of the reactor 1 is increased to 1. The temperature of the reactor 1 is set to 200 to 500 ° C., preferably 300 to 450 ° C., more preferably 340 to 400 ° C., to 5 MPa to 50 MPa, preferably 5 MPa to 30 MPa, more preferably 10 MPa to 25 MPa. Then, the switching valve 9 is turned to close the port of the pipe connected to the tank 8, open the port of the pipe connected to the tank 4, and the object to be treated including organic waste and water is supplied from the tank 4 to the reactor 1. Thus, when the operation of the gasifier according to the present invention is started, it is possible to suppress the thermal decomposition product of the organic waste from being deposited near the entrance of the reactor 1, and further to suppress the deterioration of the catalyst, thereby extending the catalyst life. Can be extended.
The concentration of the lower alcohol aqueous solution or the lower carboxylic acid aqueous solution stored in the tank 8 is not particularly limited. For example, the concentration of the lower alcohol or the lower carboxylic acid can be 0.1 to 10% by volume. Examples of the lower alcohol include methanol, ethanol, propanol and the like. Examples of the lower carboxylic acid include formic acid and acetic acid.

〔触媒の賦活〕
本発明においては、タンク4にてまたは反応器1の入口より上流にて、低級アルコールまたは低級カルボン酸を被処理物に添加することが好ましい。低級アルコールまたは低級カルボン酸を被処理物とともに反応器1に供給すると反応器1内で水素が生成する。この水素が触媒の表面を還元して触媒を賦活させ、触媒の寿命を大幅に延ばすことができる。被処理物に添加される低級アルコールまたは低級カルボン酸の量は特に制限されないが、例えば、低級アルコールまたは低級カルボン酸の濃度を0.1〜10体積%にすることができる。
[Activation of catalyst]
In the present invention, it is preferable to add a lower alcohol or a lower carboxylic acid to the object to be treated in the tank 4 or upstream from the inlet of the reactor 1. When a lower alcohol or a lower carboxylic acid is supplied to the reactor 1 together with an object to be treated, hydrogen is generated in the reactor 1. This hydrogen can reduce the surface of the catalyst to activate the catalyst and greatly extend the life of the catalyst. The amount of the lower alcohol or the lower carboxylic acid added to the object to be treated is not particularly limited. For example, the concentration of the lower alcohol or the lower carboxylic acid can be 0.1 to 10% by volume.

以下に実施例を示して本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

比較例1
長さ150mm、内径8.5mm、耐圧30MPaの管型反応器の内腔にニッケル触媒を充填し、長さ150mmの触媒層を形成させた。
純水を22.5MPaに加圧して反応器に超臨界状態において触媒層平均滞留時間が0.36分になるように供給した。反応器において純水を400℃に加熱して超臨界状態にした。反応器の圧力および温度を維持したまま、弁を切替えて、純水の代わりに焼酎粕10質量%の水分散液を反応器に超臨界状態において触媒層平均滞留時間が0.36分になるように供給し、該水分散液を超臨界状態にした。供給した水分散液は白く濁った液であった。反応器出口から排出される超臨界水を冷却および減圧して分離器で気体と液体とに分離した。気体の生成量を測定した。得られた液体は無色透明であった。水分散液供給開始時の気体生成量は約45ml/分(25℃、1atm)であった。水分散液供給開始から12時間経過時の気体生成量は約3ml/分であった。図3に気体生成量の推移を示す。水分散液供給開始から12時間経過時に、反応器の圧力および温度を維持したまま、弁を切替えて、焼酎粕の水分散液に代えて純水を供給した。純水を供給したまま温度および圧力を下げて、水熱状態を脱した時点で、純水の供給を停めた。反応器を開いて内部の様子を観察した。焼酎粕の加熱変性物が反応器の入り口に堆積して、反応器入り口を塞いでいた。ニッケル触媒の表面は酸化されていた。
Comparative Example 1
The inner space of a tubular reactor having a length of 150 mm, an inner diameter of 8.5 mm, and a pressure resistance of 30 MPa was filled with a nickel catalyst to form a catalyst layer having a length of 150 mm.
Pure water was pressurized to 22.5 MPa and supplied to the reactor so that the catalyst layer average residence time was 0.36 minutes in the supercritical state. In the reactor, pure water was heated to 400 ° C. to a supercritical state. While maintaining the pressure and temperature of the reactor, the valve is switched, and an average dispersion time of the catalyst layer becomes 0.36 minutes in a supercritical state with an aqueous dispersion of 10% by weight of shochu instead of pure water in the reactor. The aqueous dispersion was brought into a supercritical state. The supplied aqueous dispersion was a white turbid liquid. Supercritical water discharged from the reactor outlet was cooled and decompressed, and separated into gas and liquid by a separator. The amount of gas produced was measured. The obtained liquid was colorless and transparent. The amount of gas generated at the start of the supply of the aqueous dispersion was about 45 ml / min (25 ° C., 1 atm). The amount of gas produced after 12 hours from the start of supplying the aqueous dispersion was about 3 ml / min. FIG. 3 shows the transition of the gas generation amount. After 12 hours from the start of the supply of the aqueous dispersion, the valve was switched while maintaining the pressure and temperature of the reactor, and pure water was supplied instead of the aqueous dispersion of shochu. The supply of pure water was stopped when the temperature and pressure were lowered while the pure water was supplied to release the hydrothermal state. The reactor was opened and the inside was observed. A heat denatured product of the shochu accumulated at the inlet of the reactor and blocked the reactor inlet. The surface of the nickel catalyst was oxidized.

実施例1
長さ650mm、内径8.5mm、耐圧30MPaの管型反応器の内腔に嵩密度4.1g/cm3の多孔質粒状ラネーニッケル触媒を充填し、長さ150mmの触媒層を反応器の出口側に形成させ、触媒層の入り口側を鉄網で仕切り、入り口側500mmを空洞にした。
Example 1
The inside of a tubular reactor having a length of 650 mm, an inner diameter of 8.5 mm, and a pressure resistance of 30 MPa is filled with a porous granular Raney nickel catalyst having a bulk density of 4.1 g / cm 3 , and a catalyst layer having a length of 150 mm is placed on the outlet side of the reactor The entrance side of the catalyst layer was partitioned with a steel net, and the entrance side of 500 mm was made hollow.

(始動操作)
メタノール3体積%水溶液を22.5MPaに加圧して反応器に超臨界状態において触媒層平均滞留時間が0.36分になるように供給した。反応器においてメタノール水溶液を400℃に加熱して超臨界状態にした。反応器の圧力および温度を維持したまま、弁を切替えて、メタノール水溶液に代えて焼酎粕10質量%の水分散液を反応器に超臨界状態において触媒層平均滞留時間が0.36分になるように供給し、該水分散液を超臨界状態にした。反応器出口から排出される超臨界水を冷却および減圧して分離器で気体と液体とに分離した。気体の生成量を測定した。得られた液体は無色透明であった。
(Starting operation)
A 3% by volume aqueous methanol solution was pressurized to 22.5 MPa and supplied to the reactor so that the catalyst layer average residence time was 0.36 minutes in the supercritical state. In the reactor, the methanol aqueous solution was heated to 400 ° C. to be in a supercritical state. While maintaining the pressure and temperature of the reactor, the valve is switched to replace the methanol aqueous solution with an aqueous dispersion of 10% by mass of shochu so that the catalyst layer average residence time becomes 0.36 minutes in a supercritical state in the reactor. The aqueous dispersion was brought into a supercritical state. Supercritical water discharged from the reactor outlet was cooled and decompressed, and separated into gas and liquid by a separator. The amount of gas produced was measured. The obtained liquid was colorless and transparent.

(停止操作)
水分散液供給開始から12時間経過時に、反応器の圧力および温度を維持したまま、弁を切替えて、焼酎粕の水分散液に代えてメタノール3体積%水溶液を供給した。該水溶液を供給したまま温度および圧力を下げて、水熱状態を脱した時点で、水溶液の供給を停めた。
水分散液の供給停止から10時間経過後、上記の始動操作および停止操作を繰り返し行った。
(Stop operation)
When 12 hours passed from the start of the supply of the aqueous dispersion, the valve was switched while maintaining the pressure and temperature of the reactor, and a 3% by volume aqueous solution of methanol was supplied instead of the aqueous dispersion of shochu. The temperature and pressure were lowered while the aqueous solution was supplied, and the supply of the aqueous solution was stopped when the hydrothermal state was removed.
After 10 hours had passed since the supply of the aqueous dispersion was stopped, the above start operation and stop operation were repeated.

実運転開始(1回目の水分散液供給開始)時の気体生成量は約68ml/分(25℃、1atm)、実運転12時間経過時の気体生成量は約30ml/分、実運転24時間経過時の気体生成量は約25ml/分、実運転100時間経過時の気体生成量は約10ml/分であった。図3に気体生成量の推移を示す。実運転100時間経過時に運転を停止して反応器を開いた。触媒の表面が若干酸化していたが、焼酎粕の加熱変性物はほとんど認められなかった。   The amount of gas generated at the start of actual operation (first supply of aqueous dispersion) is about 68 ml / min (25 ° C., 1 atm), the amount of gas generated after 12 hours of actual operation is about 30 ml / min, and the actual operation is 24 hours. The amount of gas produced during the lapse of time was about 25 ml / min, and the amount of gas produced after 100 hours of actual operation was about 10 ml / min. FIG. 3 shows the transition of the gas generation amount. After 100 hours of actual operation, the operation was stopped and the reactor was opened. Although the surface of the catalyst was slightly oxidized, almost no heat-modified product of shochu was observed.

実施例2
長さ650mm、内径8.5mm、耐圧30MPaの管型反応器の内腔に嵩密度4.1g/cm3の多孔質粒状ラネーニッケル触媒を充填し、長さ150mmの触媒層を反応器の出口側に形成させ、触媒層の入り口側を鉄網で仕切った。次いで、嵩密度0.27g/cm3活性炭を充填し、長さ150mmの活性炭層を触媒層の入り口側に形成させ、活性炭層の入り口側を鉄網で仕切り、入り口側350mmを空洞にした。
実施例1で使用した管型反応器に代えて上記管型反応器を用いた以外は実施例1と同じ方法で、焼酎粕のガス化を行い、気体の生成量を測定した。得られた液体は無色透明であった。実運転開始時の気体生成量は約50ml/分(25℃、1atm)であった。実運転120時間経過時の気体生成量は約10ml/分、実運転160時間経過時の気体生成量は約8ml/分であった。図3に気体生成量の推移を示す。運転を停止して反応器を開いた。触媒の表面が若干酸化していた。焼酎粕の加熱変性物は認められなかった。触媒寿命が実施例1に比べて若干延びた。
Example 2
The inside of a tubular reactor having a length of 650 mm, an inner diameter of 8.5 mm, and a pressure resistance of 30 MPa is filled with a porous granular Raney nickel catalyst having a bulk density of 4.1 g / cm 3 , and a catalyst layer having a length of 150 mm is placed on the outlet side of the reactor And the entrance side of the catalyst layer was partitioned with a steel net. Next, activated carbon was filled with a bulk density of 0.27 g / cm 3, and an activated carbon layer having a length of 150 mm was formed on the entrance side of the catalyst layer, the entrance side of the activated carbon layer was partitioned with a steel net, and the entrance side 350 mm was hollow.
Gasification of shochu was performed by the same method as in Example 1 except that the above tubular reactor was used instead of the tubular reactor used in Example 1, and the amount of gas produced was measured. The obtained liquid was colorless and transparent. The amount of gas produced at the start of actual operation was about 50 ml / min (25 ° C., 1 atm). The amount of gas produced after 120 hours of actual operation was about 10 ml / min, and the amount of gas produced after 160 hours of actual operation was about 8 ml / min. FIG. 3 shows the transition of the gas generation amount. The operation was stopped and the reactor was opened. The surface of the catalyst was slightly oxidized. No heat-denatured shochu was found. The catalyst life was slightly increased as compared with Example 1.

実施例3
長さ930mm、内径8.5mm、耐圧30MPaの管型反応器の内腔に嵩密度4.1g/cm3の多孔質粒状ラネーニッケル触媒を充填し、長さ150mmの触媒層を反応器の出口側に形成させ、触媒層の入り口側を鉄網で仕切った。次いで、嵩密度0.27g/cm3の活性炭を充填し、長さ180mmの活性炭層を触媒層の入り口側に形成され、活性炭層の入り口側を鉄網で仕切り、入り口側600mmを空洞にした。
実施例1で使用した管型反応器に代えて上記管型反応器を用い、且つ焼酎粕10質量%の水分散液に代えて焼酎粕10質量%とメタノール3体積%を含む水分散液を用いた以外は実施例1と同じ方法で、焼酎粕のガス化を行い、気体の生成量を測定した。得られた液体は無色透明であった。実運転開始時の気体生成量は約50ml/分(25℃、1atm)であった。実運転100時間経過時の気体生成量は約30ml/分、実運転180時間経過時の気体生成量は約30ml/分であった。図3に気体生成量の推移を示す。運転を停止して反応器を開いた。触媒の表面はほとんど酸化していなかった。焼酎粕の加熱変性物は認められなかった。触媒寿命が格段に長くなった。
Example 3
The inside of a tubular reactor having a length of 930 mm, an inner diameter of 8.5 mm, and a pressure resistance of 30 MPa is filled with a porous granular Raney nickel catalyst having a bulk density of 4.1 g / cm 3 , and a catalyst layer having a length of 150 mm is placed on the outlet side of the reactor. And the entrance side of the catalyst layer was partitioned with a steel net. Next, activated carbon having a bulk density of 0.27 g / cm 3 was filled, and an activated carbon layer having a length of 180 mm was formed on the inlet side of the catalyst layer, and the inlet side of the activated carbon layer was partitioned with a steel net, and the inlet side of 600 mm was made hollow. .
Instead of the tubular reactor used in Example 1, the above tubular reactor was used, and an aqueous dispersion containing 10% by mass of shochu and 3% by volume of methanol was substituted for an aqueous dispersion of 10% by mass of shochu. Gasification of shochu was performed in the same manner as in Example 1 except that it was used, and the amount of gas produced was measured. The obtained liquid was colorless and transparent. The amount of gas produced at the start of actual operation was about 50 ml / min (25 ° C., 1 atm). The amount of gas produced after 100 hours of actual operation was about 30 ml / min, and the amount of gas produced after 180 hours of actual operation was about 30 ml / min. FIG. 3 shows the transition of the gas generation amount. The operation was stopped and the reactor was opened. The surface of the catalyst was hardly oxidized. No heat-denatured shochu was found. The catalyst life has become much longer.

1:反応器
1a:空洞部
1b:活性炭充填部
1c:金属触媒充填部
2:加圧ポンプ
3:リリーフバルブ(保圧弁)
4:有機廃棄物タンク
5:気液分離器
6:処理済み液
7:分解ガス
8:低級アルコール水溶液または低級カルボン酸水溶液のタンク
9:チェンジバルブ(流路切換弁)
1: Reactor 1a: Cavity 1b: Activated carbon filling part 1c: Metal catalyst filling part 2: Pressurizing pump 3: Relief valve (holding pressure valve)
4: Organic waste tank 5: Gas-liquid separator 6: Treated liquid 7: Decomposition gas 8: Tank of lower alcohol aqueous solution or lower carboxylic acid aqueous solution 9: Change valve (flow path switching valve)

Claims (8)

有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて水熱反応を開始させる工程、
加圧および加熱された被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させる工程、および
該分解生成物を含む被処理物を減圧または冷却して気液分離する工程
を有する有機廃棄物のガス化方法。
A step of pressurizing and heating an object to be treated including organic waste and water to start a hydrothermal reaction at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C .;
The pressed and heated workpiece is brought into contact with a porous granular metal-containing catalyst having a bulk density of 1 to 8 g / cm 3 at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. An organic waste gasification method comprising: a step of decomposing waste; and a step of gas-liquid separation by depressurizing or cooling an object to be treated containing the decomposition product.
有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて水熱反応を開始させる工程、
加圧および加熱された被処理物を活性炭に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を低分子量化する工程、
低分子量化された有機廃棄物を含む被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させる工程、および
該分解生成物を含む被処理物を減圧または冷却して気液分離する工程
を有する有機廃棄物のガス化方法。
A step of pressurizing and heating an object to be treated including organic waste and water to start a hydrothermal reaction at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C .;
A step of reducing the molecular weight of the organic waste by bringing the pressurized and heated workpiece into contact with activated carbon at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C .;
An object to be treated containing organic waste reduced in molecular weight has a bulk density of 1 to 8 g / cm 3 , a porous granular metal-containing catalyst at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. An organic waste gasification method comprising: a step of decomposing organic waste by contacting, and a step of depressurizing or cooling an object to be treated containing the decomposition product to perform gas-liquid separation.
被処理物に低級アルコールまたは低級カルボン酸を添加する工程をさらに有する、請求項1または2に記載の有機廃棄物のガス化方法。   The organic waste gasification method according to claim 1, further comprising a step of adding a lower alcohol or a lower carboxylic acid to the object to be treated. 嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する
圧力1.5MPa〜50MPaおよび温度200〜500℃の水中にて有機廃棄物の分解を促進させるための触媒。
A catalyst for promoting the decomposition of organic waste in water having a bulk density of 1 to 8 g / cm 3 , porous particles and containing metal, at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C.
金属がニッケルである請求項4に記載の触媒。   The catalyst according to claim 4, wherein the metal is nickel. 請求項1〜3のいずれかひとつに記載のガス化方法を行う前または後に、低級アルコール水溶液または低級カルボン酸水溶液を圧力1.5MPa〜50MPaおよび温度200〜500℃にて触媒に接触させる工程を有する触媒の賦活方法。   A step of bringing a lower alcohol aqueous solution or a lower carboxylic acid aqueous solution into contact with a catalyst at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C before or after performing the gasification method according to any one of claims 1 to 3. The activation method of the catalyst which has. 有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて水熱反応を開始させるための第一反応層、
加圧および加熱された被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させるための分解反応層、および
該分解生成物を含む被処理物を減圧または冷却して気液分離するための分離器を有する有機廃棄物のガス化装置。
A first reaction layer for pressurizing and heating an object to be treated including organic waste and water to start a hydrothermal reaction at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C;
The pressed and heated workpiece is brought into contact with a porous granular metal-containing catalyst having a bulk density of 1 to 8 g / cm 3 at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. An organic waste gasification apparatus comprising: a decomposition reaction layer for decomposing waste; and a separator for performing gas-liquid separation by depressurizing or cooling an object to be processed containing the decomposition product.
有機廃棄物と水とを含む被処理物を加圧および加熱して、圧力1.5MPa〜50MPaおよび温度200〜500℃にて水熱反応を開始させるための第一反応層、
加圧および加熱された被処理物を活性炭に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を低分子量化するための第二反応層、
低分子量化された有機廃棄物を含む被処理物を嵩密度が1〜8g/cm3で、多孔質粒状で且つ金属を含有する触媒に圧力1.5MPa〜50MPaおよび温度200〜500℃にて接触させて有機廃棄物を分解させるための分解反応層、および
該分解生成物を含む被処理物を減圧または冷却して気液分離するための分離器を有する有機廃棄物のガス化装置。
A first reaction layer for pressurizing and heating an object to be treated including organic waste and water to start a hydrothermal reaction at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C;
A second reaction layer for reducing the molecular weight of organic waste by bringing the pressurized and heated workpiece into contact with activated carbon at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C .;
An object to be treated containing organic waste reduced in molecular weight has a bulk density of 1 to 8 g / cm 3 , a porous granular metal-containing catalyst at a pressure of 1.5 MPa to 50 MPa and a temperature of 200 to 500 ° C. An organic waste gasification apparatus comprising: a decomposition reaction layer for bringing organic waste into contact with each other; and a separator for performing gas-liquid separation by reducing or cooling a material to be treated containing the decomposition product under reduced pressure.
JP2013145922A 2013-07-11 2013-07-11 Gasification method for organic waste Expired - Fee Related JP6156870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013145922A JP6156870B2 (en) 2013-07-11 2013-07-11 Gasification method for organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013145922A JP6156870B2 (en) 2013-07-11 2013-07-11 Gasification method for organic waste

Publications (2)

Publication Number Publication Date
JP2015017197A true JP2015017197A (en) 2015-01-29
JP6156870B2 JP6156870B2 (en) 2017-07-05

Family

ID=52438498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013145922A Expired - Fee Related JP6156870B2 (en) 2013-07-11 2013-07-11 Gasification method for organic waste

Country Status (1)

Country Link
JP (1) JP6156870B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055705A1 (en) * 2016-09-21 2018-03-29 中国電力株式会社 Supercritical water gasification system
CN111718761A (en) * 2020-06-15 2020-09-29 宁夏大学 Method for preparing synthesis gas by co-gasification of hydrothermal carbon and pulverized coal in livestock and poultry waste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922313B1 (en) * 1970-02-06 1974-06-07
JPS61159489A (en) * 1984-11-22 1986-07-19 エル・ウエー・エー・エントゾルグング・アクチエンゲゼルシヤフト Treatment of carbon-containing waste and biomass
JP2003201486A (en) * 2001-09-21 2003-07-18 Univ Shizuoka Method for gasifying organic material
JP2004352756A (en) * 2003-05-27 2004-12-16 Osaka Gas Co Ltd Method for producing fuel gas
JP2011084631A (en) * 2009-10-14 2011-04-28 Hiroshima Univ Biomass gasification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922313B1 (en) * 1970-02-06 1974-06-07
JPS61159489A (en) * 1984-11-22 1986-07-19 エル・ウエー・エー・エントゾルグング・アクチエンゲゼルシヤフト Treatment of carbon-containing waste and biomass
JP2003201486A (en) * 2001-09-21 2003-07-18 Univ Shizuoka Method for gasifying organic material
JP2004352756A (en) * 2003-05-27 2004-12-16 Osaka Gas Co Ltd Method for producing fuel gas
JP2011084631A (en) * 2009-10-14 2011-04-28 Hiroshima Univ Biomass gasification method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISRN CHEMICAL ENGINEERING, vol. Vol. 2012, Article ID 591587, JPN6017007156, 2012, ISSN: 0003562290 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055705A1 (en) * 2016-09-21 2018-03-29 中国電力株式会社 Supercritical water gasification system
JPWO2018055705A1 (en) * 2016-09-21 2018-09-27 中国電力株式会社 Supercritical water gasification system
CN111718761A (en) * 2020-06-15 2020-09-29 宁夏大学 Method for preparing synthesis gas by co-gasification of hydrothermal carbon and pulverized coal in livestock and poultry waste

Also Published As

Publication number Publication date
JP6156870B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
Wacławek et al. Major advances and challenges in heterogeneous catalysis for environmental applications: a review
JP6001588B2 (en) Method and apparatus for conversion of organic substances
JP4054934B2 (en) Method for producing fuel gas
JP4006560B2 (en) Method for producing fuel gas
JP2008539285A5 (en)
JP2011517618A (en) Catalytic wet oxidation system and method
JP6156870B2 (en) Gasification method for organic waste
MY155540A (en) Process for regenerating a catalyst
Xu et al. Highly efficient conversion of biomass-derived glycolide to ethylene glycol over CuO in water
Kosaka et al. Direct and continuous conversion of flue gas CO2 into green fuels using dual function materials in a circulating fluidized bed system
CN102361824A (en) Device for treating water containing hydrogen peroxide
CN106458664B (en) Catalytic system and method for process stream treatment
JP2008178769A (en) Waste water treatment method
CN105060255B (en) Heavy aromatics recovery and treatment method in oxidized tail gas after hydrogenation liquid oxidation in hydrogen dioxide solution production by anthraquinone process technique
Yao et al. Hydrazine as a facile and highly efficient hydrogen source for reduction of NaHCO3 into formic acid over Ni and ZnO catalysts
JP4540378B2 (en) Method for producing high-pressure hydrogen
JP2015020940A (en) Hydrogen peroxide synthesis method
JP5078373B2 (en) Wastewater treatment method
JP2004059336A (en) Process for producing hydrogen gas
JP6118014B2 (en) Hydrothermal gasification reactor
JP4488759B2 (en) Method for producing fuel gas
RU2008129491A (en) METHOD FOR CLEANING STYRENE FROM PENYLACETHYLENE IMPURITIES
CN102530864B (en) A kind of method of producing for solid-liquid organic waste treatment and fuel gas
JP4986491B2 (en) Wastewater treatment method
Zhang et al. Potassium Carbonate (K2CO3)-Assisted Copper-Catalyzed Liquid-Phase Hydrogenation of Furfural: Striking Promotion Synergy Enables a Superior High Furfuryl Alcohol Yield at Mild Reaction Conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170601

R150 Certificate of patent or registration of utility model

Ref document number: 6156870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees