JP2015014356A - Rolling bearing device - Google Patents

Rolling bearing device Download PDF

Info

Publication number
JP2015014356A
JP2015014356A JP2013153045A JP2013153045A JP2015014356A JP 2015014356 A JP2015014356 A JP 2015014356A JP 2013153045 A JP2013153045 A JP 2013153045A JP 2013153045 A JP2013153045 A JP 2013153045A JP 2015014356 A JP2015014356 A JP 2015014356A
Authority
JP
Japan
Prior art keywords
rolling element
fine particles
iron
rolling
raceway surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013153045A
Other languages
Japanese (ja)
Other versions
JP6283459B2 (en
Inventor
小林 博
Hiroshi Kobayashi
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013153045A priority Critical patent/JP6283459B2/en
Publication of JP2015014356A publication Critical patent/JP2015014356A/en
Application granted granted Critical
Publication of JP6283459B2 publication Critical patent/JP6283459B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Compounds Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To extend durability of a rolling bearing device and improve its quietness by reducing loads applied to a rolling element and a raceway surface and further reducing a frictional force between the rolling element and the raceway surface.SOLUTION: A multilayer construction of granular fine particles covers the surface of the rolling element, fine particles forming the surface layer of the multilayer construction receive shear stress when the rolling element rolls on the raceway surface, transfer from the rolling element to the raceway surface to cover the raceway surface and the rolling element rolls on the raceway surface through a contact between granular fine particles at the surface of the rolling element with the granular fine particles at the raceway surface. As a result, the surfaces of the rolling elements and the raceway surfaces have self-lubricity caused by the granular fine particles, the loads applied to the rolling elements and the raceway surface are reduced, at the same time, the frictional force between the rolling element and the raceway surface is reduced, durability of the rolling bearing is extended and its quietness is improved.

Description

本発明は、内輪と外輪との間に挟み込まれ、保持器によって保持された転動体が、内輪と外輪との軌道面を転動することで、回転する軸部材の回転と荷重を支える転がり軸受装置に関する。  The present invention provides a rolling bearing that supports the rotation and load of a rotating shaft member by rolling members that are sandwiched between an inner ring and an outer ring and that are held by a cage roll on a raceway surface between the inner ring and the outer ring. Relates to the device.

回転部を有する産業用機器は、回転する軸部材と、該軸部材の回転と荷重とを支持する軸受部材とからなる軸受装置を有する。軸受装置は、動作期間の長きにわたって軸部材の回転と荷重とを支持する部材が、1.耐久性に優れること、2.焼付きや凝着を起こさないこと、3.摩擦熱が少ないこと、4.摩擦音が小さいこと、などが求められる。
軸受装置は、転がり軸受装置と滑り軸受装置に2分される。転がり軸受は、ボールベアリングの転がりによる玉軸受と、円筒コロ、円錐コロ、針状コロなどの転がりによるコロ軸受とに大別される。転がり軸受では、転動体と呼ばれる部品が軸部材の回転と荷重とを支持する。この転動体は、内輪と外輪との間に挟み込まれ、保持器によって保持された転動体が、内輪と外輪との軌道面を転動する。いっぽう、滑り軸受は、滑り面に存在する潤滑油の油膜で軸部材の回転と荷重とを支持する。滑り面に潤滑油を供給する潤滑装置ないしは潤滑機構を設けた動圧・静圧軸受に比べ、滑り面に潤滑油を供給する手段を省いた含油軸受は小型で安価なため、動圧・静圧軸受に比べより多くの産業機器に用いられている。
Industrial equipment having a rotating portion includes a bearing device including a rotating shaft member and a bearing member that supports rotation and load of the shaft member. In the bearing device, members that support the rotation and load of the shaft member over a long operation period are: 1. Excellent durability. 2. Do not cause seizure or adhesion; 3. Less frictional heat; It is required that the frictional sound is low.
The bearing device is divided into a rolling bearing device and a sliding bearing device. Rolling bearings are roughly classified into ball bearings based on rolling ball bearings and roller bearings based on rolling such as cylindrical rollers, conical rollers, and needle rollers. In the rolling bearing, a part called a rolling element supports the rotation and load of the shaft member. The rolling element is sandwiched between the inner ring and the outer ring, and the rolling element held by the cage rolls on the raceway surface between the inner ring and the outer ring. On the other hand, the sliding bearing supports the rotation and load of the shaft member with an oil film of lubricating oil present on the sliding surface. Oil-impregnated bearings that omit the means for supplying lubricating oil to the sliding surface are smaller and less expensive than the hydrodynamic and hydrostatic bearings that supply lubricating oil to the sliding surface. Compared to pressure bearings, it is used in more industrial equipment.

転がり軸受装置は、転動体を保持する構造を有するため、含油軸受に比べて大型な軸受装置になり、また、転動体の転動によって静粛性は滑り軸受装置に比べて劣る。さらに、軸部材の高速回転時には、転動体の慣性力が増大して軌道面に過大の圧縮応力を加える。また、静荷重下でも転動体の軌道面には圧縮応力が常時印加される。このため、転動体ないしは軌道面の表面には、フレーキングと呼ばれる圧縮荷重によるうろこ状の疲労剥離現象が起こり、このフレーキングが加速的に進行して転がり軸受装置の寿命が決まる。
一方、滑り軸受装置は、滑り面の潤滑油の油膜で軸部材の回転と荷重とを受けるため、潤滑油の油膜が枯渇するとすべり面で焼付きや凝着が起こり、滑り軸受装置の寿命が決まる。潤滑油は温度に応じた蒸気圧を有するため、動作温度が高くなるほど、動作寿命は短くなる。また、低温時には潤滑油の粘度が著しく増大するため、軸部材の低温始動性が悪化する。動作寿命を延ばすために、滑り面に潤滑油を供給する潤滑装置ないしは潤滑機構を設けた動圧・静圧軸受を用いると、小型で安価な滑り軸受装置の長所がなくなる。
転がり軸受装置における転動体が軌道面と接触する面積は、滑り軸受け装置における滑り面が軸部材と接触する面積に比べ小さい。このため、動作時における摩擦力は滑り軸受装置に比べて小さい。また、滑り軸受装置のように動作温度の影響は受けない。さらに、滑り軸受装置では、軸部材の荷重の大きさに応じた軸受部材を用いなければならないが、転がり軸受では転動体および軌道面が受ける荷重の制約はない。従って、転がり軸受装置における転動体および軌道面に加わる負荷が軽減でき、また、転動体と軌道面との摩擦力が縮減できれば、耐久性と静粛性とに関わる弱点がなくなり、汎用的な軸受装置になる。
Since the rolling bearing device has a structure for holding the rolling elements, the rolling bearing device is a large-sized bearing device as compared with the oil-impregnated bearing, and the quietness is inferior to that of the sliding bearing device due to the rolling of the rolling elements. Further, when the shaft member rotates at a high speed, the inertial force of the rolling element increases and an excessive compressive stress is applied to the raceway surface. Further, a compressive stress is always applied to the raceway surface of the rolling element even under a static load. For this reason, a scaly fatigue peeling phenomenon caused by a compressive load called flaking occurs on the surface of the rolling element or the raceway surface, and this flaking is accelerated to determine the life of the rolling bearing device.
On the other hand, since the sliding bearing device receives the rotation and load of the shaft member with the lubricating oil film on the sliding surface, if the lubricating oil film is depleted, seizure or adhesion occurs on the sliding surface, and the life of the sliding bearing device is reduced. Determined. Since the lubricating oil has a vapor pressure corresponding to the temperature, the operating life becomes shorter as the operating temperature becomes higher. Further, since the viscosity of the lubricating oil is remarkably increased at low temperatures, the low temperature startability of the shaft member is deteriorated. In order to extend the operating life, the use of a lubrication device that supplies lubricating oil to a sliding surface or a hydrodynamic / hydrostatic bearing provided with a lubrication mechanism eliminates the advantages of a small and inexpensive sliding bearing device.
The area in which the rolling element in the rolling bearing device contacts the raceway surface is smaller than the area in which the sliding surface in the sliding bearing device contacts the shaft member. For this reason, the frictional force at the time of operation | movement is small compared with a slide bearing apparatus. Moreover, it is not affected by the operating temperature unlike the sliding bearing device. Further, in the sliding bearing device, a bearing member corresponding to the magnitude of the load of the shaft member must be used. However, in the rolling bearing, there is no restriction on the load received by the rolling elements and the raceway surface. Therefore, if the load applied to the rolling elements and the raceway surface in the rolling bearing device can be reduced, and the frictional force between the rolling elements and the raceway surface can be reduced, the weak points related to durability and quietness can be eliminated, and the general-purpose bearing device become.

前記した転がり軸受の課題を解決する手段として、特許文献1では、保持器のうち、ポケット面、及び、軌道輪(内輪又は外輪)に接触する案内面(例えば外周面)に固体潤滑膜を設け、極低温環境下でも潤滑を行い、超高速回転での転がり軸受の使用を可能としている。保持器のポケット面に設けた固体潤滑膜は、転動体との摩擦で転動体や内外輪の軌道面に移着し、転動体と内外輪との間の摩擦部分の潤滑に寄与するため、移着性に優れたものが使用される。一方、保持器の案内面は、軌道輪にガイドされて接触しながら高速回転するため、この部分の固体潤滑膜には耐摩耗性に優れたものが使用される。このため、特許文献1に開示された転がり軸受は、保持器のポケット面と保持器の案内面とでは、異なる機能を有する固体潤滑膜を設ける必要があり、保持器の製作費用が上昇する。また、固体潤滑剤を供給する手段によって、軸受装置の大型化と製作費の増大を招く。さらに、固体潤滑剤が供給されない恐れと枯渇する可能性を持つ。従って、本特許文献に開示された技術は、従来の課題を根本的に解決する汎用的な転がり軸受装置にはならない。
また、特許文献2では、DN値(軸受内径Dmm×回転数Nrpm)が200万に及ぶ高速で回転軸を支持し、鋼製の保持器を用いた転がり軸受が開示され、給油系統が故障して軸受に潤滑剤が供給されなくなったドライラン時に、軌道輪と転動体との間の転動面よりも先に、軌道輪と鋼製保持器の案内面との間の摺接面で焼付きを防止するために、軌道輪と摺接する保持器の案内面に銀めっきを施し、保持器の案内面と軌道輪との焼付きを防止するとしている。しかし、ドライラン状態での保持器の案内面と軌道輪との摺接による発熱で保持器が温度上昇し、銀の線膨張係数(19.7×10/℃)が母材の鋼の線膨張係数(12.5×10/℃)よりも大きいため、この線膨張係数差によって銀めっきが剥離する。このため、早期に焼付きが発生する恐れがある。また、保持器の案内面に大きな荷重が印加される転がり軸受では、銀メッキの耐久性に問題がある。さらに、給油系統を有するため、軸受装置の大型化と製作費の増大を招き、給油が枯渇する可能性もある。従って、本特許文献に開示された技術も、従来の課題を根本的に解決する汎用的な転がり軸受装置ではない。
また、特許文献3では、内外輪間の転動体の配列の両側に、固体潤滑剤で形成されたリングと、この潤滑リングを転動体に押し付ける弾性部材とを組み込むことにより、潤滑リングから固体潤滑剤を転動体に移着させて潤滑を行うようにした転がり軸受が開示されている。しかし、潤滑リングによる転動体への固体潤滑剤の供給が軸方向からのみ行われるため、転動体と内外輪の転走面との間に固体潤滑剤が入り込みにくく、十分な潤滑が行われず、焼き付けと凝着を発生する恐れがある。また、潤滑リングと弾性部材の製作費用と組み込み費用とが発生する。また、固体潤滑剤が摩耗することで焼き付けと凝着が起こり、固体潤滑剤の寿命が転がり軸受の寿命になる。従って、本特許文献に開示された技術も、従来の課題を根本的に解決する汎用的な転がり軸受装置ではない。
また、特許文献4では、転がり接触又はすべり接触が生じる接触面に供給される潤滑油が少量であっても、均一な油膜が形成され、摩擦係数小さくかつ均一である接触面を有する転がり摺動部材を提供することを目的として、転がり接触面である、外側軌道面、内側軌道面及び転走面に、多数の微細な凹部を形成し、凹部の内面に撥油剤を付着させた転がり軸受が開示されている。しかし、撥油剤の蒸気圧特性と粘度とによって、動作温度の制約を受ける。また、外側軌道面、内側軌道面及び転走面に、多数の微細な凹部を形成する費用が発生する。さらに、接触面に撥油剤が供給されることを前提とした軸受装置であり、撥油剤の寿命が軸受の寿命になる。従って、本特許文献に開示された技術も、従来の課題を根本的に解決する汎用的な転がり軸受装置ではない。
As means for solving the problems of the rolling bearing described above, in Patent Document 1, a solid lubricant film is provided on a pocket surface and a guide surface (for example, an outer peripheral surface) in contact with a raceway (inner ring or outer ring) in a cage. In addition, lubrication is performed even in a cryogenic environment, making it possible to use rolling bearings at ultra-high speeds. The solid lubricating film provided on the pocket surface of the cage is transferred to the raceway surface of the rolling element and the inner and outer rings by friction with the rolling element, and contributes to lubrication of the friction part between the rolling element and the inner and outer rings. Those having excellent transferability are used. On the other hand, since the guide surface of the cage rotates at high speed while being guided by and contacted with the raceway, a solid lubricating film having excellent wear resistance is used in this portion. For this reason, in the rolling bearing disclosed in Patent Document 1, it is necessary to provide a solid lubricating film having different functions between the pocket surface of the cage and the guide surface of the cage, which increases the manufacturing cost of the cage. Further, the means for supplying the solid lubricant causes an increase in the size of the bearing device and an increase in manufacturing costs. Furthermore, there is a fear that the solid lubricant will not be supplied and the possibility of depletion. Therefore, the technique disclosed in this patent document cannot be a general-purpose rolling bearing device that fundamentally solves the conventional problems.
Patent Document 2 discloses a rolling bearing that supports a rotating shaft at a high speed with a DN value (bearing inner diameter Dmm × rotational speed Nrpm) of 2 million and uses a steel cage, and the lubrication system fails. During dry run when no lubricant is supplied to the bearing, seizure occurs on the sliding contact surface between the race ring and the guide surface of the steel cage before the rolling surface between the race ring and the rolling element. In order to prevent this, the guide surface of the cage that is in sliding contact with the raceway is subjected to silver plating to prevent seizure between the guide surface of the cage and the raceway. However, the temperature of the cage rises due to the heat generated by the sliding contact between the guide surface of the cage and the raceway in the dry run state, and the linear expansion coefficient of silver (19.7 × 10 6 / ° C) is the base steel wire. Since it is larger than the expansion coefficient (12.5 × 10 6 / ° C.), the silver plating peels off due to this difference in linear expansion coefficient. For this reason, there is a possibility that seizure occurs early. Further, a rolling bearing in which a large load is applied to the guide surface of the cage has a problem in durability of silver plating. Further, since the oil supply system is provided, the bearing device is increased in size and the manufacturing cost is increased, and there is a possibility that the oil supply will be exhausted. Therefore, the technique disclosed in this patent document is not a general-purpose rolling bearing device that fundamentally solves the conventional problems.
Further, in Patent Document 3, a ring formed of a solid lubricant and an elastic member that presses the lubrication ring against the rolling element are incorporated on both sides of the arrangement of the rolling elements between the inner and outer rings. A rolling bearing is disclosed in which an agent is transferred to a rolling element for lubrication. However, since the solid lubricant is supplied to the rolling elements by the lubrication ring only from the axial direction, the solid lubricant is difficult to enter between the rolling elements and the rolling surfaces of the inner and outer rings, and sufficient lubrication is not performed. May cause seizure and adhesion. In addition, the manufacturing cost and the installation cost of the lubricating ring and the elastic member are incurred. Further, when the solid lubricant is worn, seizure and adhesion occur, and the life of the solid lubricant becomes the life of the rolling bearing. Therefore, the technique disclosed in this patent document is not a general-purpose rolling bearing device that fundamentally solves the conventional problems.
Further, in Patent Document 4, even when a small amount of lubricating oil is supplied to the contact surface where rolling contact or sliding contact occurs, a uniform oil film is formed, and the rolling sliding has a contact surface with a small friction coefficient and uniform. For the purpose of providing a member, there is a rolling bearing in which a large number of fine recesses are formed on the outer raceway surface, the inner raceway surface and the rolling contact surface, which are rolling contact surfaces, and an oil repellent is adhered to the inner surface of the recesses. It is disclosed. However, the operating temperature is limited by the vapor pressure characteristics and viscosity of the oil repellent. Moreover, the expense which forms many fine recessed parts in an outer raceway surface, an inner raceway surface, and a rolling surface generate | occur | produces. Furthermore, the bearing device is based on the premise that an oil repellent is supplied to the contact surface, and the life of the oil repellent is the life of the bearing. Therefore, the technique disclosed in this patent document is not a general-purpose rolling bearing device that fundamentally solves the conventional problems.

特開2006−220240号公報JP 2006-220240 A 特開2005−344852号公報JP 2005-344852 A 特開2008−14411号公報JP 2008-14411 A 特開2013−76469号公報JP 2013-76469 A

3段落で説明したように、転がり軸受装置における課題は、転動体および軌道面に加わる負荷を軽減し、また、転動体と軌道面との摩擦力を縮減することに集約される。しかし、これらの課題は、回転する軸部材の回転と荷重を転動体が支える転がり軸受の動作原理に基づくものである。一方、4段落で説明したように、転動体および軌道面に加わる負荷を軽減し、転動体と軌道面との摩擦力を縮減する手段として、転動体ないしは軌道面に固体潤滑膜の形成、潤滑油の供給、撥油剤の付加などの手段を用いると、つまり、滑り軸受の滑り面に潤滑油を給油する手段に相当する潤滑手段を付加させると、滑り軸受の原理的な問題点である高温動作における寿命の短縮と低温始動性の悪化がもたらされる。また、軸受装置がさらに大型になり、転がり軸受の短所が増大し、汎用的な転がり軸受にならない。
従って、転がり軸受装置が持つ課題を根本的に解決する手段は、転動体および軌道面に加わる負荷を軽減し、また、転動体と軌道面との摩擦力を縮減する手段が、転動体自体が持つこと、すなわち、転動体が自己潤滑性を持つことである。つまり、転動体が自己潤滑性を持つことで、転動体に加わる荷重が軽減する。さらに、転動体の自己潤滑性が軌道面に転移すれば、軌道面も自己潤滑性を持ち、軌道面に加わる負荷も軽減する。さらに、双方が自己潤滑性を持つことで、転動体と軌道面との摩擦力は縮減される。この結果、軸受装置における耐久性が飛躍的に伸び、静粛性が著しく改善される。さらに、双方の自己潤滑性が永続すれば、滑り軸受の潤滑油とは異なり、転がり軸受装置における耐久性と静粛性とが永続する。また、双方の自己潤滑性が、軸受装置の動作温度と軸部材の回転速度と荷重とに依存しなければ、転がり軸受装置は汎用性を持つ。さらに、転動体のみの加工で転動体に自己潤滑性が付与できれば、軸受装置が大型化せず、軸受装置の製作費の増大は抑えられる。また、転動体に自己潤滑性をもたらす製作費用が極めて安価であれば、従来の転がり軸受の概念を払拭する画期的な転がり軸受装置が安価に製造できる。
As described in the third paragraph, the problems in the rolling bearing device can be summarized as reducing the load applied to the rolling elements and the raceway surface and reducing the frictional force between the rolling elements and the raceway surface. However, these problems are based on the principle of operation of the rolling bearing in which the rolling element supports the rotation and load of the rotating shaft member. On the other hand, as described in the fourth paragraph, as a means for reducing the load applied to the rolling elements and the raceway surface and reducing the frictional force between the rolling elements and the raceway surface, formation of a solid lubricating film on the rolling element or raceway surface, lubrication When using means such as oil supply or addition of an oil repellent, that is, when lubricating means corresponding to means for supplying lubricating oil is added to the sliding surface of the sliding bearing, high temperature, which is a fundamental problem of the sliding bearing, is high. This shortens the life in operation and deteriorates the cold startability. In addition, the bearing device becomes larger, the disadvantages of the rolling bearing increase, and a general-purpose rolling bearing cannot be obtained.
Therefore, the means for fundamentally solving the problems of the rolling bearing device is to reduce the load applied to the rolling elements and the raceway surface, and the means for reducing the frictional force between the rolling elements and the raceway surface It has, that is, the rolling element has self-lubricating property. In other words, the load applied to the rolling element is reduced by the self-lubricating property of the rolling element. Furthermore, if the self-lubricating property of the rolling element is transferred to the raceway surface, the raceway surface also has self-lubricating property, and the load applied to the raceway surface is reduced. Further, since both have self-lubricating properties, the frictional force between the rolling elements and the raceway surface is reduced. As a result, the durability of the bearing device is dramatically increased, and the quietness is remarkably improved. Furthermore, if both self-lubricating properties are permanent, the durability and quietness of the rolling bearing device are permanent, unlike the lubrication oil for sliding bearings. Moreover, if both self-lubricating properties do not depend on the operating temperature of the bearing device, the rotational speed of the shaft member, and the load, the rolling bearing device is versatile. Furthermore, if self-lubricating properties can be imparted to the rolling elements by processing only the rolling elements, the bearing device does not increase in size, and an increase in the manufacturing cost of the bearing device can be suppressed. In addition, if the manufacturing cost that brings the self-lubricating property to the rolling elements is extremely low, an innovative rolling bearing device that wipes away the concept of the conventional rolling bearing can be manufactured at low cost.

本発明に係わる転がり軸受装置の第1特徴構成は、転動体の表面を粒状の微粒子が多層構造をなして該転動体を覆う構成とし、該転動体が軌道面を転動する際に、前記多層構造の表層をなす微粒子が前記軌道面と接触してせん断応力を受け、該微粒子が前記転動体から前記軌道面に転移して該軌道面を覆い、これによって、前記転動体の表面の粒状の微粒子と前記軌道面の粒状の微粒子との粒状の微粒子同士の接触を介して、前記転動体が前記軌道面を転動する構成とした転がり軸受装置である点にある。  The first characteristic configuration of the rolling bearing device according to the present invention is such that the surface of the rolling element has a structure in which granular fine particles form a multilayer structure to cover the rolling element, and when the rolling element rolls on the raceway surface, The fine particles forming the surface layer of the multilayer structure are in contact with the raceway surface and receive a shear stress, and the fine particles are transferred from the rolling elements to the raceway surface to cover the raceway surfaces, whereby the granularity of the surface of the rolling elements The rolling element is a rolling bearing device configured such that the rolling element rolls on the raceway surface through contact between the particulate matter of the fine particle and the particulate matter on the raceway surface.

つまり、この特徴構成によれば、粒状の微粒子同士の接触を介して、転動体が軌道面を転動するため、粒状の微粒子が軸部材の回転と荷重を支えるという全く新規な機構に基づく転がり軸受装置になる。つまり、転動体が回転する軸部材からの荷重を受けて軌道面を転動する際に、転動体の表層の微粒子が軌道面の微粒子と接触し、微粒子が粒状であるため、表層の微粒子は、転動体の転動の接線方向にせん断力を受けて滑る。また、軌道面に転移した微粒子も、転動体の表層の微粒子と接触し、転動体の転動の接線方向にせん断力を受けて滑る。微粒子が滑ると、隣接した微粒子が連続して滑る。こうして、転動体の転動に伴い、転動体の表層と軌道面との微粒子が接触と滑りを連続して繰り返すため、微粒子は転動体と軌道面を攻撃しない。つまり、転動体の表面と軌道面とは、粒状の微粒子による自己潤滑性を持ち、粒状の微粒子同士の接触と滑りとを介して転動体が軌道面を転動する。また、粒状の微粒子同士の接触は、接触面積が極めて小さい点接触に近い接触であるため、接触に伴う摩擦力は著しく小さい。これによって、軸受装置における耐久性が飛躍的に伸び、静粛性が著しく改善される。なお、ここでいう粒状の微粒子とは、大きさが10nm〜100nmの範囲に入る固体からなる粒状の微粒子である。
すなわち、微粒子同士が互いに点接触に近い状態で接合された多層構造を転動体の表面に形成しているため、転動体が回転する軸部材からの荷重を受けて軌道面を転動すると、多層構造の表層をなす微粒子が軌道面と接した際に、転動体の転動の接線方向にせん断応力を受けて多層構造から遊離し、転動体から軌道面に転移する。軌道面への微粒子の転移が進むと、転動体と軌道面との接触は、徐々に微粒子同士の接触となる。一方、微粒子同士の接触が点接触に近い接触であるため、微粒子同士が接触する際に微粒子が受けるせん断応力は著しく小さくなり、転動体から軌道面への微粒子の転移は収まる。こうして、転動体を覆っていた多層構造からなる微粒子のうち、表層を形成していた微粒子が軌道面に転移して軌道面を覆う。これによって、転動体と軌道面とは、粒状の微粒子同士の接触を介した接触になる。また、微粒子同士が接触した際に、微粒子は転動体の転動の接線方向にせん断力を受けて滑る。微粒子が滑ると、隣接した微粒子が連続して滑る。こうして、転動体が回転する軸部材からの荷重によって軌道面を転動する現象は、微粒子同士が接触と滑りとを連続して繰り返す現象になる。この結果、転動体の表面と軌道面とは、粒状の微粒子による自己潤滑性を持つ。連続した微粒子同士の接触と滑りとによって、転動体および軌道面に加わる負荷が軽減され、また、転動体と軌道面との摩擦力が縮減される。
なお、転動体が球、円筒、円錐、針状のいずれの形状であっても、転動体の表面全体を粒状の微粒子からなる多層構造で覆うため、転動体の表層の微粒子が軌道面に転移する。例えば、球からなる転動体では、球の表層をなす微粒子が転動体に転移する。また、円筒、円錐、針状の転動体では側面が軌道面と接するため、転動体の側面の表層をなす微粒子が軌道面に転移する。さらに、微粒子の大きさが保持器の表面粗さより2桁近く小さく、微粒子同士が点接触に近い状態で互いに接合して転動体の表面全体を覆うため、転動体を保持器に収める際に、微粒子が多層構造から剥がされることはない。
前記した転動体の表面と軌道面とが持つ自己潤滑性は、転動体の表面全体を覆った粒状の微粒子が軌道面に転移した結果もたらされる。このため、転動体の表面を粒状の微粒子の多層構造で覆うだけの処理で、転動体の表面と軌道面とに自己潤滑性がもたらされる。これによって、軸受装置は大型化せず、軸受装置の製作費の増大は抑えられる。
さらに、前記した転動体の表面と軌道面との自己潤滑性は、固体の粒状微粒子が自ら滑ることによる潤滑性であり、従来の潤滑油に依る潤滑性とは異なり、動作温度の影響を受けない。また、軸部材の回転速度が速まっても、固体の微粒子同士の接触と滑りを繰り返す速度が速まるだけであり、固体の微粒子による自己潤滑性は、軸部材の回転速度の影響を受けない。さらに、軸部材の静荷重下においては、静荷重が転動体および軌道面を覆う莫大な数の固体の微粒子に分散されるため、固体の微粒子が静荷重で破壊されることはない。また、分散された静荷重によって、転動体および軌道面が疲労することもない。
以上に説明したように、本特徴構成は、6段落で説明した従来の転がり軸受装置の課題を根本的に解決するとともに、汎用性を持つ画期的な転がり軸受装置になる。
In other words, according to this characteristic configuration, the rolling element rolls on the raceway surface through contact between the granular fine particles, so that rolling based on a completely new mechanism in which the granular fine particles support the rotation and load of the shaft member. Become a bearing device. That is, when the rolling element rolls on the raceway surface in response to a load from the rotating shaft member, the fine particles on the surface of the rolling element come into contact with the fine particles on the raceway surface. Slid by receiving shear force in the tangential direction of rolling of the rolling element. Also, the fine particles transferred to the raceway surface come into contact with the fine particles on the surface layer of the rolling element, and slide under the shear force in the tangential direction of the rolling element. When the fine particles slide, adjacent fine particles slide continuously. Thus, as the rolling element rolls, the fine particles between the surface layer of the rolling element and the raceway surface continuously contact and slip, so that the fine particles do not attack the rolling element and the raceway surface. That is, the surface of the rolling element and the raceway surface are self-lubricating with granular fine particles, and the rolling element rolls on the raceway surface through contact and slippage between the granular fine particles. Further, the contact between the granular fine particles is close to a point contact having a very small contact area, so that the frictional force accompanying the contact is extremely small. As a result, the durability of the bearing device is dramatically increased, and the quietness is remarkably improved. The granular fine particles referred to here are granular fine particles made of a solid having a size in the range of 10 nm to 100 nm.
That is, since a multilayer structure in which fine particles are joined to each other in a state close to a point contact is formed on the surface of the rolling element, when the rolling element rolls on the raceway surface under the load from the rotating shaft member, When the fine particles forming the surface layer of the structure are in contact with the raceway surface, they are subjected to shear stress in the tangential direction of the rolling element and are released from the multilayer structure, and are transferred from the rolling element to the raceway surface. As the transfer of the fine particles to the raceway progresses, the contact between the rolling element and the raceway gradually becomes a contact between the fine particles. On the other hand, since the contact between the fine particles is close to a point contact, the shear stress applied to the fine particles when the fine particles are in contact with each other is remarkably reduced, and the transfer of the fine particles from the rolling elements to the raceway surface is reduced. Thus, among the fine particles having a multilayer structure covering the rolling elements, the fine particles forming the surface layer are transferred to the raceway surface to cover the raceway surface. As a result, the rolling element and the raceway surface come into contact via contact between the granular fine particles. Further, when the fine particles come into contact with each other, the fine particles slide by receiving a shearing force in a tangential direction of rolling of the rolling element. When the fine particles slide, adjacent fine particles slide continuously. Thus, the phenomenon of rolling on the raceway surface by the load from the shaft member on which the rolling element rotates is a phenomenon in which the fine particles continuously repeat contact and slip. As a result, the surface of the rolling element and the raceway surface have self-lubricating properties due to granular fine particles. Due to the contact and sliding between the continuous fine particles, the load applied to the rolling element and the raceway surface is reduced, and the frictional force between the rolling element and the raceway surface is reduced.
Even if the rolling element has a spherical shape, cylindrical shape, conical shape, or needle shape, the entire surface of the rolling element is covered with a multilayer structure composed of granular fine particles, so that the fine particles on the surface layer of the rolling element are transferred to the raceway surface. To do. For example, in a rolling element composed of a sphere, fine particles forming the surface layer of the sphere are transferred to the rolling element. In addition, since the side surfaces of the cylindrical, conical, and needle-like rolling elements are in contact with the raceway surface, the fine particles forming the surface layer on the side surfaces of the rolling element are transferred to the raceway surface. Furthermore, since the size of the fine particles is nearly two orders of magnitude smaller than the surface roughness of the cage, and the fine particles are joined to each other in a state close to point contact to cover the entire surface of the rolling element, when the rolling element is placed in the cage, Fine particles are not peeled off the multilayer structure.
The self-lubricating property of the surface of the rolling element and the raceway surface is brought about as a result of the transfer of granular fine particles covering the entire surface of the rolling element to the raceway surface. For this reason, the self-lubricating property is brought about on the surface of the rolling element and the raceway surface by simply covering the surface of the rolling element with a multilayer structure of granular fine particles. As a result, the bearing device is not increased in size, and an increase in the manufacturing cost of the bearing device can be suppressed.
Further, the self-lubricating property between the surface of the rolling element and the raceway surface is lubricity caused by the sliding of solid granular fine particles by itself, and unlike the lubricity due to the conventional lubricating oil, it is affected by the operating temperature. Absent. Further, even if the rotation speed of the shaft member is increased, only the speed at which the contact and sliding between the solid particles are repeated increases, and the self-lubricating property due to the solid particles is not affected by the rotation speed of the shaft member. Further, under the static load of the shaft member, since the static load is dispersed in a huge number of solid fine particles covering the rolling elements and the raceway surface, the solid fine particles are not broken by the static load. Further, the rolling elements and the raceway surfaces are not fatigued by the dispersed static load.
As described above, this characteristic configuration fundamentally solves the problems of the conventional rolling bearing device described in the sixth paragraph, and becomes a revolutionary rolling bearing device having versatility.

本発明に係わる転がり軸受装置の第2特徴構成は、前記した第1特徴構成における転動体の表面を覆う粒状の微粒子は、マグネタイトないしはマグヘマイトのいずれかの材質からなる粒状の微粒子で構成する点にある。  The second characteristic configuration of the rolling bearing device according to the present invention is that the granular fine particles covering the surface of the rolling element in the first characteristic configuration are composed of granular fine particles made of either magnetite or maghemite. is there.

つまり、本特徴構成であるマグネタイトFeないしはマグヘマイトγ−Feは、いずれも強磁性体であり、また、腐食しにくい安定な鉄の酸化物である。さらに、モース硬度がガラスのモース硬度より大きい値を持つ硬い物質である。このため、マグネタイトないしはマグヘマイトからなる粒状の微粒子は互いに磁気吸着し、多層構造を形成して転動体を覆う。さらに、転動体、内輪、外輪はいずれも強磁性の性質を持つ材質であるため、転動体と軌道面とに磁気吸着する。一方、転動体の表面を覆う強磁性微粒子は、転動体が回転する軸部材の荷重を受けて軌道面を転動する際に、転動の接線方向にせん断応力を受け、表層の微粒子が磁気吸着から分離して軌道面に転移し、軌道面に磁気吸着する。こうして一定の時間転動体が軌道面を転動すると、軌道面は強磁性微粒子で覆われ、この強磁性微粒子は転動面に磁気吸着する。また、転動体が軌道面を転動する際に、強磁性微粒子同士が接触し、微粒子同士が接触した際に、微粒子が粒状であるため強磁性微粒子は滑るが、微粒子同士の磁気吸着力と転動体および軌道面からの磁気吸引力で微粒子は脱落しない。微粒子が滑ると、隣接した微粒子が連続して滑る。こうして、転動体が軸部材からの荷重によって軌道面を転動する現象は、微粒子同士が接触と滑りとを連続して繰り返す現象になる。この結果、転動体の表面と軌道面とは、強磁性微粒子による自己潤滑作用を持つ。強磁性微粒子は、前記したせん断応力以外の機械的な負荷を受けないため、強磁性微粒子は互いに磁気吸着するとともに、転動体と軌道面から磁気吸引力を受け、永続的に転動体の表面と軌道面に保持され、強磁性微粒子の自己潤滑性は永続する。また、強磁性微粒子は硬い粒状微粒子であるため、互いの点接触に近い接触で破壊せず変形もしない。
さらに、マグネタイトの磁気キュリー点は585℃であり、マグヘマイトの磁気キュリー点は675℃である。いっぽう、自動車部品の転がり軸受装置では、高温の連続動作が継続すると軌道面が250℃まで昇温する場合がある。マグネタイトないしはマグヘマイトの磁気キュリー点は、軌道面の最高温度より300℃以上高いため、250℃における強磁性微粒子の磁気特性は常温と殆ど変わらない。さらに、−40℃の極低温においても、強磁性微粒子の磁気特性は常温と殆ど変わらない。従って、転がり軸受装置の全ての動作温度において、強磁性微粒子による自己潤滑作用が、常温と変わらずに転動体と軌道面に作用する。
なお、転動体、内輪、外輪は、いずれも繰り返し大きな荷重がかかるため、従来は、耐久性の観点から高炭素クロム軸受鋼や、耐食性の高いマルテンサイト系ステンレス鋼などが用いられている。これらの材質はいずれも強磁性の性質を持つので、従来の材質で転動体、内輪、外輪を構成すれば、転動体の表面と軌道面とに強磁性微粒子が磁気吸着し、磁気吸着した強磁性微粒子が自己潤滑性を発揮する。
以上に説明したように、本特徴構成は、6段落で説明した従来の転がり軸受装置の課題を具体的に解決するとともに、汎用性を持つ画期的な転がり軸受装置になる。
That is, magnetite Fe 3 O 4 or maghemite γ-Fe 2 O 3 , which is the characteristic configuration, is a ferromagnetic substance and is a stable iron oxide that is not easily corroded. Furthermore, it is a hard substance having a value that is greater than the Mohs hardness of glass. For this reason, granular fine particles made of magnetite or maghemite are magnetically adsorbed to each other to form a multilayer structure and cover the rolling elements. Furthermore, since all of the rolling elements, the inner ring, and the outer ring are made of ferromagnetic materials, they are magnetically attracted to the rolling elements and the raceway surface. On the other hand, the ferromagnetic fine particles covering the surface of the rolling element are subjected to shear stress in the tangential direction of the rolling when rolling on the raceway surface under the load of the shaft member on which the rolling element rotates, and the fine particles on the surface layer become magnetic. It separates from the adsorption and moves to the orbital surface, and magnetically adsorbs to the orbital surface. Thus, when the rolling element rolls on the raceway surface for a certain time, the raceway surface is covered with ferromagnetic fine particles, and the ferromagnetic fine particles are magnetically attracted to the rolling surface. Further, when the rolling element rolls on the raceway surface, the ferromagnetic fine particles come into contact with each other, and when the fine particles come into contact with each other, the magnetic fine particles slide because the fine particles are granular. The fine particles do not fall off due to the magnetic attractive force from the rolling elements and the raceway surface. When the fine particles slide, adjacent fine particles slide continuously. Thus, the phenomenon that the rolling element rolls on the raceway surface by the load from the shaft member is a phenomenon in which the fine particles continuously repeat contact and slip. As a result, the surface of the rolling element and the raceway have a self-lubricating action by the ferromagnetic fine particles. Since the ferromagnetic fine particles are not subjected to a mechanical load other than the above-described shear stress, the ferromagnetic fine particles are magnetically adsorbed to each other and receive a magnetic attraction force from the rolling elements and the raceway surface, so that the surface of the rolling elements is permanently The self-lubricating property of the ferromagnetic fine particles is maintained on the raceway surface. Further, since the ferromagnetic fine particles are hard granular fine particles, they are not broken or deformed by contact close to each other's point contact.
Furthermore, the magnetic curie point of magnetite is 585 ° C., and the magnetic curie point of maghemite is 675 ° C. On the other hand, in a rolling bearing device for automobile parts, when the high-temperature continuous operation continues, the raceway surface may be heated to 250 ° C. Since the magnetic Curie point of magnetite or maghemite is 300 ° C. higher than the maximum temperature of the raceway surface, the magnetic properties of the ferromagnetic fine particles at 250 ° C. are almost the same as normal temperature. Furthermore, even at an extremely low temperature of −40 ° C., the magnetic properties of the ferromagnetic fine particles are almost the same as those at room temperature. Accordingly, at all operating temperatures of the rolling bearing device, the self-lubricating action by the ferromagnetic fine particles acts on the rolling elements and the raceway surface without changing from normal temperature.
Since the rolling element, inner ring, and outer ring are repeatedly subjected to a large load, conventionally, high carbon chrome bearing steel, martensitic stainless steel with high corrosion resistance, and the like are used from the viewpoint of durability. All of these materials have ferromagnetic properties, so if the rolling elements, inner ring, and outer ring are made of conventional materials, ferromagnetic fine particles are magnetically adsorbed on the surface and raceway surface of the rolling elements. Magnetic fine particles exhibit self-lubricating properties.
As described above, this characteristic configuration specifically solves the problems of the conventional rolling bearing device described in the sixth paragraph, and becomes a revolutionary rolling bearing device having versatility.

本発明に係わる転がり軸受装置の第3特徴構成は、前記した第2特徴構成における転動体を覆うマグネタイトないしはマグヘマイトのいずれかの材質からなる粒状の微粒子は、熱分解によって酸化鉄(II)を生成する有機鉄化合物を転動体に吸着させ、該転動体を大気中で熱処理し、前記有機鉄化合物の熱分解によって酸化鉄(II)を前記転動体の表面に析出させ、さらに前記転動体を昇温して、前記酸化鉄(II)をマグネタイトないしはマグヘマイトに酸化し、これによって、前記転動体の表面に前記マグネタイトないしは前記マグヘマイトのいずれかの材質からなる粒状の微粒子を磁気吸着させる構成とした点にある。  The third characteristic configuration of the rolling bearing device according to the present invention is that the particulate fine particles made of either magnetite or maghemite covering the rolling elements in the second characteristic configuration described above generate iron (II) oxide by thermal decomposition. The organic iron compound is adsorbed on the rolling element, the rolling element is heat-treated in the atmosphere, and iron (II) oxide is deposited on the surface of the rolling element by thermal decomposition of the organic iron compound, and the rolling element is further elevated. The structure is such that, by heating, the iron oxide (II) is oxidized to magnetite or maghemite, and thereby the particulate fine particles made of any one of the materials of the magnetite or maghemite are magnetically adsorbed on the surface of the rolling element. It is in.

つまり、この特徴構成によれば、転動体に吸着させた有機鉄化合物を、転動体の表面で熱分解して酸化鉄(II)FeOを転動体に析出させ、この酸化鉄(II)を酸化することで、マグネタイトFeないしはマグヘマイトγ−Feのいずれかの材質からなる微粒子が、転動体の表面に10nm〜100nmの大きさの範囲に入る粒状の微粒子として析出して転動体に磁気吸着する。このため、転動体が球、円筒、円錐、針状のいずれの形状でも、また、どのような大きさでも、さらに複数種類の転動体でも、マグネタイトないしはマグヘマイトからなる粒状微粒子が転動体の表面に磁気吸着する。このため、自己潤滑性を持つ転動体を製造する制約がない。さらに、一度に大量の自己潤滑性を持つ転動体が製造でき、従来の転がり軸受装置が持つ課題を根本的に解決する画期的な軸受装置が安価に製造できる。
すなわち、熱分解によって酸化鉄(II)FeOを生成する有機鉄化合物を有機溶媒に分散させ、この分散液に転動体の集まりを浸漬し、この後有機溶媒を気化させると、転動体の表面に有機鉄化合物が均一に吸着する。この転動体の集まりを大気雰囲気で熱処理する。熱処理温度が有機鉄化合物を構成する有機物の沸点を超えると、有機物と酸化鉄(II)FeOとに熱分解する。さらに熱処理温度を上げると、有機物は気化熱を奪って気化し、有機物の気化が完了した瞬間に、転動体の表面に酸化鉄(II)FeOの微粒子が析出する。さらに熱処理温度を上げると、酸化鉄(II)FeOを構成する2価の鉄イオンFe2+が、3価の鉄イオンFe3+になる酸化反応が起こる。この酸化反応が起こる温度に一定時間放置すると、酸化鉄(II)FeOを構成する2価の鉄イオンFe2+が3価の鉄イオンFe3+になりマグネタイトが生成される。つまり、酸化鉄(II)FeOを構成する半数の2価の鉄イオンFe2+が、3価の鉄イオンFe3+になってFeになり、組成式がFeO・FeのマグネタイトFeが生成される。こうした2価の鉄イオンFe2+が3価の鉄イオンFe3+になる酸化反応が転動体の表面で進行し、マグネタイトFeが転動体の表面に粒状微粒子として生成されて磁気吸着する。
さらに昇温すると、マグネタイトFeO・Feを構成するFeOにおける2価の鉄イオンFe2+が3価の鉄イオンFe3+に酸化し、この温度に一定時間放置すると、FeOにおける2価の鉄イオンFe2+がすべて3価の鉄イオンFe3+になり酸化鉄(III)Feを形成する。この酸化鉄(III)Feは、マグネタイトFeと同様の立方晶系の結晶構造を形成し、酸化鉄(III)Feはγ相のマグヘマイトγ−Feになる。こうした酸化反応が完了すると、マグヘマイトγ−Feが転動体の表面に粒状微粒子として生成されて磁気吸着する。
以上に説明したように、転動体の表面に有機鉄化合物を吸着させ、この転動体を大気中で熱処理するだけで、転動体の表面がマグネタイトないしはマグヘマイトからなる粒状の微粒子で覆われる。有機鉄化合物は汎用的な有機酸と鉄とからなる安価な工業薬品であり、また、熱処理は大気中での比較的低温度での熱処理であるため、安価な手段で強磁性微粒子による自己潤滑性を持つ転動体の集まりが製造できる。
なお、有機鉄化合物の熱分解で生成されるマグヘマイトは、酸化鉄(II)の酸化によって生成されるため、針状粒子ではなく粒状粒子として析出する。従来技術においては、マグヘマイトγ−Feは針状粒子として生成される。つまり、硫酸第一鉄ないしは硫酸第二鉄のアルカリ性の水溶液に大気を送って反応させると、針状粒子であるゲータイトと呼ばれる水酸化鉄(III)α−FeOOHが析出する。このゲータイトを、水素ガスの雰囲気で一度脱水させてヘマタイトα−Feとし、さらに、還元してマグネタイトFeを生成する。この後、マグネタイトを大気中でゆっくりと加熱酸化させると、針状のマグヘマイト粒子が生成される。針状粒子からなるマグヘマイトは自らが滑らないため、自己潤滑性を発揮する強磁性微粒子としては適さない。さらに、針状のマグヘマイト粒子を生成する製造工程は、有機鉄化合物の熱処理だけで粒状のマグヘマイト粒子を生成する製造工程に比べ、より多くの複雑な製造工程が必要になり製造費が高くなる。
That is, according to this characteristic configuration, the organic iron compound adsorbed on the rolling element is thermally decomposed on the surface of the rolling element to precipitate iron (II) FeO on the rolling element, and the iron (II) oxide is oxidized. By doing so, fine particles made of any material of magnetite Fe 3 O 4 or maghemite γ-Fe 2 O 3 are precipitated as granular fine particles falling in the range of 10 nm to 100 nm on the surface of the rolling element. Magnetically attracts moving objects. For this reason, even if the rolling element has any shape such as a sphere, cylinder, cone, or needle, and any size and multiple types of rolling elements, the particulate fine particles made of magnetite or maghemite are formed on the surface of the rolling element. Magnetic adsorption. For this reason, there is no restriction | limiting which manufactures a rolling element with self-lubricating property. Furthermore, a large number of rolling elements having self-lubricating properties can be manufactured at a time, and an innovative bearing device that fundamentally solves the problems of conventional rolling bearing devices can be manufactured at low cost.
That is, when an organic iron compound that produces iron oxide (II) FeO by thermal decomposition is dispersed in an organic solvent, a collection of rolling elements is immersed in this dispersion, and then the organic solvent is vaporized. Organic iron compounds are adsorbed uniformly. The assembly of rolling elements is heat-treated in an air atmosphere. When the heat treatment temperature exceeds the boiling point of the organic substance constituting the organic iron compound, it thermally decomposes into the organic substance and iron (II) oxide. When the heat treatment temperature is further increased, the organic substance vaporizes by taking heat of vaporization, and at the moment when the vaporization of the organic substance is completed, fine particles of iron (II) FeO are deposited on the surface of the rolling element. When the heat treatment temperature is further raised, an oxidation reaction occurs in which divalent iron ions Fe 2+ constituting iron (II) FeO become trivalent iron ions Fe 3+ . When left at a temperature at which this oxidation reaction takes place for a certain period of time, divalent iron ions Fe 2+ constituting iron (II) FeO become trivalent iron ions Fe 3+ and magnetite is generated. That is, half of the divalent iron ions Fe 2+ constituting iron oxide (II) FeO become trivalent iron ions Fe 3+ to become Fe 2 O 3 , and the composition formula is FeO · Fe 2 O 3 . Fe 3 O 4 is produced. An oxidation reaction in which such divalent iron ions Fe 2+ become trivalent iron ions Fe 3+ proceeds on the surface of the rolling element, and magnetite Fe 3 O 4 is generated as particulate fine particles on the surface of the rolling element and magnetically adsorbed.
When the temperature is further increased, the divalent iron ion Fe 2+ in FeO constituting the magnetite FeO · Fe 2 O 3 is oxidized to the trivalent iron ion Fe 3+ , and when left at this temperature for a certain period of time, the divalent iron in FeO All of the ions Fe 2+ become trivalent iron ions Fe 3+ to form iron (III) oxide Fe 2 O 3 . This iron (III) Fe 2 O 3 forms a cubic crystal structure similar to magnetite Fe 3 O 4, and iron (III) Fe 2 O 3 is a γ-phase maghemite γ-Fe 2 O 3. become. When such an oxidation reaction is completed, maghemite γ-Fe 2 O 3 is generated as granular fine particles on the surface of the rolling element and magnetically adsorbed.
As described above, the organic iron compound is adsorbed on the surface of the rolling element, and the rolling element surface is covered with granular fine particles made of magnetite or maghemite simply by heat-treating the rolling element in the atmosphere. Organic iron compounds are inexpensive industrial chemicals composed of general-purpose organic acids and iron, and heat treatment is a heat treatment at a relatively low temperature in the atmosphere, so self-lubricating with ferromagnetic fine particles by inexpensive means A collection of rolling elements with characteristics can be manufactured.
In addition, since maghemite produced | generated by the thermal decomposition of an organic iron compound is produced | generated by the oxidation of iron (II) oxide, it precipitates as a granular particle instead of an acicular particle. In the prior art, maghemite γ-Fe 2 O 3 is produced as acicular particles. That is, when an atmosphere is sent to an alkaline aqueous solution of ferrous sulfate or ferric sulfate and reacted, iron (III) α-FeOOH called goethite, which is acicular particles, precipitates. This goethite is dehydrated once in an atmosphere of hydrogen gas to hematite α-Fe 2 O 3, and further reduced to produce magnetite Fe 3 O 4 . Thereafter, when magnetite is slowly heated and oxidized in the atmosphere, acicular maghemite particles are generated. Since maghemite composed of acicular particles does not slip by itself, it is not suitable as a ferromagnetic fine particle exhibiting self-lubricating properties. Furthermore, the manufacturing process for generating acicular maghemite particles requires more complicated manufacturing processes and the manufacturing cost is higher than the manufacturing process for generating granular maghemite particles only by heat treatment of the organic iron compound.

本発明に係わる転がり軸受装置の第4特徴構成は、前記した第3特徴構成における熱分解によって酸化鉄(II)を生成する有機鉄化合物は、カルボキシル基を構成する酸素イオンが鉄イオンに配位結合するカルボン酸鉄で構成する点にある。  The fourth feature configuration of the rolling bearing device according to the present invention is an organic iron compound that generates iron (II) oxide by thermal decomposition in the third feature configuration described above, wherein oxygen ions constituting a carboxyl group are coordinated to iron ions. It is in the point comprised with the iron carboxylate to couple | bond.

つまり、本特徴手段によれば、カルボキシル基を構成する酸素イオンが、鉄イオンに近づいて配位結合するカルボン酸は、熱分解によって酸化鉄(II)FeOを析出する。従って、こうした分子構造上の特徴を有するカルボン酸鉄は、マグネタイトないしはマグヘマイトの粒状の微粒子を生成する原料になる。
すなわち、カルボキシル基を構成する酸素イオンが、鉄イオンに近づいて配位結合するカルボン酸鉄は、最も大きいイオンである鉄イオンに酸素イオンが近づいて配位結合するため、両者の距離は短くなる。これによって、鉄イオンに配位結合する酸素イオンが、鉄イオンの反対側で共有結合するイオンとの距離が、イオン同士の距離の中で最も長くなる。こうした分子構造上の特徴を持つカルボン酸鉄は、カルボン酸鉄を構成するカルボン酸の沸点を超えると、カルボキシル基を構成する酸素イオンが鉄イオンの反対側で共有結合するイオンとの結合部が最初に分断され、鉄イオンと酸素イオンとの化合物である酸化鉄(II)FeOとカルボン酸とに分解する。さらに昇温すると、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した瞬間に酸化鉄(II)FeOが析出する。こうしたカルボン酸鉄として、酢酸鉄、カプリル酸鉄、安息香酸鉄、ナフテン酸鉄などがある。
このようなカルボン酸鉄を転動体に吸着させ、転動体の表面でカルボン酸鉄を熱分解させると、10nm〜100nmの大きさの幅に収まる粒状の酸化鉄(II)FeOが転動体の表面に一斉に析出する。さらに昇温すると、酸化鉄(II)FeOがマグネタイトないしはマグヘマイトに酸化し、マグネタイトないしはマグヘマイトからなる粒状の微粒子が転動体を覆う。
さらに、前記したカルボン酸鉄は、いずれも容易に合成できる安価な工業薬品である。すなわち、カルボン酸を強アルカリと反応させるとカルボン酸アルカリ金属化合物が生成される。この後、カルボン酸アルカリ金属化合物を無機鉄化合物と反応させることで、カルボン酸鉄が合成される。また、原料となるカルボン酸は、有機酸の沸点の中で相対的に低い沸点を有する有機酸であるため、大気雰囲気においては300℃程度の比較的低い熱処理温度で酸化鉄(II)FeOの微粒子が析出する。
従って、カルボン酸鉄は安価な有機鉄化合物であり、大気雰囲気の比較的低い温度で熱分解して酸化鉄(II)を析出するため、強磁性の微粒子の集まりで転動体を覆う安価な原料になる。これによって、自己潤滑性を持つ転動体が安価に製造できる。
That is, according to this feature means, the carboxylic acid in which the oxygen ion constituting the carboxyl group is close to the iron ion and coordinated bonds precipitates iron (II) FeO by thermal decomposition. Therefore, the iron carboxylate having such a molecular structural feature is a raw material for producing magnetite or maghemite granular fine particles.
In other words, the iron carboxylate, in which the oxygen ions constituting the carboxyl group are coordinated and bonded to the iron ion, is coordinated and bonded to the iron ion, which is the largest ion, so the distance between the two is shortened. . As a result, the distance between the oxygen ion coordinated to the iron ion and the ion covalently bonded to the opposite side of the iron ion is the longest among the distances between the ions. When the iron carboxylate with such molecular structure exceeds the boiling point of the carboxylic acid that constitutes the iron carboxylate, the oxygen ion that constitutes the carboxyl group has a bond with the ion that is covalently bonded on the opposite side of the iron ion. It is first divided and decomposed into iron (II) oxide, which is a compound of iron ions and oxygen ions, and carboxylic acid. When the temperature is further increased, the carboxylic acid takes the heat of vaporization and vaporizes, and iron (II) FeO is deposited at the moment when the vaporization of the carboxylic acid is completed. Examples of such iron carboxylates include iron acetate, iron caprylate, iron benzoate, and iron naphthenate.
When such iron carboxylate is adsorbed on the rolling element and the iron carboxylate is thermally decomposed on the surface of the rolling element, granular iron oxide (II) FeO that fits in a width of 10 nm to 100 nm is formed on the surface of the rolling element. It precipitates all at once. When the temperature is further increased, iron (II) FeO is oxidized to magnetite or maghemite, and particulate fine particles made of magnetite or maghemite cover the rolling elements.
Furthermore, the iron carboxylates described above are inexpensive industrial chemicals that can be easily synthesized. That is, when a carboxylic acid is reacted with a strong alkali, a carboxylic acid alkali metal compound is produced. Thereafter, iron carboxylate is synthesized by reacting the alkali metal carboxylate with an inorganic iron compound. In addition, since the carboxylic acid used as a raw material is an organic acid having a relatively low boiling point among the boiling points of the organic acid, the iron (II) FeO oxide is heated at a relatively low heat treatment temperature of about 300 ° C. in the air atmosphere. Fine particles are deposited.
Therefore, iron carboxylate is an inexpensive organic iron compound, which is thermally decomposed at a relatively low temperature in the air atmosphere to precipitate iron (II). Therefore, an inexpensive raw material that covers the rolling elements with a collection of ferromagnetic fine particles. become. Thereby, a rolling element having self-lubricating properties can be manufactured at low cost.

本発明に係わるマグネタイトないしはマグヘマイトからなる粒状の微粒子の多層構造で覆われた転動体を製造する製造方法は、熱分解で酸化鉄(II)を析出する有機鉄化合物を有機溶媒に分散させて分散液を作成する第1の製造工程と、前記有機鉄化合物の分散液に転動体の集まりを浸漬して該転動体の表面に前記有機鉄化合物の分散液を接触させる第2の製造工程と、前記分散液を昇温して前記有機溶媒を気化させて前記有機鉄化合物を前記転動体に吸着させる第3の製造工程と、前記転動体の集まりを大気中で熱処理する第4の製造工程とからなり、前記した4つの製造工程を連続して実施することで、マグネタイトないしはマグヘマイトからなる粒状の微粒子の多層構造で前記転動体の表面を覆う転動体を製造する製造方法である点にある。  The production method for producing a rolling element covered with a multilayer structure of granular fine particles made of magnetite or maghemite according to the present invention is obtained by dispersing an organic iron compound that precipitates iron (II) oxide by thermal decomposition in an organic solvent. A first manufacturing step of creating a liquid; a second manufacturing step of immersing a collection of rolling elements in the dispersion of the organic iron compound and bringing the dispersion of the organic iron compound into contact with the surface of the rolling element; A third manufacturing process in which the temperature of the dispersion is increased to vaporize the organic solvent to adsorb the organic iron compound to the rolling elements; and a fourth manufacturing process in which the assembly of the rolling elements is heat-treated in the atmosphere; It is a manufacturing method for manufacturing a rolling element that covers the surface of the rolling element with a multilayer structure of granular fine particles made of magnetite or maghemite by continuously performing the four manufacturing steps described above. A.

つまり、この製造方法によれば、極めて簡単な4つの製造工程を連続して実施することで、大量の転動体の表面にマグネタイトないしはマグヘマイトからなる強磁性微粒子が満遍なく磁気吸着する。これによって、強磁性微粒子に基づく自己潤滑性を有する転動体の集まりが安価な製造費用で製造でき、6段落で説明した従来の転がり軸受装置の概念を払拭する画期的な軸受装置が安価に製造できる。
すなわち、第1の製造工程は、有機鉄化合物を容器に充填し、これに有機溶媒を加えて撹拌するだけの工程である。これによって、有機鉄化合物が有機溶媒に均一に分散された分散液が作成できる。第2の製造工程は、容器に転動体の集まりを浸漬するだけの工程である。これによって、転動体に有機鉄化合物の分散液が接触する。第3の製造工程は、容器の温度を有機溶媒の沸点まで昇温するだけの工程である。これによって、全ての転動体に有機鉄化合物が均一に吸着する。第4の製造工程は、大気雰囲気において、容器の温度を酸化鉄(II)がマグネタイトないしはマグヘマイトに酸化する反応が進む温度まで昇温するだけの工程である。これによって、容器内にある全ての転動体の表面にマグネタイトないしはマグヘマイトからなる粒状微粒子が磁気吸着する。この結果、強磁性微粒子に基づく自己潤滑性を有する転動体の集まりが安価な製造費で製造できる。
That is, according to this manufacturing method, by performing four extremely simple manufacturing steps in succession, ferromagnetic fine particles made of magnetite or maghemite are evenly magnetically adsorbed on the surface of a large number of rolling elements. As a result, a collection of rolling elements having self-lubricating properties based on ferromagnetic fine particles can be manufactured at a low manufacturing cost, and an innovative bearing device that wipes away the concept of the conventional rolling bearing device described in paragraph 6 can be inexpensively manufactured. Can be manufactured.
That is, the first manufacturing process is a process in which an organic iron compound is filled in a container, an organic solvent is added thereto, and the mixture is stirred. Thereby, a dispersion liquid in which the organic iron compound is uniformly dispersed in the organic solvent can be prepared. A 2nd manufacturing process is a process which only immerses the collection of rolling elements in a container. As a result, the dispersion of the organic iron compound comes into contact with the rolling elements. The third manufacturing process is a process that merely raises the temperature of the container to the boiling point of the organic solvent. As a result, the organic iron compound is uniformly adsorbed on all the rolling elements. The fourth manufacturing process is a process in which the temperature of the container is simply raised to a temperature at which the reaction of oxidizing iron (II) to magnetite or maghemite proceeds in an air atmosphere. Thereby, the particulate fine particles made of magnetite or maghemite are magnetically adsorbed on the surfaces of all the rolling elements in the container. As a result, a collection of rolling elements having self-lubricating properties based on the ferromagnetic fine particles can be manufactured at a low manufacturing cost.

有機鉄化合物を原料として用い、強磁性微粒子の多層構造が転動体の表面に磁気吸着した転動体を製造する製造方法を説明する図である。It is a figure explaining the manufacturing method which manufactures the rolling element which used the organic iron compound as a raw material, and the multilayer structure of the ferromagnetic fine particle was magnetically adsorbed on the surface of the rolling element. ナフテン酸鉄を原料として用い、マグネタイトの微粒子からなる多層構造が転動体の表面に磁気吸着した転動体を製造する製造方法を説明する図である。It is a figure explaining the manufacturing method which uses iron naphthenate as a raw material and manufactures the rolling element which the multilayer structure which consists of a magnetite fine particle magnetically adsorb | sucks to the surface of a rolling element. ナフテン酸鉄を原料として用い、マグヘマイトの微粒子からなる多層構造が転動体の表面に磁気吸着した転動体を製造する製造方法を説明する図である。It is a figure explaining the manufacturing method which uses iron naphthenate as a raw material and manufactures the rolling element which the multilayer structure which consists of a maghemite microparticles | fine-particles adsorb | sucks to the surface of a rolling element.

実施形態1Embodiment 1

実施形態1は、熱分解によって酸化鉄(II)を生成する有機鉄化合物を原料として用い、強磁性の粒状微粒子が多層構造を形成して転動体の表面に満遍なく磁気吸着させた転動体を製造する実施形態である。図1に本実施形態における転動体を製造する製造工程を示す。最初に、有機鉄化合物をn−ブタノールに10重量%として分散させた分散液を作成し(S10工程)、この分散液を容器に充填する(S11工程)。次に、転動体の集まりを分散液に浸漬させる(S12工程)。次に、容器を熱処理炉に入れて熱処理を行う。最初に、容器を120℃に設定された低温焼成室に入れ、n−ブタノールを気化し、気化したn−ブタノールを回収機で回収する(S13工程)。これによって、有機鉄化合物が転動体の表面に均一に吸着する。さらに、容器を高温焼成室に入れる。高温焼成室は、相対的に低い温度に設定される低温焼成部と、相対的に高い温度に設定される高温焼成部とからなる。低温焼成部は、有機鉄化合物を構成する有機物の沸点より高い温度まで昇温され、一定時間この温度に保持される(S14工程)。容器が低温焼成部に入ると、転動体の表面に吸着した有機鉄化合物が有機物と酸化鉄(II)とに熱分解する。これによって、転動体の表面に酸化鉄(II)が析出する。熱分解で生成された有機物は、気化されて有機物回収機によって回収される。高温焼成部は、酸化鉄(II)がマグネタイトないしはマグヘマイトに酸化される温度まで昇温され、一定時間この温度に保持される(S15工程)。高温焼成部に容器を入れると、酸化鉄(II)がマグネタイトないしはマグヘマイトに酸化され、これによって、マグネタイトないしはマグヘマイトからなる粒状の微粒子が多層構造を形成して転動体の表面に満遍なく磁気吸着する。最後に、容器から転動体の集まりを回収する(S16工程)。
以上に説明したように、表面をマグネタイトないしはマグヘマイトからなる粒状微粒子の多層構造で覆われた転動体を製造する製造方法は、有機鉄化合物のn−ブタノール分散液を作成する第1の工程と、この分散液に転動体の集まりを浸漬させる第2の工程と、この転動体の集まりを大気雰囲気で熱処理する第3の工程とを連続して行う。また、熱処理工程は3つの連続した熱処理を行う。こうした簡単な処理を連続して実施することで自己潤滑性を持つ転動体の集まりが製造されるため、従来の転がり軸受が持つ課題を解決する画期的な転がり軸受装置が、極めて安価な製造費で製造できる。
Embodiment 1 uses an organic iron compound that generates iron (II) oxide by thermal decomposition as a raw material, and produces a rolling element in which ferromagnetic granular fine particles form a multilayer structure and are uniformly magnetically adsorbed on the surface of the rolling element. It is embodiment to do. The manufacturing process which manufactures the rolling element in this embodiment in FIG. 1 is shown. First, a dispersion is prepared by dispersing 10% by weight of an organic iron compound in n-butanol (Step S10), and this dispersion is filled in a container (Step S11). Next, the collection of rolling elements is immersed in the dispersion (step S12). Next, the container is placed in a heat treatment furnace to perform heat treatment. First, a container is put into a low-temperature baking chamber set at 120 ° C., n-butanol is vaporized, and the vaporized n-butanol is collected by a recovery machine (step S13). Thereby, the organic iron compound is uniformly adsorbed on the surface of the rolling element. Furthermore, the container is placed in a high temperature baking chamber. The high-temperature firing chamber is composed of a low-temperature firing section set at a relatively low temperature and a high-temperature firing section set at a relatively high temperature. The low-temperature firing part is heated to a temperature higher than the boiling point of the organic substance constituting the organic iron compound, and is maintained at this temperature for a certain time (step S14). When the container enters the low-temperature firing section, the organic iron compound adsorbed on the surface of the rolling element is thermally decomposed into an organic substance and iron (II) oxide. Thereby, iron (II) oxide precipitates on the surface of the rolling element. The organic matter generated by pyrolysis is vaporized and recovered by an organic matter recovery machine. The high-temperature fired part is heated to a temperature at which iron (II) oxide is oxidized to magnetite or maghemite, and is maintained at this temperature for a certain time (step S15). When the container is placed in the high-temperature calcining section, iron (II) oxide is oxidized to magnetite or maghemite, whereby particulate fine particles composed of magnetite or maghemite form a multilayer structure and are evenly magnetically adsorbed on the surface of the rolling element. Finally, a collection of rolling elements is collected from the container (step S16).
As described above, the production method for producing a rolling element whose surface is covered with a multilayer structure of granular fine particles made of magnetite or maghemite includes the first step of creating an n-butanol dispersion of an organic iron compound, A second step of immersing a collection of rolling elements in the dispersion and a third step of heat-treating the collection of rolling elements in an air atmosphere are continuously performed. Further, the heat treatment step performs three consecutive heat treatments. By carrying out such simple processes continuously, a collection of rolling elements with self-lubricating properties is manufactured, so a revolutionary rolling bearing device that solves the problems of conventional rolling bearings is extremely inexpensive to manufacture. Can be manufactured at cost.

実施形態2Embodiment 2

実施形態2は、実施形態1における有機鉄化合物として、カルボン酸鉄の一種であるナフテン酸鉄(II)を用い、転動体の表面にマグネタイトの粒状微粒子が多層構造を形成して磁気吸着した転動体を製造する実施形態である。ナフテン酸鉄(III)は、ナフテン酸CCOOHの2分子が鉄と反応して容易に合成されるカルボン酸鉄の一種である。つまり、ナフテン酸を構成するカルボキシル基COOHの水素イオンが容易に乖離し、この乖離した水素イオンと結合していた酸素イオンの部位に、2価の鉄イオンが結合して合成され、CCOO−Fe−COOCで構造式が表される安価なカルボン酸鉄である。なお、カルボン酸鉄がナフテン酸鉄に限られず、14段落で説明した熱分解で酸化鉄(II)を生成するカルボン酸鉄を用いることができる。
図2に、本実施形態における転動体を製造する製造工程を示す。予め、ナフテン酸鉄(II)と転動体の集まりを用意する。なお、転動体は耐食性に優れたマルテンサイト系ステンレス鋼からなる。マルテンサイト系ステンレス鋼に限らず、耐久性の観点から高炭素クロム軸受鋼でもよい。最初に、ナフテン酸鉄(II)をn−ブタノールに対し10重量%の割合で分散し(S20工程)、この分散液を容器に充填する(S21工程)。さらに、この分散液に転動体の集まりを浸漬する(S22工程)。次に、分散液が入った容器を大気雰囲気の熱処理炉に入れる。最初に容器を120℃の低温焼成室に5分間入れ、n−ブタノールを気化し、気化したn−ブタノールを回収機で回収する(S23工程)。これによって、転動体の表面にナフテン酸鉄(II)が均一に吸着する。次に容器は高温焼成室に入り、2段階の焼成が行われる。低温焼成部では容器を10分間300℃に保持する(S24工程)。この際、転動体は、表面に吸着したナフテン酸鉄(II)がナフテン酸と酸化鉄(II)に熱分解し、酸化鉄(II)が転動体の表面に析出する。熱分解によって生成されたナフテン酸は気化し、気化したナフテン酸を回収機で回収する。この後、容器は高温焼成部に入り、300℃から1℃/min.の昇温速度で350℃に昇温され、350℃に30分間保持される(S25工程)。高温焼成部に入った転動体は、表面に析出した酸化鉄(II)FeOがマグネタイトFeに酸化され、マグネタイトからなる粒状の微粒子は、多層構造を形成して転動体の表面に満遍なく磁気吸着する。こうして全ての転動体の表面は、マグネタイトの粒状微粒子によって満遍なく覆われる。最後に、容器から転動体の集まりを取り出す(S26工程)。
In the second embodiment, iron (II) naphthenate, which is a kind of iron carboxylate, is used as the organic iron compound in the first embodiment, and magnetite granular fine particles form a multilayer structure on the surface of the rolling element and are magnetically adsorbed. It is embodiment which manufactures a moving body. Iron (III) naphthenate is a kind of iron carboxylate that is easily synthesized by reacting two molecules of naphthenic acid C 6 H 5 COOH with iron. In other words, the hydrogen ions of the carboxyl group COOH constituting naphthenic acid easily deviated, the site of the divergence hydrogen ions bound to have oxygen ions, divalent iron ions are bound to synthetic, C 6 H 5 COO—Fe—COOC 6 H 5 is an inexpensive iron carboxylate whose structural formula is represented. In addition, iron carboxylate is not restricted to iron naphthenate, Iron iron carboxylate which produces | generates iron (II) oxide by the thermal decomposition demonstrated in 14th paragraph can be used.
In FIG. 2, the manufacturing process which manufactures the rolling element in this embodiment is shown. A collection of iron (II) naphthenate and rolling elements is prepared in advance. The rolling element is made of martensitic stainless steel having excellent corrosion resistance. Not only martensitic stainless steel but also high carbon chromium bearing steel may be used from the viewpoint of durability. First, iron (II) naphthenate is dispersed in a proportion of 10% by weight with respect to n-butanol (step S20), and this dispersion is filled in a container (step S21). Further, the collection of rolling elements is immersed in this dispersion (step S22). Next, the container containing the dispersion is placed in a heat treatment furnace in an air atmosphere. First, the container is placed in a low-temperature baking chamber at 120 ° C. for 5 minutes to vaporize n-butanol, and the vaporized n-butanol is recovered by a recovery machine (step S23). As a result, iron (II) naphthenate is uniformly adsorbed on the surface of the rolling element. Next, the container enters a high-temperature baking chamber, and two-stage baking is performed. In the low-temperature firing section, the container is held at 300 ° C. for 10 minutes (step S24). At this time, in the rolling element, iron (II) naphthenate adsorbed on the surface is thermally decomposed into naphthenic acid and iron oxide (II), and iron oxide (II) is deposited on the surface of the rolling element. The naphthenic acid produced by the thermal decomposition is vaporized, and the vaporized naphthenic acid is recovered by a recovery machine. After this, the container enters the high-temperature firing section and reaches 300 ° C. to 1 ° C./min. The temperature is raised to 350 ° C. at a temperature raising rate of 350 ° C. and held at 350 ° C. for 30 minutes (step S25). The rolling element that has entered the high-temperature fired part has iron oxide (II) FeO deposited on the surface oxidized to magnetite Fe 3 O 4, and the particulate fine particles made of magnetite form a multilayer structure uniformly on the surface of the rolling element. Magnetic adsorption. Thus, the surfaces of all the rolling elements are uniformly covered with the magnetite granular fine particles. Finally, a collection of rolling elements is taken out from the container (step S26).

実施形態3Embodiment 3

実施形態3は、実施形態2におけるナフテン酸鉄(II)Fe(CCOO)を用いて、表面にマグヘマイトγ−Feの粒状微粒子を多層構造として満遍なく磁気吸着させた転動体を製造する実施形態である。従って、本実施形態は、前記した実施形態2のS25工程における酸化鉄(II)をマグネタイトに酸化する工程が、酸化鉄(II)をマグヘマイトに酸化する工程に変わるだけで、他の工程は実施形態2と同様である。
最初に、ナフテン酸鉄(II)がn−ブタノールに対し10重量%になるように分散し(S30工程)、この分散液を容器に充填する(S31工程)。さらに、分散液に転動体の集まりを浸漬する(S32工程)。次に、大気雰囲気での熱処理を行う。最初に容器は120℃の低温焼成室に5分間入り、n−ブタノールを気化し、気化したn−ブタノールを回収機で回収する(S33工程)。これによって、全ての転動体の表面にナフテン酸鉄(II)が均一に吸着する。次に、容器は高温焼成室に入る。低温焼成部は300℃に昇温され、容器を300℃に10分間保持する(S34工程)。低温焼成室に入った転動体は、転動体に吸着したナフテン酸鉄(II)がナフテン酸と酸化鉄(II)に熱分解し、酸化鉄(II)が転動体に析出する。ナフテン酸は気化し、気化したナフテン酸を回収機で回収する。この後、容器は高温焼成部に入り、300℃から1℃/min.の昇温速度で400℃まで昇温され、400℃に30分間保持される(S35工程)。高温焼成部に入った転動体は、表面に析出した酸化鉄(II)FeOがマグヘマイトγ−Feに酸化され、マグヘマイトからなる粒状微粒子は、転動体の表面に多層構造を形成して磁気吸着する。こうして全ての転動体の表面は、マグヘマイトの粒状微粒子によって満遍なく覆われる。最後に、容器から転動体の集まりを取り出す(S36工程)。
In the third embodiment, the iron (II) naphthenate (C 6 H 5 COO) 2 in the second embodiment is used, and the magnetic particles are uniformly magnetically adsorbed on the surface as a multilayer structure of maghemite γ-Fe 2 O 3. It is embodiment which manufactures a moving body. Therefore, in this embodiment, the step of oxidizing iron (II) to magnetite in the step S25 of the second embodiment described above is changed to a step of oxidizing iron (II) to maghemite, and the other steps are performed. This is the same as in the second mode.
First, iron (II) naphthenate is dispersed so as to be 10% by weight with respect to n-butanol (step S30), and this dispersion is filled in a container (step S31). Furthermore, the collection of rolling elements is immersed in the dispersion (step S32). Next, heat treatment is performed in an air atmosphere. First, the container enters a low-temperature baking chamber at 120 ° C. for 5 minutes, vaporizes n-butanol, and collects the vaporized n-butanol with a recovery machine (step S33). Thus, iron (II) naphthenate is uniformly adsorbed on the surfaces of all the rolling elements. The container then enters the high temperature firing chamber. The low-temperature firing part is heated to 300 ° C., and the container is held at 300 ° C. for 10 minutes (step S34). In the rolling element that has entered the low-temperature firing chamber, iron (II) naphthenate adsorbed on the rolling element is thermally decomposed into naphthenic acid and iron (II) oxide, and iron (II) oxide is deposited on the rolling element. Naphthenic acid is vaporized, and the vaporized naphthenic acid is recovered by a recovery machine. After this, the container enters the high-temperature firing section and reaches 300 ° C. to 1 ° C./min. The temperature is raised to 400 ° C. at a rate of temperature rise and maintained at 400 ° C. for 30 minutes (step S35). The rolling elements entering the high-temperature fired part are oxidized with iron (II) FeO deposited on the surface to maghemite γ-Fe 2 O 3, and the particulate fine particles made of maghemite form a multilayer structure on the surface of the rolling element. Magnetic adsorption. In this way, the surfaces of all the rolling elements are evenly covered with the granular fine particles of maghemite. Finally, a collection of rolling elements is taken out from the container (step S36).

実施例1は、ナフテン酸鉄(II)Fe(CCOO)を用いて、転動体の表面にマグネタイト微粒子を満遍なく磁気吸着させた実施形態2に係わる実施例である。
予め、原料となるナフテン酸鉄(II)と溶媒のn−ブタノールと転動体を用意する。ナフテン酸鉄(II)は、市販されているナフテン酸鉄(II)(例えば、東栄化工株式会社の製品)を用いた。n−ブタノールは試薬一級品を用いた。転動体はマルテンサイト系ステンレス鋼からなる直径が5mmの球体を用いた。
最初に、ナフテン酸鉄(II)をn−ブタノールに対し10重量%になるように分散する。この分散液を容器に充填し、分散液に転動体の集まりを浸漬させた。さらに、容器を大気雰囲気の熱処理炉に入れて熱処理を行なった。最初に容器を120℃の熱処理炉に5分間放置してn−ブタノールを気化させた。次に、300℃の熱処理炉に10分間放置して、ナフテン酸鉄(II)をナフテン酸と酸化鉄(II)FeOに熱分解した。この後、1℃/min.の昇温速度で300℃から350℃まで昇温し、さらに350℃に30分間放置して、酸化鉄(II)をマグネタイトFeに酸化させた。最後に、転動体の集まりを容器から取り出した。
次に、前記した条件で製作した転動体の観察と分析とを行ない、目的とするマグネタイト微粒子が転動体の表面に磁気吸着されているかを観察した。転動体の一部を試料として切り出し、試料を電子顕微鏡で観察した。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は100Vからの極低加速電圧による観察が可能で、試料に導電性の被膜を形成せずに直接試料が観察できる特徴を有する。最初に、反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行い、試料表面の凹凸を観察した。40nm〜60nmの大きさからなる粒状の微粒子が、表面全体に満遍なく吸着していることが確認できた。また、粒状粒子は、10層ないし12層の多層構造を形成していることが、試料の断面から確認できた。次に、特性X線のエネルギーとその強度を画像処理し、試料表面に吸着した粒状微粒子を構成する元素の種類とその分布状態を分析した。鉄原子と酸素原子の双方が均一に分散して存在し、特段に偏在する箇所が見られなかったため、酸化鉄からなる粒状微粒子が吸着していることが確認できた。さらに極低加速電圧SEMの機能にEBSP解析機能を付加し、結晶構造の解析を行なった。この結果から、試料の表面全体に吸着した粒状微粒子がマグネタイトFeであることが確認できた。なおEBSP解析機能とは、試料に電子線を照射したとき、反射電子が試料中の原子面によって回折されることによってバンド状のパターンを形成し、このバンドの対称性が結晶系に対応し、バンドの間隔が原子面間隔に対応しているため、このパターンを解析することで、結晶方位や結晶系を明らかになる。
以上に説明した電子顕微鏡による試料の観察結果から、転動体の表面全体に40nm〜60nmの大きさからなるマグネタイトの粒状微粒子が10層ないしは12層を形成して磁気吸着している事実が確認できた。この結果から、前記で説明した条件で転動体に吸着したナフテン酸鉄(II)を大気中で熱処理することで、転動体の表面にマグネタイト微粒子が多層構造を形成して満遍なく磁気吸着することが確認できた。この転動体が軌道面を転動すると、転動体と軌道面にマグネタイトの粒状微粒子に基づく自己潤滑性が付与される。
なお、転動体の表面に磁気吸着したマグネタイト微粒子の大きさは40nm〜60nmであり、保持器の表面粗さに比べ2桁近く小さいため、球体からなる転動体を保持器に収納する際に、磁気吸着したマグネタイト微粒子が多層構造から剥がされることはない。
Example 1 is an example according to Embodiment 2 in which iron (II) naphthenate (C 6 H 5 COO) 2 is used to uniformly adsorb magnetite fine particles on the surface of the rolling element.
First, iron (II) naphthenate as a raw material, n-butanol as a solvent, and rolling elements are prepared. As iron (II) naphthenate, commercially available iron (II) naphthenate (for example, a product of Toei Chemical Co., Ltd.) was used. For n-butanol, a reagent first grade was used. As the rolling element, a sphere having a diameter of 5 mm made of martensitic stainless steel was used.
First, iron (II) naphthenate is dispersed at 10% by weight with respect to n-butanol. This dispersion was filled in a container, and a collection of rolling elements was immersed in the dispersion. Furthermore, the container was placed in a heat treatment furnace in an air atmosphere for heat treatment. First, the container was left in a heat treatment furnace at 120 ° C. for 5 minutes to vaporize n-butanol. Next, it was left in a heat treatment furnace at 300 ° C. for 10 minutes to thermally decompose iron (II) naphthenate into naphthenic acid and iron (II) oxide. Thereafter, 1 ° C./min. The temperature was raised from 300 ° C. to 350 ° C. at a rate of temperature rise of 350 ° C. and then left at 350 ° C. for 30 minutes to oxidize iron (II) oxide to magnetite Fe 3 O 4 . Finally, a collection of rolling elements was removed from the container.
Next, the rolling element produced under the above-described conditions was observed and analyzed, and it was observed whether the target magnetite fine particles were magnetically adsorbed on the surface of the rolling element. A part of the rolling element was cut out as a sample, and the sample was observed with an electron microscope. The electron microscope used was an ultra-low acceleration voltage SEM from JFE Techno-Research Corporation. This apparatus is capable of observing with an extremely low acceleration voltage from 100 V, and has a feature that the sample can be observed directly without forming a conductive film on the sample. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam was taken out, image processing was performed, and unevenness on the sample surface was observed. It was confirmed that granular fine particles having a size of 40 nm to 60 nm were uniformly adsorbed on the entire surface. Further, it was confirmed from the cross section of the sample that the granular particles formed a multilayer structure of 10 to 12 layers. Next, the energy and intensity of characteristic X-rays were subjected to image processing, and the types of elements constituting the particulate particles adsorbed on the sample surface and their distribution states were analyzed. Both iron atoms and oxygen atoms were present in a uniformly dispersed state, and no particularly uneven locations were found, so that it was confirmed that particulate fine particles made of iron oxide were adsorbed. Furthermore, an EBSP analysis function was added to the function of the extremely low acceleration voltage SEM, and the crystal structure was analyzed. From this result, it was confirmed that the particulate fine particles adsorbed on the entire surface of the sample were magnetite Fe 3 O 4 . The EBSP analysis function means that when a sample is irradiated with an electron beam, the reflected electrons are diffracted by the atomic plane in the sample to form a band-shaped pattern, and the symmetry of this band corresponds to the crystal system. Since the band interval corresponds to the atomic plane interval, analyzing this pattern reveals the crystal orientation and crystal system.
From the observation result of the sample by the electron microscope described above, it can be confirmed that the magnetite granular fine particles having a size of 40 nm to 60 nm form 10 or 12 layers on the entire surface of the rolling element and are magnetically adsorbed. It was. From this result, by heat-treating iron (II) naphthenate adsorbed on the rolling elements under the conditions described above in the atmosphere, the magnetite fine particles form a multilayer structure on the surface of the rolling elements and can be evenly magnetically adsorbed. It could be confirmed. When this rolling element rolls on the raceway surface, self-lubricating properties based on magnetite granular fine particles are imparted to the rolling element and the raceway surface.
In addition, since the size of the magnetite fine particles magnetically adsorbed on the surface of the rolling element is 40 nm to 60 nm and is nearly two orders of magnitude smaller than the surface roughness of the cage, when storing the rolling element made of a sphere in the cage, Magnetically adsorbed magnetite fine particles are not peeled off from the multilayer structure.

実施例1は、ナフテン酸鉄(II)Fe(CCOO)を用いて、転動体の表面にマグヘマイト微粒子を満遍なく磁気吸着させた実施形態3に係わる実施例である。
予め、実施例1と同様に、ナフテン酸鉄(II)と溶媒のn−ブタノールと転動体を用意する。なお、転動体はマルテンサイト系ステンレス鋼からなり、肉厚が1mmで外径が5mmで高さが5mmの円筒形状である。
最初に、ナフテン酸鉄(II)をn−ブタノールに対し10重量%になるように分散した。この分散液を容器に充填し、分散液に転動体の集まりを浸漬させた。さらに、大気雰囲気の熱処理を行なった。最初に容器を120℃の低温焼成室に5分間放置してn−ブタノールを気化させた。次に、容器を300℃の高温焼成室に10分間放置して、ナフテン酸鉄(II)をナフテン酸と酸化鉄(II)FeOに熱分解した。この後、300℃から1℃/min.の昇温速度で400℃まで昇温し、容器を400℃に30分間放置して、酸化鉄(II)FeOをマグヘマイトγ−Feに酸化させた。最後に、転動体の集まりを容器から取り出した。
次に、前記した条件で製作した転動体の一部を試料として切り出し、試料の観察と分析とを行ない、目的とするマグヘマイト微粒子が転動体の表面に満遍なく磁気吸着されているかを確認した。試料は実施例1と同様に電子顕微鏡で観察した。最初に、反射電子線の900V〜1kVの間にある2次電子線を取り出して画像処理を行い試料表面の凹凸を観察した。試料には、40nm〜60nmの大きさからなる粒状の微粒子が、表面全体に満遍なく形成されていることが確認できた。また、粒状粒子は、10層ないし12層の多層構造を形成していることが、試料の断面から確認できた。次に、特性X線のエネルギーとその強度を画像処理し、試料表面に吸着した粒状微粒子を構成する元素の種類とその分布状態を分析した。鉄原子と酸素原子の双方が均一に分散して存在し、特段に偏在する箇所が見られなかったため、酸化鉄からなる粒状微粒子であることが確認できた。さらに極低加速電圧SEMの機能にEBSP解析機能を付加し、結晶構造の解析を行なった。この結果から、試料表面に形成された粒状微粒子がマグヘマイトγ−Feであることが確認できた。
以上に説明した電子顕微鏡による観察結果から、転動体の表面に40nm〜60nmの大きさからなるマグヘマイトの粒状微粒子が10層ないしは12層を形成して満遍なく磁気吸着している事実が確認できた。この結果から、前記で説明した条件で転動体の表面に吸着したナフテン酸鉄(II)を大気中で熱処理することで、転動体の表面にマグヘマイト微粒子が多層構造を形成して満遍なく磁気吸着することが確認できた。この転動体が軌道面を転動すると、転動体と軌道面にマグヘマイトの粒状微粒子に基づく自己潤滑性が付与される。
なお、転動体の表面に磁気吸着したマグヘマイト微粒子の大きさは40nm〜60nmであり、保持器の表面粗さに比べ2桁近く小さいため、円筒形状からなる転動体を保持器に収納する際に、マグネタイト微粒子が多層構造から剥がされることはない。
以上に、球体ないしは円筒の転動体に、ナフテン酸鉄(II)を吸着させ、このナフテン酸鉄(II)を熱分解して酸化鉄(II)を析出し、さらに、酸化鉄(II)をマグネタイトないしはマグヘマイトに酸化し、強磁性微粒子の多層構造で覆われた転動体の製造に関わる実施例を説明した。カルボン酸鉄のアルコール分散液に転動体を浸漬させるため、転動体の形状と大きさと数の制約はない。また、熱分解で酸化鉄(II)を析出するカルボン酸鉄であれば、ナフテン酸鉄(II)に制限されない。さらに、強磁性の微粒子の多層構造は、有機鉄化合物のアルコール分散濃度に応じて変えられる。このように、自己潤滑性を持つ転動体を製造する制約事項は少なく、自己潤滑性を持つ転動体が容易に製造できる。
Example 1 is an example according to Embodiment 3 in which iron (II) naphthenate (C 6 H 5 COO) 2 is used to uniformly adsorb maghemite fine particles on the surface of the rolling element.
In the same manner as in Example 1, iron (II) naphthenate, n-butanol as a solvent, and rolling elements are prepared in advance. The rolling element is made of martensitic stainless steel and has a cylindrical shape with a thickness of 1 mm, an outer diameter of 5 mm, and a height of 5 mm.
First, iron (II) naphthenate was dispersed at 10% by weight with respect to n-butanol. This dispersion was filled in a container, and a collection of rolling elements was immersed in the dispersion. Further, an air atmosphere heat treatment was performed. First, the container was left in a low-temperature baking chamber at 120 ° C. for 5 minutes to vaporize n-butanol. Next, the container was left in a high temperature baking chamber at 300 ° C. for 10 minutes to thermally decompose iron (II) naphthenate into naphthenic acid and iron (II) oxide. Thereafter, 300 ° C. to 1 ° C./min. The temperature was raised to 400 ° C. at a rate of temperature increase, and the container was left at 400 ° C. for 30 minutes to oxidize iron (II) FeO to maghemite γ-Fe 2 O 3 . Finally, a collection of rolling elements was removed from the container.
Next, a part of the rolling element manufactured under the above conditions was cut out as a sample, and the sample was observed and analyzed to confirm whether the target maghemite fine particles were uniformly magnetically adsorbed on the surface of the rolling element. The sample was observed with an electron microscope as in Example 1. First, a secondary electron beam between 900 V and 1 kV of the reflected electron beam was taken out and subjected to image processing to observe unevenness on the sample surface. It was confirmed that granular fine particles having a size of 40 nm to 60 nm were uniformly formed on the entire surface of the sample. Further, it was confirmed from the cross section of the sample that the granular particles formed a multilayer structure of 10 to 12 layers. Next, the energy and intensity of characteristic X-rays were subjected to image processing, and the types of elements constituting the particulate particles adsorbed on the sample surface and their distribution states were analyzed. Since both iron atoms and oxygen atoms exist uniformly dispersed and no particularly uneven portions were found, it was confirmed that the particles were granular fine particles made of iron oxide. Furthermore, an EBSP analysis function was added to the function of the extremely low acceleration voltage SEM, and the crystal structure was analyzed. From this result, it was confirmed that the particulate fine particles formed on the sample surface were maghemite γ-Fe 2 O 3 .
From the observation results with the electron microscope described above, it was confirmed that 10 to 12 layers of maghemite granular fine particles having a size of 40 to 60 nm were formed on the surface of the rolling element and were evenly magnetically adsorbed. From this result, by heat-treating iron (II) naphthenate adsorbed on the surface of the rolling element in the air under the above-described conditions, maghemite fine particles form a multilayer structure on the surface of the rolling element and are evenly magnetically adsorbed. I was able to confirm. When this rolling element rolls on the raceway surface, self-lubricating properties based on maghemite granular fine particles are imparted to the rolling element and the raceway surface.
The size of the maghemite fine particles magnetically adsorbed on the surface of the rolling element is 40 nm to 60 nm, which is nearly two orders of magnitude smaller than the surface roughness of the cage, so when storing the rolling element having a cylindrical shape in the cage. The magnetite fine particles are not peeled off from the multilayer structure.
As described above, iron (II) naphthenate is adsorbed on a spherical or cylindrical rolling element, and this iron (II) naphthenate is thermally decomposed to precipitate iron oxide (II). Embodiments relating to the production of rolling elements which have been oxidized to magnetite or maghemite and covered with a multilayer structure of ferromagnetic fine particles have been described. Since the rolling elements are immersed in the alcohol dispersion of iron carboxylate, there are no restrictions on the shape, size and number of the rolling elements. Moreover, if it is iron carboxylate which precipitates iron oxide (II) by thermal decomposition, it will not be restrict | limited to iron (II) naphthenate. Furthermore, the multilayer structure of the ferromagnetic fine particles can be changed according to the alcohol dispersion concentration of the organic iron compound. Thus, there are few restrictions for manufacturing a rolling element having self-lubricating properties, and a rolling element having self-lubricating properties can be easily manufactured.

Claims (5)

内輪と外輪との間に挟み込まれ、保持器によって保持された転動体が、内輪と外輪との軌道面を転動することで、回転する軸部材の回転と荷重を支える転がり軸受装置について、
転動体の表面を粒状の微粒子からなる多層構造で満遍なく覆い、該転動体が軌道面を転動する際に、前記多層構造の表層をなす粒状の微粒子が前記軌道面と接触してせん断応力を受け、該微粒子が前記転動体から前記軌道面に転移して該軌道面を覆い、これによって、前記転動体の表面の粒状の微粒子と前記軌道面の粒状の微粒子との粒状の微粒子同士の接触を介して、前記転動体が前記軌道面を転動することを特徴とする転がり軸受装置。
About the rolling bearing device that supports the rotation and load of the rotating shaft member by rolling the rolling element sandwiched between the inner ring and the outer ring and held by the cage on the raceway surfaces of the inner ring and the outer ring.
The surface of the rolling element is uniformly covered with a multilayer structure composed of particulate fine particles, and when the rolling element rolls on the raceway surface, the particulate particulates forming the surface layer of the multilayer structure come into contact with the raceway surface to generate shear stress. The fine particles are transferred from the rolling element to the raceway surface to cover the raceway surface, and thereby contact between the granular fine particles on the surface of the rolling element and the granular fine particles on the raceway surface. A rolling bearing device in which the rolling element rolls on the raceway surface via a bearing.
請求項1における転動体の表面を覆う粒状の微粒子は、マグネタイトないしはマグヘマイトのいずれかの材質からなる粒状の微粒子であることを特徴とする請求項1に記載した転動体の表面を覆う粒状の微粒子。  The granular fine particles covering the surface of the rolling element according to claim 1, wherein the granular fine particles covering the surface of the rolling element are granular fine particles made of any material of magnetite or maghemite. . 請求項2における転動体の表面を覆うマグネタイトないしはマグヘマイトのいずれかの材質からなる粒状の微粒子は、熱分解によって酸化鉄(II)を生成する有機鉄化合物を転動体に吸着させ、該転動体を大気中で熱処理し、前記有機鉄化合物の熱分解によって酸化鉄(II)が前記転動体の表面に析出し、さらに、熱処理温度を上げて前記転動体を大気中で熱処理し、前記酸化鉄(II)をマグネタイトないしはマグヘマイトに酸化し、これによって、前記マグネタイトないしは前記マグヘマイトのいずれかの材質からなる粒状の微粒子が、前記転動体の表面を覆うことを特徴とする請求項2に記載した転動体の表面を覆うマグネタイトないしはマグヘマイトのいずれかの材質からなる粒状の微粒子。  The particulate fine particles made of any material of magnetite or maghemite covering the surface of the rolling element according to claim 2 adsorb an organic iron compound that generates iron (II) oxide by thermal decomposition to the rolling element. Heat treatment is performed in the atmosphere, and iron (II) oxide is deposited on the surface of the rolling element by thermal decomposition of the organic iron compound. Further, the rolling element is heat-treated in the atmosphere at a higher heat treatment temperature, and the iron oxide ( The rolling element according to claim 2, wherein II) is oxidized to magnetite or maghemite, and thereby the particulate fine particles made of any material of the magnetite or maghemite cover the surface of the rolling element. Granular fine particles made of either magnetite or maghemite covering the surface of 請求項3における熱分解によって酸化鉄(II)を生成する有機鉄化合物は、カルボキシル基を構成する酸素イオンが鉄イオンに配位結合するカルボン酸鉄であることを特徴とする請求項3に記載した熱分解によって酸化鉄(II)を生成する有機鉄化合物。  The organic iron compound that generates iron (II) oxide by thermal decomposition in claim 3 is iron carboxylate in which oxygen ions constituting a carboxyl group are coordinated to iron ions. Organic iron compounds that produce iron (II) oxide by thermal decomposition. マグネタイトないしはマグヘマイトのいずれかの材質からなる粒状の微粒子の多層構造で表面が覆われた転動体を製造する製造方法は、熱分解で酸化鉄(II)を生成する有機鉄化合物を有機溶媒に分散させて分散液を作成する第1の製造工程と、前記有機鉄化合物の分散液に転動体の集まりを浸漬して該転動体の表面に前記有機鉄化合物の分散液を接触させる第2の製造工程と、前記分散液を昇温して前記有機溶媒を気化させて前記有機鉄化合物を前記転動体の表面に吸着させる第3の製造工程と、前記転動体の集まりを大気中で熱処理する第4の製造工程とからなり、前記した4つの製造工程を連続して実施することで、マグネタイトないしはマグヘマイトのいずれかの材質からなる粒状の微粒子の多層構造で覆われた転動体を製造することを特徴とするマグネタイトないしはマグヘマイトのいずれかの材質からなる粒状の微粒子の多層構造で覆われた転動体を製造する製造方法。  A manufacturing method for manufacturing a rolling element whose surface is covered with a multilayer structure of granular fine particles made of either magnetite or maghemite is a method in which an organic iron compound that generates iron (II) oxide by thermal decomposition is dispersed in an organic solvent. And a second production process in which a collection of rolling elements is immersed in the dispersion of the organic iron compound and the dispersion of the organic iron compound is brought into contact with the surface of the rolling element. A process, a third production process for evaporating the organic solvent by elevating the temperature of the dispersion and adsorbing the organic iron compound to the surface of the rolling element, and a heat treatment for collecting the rolling element in the atmosphere. The rolling element covered with a multilayer structure of granular fine particles made of any material of magnetite or maghemite is manufactured by continuously performing the above-described four manufacturing processes. Method of manufacturing a rolling element covered with multi-layer structure of granular particles consisting of any of the material of magnetite or maghemite, characterized and.
JP2013153045A 2013-07-04 2013-07-04 Rolling bearing device and method for magnetically adhering to rolling element Expired - Fee Related JP6283459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013153045A JP6283459B2 (en) 2013-07-04 2013-07-04 Rolling bearing device and method for magnetically adhering to rolling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013153045A JP6283459B2 (en) 2013-07-04 2013-07-04 Rolling bearing device and method for magnetically adhering to rolling element

Publications (2)

Publication Number Publication Date
JP2015014356A true JP2015014356A (en) 2015-01-22
JP6283459B2 JP6283459B2 (en) 2018-02-21

Family

ID=52436201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013153045A Expired - Fee Related JP6283459B2 (en) 2013-07-04 2013-07-04 Rolling bearing device and method for magnetically adhering to rolling element

Country Status (1)

Country Link
JP (1) JP6283459B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008278A (en) * 2015-06-23 2017-01-12 小林 博 Lubricant used for bearing device
JP2017014473A (en) * 2015-07-01 2017-01-19 小林 博 Lubricant vacuum impregnated in porous body consisting of sintered metal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438809A (en) * 1990-06-04 1992-02-10 Agency Of Ind Science & Technol Light-transmissive magnetic iron oxide film and manufacture thereof
JPH07259867A (en) * 1994-03-17 1995-10-09 Nippon Seiko Kk Solid lubrication rolling bearing
JPH109270A (en) * 1996-04-25 1998-01-13 Koyo Seiko Co Ltd Rolling and sliding parts
WO2006123453A1 (en) * 2005-05-20 2006-11-23 Aisin Seiki Kabushiki Kaisha Metal bearing
WO2007125603A1 (en) * 2006-04-28 2007-11-08 Aisin Seiki Kabushiki Kaisha Metal bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438809A (en) * 1990-06-04 1992-02-10 Agency Of Ind Science & Technol Light-transmissive magnetic iron oxide film and manufacture thereof
JPH07259867A (en) * 1994-03-17 1995-10-09 Nippon Seiko Kk Solid lubrication rolling bearing
JPH109270A (en) * 1996-04-25 1998-01-13 Koyo Seiko Co Ltd Rolling and sliding parts
WO2006123453A1 (en) * 2005-05-20 2006-11-23 Aisin Seiki Kabushiki Kaisha Metal bearing
WO2007125603A1 (en) * 2006-04-28 2007-11-08 Aisin Seiki Kabushiki Kaisha Metal bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008278A (en) * 2015-06-23 2017-01-12 小林 博 Lubricant used for bearing device
JP2017014473A (en) * 2015-07-01 2017-01-19 小林 博 Lubricant vacuum impregnated in porous body consisting of sintered metal

Also Published As

Publication number Publication date
JP6283459B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
Zaidi et al. Magnetotribology of ferromagnetic/ferromagnetic sliding couple
Song et al. Submicron-lubricant based on crystallized Fe3O4 spheres for enhanced tribology performance
Lineira del Rio et al. Tribological behavior of nanolubricants based on coated magnetic nanoparticles and trimethylolpropane trioleate base oil
JP6283459B2 (en) Rolling bearing device and method for magnetically adhering to rolling element
CN108026973B (en) Sliding member, rolling bearing, and retainer
Zhang et al. Effect of nano-Cu lubrication additive on the contact fatigue behavior of steel
Liu et al. The effect of Ni nanoparticles on the lubrication of a DLC-based solid–liquid synergetic system in all lubrication regimes
Zhao et al. Fabrication and investigation the microtribological behaviors of ionic liquid–graphene composite films
Kürten et al. Tribochemical degradation of vacuum‐stable lubricants: A comparative study between multialkylated cyclopentane and perfluoropolyether in a vacuum ball‐on‐disc and full‐bearing tests
Mushtaq et al. High-temperature friction and wear studies of Fe-Cu-Sn alloy with graphite as solid lubricant under dry sliding conditions
Varenberg et al. Mechano-chemical surface modification with Cu 2 S: inducing superior lubricity
Mushtaq et al. Tribological characterization of Fe-Cu-Sn alloy with graphite as solid lubricant
El Mansori et al. Role of transferred layers in friction and wear for magnetized dry frictional applications
Tonotsuka et al. Effect of lattice defects on tribological behavior for high friction coefficient under TCP added PAO lubrication in nanostructured steels
JP6283458B2 (en) Manufacturing method of shaft member
JP6598002B2 (en) Method for producing lubricant for vacuum impregnation of porous body made of sintered metal
Hu et al. Research on tribological behaviour and interfacial characteristic of Polyimide-MoS2 composite under cryogenic-vacuum environment
Liu et al. The effect of FeS solid lubricant on the tribological properties of bearing steel under grease lubrication
Wang et al. Comparative study on the tribological performances of Barium perrhenate, molybdenum disulfide, and calcium carbonate as lubricant additives in a wide temperature range
JP6583994B2 (en) Method for producing lubricant applied to at least one of raceway surface or rolling element of rolling bearing device, or method for producing lubricant applied to at least one sliding surface of bearing member or shaft member of sliding bearing device
JP2017014473A5 (en)
JP2017008278A5 (en)
Ilie et al. Tribological Study of Ecological Lubricants Containing Titanium Dioxide Nanoparticles
Li et al. The tribological performance of W-DLC in solid–liquid lubrication system addivated with Cu nanoparticles
JP7236603B2 (en) A method for producing a lubricant to be applied to at least one of the raceway surface and the rolling elements of a rolling bearing device, or a method for producing a lubricant to be applied to the sliding surface of at least one of a bearing member and a shaft member of a sliding bearing device, or an oil-containing method Method for manufacturing lubricant by vacuum impregnation of porous body made of sintered metal used for bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180127

R150 Certificate of patent or registration of utility model

Ref document number: 6283459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees