JP6583994B2 - Method for producing lubricant applied to at least one of raceway surface or rolling element of rolling bearing device, or method for producing lubricant applied to at least one sliding surface of bearing member or shaft member of sliding bearing device - Google Patents

Method for producing lubricant applied to at least one of raceway surface or rolling element of rolling bearing device, or method for producing lubricant applied to at least one sliding surface of bearing member or shaft member of sliding bearing device Download PDF

Info

Publication number
JP6583994B2
JP6583994B2 JP2015138151A JP2015138151A JP6583994B2 JP 6583994 B2 JP6583994 B2 JP 6583994B2 JP 2015138151 A JP2015138151 A JP 2015138151A JP 2015138151 A JP2015138151 A JP 2015138151A JP 6583994 B2 JP6583994 B2 JP 6583994B2
Authority
JP
Japan
Prior art keywords
lubricant
fine particles
esters
bearing device
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015138151A
Other languages
Japanese (ja)
Other versions
JP2017008278A5 (en
JP2017008278A (en
Inventor
小林 博
博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015138151A priority Critical patent/JP6583994B2/en
Publication of JP2017008278A publication Critical patent/JP2017008278A/en
Publication of JP2017008278A5 publication Critical patent/JP2017008278A5/ja
Application granted granted Critical
Publication of JP6583994B2 publication Critical patent/JP6583994B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubricants (AREA)

Description

本発明は、転がり軸受装置の軌道面ないしは転動体の少なくとも一方に付与する潤滑剤の製造方法、ないしは、滑り軸受装置の軸受部材ないしは軸部材の滑り面に付与する潤滑剤の製造方法に関する。 The present invention relates to a method for manufacturing a lubricant to be applied to at least one of a raceway surface or a rolling element of a rolling bearing device, or a method for manufacturing a lubricant to be applied to a sliding surface of a bearing member or a shaft member of a sliding bearing device .

回転部を有する産業用機器は、回転する軸部材と、この軸部材の回転と荷重とを支持する軸受部材とからなる軸受装置を有する。軸受装置は、軸部材の回転と荷重とを支持する部材が、1.耐久性に優れること、2.焼付きや凝着を起こさないこと、3.摩擦熱が少ないこと、4.摩擦音が小さいこと、などが求められる。
軸受装置は、転がり軸受装置と滑り軸受装置とに2分される。転がり軸受は、転動体と呼ばれる部品が、軸部材の回転と荷重とを支持する。この転動体は保持器によって保持され、内輪と外輪とで構成される軌道面上を転動する。転動体の種類によって様々な転がり軸受が存在し、ボールベアリングの転がりによる玉軸受と、円筒コロ、円錐コロ、針状コロなどの転がりによるコロ軸受などがある。いっぽう滑り軸受は、滑り面に存在する潤滑油の油膜で軸部材の回転と荷重とを支持する。滑り面に潤滑油を供給する潤滑装置ないしは潤滑機構を設けた動圧・静圧軸受に比べ、滑り面に潤滑油を供給する手段を省いた含油軸受は小型で安価なため、動圧・静圧軸受に比べより多くの産業機器に用いられている。
Industrial equipment having a rotating part has a bearing device including a rotating shaft member and a bearing member that supports the rotation and load of the shaft member. In the bearing device, members that support the rotation and load of the shaft member are: 1. Excellent durability. 2. Do not cause seizure or adhesion; 3. Less frictional heat; It is required that the frictional sound is low.
The bearing device is divided into a rolling bearing device and a sliding bearing device. In the rolling bearing, a part called a rolling element supports the rotation and load of the shaft member. This rolling element is held by a cage and rolls on a raceway surface composed of an inner ring and an outer ring. There are various types of rolling bearings depending on the type of rolling element, and there are ball bearings by rolling of ball bearings and roller bearings by rolling of cylindrical rollers, conical rollers, needle rollers, and the like. On the other hand, the sliding bearing supports the rotation and load of the shaft member with an oil film of lubricating oil present on the sliding surface. Oil-impregnated bearings that omit the means for supplying lubricating oil to the sliding surface are smaller and less expensive than the hydrodynamic and hydrostatic bearings that supply lubricating oil to the sliding surface. Compared to pressure bearings, it is used in more industrial equipment.

転がり軸受装置は、転動体を保持する保持器を有するため、含油軸受に比べて大型な軸受装置になり、転動体の転動によって、静粛性は滑り軸受装置に比べて劣る。いっぽう、軸部材の高速回転時には、転動体の慣性力が増大して軌道面に過大の圧縮応力を加える。また、静荷重下でも転動体の軌道面に圧縮応力が常時印加される。このため、転動体ないしは軌道面には、フレーキングと呼ばれる圧縮荷重によるうろこ状の疲労剥離現象が起こり、このフレーキングが加速的に進行して転がり軸受装置の寿命が決まる。
いっぽう、転動体が軌道面と接触する面積は、滑り軸受け装置における軸部材が接触する滑り面に比べ小さい。このため、動作時における摩擦力は、滑り軸受装置に比べて小さい。また、滑り軸受装置のように、動作温度の影響は受けない。さらに、滑り軸受装置では、軸部材の荷重の大きさに応じた軸受部材を用いなければならないが、転がり軸受では転動体および軌道面が受ける荷重の制約はない。従って、転がり軸受装置における転動体および軌道面に加わる負荷が軽減でき、また、転動体と軌道面の摩擦力が縮減できれば、耐久性と静粛性とに関わる弱点がなくなり、汎用的な軸受装置になる。
Since the rolling bearing device has a cage for holding the rolling elements, the rolling bearing device becomes a large-sized bearing device as compared with the oil-impregnated bearing, and the quietness is inferior to the sliding bearing device due to the rolling of the rolling elements. On the other hand, when the shaft member rotates at a high speed, the inertial force of the rolling element increases and an excessive compressive stress is applied to the raceway surface. Further, a compressive stress is always applied to the raceway surface of the rolling element even under a static load. For this reason, a scaly fatigue peeling phenomenon caused by a compressive load called flaking occurs on the rolling elements or the raceway surface, and this flaking progresses at an accelerated rate to determine the life of the rolling bearing device.
On the other hand, the area where the rolling element contacts the raceway surface is smaller than the sliding surface where the shaft member in the sliding bearing device contacts. For this reason, the frictional force at the time of operation | movement is small compared with a slide bearing apparatus. Further, unlike the sliding bearing device, it is not affected by the operating temperature. Further, in the sliding bearing device, a bearing member corresponding to the magnitude of the load of the shaft member must be used. However, in the rolling bearing, there is no restriction on the load received by the rolling elements and the raceway surface. Therefore, if the load applied to the rolling elements and the raceway surface in the rolling bearing device can be reduced, and if the frictional force between the rolling elements and the raceway surface can be reduced, there will be no weak points related to durability and quietness, and a general-purpose bearing device will be realized. Become.

転がり軸受の課題を解決する手段として、例えば、特許文献1では、内外輪間の転動体の配列の両側に、固体潤滑剤で形成されたリングと、この潤滑リングを転動体に押し付ける弾性部材とを組み込むことにより、潤滑リングから固体潤滑剤を転動体に移着させて潤滑を行うようにした転がり軸受が提案されている。しかし、転動体への固体潤滑剤の供給が軸方向からのみ行われるため、転動体と内外輪の転走面との間に固体潤滑剤が入り込みにくく、十分な潤滑が行われず、焼き付けと凝着を発生する恐れがある。また、固体潤滑剤が摩耗すると、焼き付けと凝着が起こり、固体潤滑剤の寿命が転がり軸受の寿命になる。従って、本特許文献で提案された技術は、従来の課題を根本的に解決できない。
さらに、特許文献2では、転がり接触又はすべり接触が生じる接触面に供給される潤滑油が少量であっても、均一な油膜が形成され、摩擦係数が小さくかつ均一である接触面を有する転がり摺動部材を提供することを目的として、転がり接触面である、外側軌道面、内側軌道面及び転走面に、多数の微細な凹部を形成し、凹部の内面に撥油剤を付着させる転がり軸受が提案されている。しかし、撥油剤の蒸気圧特性と粘度によって、動作温度の制約を受ける。さらに、接触面に撥油剤が供給されることを前提とした軸受装置であり、撥油剤の寿命が軸受装置の寿命になる。従って、本特許文献に提案された技術も、従来の課題を根本的に解決できない。
As means for solving the problems of rolling bearings, for example, in Patent Document 1, rings formed of solid lubricant on both sides of an array of rolling elements between inner and outer rings, and an elastic member that presses the lubricating rings against the rolling elements, There has been proposed a rolling bearing in which a solid lubricant is transferred from a lubrication ring to a rolling element to perform lubrication. However, since the solid lubricant is supplied to the rolling elements only from the axial direction, the solid lubricant is difficult to enter between the rolling elements and the rolling surfaces of the inner and outer rings, and sufficient lubrication is not performed. There is a risk of wearing. Further, when the solid lubricant is worn, seizure and adhesion occur, and the life of the solid lubricant becomes the life of the rolling bearing. Therefore, the technique proposed in this patent document cannot fundamentally solve the conventional problems.
Further, in Patent Document 2, even if a small amount of lubricating oil is supplied to the contact surface where rolling contact or sliding contact occurs, a uniform oil film is formed, and the rolling slide having a contact surface with a small and uniform friction coefficient. For the purpose of providing a moving member, there is a rolling bearing in which a large number of fine recesses are formed on the outer raceway surface, the inner raceway surface and the rolling surface, which are rolling contact surfaces, and an oil repellent is attached to the inner surface of the recesses. Proposed. However, the operating temperature is limited by the vapor pressure characteristics and viscosity of the oil repellent. Further, the bearing device is based on the premise that the oil repellent is supplied to the contact surface, and the life of the oil repellent is the life of the bearing device. Therefore, the technique proposed in this patent document cannot fundamentally solve the conventional problems.

いっぽう、滑り軸受装置は、軸受部材の滑り面の潤滑油の油膜で軸部材の回転と荷重とを受けるため、潤滑油の油膜が枯渇すると滑り面で焼付きや凝着が起こり、滑り軸受装置の寿命が決まる。潤滑油は温度に応じた蒸気圧を有するため、動作温度が高くなるほど動作寿命は短い。また、低温時には潤滑油の粘度が増大するため、軸部材の低温始動性が悪化する。動作寿命を延ばすために、滑り面に潤滑油を供給する潤滑装置ないしは潤滑機構を設けた動圧・静圧軸受を用いると、小型で安価な滑り軸受装置の長所がなくなる。
また、含油軸受では、多孔質体に潤滑油を真空含浸する。真空含浸された潤滑油は、滑り面の摩擦熱で体積膨張し、自らが滑り面に潤滑油を供給する自己給油性を有する。滑り面に滲みでた潤滑油は、滑り面で油膜を形成する。この油膜の存在で、多孔質体と軸部材との焼付きと凝着を防ぐ。しかし、多孔質体に設ける内部気孔の体積は30%余りに制限され、制限された含浸油の量で動作寿命が決まる。さらに、多孔質体は、多孔質体の内部に潤滑油を真空含浸できる構造と、滑り面へ潤滑油が供給できる構造とを兼備するため、気孔は通気性を有する。この通気性によって、含油軸受が使用できる負荷に制約がある。
すなわち、滑り面に存在する通気性の気孔によって滑り面の油圧が逃げ、含油軸受が適応できる軸受面圧は1MPaまでであるとされている。さらに、高速回転においては、通気性の気孔によって滑り面に供給される潤滑油が過小になり、含油軸受で適応できる軸部材の滑り速度は300m/minが限度であるとされている。
さらに、滑り面における潤滑油の摩擦係数の大きさから、含油軸受が適応できる領域に限界がある。つまり、気孔から滲み出た潤滑油が、滑り面で理想的な流体潤滑を行う場合は、摩擦係数μはμ=η・N・d/P・Cで与えられる。ここで、ηは動作温度における潤滑油の粘性、Nは軸部材の回転数、dは軸部材の軸径、Pは軸受面圧、Cは摺接面のクリアランスである。いっぽう、含油軸受では、軸部材の回転速度Nが低下し軸受面圧Pが増大すると、動作時の摩擦係数μは理想的な摩擦係数μから外れて増大する。つまり、低速回転時に軸受面圧Pが増大すると、気孔の通気性によって軸受面圧Pがリークし易くなり、滑り面に油膜が存在しなくなり、部分的に軸部材と軸受部材とが直接接触する境界潤滑の摩擦が支配的になり、滑り面における焼付や凝着が起こり易くなる。
On the other hand, the sliding bearing device receives the rotation and load of the shaft member with the lubricating oil film on the sliding surface of the bearing member, so when the lubricating oil film is depleted, seizure and adhesion occur on the sliding surface, and the sliding bearing device The lifetime of is determined. Since the lubricating oil has a vapor pressure corresponding to the temperature, the operating life is shorter as the operating temperature is higher. Further, since the viscosity of the lubricating oil increases at a low temperature, the low-temperature startability of the shaft member is deteriorated. In order to extend the operating life, the use of a lubrication device that supplies lubricating oil to a sliding surface or a hydrodynamic / hydrostatic bearing provided with a lubrication mechanism eliminates the advantages of a small and inexpensive sliding bearing device.
In oil-impregnated bearings, the porous body is vacuum impregnated with lubricating oil. The vacuum-impregnated lubricating oil expands in volume by frictional heat of the sliding surface and has a self-lubricating property that supplies the lubricating oil to the sliding surface. The lubricating oil that has oozed out on the sliding surface forms an oil film on the sliding surface. The presence of this oil film prevents seizure and adhesion between the porous body and the shaft member. However, the volume of internal pores provided in the porous body is limited to more than 30%, and the operating life is determined by the limited amount of impregnated oil. Further, since the porous body has a structure in which the lubricating oil can be vacuum-impregnated inside the porous body and a structure in which the lubricating oil can be supplied to the sliding surface, the pores have air permeability. This air permeability restricts the load that the oil-impregnated bearing can be used.
That is, the oil pressure of the sliding surface escapes due to the air-permeable pores existing on the sliding surface, and the bearing surface pressure to which the oil-impregnated bearing can be applied is up to 1 MPa. Furthermore, in high-speed rotation, the lubricating oil supplied to the sliding surface becomes too small due to air-permeable pores, and the sliding speed of the shaft member that can be applied with the oil-impregnated bearing is limited to 300 m / min.
Furthermore, there is a limit to the area where oil-impregnated bearings can be applied because of the friction coefficient of the lubricating oil on the sliding surface. That is, when the lubricating oil that has oozed out from the pores performs ideal fluid lubrication on the sliding surface, the friction coefficient μ is given by μ = η · N · d / P · C. Here, η is the viscosity of the lubricating oil at the operating temperature, N is the rotational speed of the shaft member, d is the shaft diameter of the shaft member, P is the bearing surface pressure, and C is the clearance of the sliding contact surface. On the other hand, in the oil-impregnated bearing, when the rotational speed N of the shaft member decreases and the bearing surface pressure P increases, the friction coefficient μ during operation increases away from the ideal friction coefficient μ. That is, when the bearing surface pressure P increases during low-speed rotation, the bearing surface pressure P easily leaks due to the air permeability of the pores, and no oil film exists on the sliding surface, so that the shaft member and the bearing member are in direct contact with each other. The friction of the boundary lubrication becomes dominant, and seizure and adhesion on the sliding surface easily occur.

このような含油軸受の様々な課題に対し様々な提案がなされている。例えば、境界潤滑が起こる摩擦係数を、より小さな摩擦係数の領域まで拡大する、つまり、流体潤滑の領域を拡大するため、焼結金属に固体潤滑剤である二硫化モリブデンや黒鉛を添加する事例がある(例えば、特許文献3および4を参照)。しかし、流体潤滑の領域が多少広がる効果はあるが、滑り面の気孔の通気性によって流体潤滑が広がる領域には自ずと限界がある。
また、潤滑油を滑り面に吸着しやすい性質とし、吸着活性が高い無極性潤滑油と吸着活性が高い軸受材料を組み合わせる事例がある(例えば、非特許文献1および2を参照)。この事例においても、流体潤滑の領域が多少広がる効果はあるが、滑り面の気孔の通気性によって流体潤滑が広がる領域には自ずと限界がある。
Various proposals have been made for various problems of such oil-impregnated bearings. For example, in order to expand the friction coefficient at which boundary lubrication occurs to a region with a smaller friction coefficient, that is, in order to expand the fluid lubrication region, there are cases in which molybdenum disulfide or graphite, which is a solid lubricant, is added to sintered metal. (For example, see Patent Documents 3 and 4). However, although there is an effect that the region of fluid lubrication is somewhat widened, there is a limit to the region where fluid lubrication is spread due to the air permeability of the pores of the sliding surface.
In addition, there is a case where a nonpolar lubricating oil having a high adsorption activity and a bearing material having a high adsorption activity are combined with the property that the lubricating oil is easily adsorbed on the sliding surface (see, for example, Non-Patent Documents 1 and 2). Even in this case, there is an effect that the region of fluid lubrication is somewhat widened, but there is a limit to the region where fluid lubrication is spread due to the air permeability of the pores of the sliding surface.

特開2008−014411号公報JP 2008-014411 A 特開2013−076469号公報JP 2013-076469 A 特開2001−279349号公報JP 2001-279349 A 特開2008−202123号公報JP 2008-202123 A

森誠之著、固体表面の活性と吸着および境界潤滑との関係、潤滑、Vol.33、No8(1988)、585−590Mori, Masayuki, Relationship between solid surface activity and adsorption and boundary lubrication, lubrication, Vol. 33, No8 (1988), 585-590 森誠之著、摩擦新生面の化学的性質、トライボロジスト、Vol.38、No.10(1993)、884−889Mori, Masayuki, Chemical properties of frictional new surfaces, tribologists, Vol. 38, no. 10 (1993), 884-889

転がり軸受装置における課題は、3段落で説明したように、転動体と軌道面とに加わる負荷が軽減され、また、転動体と軌道面との摩擦力が縮減されることに集約される。しかしこれらの課題は、回転する軸部材の回転と荷重を転動体が支える転がり軸受の動作原理に基づいて起こる。一方、4段落で説明した先行技術のように、転動体ないしは軌道面に固体潤滑膜の形成や撥油剤の付加などの手段を用いると、滑り軸受の原理的な問題点である高温動作における寿命の短縮と低温始動性の悪化がもたらされ、また、軸受装置がさらに大型になり、転がり軸受の短所が増大し、汎用的な転がり軸受装置にならない。
いっぽう、滑り軸受装置は、滑り面に常時潤滑油の油膜が存在することが前提になる。滑り面に潤滑油を供給する装置ないしは機構を設けると、小型で安価な滑り軸受の長所がなくなる。また、含油軸受の課題は次の7つに集約されるが、これらの課題は、含油軸受の原理と含浸される潤滑油の性質に基づくもので、根本的な解決は困難である。第一に、過大な軸荷重を受けて軸受面圧が増大すると、軸受面圧が滑り面の気孔からリークして境界潤滑に至る。第二に、軸部材の高速回転時では、滑り面に潤滑油を引き出す力が強くなり、潤滑油が枯渇し易くなる。第三に、軸部材の低速回転時では、滑り面に潤滑油を引き出す力が弱くなり境界潤滑に陥る。第四に、極低温では潤滑油の粘性が増大して摩擦係数が増大し、低温始動性が悪化する。第五に、低温動作では滑り面に潤滑油が供給されにくくなり境界潤滑に至る。第六に、高温動作では滑り面に供給される潤滑油が過多になり、また、潤滑油の蒸発が増大し、含浸油が枯渇し易くなる。第七に、高温動作では潤滑油の熱劣化が進行し、潤滑油の潤滑性能が低下する。
従って、転がり軸受装置と滑り軸受装置との双方の課題を根本的に解決する手段は、第一に、応力を受けると、自らが滑ることで加えられた応力を緩和する自己潤滑性の機能を有する潤滑剤を実現することにある。つまり、転がり軸受装置の転動体と軌道面とに形成した潤滑剤からなる皮膜が永続すれば、転動体と軌道面とに加わる負荷が永続して軽減され、転動体と軌道面との摩擦力が永続して縮減できる。また、滑り軸受装置においては、滑り面に形成した潤滑剤からなる皮膜が永続すれば、滑り面に加わる応力は永続して緩和できる。第二に、転動体と軌道面との少なくとも一方に、前記した潤滑剤を塗布するだけで皮膜が形成できれば、転がり軸受装置が大型化せず、安価で汎用的な転がり軸受装置になる。また、軸部材と軸受部材との滑り面の少なくとも一方に、前記した潤滑剤を塗布するだけで皮膜が形成できれば、安価で汎用的な滑り軸受装置になる。第三に、自己潤滑性の機能が、軸部材の回転速度と荷重とに関わらず、また、軸受装置の動作温度に拘わらず永続することである。これによって、転がり軸受装置における耐久性と静粛性が永続し、滑り軸受装置における滑り面での流体潤滑が永続する。これら3つの性質を兼備する全く新たな潤滑剤を実現させることが、本発明が解決しようとする課題である。
As described in the third paragraph, the problems in the rolling bearing device are summarized in that the load applied to the rolling element and the raceway surface is reduced, and the frictional force between the rolling element and the raceway surface is reduced. However, these problems occur based on the operating principle of the rolling bearing in which the rolling element supports the rotation and load of the rotating shaft member. On the other hand, if a means such as formation of a solid lubricating film or addition of an oil repellent agent is used on the rolling element or raceway surface as in the prior art described in the fourth paragraph, the life in high temperature operation which is a fundamental problem of the sliding bearing Shortening and deterioration of cold startability are brought about, and the bearing device is further increased in size, the disadvantages of the rolling bearing are increased, and a general-purpose rolling bearing device cannot be obtained.
On the other hand, the sliding bearing device is premised on that a lubricating oil film always exists on the sliding surface. Providing a device or mechanism for supplying lubricating oil to the sliding surface eliminates the advantages of a small and inexpensive sliding bearing. The problems of the oil-impregnated bearing are summarized in the following seven, but these problems are based on the principle of the oil-impregnated bearing and the nature of the lubricating oil to be impregnated, and the fundamental solution is difficult. First, when the bearing surface pressure increases due to an excessive axial load, the bearing surface pressure leaks from the pores of the sliding surface, leading to boundary lubrication. Second, when the shaft member rotates at a high speed, the force for drawing the lubricating oil to the sliding surface becomes strong, and the lubricating oil is easily depleted. Third, when the shaft member rotates at a low speed, the force for drawing the lubricating oil to the sliding surface becomes weak, and boundary lubrication occurs. Fourth, at extremely low temperatures, the viscosity of the lubricating oil increases, the friction coefficient increases, and the low-temperature startability deteriorates. Fifth, low temperature operation makes it difficult to supply lubricating oil to the sliding surface, leading to boundary lubrication. Sixth, in high-temperature operation, the lubricating oil supplied to the sliding surface becomes excessive, the evaporation of the lubricating oil increases, and the impregnated oil is easily depleted. Seventh, in high temperature operation, the thermal deterioration of the lubricating oil proceeds and the lubricating performance of the lubricating oil decreases.
Therefore, the means for fundamentally solving the problems of both the rolling bearing device and the sliding bearing device is, first of all, the function of self-lubricating to relieve the stress applied by sliding itself when stressed. It is to realize a lubricant having the same. In other words, if the lubricant film formed on the rolling elements and the raceway surface of the rolling bearing device is permanent, the load applied to the rolling elements and the raceway surface is permanently reduced, and the frictional force between the rolling elements and the raceway surface is reduced. Can be permanently reduced. Further, in the sliding bearing device, if the film made of the lubricant formed on the sliding surface is permanent, the stress applied to the sliding surface can be permanently relaxed. Secondly, if a film can be formed only by applying the above-described lubricant to at least one of the rolling elements and the raceway surface, the rolling bearing device will not be enlarged, and an inexpensive and general-purpose rolling bearing device will be obtained. Further, if a film can be formed only by applying the above-described lubricant to at least one of the sliding surfaces of the shaft member and the bearing member, an inexpensive and general-purpose sliding bearing device can be obtained. Third, the self-lubricating function is permanent regardless of the rotational speed and load of the shaft member and regardless of the operating temperature of the bearing device. As a result, durability and quietness in the rolling bearing device are maintained, and fluid lubrication on the sliding surface in the sliding bearing device is maintained. It is a problem to be solved by the present invention to realize a completely new lubricant having these three properties.

本発明に係わる転動体と内輪および外輪とが軟磁性体からなる転がり軸受装置の軌道面ないしは転動体の少なくとも一方に付与する潤滑剤の製造方法は、ないしは、軸部材が軟磁性体である滑り軸受装置の軸受部材ないしは軸部材の少なくとも一方の滑り面に付与する潤滑剤の製造方法は、熱分解で酸化第一鉄を析出するナフテン酸第一鉄をアルコールに分散してアルコール分散液を作成する第一の工程と、該アルコール分散液に、融点がパラフィン系ベースオイルからなる潤滑油の流動点より低い第一の性質と、沸点が前記酸化第一鉄をマグネタイトないしはマグヘマイトに酸化する温度より高い第二の性質と、前記潤滑油と相溶しない第三の性質と、前記アルコールに溶解ないしは混和する第四の性質と、前記アルコールより粘度が高い第五の性質とからなる、これら5つの性質を兼備する不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物を混合して混合液を作成する第二の工程と、該混合液を大気雰囲気で熱処理し、前記ナフテン酸第一鉄を熱分解して酸化第一鉄の粒状微粒子を生成し、さらに昇温し、前記酸化第一鉄の粒状微粒子を、マグネタイトないしはマグヘマイトの粒状微粒子に酸化し、前記混合液に前記マグネタイトないしは前記マグヘマイトのいずれか一方の材質からなる粒状微粒子の集まりを析出させる第三の工程と、前記第三の工程で熱処理した混合液に、パラフィン系ベースオイルからなる潤滑油を混合して撹拌し、濁液からなる潤滑剤を作成する第四の工程とからなり、これら4つの工程を連続して実施して前記懸濁液からなる潤滑剤を製造する、潤滑剤の製造方法である点にある。 A method for producing a lubricant to be applied to at least one of a raceway surface or a rolling element of a rolling bearing device in which a rolling element according to the present invention and an inner ring and an outer ring are made of a soft magnetic body, or a sliding member in which a shaft member is a soft magnetic body. A method for producing a lubricant to be applied to at least one sliding surface of a bearing member or a shaft member of a bearing device is to produce an alcohol dispersion by dispersing ferrous naphthenate, which precipitates ferrous oxide by thermal decomposition, in alcohol. And a first property of the alcohol dispersion having a melting point lower than the pour point of a lubricating oil composed of a paraffinic base oil, and a boiling point higher than the temperature at which the ferrous oxide is oxidized to magnetite or maghemite. a second nature, a third nature incompatible with the lubricating oil, a fourth property of dissolving or mixing in the alcohol, the high viscosity than the alcohol Comprising a fifth property, esters of these five properties consisting unsaturated carboxylic acids having both a carboxylic acid, or esters of carboxylic acids comprising an aromatic carboxylic acid, or, of carboxylic acids consisting of a dicarboxylic acid A second step of preparing a mixed solution by mixing organic compounds belonging to any one of the esters of carboxylic acid , and heat-treating the mixed solution in an air atmosphere to heat the ferrous naphthenate It decomposes to produce granular fine particles of ferrous oxide, further raises the temperature, oxidizes the granular fine particles of ferrous oxide to granular fine particles of magnetite or maghemite, and any one of the magnetite or maghemite in the mixed solution or the other and a third step of Ru to precipitate a collection of granular particles made of a material, the mixture was heat-treated at the third step, paraffins Stirring a mixture of lubricating oil consisting of a system base oil, suspension consists of a fourth step of creating a lubricant consisting Nigoeki, these four steps to be performed continuously comprising the suspension lubricant Is a method for producing a lubricant.

つまり、本製造方法に依れば、簡単な4つの工程を連続して実施すると、画期的な作用効果を持つ潤滑剤が製造される。第一の工程は、汎用的な工業用薬品であるナフテン酸第一鉄を、アルコールに分散するだけの処理である。第二の工程は、汎用的な工業用薬品である不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物を、アルコール分散液に混合するだけの処理である。第三の工程は、混合液を大気雰囲気で熱処理するだけの処理である。第四の工程は、熱処理した混合液に潤滑油を混合して撹拌するだけの処理である。従って、安価な原料を用いて安価な費用で潤滑剤が製造できる
この潤滑剤を、転がり軸受の軌道面ないしは転動体の少なくとも一方に、ないしは、滑り軸受の軸受部材ないしは軸部材の少なくとも一方の滑り面に塗布するだけで、自己潤滑性を持つ2種類の液体の球状微粒子と、自己潤滑性を持つ固体の粒状微粒子とからなる、3種類の微粒子の集まりからなる皮膜が、転動体と軌道面との双方に、ないしは、軸受部材と軸部材との双方の滑り面に形成される。これによって、転がり軸受においては、転動体と軌道面の耐久性が飛躍的に伸び、静粛性が著しく改善される。滑り軸受においては、流体潤滑が滑り面で継続され、静粛性が維持される。こうした画期的な性能を持つ軸受装置が、本製造方法に依る潤滑剤を軸受装置に塗布するだけで実現する。この結果、安価な原料を用いて安価な費用で、全く新規な機構に基づく画期的な軸受装置が実現する
つまり、本製造方法る潤滑剤を、転がり軸受装置の軌道面ないしは転動体の少なくとも一方に付与し、ないしは、滑り軸受装置の軸受部材ないしは軸部材の少なくとも一方の滑り面に付与する。この懸濁液における有機化合物と潤滑油との粒子が十分に微粒子化されていなくても、転動体が軌道面を転動する、ないしは、軸部材が軸受部材の滑り面を滑ると、有機化合物と潤滑油との粒子は、せん断応力ないしは圧縮応力を受けて潰れ、両者は互いに相溶しないためさらに微細な粒子になる。なお、粒子に加わった応力が、粒子が潰れることに消費されるため、粒子が転動体と軌道面とを、ないしは、軸受部材と軸部材との滑り面を攻撃しない。粒子の微粒子化は、潤滑剤におけるミクロンサイズの液体の粒子が、サブミクロンの大きさで、最も安定した形状の球状微粒子になって微粒子化を終える。このサブミクロンの球状微粒子は、応力を受けてもさらに小さい微粒子にならないため、応力を受けると自らが滑ることに依って応力を緩和する自己潤滑性を発揮する。
なお、超音波ホモジナイザーで懸濁液を作成する場合は、有機化合物と潤滑油との微粒子化が短時間で進む。つまり、超音波振動を液体に加えると、超音波の周波数に応じた極めて短い周期で、超音波の縦振動による加圧と減圧とが液体で繰り返され、液体に大きな圧力差が発生する。この圧力差に依って微小な泡(キャビテーション)が発生し、この泡が液体中で縦振動を受けて弾けまたは潰れた瞬間に大きな衝撃波が起こり、この大きな衝撃波によって粒子が引きちぎられまたぶつかり合い、粒子の微粒子化が短時間で進む。この粒子の微粒子化は、粒子が衝撃波で潰れない球状の微粒子まで進み、この球状の微粒子は応力を受けると自らが滑ることで応力を緩和する自己潤滑性を持つ。
いっぽう、固体の金属酸化物の微粒子は、数十ナノの大きさからなる硬い粒状微粒子である。転動体が軌道面を転動する、ないしは、軸部材が軸受部材の滑り面を滑ると、粒状微粒子もせん断応力ないしは圧縮応力を受ける。この際、粒状微粒子は破壊されず、粒状形状であるため、自らが滑ることで応力を緩和させる自己潤滑性を発揮する。こうして固体の金属酸化物の粒状微粒子と、液体の有機化合物と潤滑油との球状微粒子とからなる、3種類の微粒子の集まりからなる皮膜が、転動体と軌道面とに、ないしは、軸受部材と軸部材との滑り面に形成される。従って、転動体が軌道面を転動する、ないしは、軸部材が軸受部材の滑り面を滑ると、3種類の微粒子に、せん断応力ないしは圧縮応力が加わり、3種類の微粒子が滑ることによって、転動体と軌道面とを、ないしは、軸受部材と軸部材との滑り面を攻撃しない。いっぽう、固体の粒状微粒子と液体の球状微粒子との接触に依る摩擦力は、液体の球状微粒子が優先して滑るため小さい。また、液体の球状微粒子同士の接触に依る摩擦力は、両者が滑るため小さい。これによって、転がり軸受装置においては、転動体と軌道面との耐久性が飛躍的に伸び、また、静粛性が著しく改善される。いっぽう、滑り軸受装置においては、流体潤滑が滑り面で継続し、また静粛性が維持される。こうした画期的な性能を持つ軸受装置が、本製造方法る潤滑剤によって実現する。
また、金属酸化物が自発磁化を持つ硬磁性体であるため、転がり軸受装置の転動体と内輪及び外輪とが軟磁性体である、ないしは、滑り軸受装置の軸部材が軟磁性体である場合は、金属酸化物の粒状微粒子に、転動体と軌道面との間で、ないしは、軸部材との間で磁気吸引力が作用し、質量を殆ど持たない固体の粒状微粒子と液体の球状微粒子とは、固体の粒状微粒子に作用する磁気吸引力によって脱落せず、軸部材の回転と荷重とを支え続ける。なお、転がり軸受における転動体と内輪及び外輪とは、ないしは、滑り軸受における軸部材は、機械的強度を有する軟磁性体からなる様々な鋼で形成される。
いっぽう、本潤滑剤の製造方法におけるナフテン酸第一鉄は、大気雰囲気の340℃で熱分解が完了して酸化第一鉄FeOになる。さらに、昇温速度を抑えて380℃まで昇温すると、酸化第一鉄FeOを構成する2価の鉄イオンFe 2+ の一部が酸化されて3価の鉄イオンFe 3+ になってFe になり、組成式がFeO・Fe のマグネタイトFe になる。さらに、380℃に一定時間放置すると、酸化第一鉄FeOにおける2価の鉄イオンFe 2+ の全てが3価の鉄イオンFe 3+ に酸化され、酸化第二鉄Fe になり酸化反応を終える。この酸化第二鉄Fe は、マグネタイトFe と同様の立方晶系である酸化第二鉄Fe のガンマ相であるマグへマイトγ−Fe である。なお、酸化第二鉄Fe のアルファ相であるヘマタイトα−Fe の結晶構造は三方晶系であり、マグネタイトとは結晶構造が異なる
従って、ナフテン酸第一鉄を有機化合物中で熱分解させて、酸化第一鉄FeOの粒状微粒子を析出させ、この酸化第一鉄FeOの粒状微粒子を酸化させると、マグネタイトFe の粒状微粒子が生成される。さらに、マグネタイトFe の粒状微粒子を酸化させると、マグヘマイトγ−Fe の粒状微粒子が生成される。このため、ナフテン酸第一鉄はマグネタイトの粒状微粒子とマグヘマイトの粒状微粒子とを生成する原料になる
すなわち、ナフテン酸第一鉄は、ナフテン酸のカルボキシル基を構成する酸素イオンO が配位子になって、鉄イオンFe 2+ に近づいて鉄イオンFe 2+ に配位結合する錯体である。つまり、最も大きいイオンである鉄イオンFe 2+ に、酸素イオンO が近づいて配位結合するため、両者の距離は短くなる。これによって、鉄イオンFe 2+ に配位結合する酸素イオンO が、鉄イオンの反対側で共有結合するイオンとの距離が最も長くなるこうした分子構造上の特徴を持つナフテン酸第一鉄は、ナフテン酸の主成分の沸点を超えると、ナフテン酸第一鉄におけるカルボキシル基を構成する酸素イオンO が鉄イオンFe 2+ の反対側で共有結合するイオンとの結合部が最初に分断され、鉄イオンFe 2+ と酸素イオンO との化合物である酸化第一鉄FeOとナフテン酸とに分解する。さらに昇温すると、ナフテン酸が気化熱を奪って気化し、ナフテン酸の気化が完了すると、酸化第一鉄FeOが析出して熱分解を終える。なお、ナフテン酸は5員環をもつ飽和脂肪酸の混合物で、C 2n―1 COOHからなる一般式で示され、主成分は沸点が268℃で分子量が170のC 17 COOHからなる
なお、ナフテン酸第一鉄は、容易に合成できる安価な工業用薬品である。すなわち、汎用的な有機酸であるナフテン酸を、アルカリ金属と反応させるとナフテン酸アルカリ金属化合物が生成され、ナフテン酸アルカリ金属化合物を無機鉄化合物と反応させると、ナフテン酸第一鉄が合成される。また、ナフテン酸は有機酸の中で沸点が低いため、大気雰囲気で340℃程度の温度でナフテン酸第一鉄が熱分解し、酸化第一鉄FeOが析出するこのようなナフテン酸第一鉄は、塗料・印刷インキ用のドライヤー、ゴム・タイヤの接着剤、潤滑油の極圧剤、ポリエステルの硬化剤、助燃剤や重合触媒などに汎用的に使用されている
以上に説明したように、本潤滑剤の製造方法において、ナフテン酸第一鉄はマグネタイトとマグへマイトとの粒状微粒子を生成する安価な原料になる。
なお、ナフテン酸第一鉄の熱分解を介して生成されるマグネタイトとマグへマイトは、酸化第一鉄の粒状微粒子の酸化によって生成されるため、針状微粒子ではなく粒状微粒子である。この粒状微粒子は針状微粒子と比べると、以下に説明する多くの長所を持つ。すなわち、従来の技術では、硫酸第一鉄ないしは硫酸第二鉄のアルカリ性の水溶液に大気を送って反応させると、ゲータイトと呼ばれる水酸化第二鉄α−FeO(OH)の針状微粒子が析出する。このゲータイトを、水素ガスの雰囲気で一度脱水させてヘマタイトα−Fe とし、さらに還元して針状のマグネタイト微粒子を生成する。この後、マグネタイト微粒子を大気中でゆっくりと加熱酸化させると、針状のマグへマイト微粒子が生成される。針状微粒子は応力を受けた際に自らが滑らず、このため自己潤滑性を持たない。また、針状微粒子同士が近づくと互いに磁気吸着し、質量を殆ど持たない針状微粒子同士の磁気吸着を解除するのが困難であるため、潤滑剤に均一に針状粒子を分散させることは困難になる。さらに、マグネタイトとマグへマイトとの針状微粒子を生成する製造工程は、ナフテン酸第一鉄の熱分解を介してマグネタイトとマグへマイトとの粒状微粒子を生成する製造工程に比べ、より多くの複雑な製造工程が必要になり製造費が高い。
さらに、本潤滑剤の製造方法におけるマグネタイトFe ないしはマグへマイトγ−Fe は以下に説明する4つの性質を持ち、これによって、画期的な作用効果がもたらされる
第一に、マグネタイトとマグヘマイトとの双方は、硬磁性の一種のフェリ磁性の性質を持つ。このため、転がり軸受の転動体と内輪及び外輪とが、ないしは、滑り軸受の軸部材が、軟磁性の材質の場合は、自発磁化を持つマグネタイトないしはマグヘマイトからなる粒状微粒子に、転動体と軌道面との間で、ないしは、軸部材との間で、磁気吸引力が作用し、質量を殆ど持たないマグネタイトないしはマグヘマイトの粒状微粒子と、質量を殆ど持たない有機化合物と潤滑油とからなる球状微粒子とは、粒状微粒子に作用する磁気吸引力によって脱落しない。なお、転がり軸受の転動体、内輪、外輪は、いずれも繰り返し大きな荷重がかかるため、耐久性の観点から高炭素クロム鋼や、耐食性の高いマルテンサイト系ステンレス鋼が用いられ、これらはいずれも軟磁性体である。また、滑り軸受の軸部材は、機械構造用炭素鋼の炭素の含有量が0.25wt%から0.45wt%のS25CからS45Cや、炭素量が0.45wt%以上の炭素鋼ないしはニッケルクロム鋼、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼などの合金鋼が用いられ、これらはいずれも軟磁性体である
第二に、マグネタイトの磁気キュリー点は585℃であり、マグへマイトの磁気キュリー点は675℃である。なお、マグヘマイトは、大気中の450℃以上の温度で、酸化第二鉄のα相であるヘマタイトα−Fe に相転移する。この相転移は不可逆変化である。従って、潤滑油のベースオイルが蒸発するような高い温度であっても、マグネタイトとマグヘマイトとが有する硬磁性の性質は変わらない
第三に、マグネタイトのモース硬度が5.5で、マグヘマイトのモース硬度が6.0であり、いずれも硬い粒状微粒子である。従って、転動体が軌道面を転動する際に、ないしは、軸部材が軸受部材の滑り面を滑る際に、マグネタイトないしはマグヘマイトの粒状微粒子は、せん断力ないしは圧縮応力を受けても破壊されない。この際、粒状微粒子同士が接する場合は、両者は自らが滑る自己潤滑性を発揮する。また、粒状微粒子が液体の球状微粒子と接する場合は、液体の球状微粒子が自己潤滑作用で優先して滑る。さらに、軸部材によって静荷重が加えられた際は、粒状微粒子は破壊されず、3種類の微粒子の大きさが、転動体と軌道面との表面粗さより、ないしは、軸受部材と軸部材との表面粗さより一桁以上小さいため、3種類の微粒子が自己潤滑性を発揮して静荷重を支え続け、転動体および軌道面が、なしは、軸受部材の滑り面が疲労しない
第四に、マグネタイトとマグヘマイトとの双方は、腐食しにくい安定した鉄の酸化物であり、腐食することなく軸受装置における軸部材の回転と荷重とを支え続ける
いっぽう、本潤滑剤の製造方法における不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物が5つの性質を兼備するため、有機化合物は潤滑剤の原料となり、軸受装置においては、微粒子の集まりからなる皮膜の中で、有機化合物の球状微粒子を構成する
つまり、不飽和カルボン酸からなるカルボン酸のエステル類、ないしは芳香族カルボン酸からなるカルボン酸のエステル類、ないしはジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物に、本潤滑剤の製造方法における5つの性質を兼備する有機化合物が存在する。こうした有機化合物は、本製造方法における潤滑剤の原料になり、軸受装置においては、微粒子の集まりからなる皮膜の中で、液体の球状微粒子を構成する。また、こうした有機化合物は、汎用的な工業用薬品である
すなわち、不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物がアルコールに溶解ないしは混和する性質を持つため、ナフテン酸第一鉄をアルコールに分散したアルコール分散液に有機化合物を混合すると、ナフテン酸第一鉄と有機化合物とが均一に混ざり合う。さらに、不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物はアルコールより粘度が高い性質を持つため、転動体と軌道面とに、ないしは、軸受部材と軸部材の滑り面に、粘度を有する球状微粒子を形成し、この球状微粒子は応力によって潰れず、自らが滑ることで自己潤滑作用を発揮する
さらに、不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物の沸点は、マグネタイトないしはマグヘマイトの微粒子が生成される380℃より高い性質を持つ。このため、前記した混合液を大気中で熱処理すると、最初にアルコールが気化し、有機化合物にナフテン酸第一鉄の微細結晶が均一に析出する。さらに340℃まで昇温すると、ナフテン酸第一鉄が熱分解し、有機化合物中に酸化第一鉄FeOの40−60nmの大きさからなる粒状微粒子が均一に析出する。さらに、昇温速度を抑えて380℃まで昇温すると、酸化第一鉄FeOを構成する2価の鉄イオンFe 2+ の一部が酸化されて3価の鉄イオンFe 3+ になってFe になり、組成式がFeO・Fe のマグネタイトFe の40−60nmの大きさからなる粒状微粒子が生成される。さらに、380℃に一定時間放置すると、酸化第一鉄FeOにおける2価の鉄イオンFe 2+ の全てが3価の鉄イオンFe 3+ に酸化され、マグヘマイトγ−Fe の40−60nmの大きさからなる粒状微粒子が生成される。この結果、マグネタイトないしはマグヘマイトからなる粒状微粒子の集まりが、有機化合物中に均一に析出し、さらに、潤滑油を混合して撹拌すれば潤滑剤となる懸濁液が作成される
また、不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物は、潤滑油の流動点の降下点より融点が低い性質を持つ。このため、軸受装置が、潤滑油の流動点の降下点で稼働されても、軸部材の低温始動性を悪化させることなく、有機化合物の球状微粒子が軸部材の回転と荷重とを支える
さらに、不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物は、潤滑油と相溶しない性質を持つ。これによって、潤滑剤における有機化合物と潤滑油とは、応力を受けても粒子が潰れない球状微粒子を構成し、この球状微粒子は応力を受けた際に自らが滑ることで応力を緩和する自己潤滑性を持つ
従って、本潤滑剤の製造方法におけるナフテン酸第一鉄をアルコールに分散したアルコール分散液に、カルボン酸のエステル類に属する有機化合物を混合すると、アルコール中にナフテン酸第一鉄とカルボン酸のエステル類に属する有機化合物とが均一に混ざりあった混合液になる。この混合液を大気中で熱処理する。アルコールを気化させた後に340℃まで昇温すると、ナフテン酸第一鉄が熱分解し、カルボン酸のエステル類に属する有機化合物中に酸化第一鉄FeOの粒状微粒子が均一に析出する。さらに、昇温速度を抑えて380℃まで昇温すると、酸化第一鉄FeOを構成する2価の鉄イオンFe 2+ の一部が酸化されて3価の鉄イオンFe 3+ になってFe になり、組成式がFeO・Fe のマグネタイトFe の粒状微粒子が生成される。さらに380℃に一定時間放置すると、酸化第一鉄FeOにおける2価の鉄イオンFe 2+ の全てが3価の鉄イオンFe 3+ に酸化され、酸化第二鉄Fe のガンマ相であるマグヘマイトγ−Fe の粒状微粒子が生成される。この結果、マグネタイトないしはマグヘマイトからなる粒状微粒子の集まりが、カルボン酸のエステル類に属する有機化合物中に均一に析出する。このカルボン酸のエステル類に属する有機化合物に潤滑油を混合して撹拌すれば、潤滑剤となる懸濁液が作成される。この潤滑剤を軸受装置に塗布すれば、3種類の微粒子の集まりからなる皮膜の中で、カルボン酸のエステル類は液体の球状微粒子を構成する
以上に説明したように、5つの性質を兼備する不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれかのカルボン酸のエステル類に属する有機化合物は、潤滑剤の原料になり、軸受装置においては、3種類の微粒子の集まりからなる皮膜の中で、液体の球状微粒子を構成する
記した3種類の微粒子の混合物からなる皮膜は、厚みに対する表面積の比率が極めて大きいため、転動体と軌道面との昇温を、ないしは、軸受け部材と軸部材との滑り面の昇温を抑える冷却作用を発揮する。いっぽう、軸受装置が高温で長時間稼働し、潤滑油の低揮発成分が蒸発しても、3種類の微粒子の混合物からなる皮膜が、軸部材の回転と荷重とを支え続ける。軸受装置が高温でさらに長時間稼働し、潤滑油の多くが蒸発しても、カルボン酸のエステル類に属する有機化合物の沸点が380℃を超える温度であるため、金属酸化物の粒状微粒子と有機化合物の球状微粒子との混合物からなる皮膜が、軸部材の回転と荷重とを支え続ける。軸受装置が高温でさらに長時間稼働し、高沸点の有機化合物が蒸発しても、400℃以上でも自発磁化を失わない金属酸化物の粒状微粒子が磁気吸着して多層構造を形成し、微粒子同士の磁気吸着力は弱く、粒状微粒子が自己潤滑性を発揮するため、磁気吸着した多層構造が粒状微粒子に依る自己潤滑性を発揮し、軸部材の回転と荷重を永続して支える。こうして、転動体と軌道面との間で、ないしは、軸部材と軸受部材との滑り面の間で、自己潤滑作用を持つ微粒子が、軸部材の回転と荷重とを永続して支える。
なお、軸受装置に用いられる潤滑油は、パラフィン系ベースオイルが用いられ、炭素数がC15−C50で、分子量が200−700で、常圧換算の沸点が250−600℃の範囲に及び、流動点は−10℃から−25℃に及ぶ。また、自動車部品の軸受装置では、高温の連続動作が継続すると軌道面ないしは滑り面が250℃まで昇温する場合がある。しかし、軸受装置においては、潤滑油を構成するベースオイルの多くが蒸発する温度まで軌道面ないしは滑り面が昇温することは少ない。
いっぽう、軸受装置が、潤滑油の流動点より低い温度で動作しても、カルボン酸のエステル類に属する有機化合物の融点が−40℃以下で、潤滑油の流動点降下剤に依って降下した流動点よりさらに低いため、軸部材の低温始動性を悪化させることなく、3種類の微粒子の混合物からなる皮膜が、軸部材の回転と荷重とを支え続ける。従って、カルボン酸のエステル類に属する有機化合物の凝固点より高い温度であれば、軸部材の低温始動性を悪化させることなく、3種類の微粒子の混合物からなる皮膜が、軸部材の回転と荷重とを支え続ける。なお、潤滑油の降下した流動点より低い温度で、軸受装置が稼働されることは少ない。
また、液体の球状微粒子の自己潤滑作用は、液体の粘度の影響を受けない。つまり、高温でカルボン酸のエステル類に属する有機化合物と潤滑油との粘度が低くなっても、球状微粒子は自己潤滑性を発揮し、低温でカルボン酸のエステル類に属する有機化合物と潤滑油との粘度が高くなっても、球状微粒子は自己潤滑性を発揮する。
さらに、3種類の微粒子は、軸部材の回転速度に依らず、自己潤滑性を常時発揮する。また軸部材が静荷重を、転動体と軌道面とに、ないしは、軸受部材の滑り面に加えても、3種類の微粒子の大きさが、転動体と軌道面との表面粗さより、ないしは、軸受部材と軸部材との表面粗さより一桁以上小さいため、3種類の微粒子の集まりが、転動体と軌道面との表面で、ないしは、軸受部材と軸部材との滑り面で自己潤滑性を発揮して静荷重を支え続け、転動体および軌道面が、なしは、軸受部材の滑り面が疲労しない。
以上に説明したように、本製造方法る潤滑剤を、転がり軸受装置の軌道面ないしは転動体の少なくとも一方に付与し、ないしは、滑り軸受装置の部材のり面に付与するだけで、自己潤滑性を有する3種類の微粒子の集まりからなる皮膜が、軸部材の回転と荷重とを永続して支える、全く新規な機構に基づく軸受装置が実現できた。これによって、9段落で説明した3つの性質を兼備する潤滑剤が、転がり軸受装置の転動体と軌道面に、ないしは、滑り軸受装置の軸受部材と軸部材との滑り面に、皮膜として形成され、これによって、従来の軸受装置の課題を根本的に解決し、かつ、汎用性を持つ画期的な軸受装置が実現できた。
That is, according to this production method, a lubricant having an epoch-making action and effect is produced when four simple steps are continuously performed. The first step is a treatment in which ferrous naphthenate, which is a general industrial chemical, is dispersed in alcohol. The second step is a carboxylic acid ester composed of unsaturated carboxylic acid, a carboxylic acid ester composed of aromatic carboxylic acid, or a carboxylic acid ester composed of dicarboxylic acid, which is a general industrial chemical. The organic compound belonging to any one kind of carboxylic acid ester is simply mixed with the alcohol dispersion. The third step is simply a heat treatment of the mixed solution in an air atmosphere. The fourth step is a process in which the lubricating oil is mixed with the heat-treated liquid mixture and stirred. Therefore, lubricant manufactured at low cost by using inexpensive raw materials.
By applying this lubricant to at least one of the raceway surface or rolling element of a rolling bearing, or to at least one sliding surface of a bearing member or shaft member of a sliding bearing, two kinds of liquids having self-lubricating properties can be obtained. A coating composed of a collection of three kinds of fine particles consisting of spherical fine particles and self-lubricating solid granular fine particles is formed on both the rolling element and the raceway surface, or on both the bearing member and the shaft member. Formed on the surface. As a result, in the rolling bearing, the durability of the rolling elements and the raceway is greatly increased, and the quietness is remarkably improved. In the sliding bearing, fluid lubrication is continued on the sliding surface, and silence is maintained. A bearing device having such breakthrough performance can be realized simply by applying a lubricant according to the present manufacturing method to the bearing device. As a result, an epoch-making bearing device based on a completely new mechanism can be realized at low cost using inexpensive raw materials .
That is, the lubricant that by the present production method, applied to at least one of the raceway surface or rolling element of a rolling bearing device, or, applied to at least one of the sliding surface of the bearing member or the shaft member of the sliding bearing device. Even if the particles of the organic compound and the lubricating oil in the suspension are not sufficiently finely divided, if the rolling element rolls on the raceway surface, or if the shaft member slides on the sliding surface of the bearing member, the organic compound And lubricating oil particles are crushed under shearing stress or compressive stress, and they are not compatible with each other, so they become finer particles. Since the stress applied to the particles is consumed when the particles are crushed, the particles do not attack the rolling elements and the raceway surface, or the sliding surface between the bearing member and the shaft member. In the micronization of particles, micron-sized liquid particles in the lubricant become submicron-sized spherical particles having the most stable shape, and the micronization is completed. Since the submicron spherical fine particles do not become smaller particles even when stressed, they exhibit self-lubricating properties that relieve stress by slipping themselves when stressed.
In addition, when creating a suspension with an ultrasonic homogenizer, the formation of fine particles of an organic compound and a lubricating oil proceeds in a short time. That is, when ultrasonic vibration is applied to the liquid, pressurization and decompression due to the longitudinal vibration of the ultrasonic waves are repeated with the liquid at an extremely short period according to the frequency of the ultrasonic wave, and a large pressure difference is generated in the liquid. Due to this pressure difference, minute bubbles (cavitation) are generated, and a large shock wave is generated at the moment when the bubble is subjected to longitudinal vibration in the liquid and bounces or collapses, and the particles are torn off and collide with each other, Particles are made fine in a short time. The fine particle formation proceeds to spherical fine particles that are not crushed by shock waves, and the spherical fine particles have self-lubricating properties that relieve stress by slipping themselves when subjected to stress.
On the other hand, solid metal oxide fine particles are hard granular fine particles having a size of several tens of nanometers. When the rolling element rolls on the raceway surface, or when the shaft member slides on the sliding surface of the bearing member, the particulate fine particles are also subjected to shear stress or compressive stress. At this time, since the particulate fine particles are not broken and have a granular shape, they exhibit self-lubricating properties that relieve stress by sliding themselves. In this way, a coating composed of a collection of three kinds of fine particles consisting of solid fine particles of metal oxide and spherical fine particles of a liquid organic compound and lubricating oil is formed on the rolling elements and the raceway surface, or the bearing member. It is formed on the sliding surface with the shaft member. Therefore, when the rolling element rolls on the raceway surface, or the shaft member slides on the sliding surface of the bearing member, shear stress or compressive stress is applied to the three kinds of fine particles, and the three kinds of fine particles slide to cause rolling. It does not attack the moving body and the raceway surface, or the sliding surface between the bearing member and the shaft member. On the other hand, the frictional force due to the contact between the solid granular fine particles and the liquid spherical fine particles is small because the liquid spherical fine particles slide preferentially. Further, the frictional force due to the contact between the liquid spherical fine particles is small because both slip. As a result, in the rolling bearing device, the durability between the rolling elements and the raceway surface is dramatically increased and the quietness is remarkably improved. On the other hand, in the sliding bearing device, fluid lubrication continues on the sliding surface, and quietness is maintained. A bearing device with such breakthrough performance, achieved by by that the lubricant in this manufacturing method.
In addition, since the metal oxide is a hard magnetic material having spontaneous magnetization, the rolling element of the rolling bearing device and the inner ring and the outer ring are soft magnetic materials, or the shaft member of the sliding bearing device is a soft magnetic material. The magnetic fine particles act on the metal oxide particulates between the rolling elements and the raceway surface, or between the shaft members, and the solid particulates and liquid spherical particulates having almost no mass. Does not fall off by the magnetic attractive force acting on the solid particulates, and continues to support the rotation and load of the shaft member. Note that the rolling elements and the inner and outer rings of the rolling bearing, or the shaft member of the sliding bearing are formed of various steels made of a soft magnetic material having mechanical strength.
On the other hand, ferrous naphthenate in the manufacturing method of the present lubricant is pyrolyzed at 340 ° C. in an atmospheric atmosphere to become ferrous oxide FeO. Further, when the temperature rise rate is suppressed to 380 ° C., a part of the divalent iron ion Fe 2+ constituting the ferrous oxide FeO is oxidized to become the trivalent iron ion Fe 3+ to become Fe 2 O. 3 and the composition formula of FeO · Fe 2 O 3 becomes magnetite Fe 3 O 4 . Furthermore, when left at 380 ° C. for a certain period of time , all of the divalent iron ions Fe 2+ in the ferrous oxide FeO are oxidized to trivalent iron ions Fe 3+ , and become ferric oxide Fe 2 O 3 to undergo an oxidation reaction. Finish. This ferric oxide Fe 2 O 3 is maghemite γ-Fe 2 O 3 which is a gamma phase of ferric oxide Fe 2 O 3 which is a cubic system similar to magnetite Fe 3 O 4 . The crystal structure of hematite α-Fe 2 O 3 is an alpha-phase ferric oxide Fe 2 O 3 is a trigonal, the magnetite crystal structures are different.
Thus, ferrous naphthenate is thermally decomposed in an organic compound, a granular particulate ferrous oxide FeO precipitated and oxidizing the particulate particles of ferrous oxide FeO, granular magnetite Fe 3 O 4 Fine particles are generated. Moreover, when oxidizing the granular particles of magnetite Fe 3 O 4, the granular particles of maghemite γ-Fe 2 O 3 is generated. For this reason, ferrous naphthenate is a raw material for producing magnetite granular fine particles and maghemite granular fine particles .
That is, ferrous naphthenate is a complex in which the oxygen ion O constituting the carboxyl group of naphthenic acid becomes a ligand, and is coordinated to the iron ion Fe 2+ by approaching the iron ion Fe 2+ . That is, since the oxygen ion O approaches the iron ion Fe 2+ , which is the largest ion, and is coordinated, the distance between the two becomes short. As a result, the distance between the oxygen ion O coordinated to the iron ion Fe 2+ and the ion covalently bonded on the opposite side of the iron ion is the longest . When ferrous naphthenate having such molecular characteristics exceeds the boiling point of the main component of naphthenic acid, the oxygen ion O constituting the carboxyl group in ferrous naphthenate is on the opposite side of the iron ion Fe 2+. A bonded portion with a covalently bonded ion is first divided and decomposed into ferrous oxide FeO and naphthenic acid, which are compounds of iron ions Fe 2+ and oxygen ions O . When the temperature is further increased, naphthenic acid takes the heat of vaporization and vaporizes, and when the vaporization of naphthenic acid is completed, ferrous oxide FeO is precipitated and thermal decomposition is completed. Naphthenic acid is a mixture of saturated fatty acids having a 5-membered ring, represented by a general formula consisting of C n H 2n-1 COOH, the main component consisting of C 9 H 17 COOH having a boiling point of 268 ° C. and a molecular weight of 170. .
Note that ferrous naphthenate is an inexpensive industrial chemical that can be easily synthesized. That is, when naphthenic acid, which is a general-purpose organic acid, is reacted with an alkali metal, an alkali metal naphthenate is produced, and when an alkali metal naphthenate is reacted with an inorganic iron compound, ferrous naphthenate is synthesized. The In addition, since naphthenic acid has a low boiling point among organic acids, ferrous naphthenate is thermally decomposed at a temperature of about 340 ° C. in the air atmosphere, and ferrous oxide FeO is precipitated . Such ferrous naphthenate is widely used in paint / printing ink dryers, rubber / tire adhesives, lubricant extreme pressure agents, polyester curing agents, combustion aids and polymerization catalysts. Yes .
As explained above, in the manufacturing method of the present lubricant, ferrous naphthenate becomes an inexpensive raw material for producing granular fine particles of magnetite and maghemite.
Magnetite and maghemite produced through pyrolysis of ferrous naphthenate are produced by oxidation of ferrous oxide granular fine particles, and are not fine particles but granular particles. The granular fine particles have many advantages described below compared with the acicular fine particles. That is, according to the conventional technique, when air is sent to an alkaline aqueous solution of ferrous sulfate or ferric sulfate and reacted, acicular fine particles of ferric hydroxide α-FeO (OH) called goethite are precipitated. . The goethite, once dried over an atmosphere of hydrogen gas and hematite α-Fe 2 O 3, further reduced to produce the acicular magnetite particles. Thereafter, when the magnetite fine particles are slowly heated and oxidized in the air, the fine particles of acicular magnet are generated. The acicular fine particles do not slip by themselves when subjected to stress, and thus do not have self-lubricating properties. In addition, it is difficult to disperse the needle-shaped particles uniformly in the lubricant because it is difficult to release the magnetic adsorption of the needle-shaped fine particles having almost no mass when the needle-shaped fine particles approach each other. become. Furthermore, the production process for producing needle-shaped fine particles of magnetite and maghemite is more than the production process for producing granular fine particles of magnetite and maghemite via pyrolysis of ferrous naphthenate. A complicated manufacturing process is required and the manufacturing cost is high.
Furthermore, magnetite Fe 3 O 4 or maghemite γ-Fe 2 O 3 in the production method of the present lubricant has the following four properties, and this brings about an epoch-making action and effect .
First, both magnetite and maghemite have a kind of ferrimagnetic property, which is a hard magnetism. For this reason, when the rolling element of the rolling bearing and the inner ring and the outer ring or the shaft member of the sliding bearing is made of a soft magnetic material, the rolling element and the raceway surface are divided into granular fine particles made of magnetite or maghemite having spontaneous magnetization. Or magnetic shaft force between the shaft member and the magnetite or maghemite granular fine particles having almost no mass, and spherical fine particles comprising an organic compound having almost no mass and a lubricating oil. Does not fall off due to the magnetic attractive force acting on the particulate particles. Since rolling elements, inner rings, and outer rings of rolling bearings are repeatedly subjected to large loads, high carbon chrome steel and martensitic stainless steel with high corrosion resistance are used from the viewpoint of durability. It is a magnetic material. In addition, the shaft member of the sliding bearing includes carbon steel of mechanical structure carbon steel of S25C to S45C having a carbon content of 0.25 wt% to 0.45 wt%, or carbon steel or nickel chrome steel having a carbon content of 0.45 wt% or more. Alloy steels such as nickel chrome molybdenum steel, chrome steel, and chrome molybdenum steel are used, all of which are soft magnetic materials .
Secondly, the magnetic curie point of magnetite is 585 ° C, and the magnetic curie point of maghemite is 675 ° C. Maghemite undergoes phase transition to hematite α-Fe 2 O 3 , which is the α phase of ferric oxide, at a temperature of 450 ° C. or higher in the atmosphere . This phase transition is an irreversible change. Therefore, even at a high temperature at which the base oil of the lubricating oil evaporates, the hard magnetic properties of magnetite and maghemite do not change .
Third, magnetite has a Mohs hardness of 5.5 and maghemite has a Mohs hardness of 6.0, both of which are hard particulate particles. Therefore, when the rolling element rolls on the raceway surface, or when the shaft member slides on the sliding surface of the bearing member, the particulate fine particles of magnetite or maghemite are not destroyed even when subjected to shearing force or compressive stress. At this time, when the granular fine particles are in contact with each other, they exhibit self-lubricating properties that they slip. Further, when the granular fine particles are in contact with the liquid spherical fine particles, the liquid spherical fine particles preferentially slide due to the self-lubricating action. Further, when a static load is applied by the shaft member, the particulate fine particles are not destroyed, and the size of the three types of fine particles is determined by the surface roughness between the rolling elements and the raceway surface, or between the bearing member and the shaft member. Since it is smaller than the surface roughness by one digit or more, the three kinds of fine particles exhibit self-lubricating properties and continue to support the static load, and when there are no rolling elements and raceway surfaces, the sliding surfaces of the bearing members do not fatigue .
Fourth, both magnetite and maghemite are stable iron oxides that are not easily corroded, and continue to support the rotation and load of the shaft member in the bearing device without being corroded .
On the other hand, any one of esters of carboxylic acid consisting of unsaturated carboxylic acid, esters of carboxylic acid consisting of aromatic carboxylic acid, or esters of carboxylic acid consisting of dicarboxylic acid in the production method of the present lubricant. Since organic compounds belonging to various types of carboxylic acid esters have five properties, organic compounds serve as raw materials for lubricants, and in bearing devices, spherical particles of organic compounds are formed in a film made up of fine particles. Configure .
In other words, it belongs to any one of carboxylic acid esters of carboxylic acid esters of unsaturated carboxylic acids, carboxylic acid esters of aromatic carboxylic acids, or carboxylic acid esters of dicarboxylic acids. An organic compound having the five properties in the manufacturing method of the present lubricant exists in the organic compound. Such an organic compound is a raw material for the lubricant in the present production method, and in the bearing device, it forms liquid spherical fine particles in a film made up of a collection of fine particles. Such organic compounds are general-purpose industrial chemicals .
Namely, esters of carboxylic acid consisting of unsaturated carboxylic acid, esters of carboxylic acid consisting of aromatic carboxylic acid, or esters of carboxylic acid consisting of esters of carboxylic acid consisting of dicarboxylic acid Because organic compounds belonging to the group have the property of dissolving or mixing in alcohol, mixing organic compounds with alcohol dispersions in which ferrous naphthenate is dispersed in alcohol results in uniform mixing of ferrous naphthenate and organic compounds. . Furthermore, esters of carboxylic acids made of unsaturated carboxylic acids, esters of carboxylic acids made of aromatic carboxylic acids, or esters of carboxylic acids of any one of carboxylic acids made of dicarboxylic acids Since organic compounds belonging to the above have a higher viscosity than alcohol, spherical fine particles having viscosity are formed on the rolling elements and the raceway surface, or on the sliding surfaces of the bearing member and the shaft member. Self-lubricating effect is demonstrated by sliding on itself without being crushed .
Furthermore, esters of carboxylic acids made of unsaturated carboxylic acids, esters of carboxylic acids made of aromatic carboxylic acids, or esters of carboxylic acids of any one of carboxylic acids made of dicarboxylic acids The organic compound belonging to the above has a boiling point higher than 380 ° C. at which magnetite or maghemite fine particles are produced. For this reason, when the above-mentioned mixed solution is heat-treated in the atmosphere, alcohol is first vaporized, and fine crystals of ferrous naphthenate are uniformly deposited on the organic compound. When the temperature is further increased to 340 ° C., ferrous naphthenate is thermally decomposed, and particulate fine particles having a size of 40-60 nm of ferrous oxide FeO are uniformly deposited in the organic compound. Further, when heated to 380 ° C. to suppress the Atsushi Nobori rate, a portion of the divalent iron ions Fe 2+ constituting a ferrous oxide FeO becomes iron ions Fe 3+ trivalent been oxidized Fe 2 O becomes 3, composition formula granular particles are generated consisting of the size of 40-60nm magnetite Fe 3 O 4 of FeO · Fe 2 O 3. Further, when left at 380 ° C. for a certain period of time , all of the divalent iron ions Fe 2+ in the ferrous oxide FeO are oxidized to trivalent iron ions Fe 3+ , and the maghemite γ-Fe 2 O 3 has a size of 40-60 nm. The granular fine particle which consists of this is produced | generated. As a result, a collection of particulate fine particles made of magnetite or maghemite is uniformly deposited in the organic compound, and further, when a lubricating oil is mixed and stirred, a suspension serving as a lubricant is created .
In addition, esters of carboxylic acids consisting of unsaturated carboxylic acids, esters of carboxylic acids consisting of aromatic carboxylic acids, or esters of carboxylic acids consisting of carboxylic acid esters consisting of dicarboxylic acids The organic compound belonging to the above has a property that the melting point is lower than the lowering point of the pour point of the lubricating oil. For this reason, even if the bearing device is operated at the lowering point of the pour point of the lubricating oil, the spherical fine particles of the organic compound support the rotation and load of the shaft member without deteriorating the low temperature startability of the shaft member .
Furthermore, esters of carboxylic acids made of unsaturated carboxylic acids, esters of carboxylic acids made of aromatic carboxylic acids, or esters of carboxylic acids of any one of carboxylic acids made of dicarboxylic acids Organic compounds belonging to the group have the property of being incompatible with the lubricating oil. As a result, the organic compound and the lubricating oil in the lubricant constitute spherical fine particles that do not collapse even when subjected to stress. Have sex .
Therefore, when an organic compound belonging to carboxylic acid esters is mixed with an alcohol dispersion obtained by dispersing ferrous naphthenate in alcohol in the production method of the present lubricant, ferrous naphthenate and carboxylic acid ester are mixed in the alcohol. It becomes a mixed solution in which the organic compound belonging to the class is uniformly mixed. This mixed solution is heat-treated in the atmosphere. When the temperature is raised to 340 ° C. after vaporizing the alcohol, ferrous naphthenate is thermally decomposed, and particulate fine particles of ferrous oxide FeO are uniformly deposited in the organic compound belonging to the esters of carboxylic acid. Further, when the temperature rise rate is suppressed to 380 ° C., a part of the divalent iron ion Fe 2+ constituting the ferrous oxide FeO is oxidized to become the trivalent iron ion Fe 3+ to become Fe 2 O. Thus , granular fine particles of magnetite Fe 3 O 4 having a composition formula of FeO · Fe 2 O 3 are generated. Further, when left at 380 ° C. for a certain period of time , all of the divalent iron ions Fe 2+ in the ferrous oxide FeO are oxidized to trivalent iron ions Fe 3+, and maghemite which is a gamma phase of ferric oxide Fe 2 O 3. Granular fine particles of γ-Fe 2 O 3 are generated. As a result, a collection of particulate fine particles made of magnetite or maghemite is uniformly deposited in the organic compound belonging to the esters of carboxylic acid. When a lubricating oil is mixed with an organic compound belonging to the esters of carboxylic acid and stirred, a suspension serving as a lubricant is prepared. When this lubricant is applied to a bearing device, carboxylic acid esters form liquid spherical fine particles in a film composed of three kinds of fine particles .
As described above, esters of carboxylic acids composed of unsaturated carboxylic acids having five properties, esters of carboxylic acids composed of aromatic carboxylic acids, or esters of carboxylic acids composed of dicarboxylic acids The organic compound belonging to any of the esters of carboxylic acid is a raw material for the lubricant, and in the bearing device, it forms liquid spherical fine particles in a film made up of three kinds of fine particles .
Coating consisting of a mixture of 3 types of microparticles noted previously, has an extremely large ratio of surface area to thickness, the temperature rise of the rolling element and the raceway surface, or, the Atsushi Nobori of the sliding surface of the bearing member and the shaft member Demonstrate cooling effect. On the other hand, even if the bearing device operates at a high temperature for a long time and the low-volatile component of the lubricating oil evaporates, the coating made of a mixture of three kinds of fine particles continues to support the rotation and load of the shaft member. Even if the bearing device operates at a high temperature for a longer period of time and much of the lubricating oil evaporates, the boiling point of the organic compound belonging to the esters of carboxylic acid is over 380 ° C. A film made of a mixture of compound spherical particles continues to support the rotation and load of the shaft member. Even if the bearing device is operated at a high temperature for a long time and the organic compound with a high boiling point evaporates, the particulate fine particles of the metal oxide that do not lose the spontaneous magnetization even at 400 ° C. or higher are magnetically adsorbed to form a multilayer structure. Since the magnetic adsorption force is weak and the granular fine particles exhibit self-lubricating properties, the magnetically adsorbed multilayer structure exhibits self-lubricating properties due to the granular fine particles, and permanently supports the rotation and load of the shaft member. Thus, the fine particles having a self-lubricating action permanently support the rotation and load of the shaft member between the rolling elements and the raceway surface or between the sliding surfaces of the shaft member and the bearing member.
The lubricating oil used in the bearing device is a paraffinic base oil having a carbon number of C15-C50, a molecular weight of 200-700, and a boiling point in the range of atmospheric pressure of 250-600 ° C. Ranges from -10 ° C to -25 ° C. Further, in a bearing device for automobile parts, the track surface or the sliding surface may be heated up to 250 ° C. when continuous high-temperature operation continues. However, in the bearing device, the raceway surface or the sliding surface is rarely heated to a temperature at which much of the base oil constituting the lubricating oil evaporates.
On the other hand, even when the bearing device is operated at a temperature lower than the pour point of the lubricating oil, the melting point of the organic compound belonging to the esters of carboxylic acid is -40 ° C. or lower, and it is lowered by the pour point depressant of the lubricating oil. Since it is lower than the pour point, the coating made of a mixture of three kinds of fine particles continues to support the rotation and load of the shaft member without deteriorating the low temperature startability of the shaft member. Therefore, if the temperature is higher than the freezing point of the organic compound belonging to the esters of carboxylic acid, the coating made of a mixture of three kinds of fine particles can reduce the rotation and load of the shaft member without deteriorating the low temperature startability of the shaft member. Continue to support. Note that the bearing device is rarely operated at a temperature lower than the pour point at which the lubricant has dropped.
Further, the self-lubricating action of the liquid spherical fine particles is not affected by the viscosity of the liquid. That is, even when the viscosity of the organic compound belonging to the carboxylic acid ester and the lubricating oil becomes low at high temperature, the spherical fine particles exhibit self-lubricating properties , and the organic compound belonging to the carboxylic acid ester and the lubricating oil at low temperature Even when the viscosity of the spherical particles increases, the spherical fine particles exhibit self-lubricating properties.
Further, the three types of fine particles always exhibit self-lubricating properties regardless of the rotational speed of the shaft member. Further, even if the shaft member applies a static load to the rolling element and the raceway surface, or the sliding surface of the bearing member, the size of the three kinds of fine particles depends on the surface roughness of the rolling element and the raceway surface, or Since the surface roughness of the bearing member and the shaft member is at least an order of magnitude smaller, the collection of three types of fine particles is self-lubricating on the surface of the rolling element and the raceway surface or on the sliding surface of the bearing member and the shaft member. If it continues to support the static load and the rolling elements and the raceway surface are absent, the sliding surface of the bearing member will not be fatigued.
As described above, the that lubricant to the manufacturing process, and applying at least one of the raceway surface or rolling element of a rolling bearing device, or, simply applied to the slip surface of the shaft member of the sliding bearing device In addition, a bearing device based on a completely new mechanism in which a film composed of a collection of three kinds of fine particles having self-lubricating properties permanently supports the rotation and load of the shaft member has been realized. As a result, the lubricant having the three properties described in paragraph 9 is formed as a film on the rolling element and the raceway surface of the rolling bearing device or on the sliding surface of the bearing member and the shaft member of the sliding bearing device. As a result, the problems of the conventional bearing device can be fundamentally solved, and an innovative bearing device having versatility can be realized.

(削除) (Delete)

(削除) (Delete)

(削除) (Delete)

(削除) (Delete)

(削除) (Delete)

(削除) (Delete)

(削除) (Delete)

(削除) (Delete)

(削除) (Delete)

(削除) (Delete)

3種類の微粒子の集まりからなる皮膜構造を模式的に説明する図。The figure which illustrates typically the membrane | film | coat structure which consists of a collection of three types of microparticles | fine-particles.

実施形態1
本実施形態は、第一にアルコールに溶解ないしは混和し、第二にアルコールより粘度が高く、第三に沸点が380℃より高く、第四に潤滑油の流動点の降下点より融点が低く、第五にパラフィン系オイルと相溶しない、これら5つの性質を兼備する有機化合物の実施形態である。なお、潤滑油のベースオイルであるパラフィン系オイルの流動点は、−10℃から−25℃である。こうした有機化合物に、分子量が大きいカルボン酸エステルが存在する。
なおカルボン酸エステル類は、飽和カルボン酸からなる第一のエステル類と、不飽和カルボン酸からなる第二のエステル類と、芳香族カルボン酸からなる第三のエステル類と、2つのカルボキシル基を持つジカルボン酸からなる第四のエステル類とからなる。
Embodiment 1
This embodiment is first dissolved or mixed in alcohol, secondly has a higher viscosity than alcohol, thirdly has a boiling point higher than 380 ° C., and fourthly has a melting point lower than the pour point of the lubricating oil, Fifth, an embodiment of an organic compound having these five properties that is incompatible with paraffinic oil. In addition, the pour point of the paraffinic oil which is the base oil of the lubricating oil is −10 ° C. to −25 ° C. In such organic compounds, esters of higher molecular weight carboxylic acid is present.
The esters of carboxylic acid include a first ester composed of a saturated carboxylic acid, a second ester composed of an unsaturated carboxylic acid, a third ester composed of an aromatic carboxylic acid, and two carboxyl groups. And a fourth ester composed of a dicarboxylic acid having

第一のエステル類である飽和カルボン酸からなるエステル類は、酢酸エステル類、プロピオン酸エステル類、酪酸エステル類、ビバリン酸エステル類、カプロン酸エステル類、カプリル酸エステル類、カプリン酸エステル類、ラウリン酸エステル類、ミリスチン酸エステル類、パルミチン酸エステル類、ステアリン酸エステル類などからなる。
沸点が380℃より高く、アルコールに溶解ないしは混和し、アルコールより粘度が高いカルボン酸エステルは、ステアリン酸ブチル以上の分子量を持つステアリン酸エステル類である。なお、ステアリン酸ブチルの沸点は389℃であるが融点が18℃と高く、ステアリン酸オクチルの沸点は432℃であるが流動点が7℃と高い。従って、融点が高い飽和カルボン酸からなるエステル類は、潤滑剤を構成する有機化合物として適切でない。
Esters composed of saturated carboxylic acid is first esters, esters of acetic acid, esters of propionic acid, esters of butyric acid, esters of Bibarin acid, esters of caproic acid, esters of caprylic acid, esters of capric acid, esters of lauric acid, esters of myristic acid, esters of palmitic acid, and the like esters of stearic acid.
Boiling point higher than 380 ° C., and dissolved or mixed in alcohols, esters of viscosity than alcohol higher carboxylic acids are esters of stearic acid having a molecular weight of more than butyl stearate. The boiling point of butyl stearate is 389 ° C., but the melting point is as high as 18 ° C., and the boiling point of octyl stearate is 432 ° C., but the pour point is as high as 7 ° C. Accordingly, esters composed of saturated carboxylic acids having a high melting point are not suitable as organic compounds constituting the lubricant.

次に、不飽和カルボン酸からなるエステル類には、アクリル酸エステル類、クロトン酸エステル類、メタクリル酸エステル類、オレイン酸エステル類などがある。
このうち沸点が380℃より高く、アルコールに溶解ないしは混和し、アルコールより粘度が高いカルボン酸エステルは、オレイン酸エチル以上の分子量を持つオレイン酸エステル類である。ちなみに、オレイン酸エチルの沸点は386℃で融点が−32℃で、オレイン酸ブチルの沸点は415℃で融点が−55℃である。なおオレイン酸エステル類は、パラフィン系オイルと相溶しない。
Then, the esters composed of unsaturated carboxylic acid, esters of acrylic acid, esters of crotonic acid, esters of methacrylic acid, and esters of oleic acid.
Among above the boiling point is 380 ° C., and dissolved or mixed in alcohols, esters from higher viscosity carboxylic acid alcohols are esters of oleic acid having a molecular weight of more ethyl oleate. Incidentally, the boiling point of ethyl oleate is 386 ° C. and the melting point is −32 ° C., and the boiling point of butyl oleate is 415 ° C. and the melting point is −55 ° C. Note esters oleic acid, incompatible with paraffin oil.

さらに、芳香族カルボン酸からなるエステル類には、安息香酸エステル類とフタル酸エステル類がある。沸点が380℃より高く、アルコールに溶解ないしは混和し、アルコールより粘度が高いカルボン酸エステルは、フタル酸ビス(2−エチルヘキシル)以上の分子量を持つフタル酸エステル類である。ちなみに、フタル酸ビス(2−エチルヘキシル)の沸点は385℃で融点が−55℃であり、フタル酸ジイソノニルの沸点は403℃で融点が−45℃である。なお、フタル酸エステル類は、パラフィン系オイルと相溶しない。 In addition, the esters of an aromatic carboxylic acid, there are esters of benzoic acid and esters of phthalic acid. Boiling point higher than 380 ° C., and dissolved or mixed in alcohols, esters of viscosity than alcohol higher carboxylic acids are esters of phthalic acid with bis (2-ethylhexyl) phthalate or more molecular weight. Incidentally, bis (2-ethylhexyl) phthalate has a boiling point of 385 ° C. and a melting point of −55 ° C., and diisononyl phthalate has a boiling point of 403 ° C. and a melting point of −45 ° C. Incidentally, esters phthalic acid, incompatible with paraffin oil.

さらに、ジカルボン酸からなるエステル類には、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、フマル酸などのジカルボン酸とのエステル類がある。沸点が380℃より高く、アルコールに溶解ないしは混和し、アルコールより粘度が高いエステルは、セバシン酸ジオクチル以上の分子量を持つセバシン酸エステル類である。ちなみに、セバシン酸ジオクチルの沸点は435℃で融点が−48℃である。なお、セバシン酸エステル類はパラフィン系オイルと相溶しない。
以上に説明したように、不飽和カルボン酸からなるカルボン酸エステル類、ないしは、芳香族カルボン酸からなるカルボン酸エステル類、ないしは、ジカルボン酸からなるカルボン酸エステル類のいずれかのカルボン酸エステル類に属する有機化合物に、23段落で説明した5つの性質を兼備する有機化合物が存在する。
Further, the esters composed of dicarboxylic acids include esters with dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, spellic acid, azelaic acid, sebacic acid and fumaric acid. . Esters having a boiling point higher than 380 ° C., dissolved or mixed in alcohol, and higher in viscosity than alcohol are sebacic acid esters having a molecular weight equal to or higher than dioctyl sebacate. Incidentally, dioctyl sebacate has a boiling point of 435 ° C. and a melting point of −48 ° C. Incidentally, esters of sebacic acid is not compatible with paraffin oil.
As described above, esters of carboxylic acids consisting of unsaturated carboxylic acids, or esters of carboxylic acids comprising an aromatic carboxylic acid, or any of the carboxylic acid esters of carboxylic acids consisting of a dicarboxylic acid Among the organic compounds belonging to these esters, there are organic compounds having the five properties described in paragraph 23.

実施例1
本実施例は、マグネタイトの粒状微粒子が、有機化合物と潤滑油とに分散された懸濁液からなる潤滑剤を作成する実施例である。ナフテン酸第一鉄(例えば、東栄化工株式会社の製品)をマグネタイトの原料として用いた。オレイン酸ブチル(例えば、純正化学株式会社の製品)を有機化合物として用いた。オレイン酸ブチルはメタノールと混和し、メタノールの8.6倍の粘度を持ち、密度が0.87g/cmで、沸点が415℃で、融点が−55℃で、パラフィン系オイルと相溶しない。また、潤滑油として出光興産株式会社のダフニーメカニックオイル10を用いた。この潤滑油は、ベースオイルがパラフィン系オイルからなり、密度が0.899g/cmで、40℃の動粘度が10.0mm/sで、流動点が−40℃以下の性質を持つ。
最初に、オレイン酸ブチルにマグネタイトの微粒子を析出させる。このため、ナフテン酸鉄の0.5モルに相当する200グラムをメタノールに10重量%として分散させ、このメタノール分散液にオレイン酸ブチルの0.125モルに相当する42.5グラムを混合した。この混合液を大気中で熱処理する。最初に混合液を65℃に昇温してメタノールを気化させ、オレイン酸ブチルにナフテン酸鉄の微細結晶を均一に析出させた。次に、混合液を40℃/min.の昇温速度で340℃まで昇温し、340℃に5分間放置してナフテン酸鉄を熱分解し、酸化第一鉄FeOの粒状微粒子をオレイン酸ブチルに均一に析出させた。この後、1℃/min.の昇温速度で380℃まで昇温し、380℃に2分間放置し、酸化第一鉄FeOをマグネタイトFeに酸化させ、0.125モルのオレイン酸ブチル中に、0.5モルに相当するマグネタイトの粒状微粒子の集まりを均一に析出させた。次に、熱処理した混合液に、潤滑油の44グラムを混合し、超音波ホモジナイザー(日本エマソン株式会社の製品)によって、20kHzの超音波振動を混合液に30秒間加え潤滑剤1を作成した。さらに、潤滑剤1の一部を取り出し、20kHzの超音波振動を懸濁液1に5分間加え、潤滑剤2を作成した。さらに、潤滑剤2を取り出し、20kHzの超音波振動を潤滑剤2に10分間加え、潤滑剤3を作成した。
なお、超音波振動ホモジナイザーは、11段落で説明したように、微小な泡(キャビテーション)を利用して粒子を微粒子化させる装置で、短時間で粒子の微粒子化が進む。
Example 1
In this example, a lubricant comprising a suspension in which granular fine particles of magnetite are dispersed in an organic compound and a lubricating oil is prepared. Ferrous naphthenate (for example, a product of Toei Chemical Co., Ltd.) was used as a raw material for magnetite. Butyl oleate (for example, a product of Junsei Co., Ltd.) was used as the organic compound. Butyl oleate is miscible with methanol, has a viscosity 8.6 times that of methanol, has a density of 0.87 g / cm 3 , a boiling point of 415 ° C., a melting point of −55 ° C. and is not compatible with paraffinic oil. . Moreover, Daphne Mechanic Oil 10 of Idemitsu Kosan Co., Ltd. was used as the lubricating oil. This lubricating oil has the properties that the base oil is a paraffinic oil, the density is 0.899 g / cm 3 , the kinematic viscosity at 40 ° C. is 10.0 mm 2 / s, and the pour point is −40 ° C. or less.
First, magnetite fine particles are deposited on butyl oleate. For this reason, 200 grams corresponding to 0.5 mole of iron naphthenate was dispersed in methanol as 10% by weight, and 42.5 grams corresponding to 0.125 mole of butyl oleate was mixed with this methanol dispersion. This mixed solution is heat-treated in the atmosphere. First, the mixture was heated to 65 ° C. to vaporize methanol, and fine crystals of iron naphthenate were uniformly deposited on butyl oleate. Next, the mixed solution was 40 ° C./min. The temperature was raised to 340 ° C. at a heating rate of 340 ° C. and allowed to stand at 340 ° C. for 5 minutes to thermally decompose iron naphthenate, and particulate fine particles of ferrous oxide FeO were uniformly deposited on butyl oleate. Thereafter, 1 ° C./min. The temperature was raised to 380 ° C. at a heating rate of 380 ° C. and left at 380 ° C. for 2 minutes to oxidize ferrous oxide FeO to magnetite Fe 3 O 4 and 0.5 mol in 0.125 mol butyl oleate. A collection of granular fine particles of magnetite corresponding to was uniformly deposited. Next, 44 g of lubricating oil was mixed with the heat-treated mixed solution, and a lubricant 1 was prepared by applying ultrasonic vibration of 20 kHz to the mixed solution for 30 seconds using an ultrasonic homogenizer (product of Nippon Emerson Co., Ltd.). Further, a part of the lubricant 1 was taken out, and 20 kHz ultrasonic vibration was added to the suspension 1 for 5 minutes to prepare the lubricant 2. Further, the lubricant 2 was taken out, and 20 kHz ultrasonic vibration was added to the lubricant 2 for 10 minutes to prepare the lubricant 3.
The ultrasonic vibration homogenizer is an apparatus for making particles fine using tiny bubbles (cavitation) as described in the 11th paragraph, and the particles are made fine in a short time.

次に、作成した3種類の潤滑剤によって形成される被膜構造を電子顕微鏡で観察した。このため、5cm×5cmのアルミニウム板に、3種類の潤滑剤を1cmの幅と5cmの長さと10μmの厚みで印刷し、この上に5cm×5cmのアルミニウム板を重ね合わせ、さらに、1kgの重りを載せて100℃に10分間放置した後、潤滑剤が塗布された塗布面を切断し、潤滑剤の切断面を電子顕微鏡で観察した。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100Vからの極低加速電圧による表面観察が可能で、導電性の被膜を形成せずに直接試料の表面が観察できる特徴を有する装置である。
最初に、極低加速電圧の100Vを印加して3種類の潤滑剤の切断面を観察した。この結果、アルミニウム板の間隙に全ての潤滑剤が10μmの厚みの皮膜を形成し、この皮膜は、潤滑剤1では2μm程度の粒子の集まりからなり、潤滑剤2では0.2μm程度の球状微粒子からなり、潤滑剤3では同様に0.2μm程度の球状微粒子の集まりから構成され、さらに各々の皮膜にはさらに小さい微粒子が無数に分散されていることが分かった。
次に、反射電子線の900−1000Vの間にある2次電子線を取り出して画像処理を行ない、さらに小さい微粒子を観察した。この結果、さらに小さい微粒子は40−60nmの大きさの粒状の微粒子であった。
さらに、40−60nmの大きさの粒状微粒子について、反射電子線の900−1000Vの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって微粒子の材質を観察した。濃淡が認められため、複数種類の元素から形成されていることが分かった。
次に、特性エックス線のエネルギーとその強度を画像処理し元素を分析した。粒状微粒子は、鉄原子と酸素原子との双方が均一に存在し、偏在する箇所が見られなかったため、酸化鉄である。さらに、SEMの機能にEBSP解析機能を付加し、結晶構造の解析を行なった。この結果、粒状の微粒子がマグネタイトFeであることが確認できた。なお、EBSP解析機能とは、試料に電子線を照射したとき、反射電子が試料中の原子面によって回折されることによってバンド状のパターンを形成し、このバンドの対称性が結晶系に対応し、バンドの間隔が原子面間隔に対応しているため、このパターンを解析することで、結晶方位や結晶系を解析することをいう。
これらの結果から、超音波ホモジナイザーによってオレイン酸ブチルと潤滑油との粒子の微細化が短時間で進み、粒子の微粒子化は0.2μmで終えることが分かった。この超音波ホモジナイザーにおける衝撃波による粒子の微粒子化は、軸受装置において潤滑剤に加えられるせん断応力ないしは圧縮応力によって、粒子が微粒子化する現象に該当する。従って、軸受装置においては、オレイン酸ブチルと潤滑油とは0.2μmの球状微粒子となり、0.2μmの球状微粒子は、応力を受けてもさらに微細な粒子にはならず、自らが滑ることで応力を緩和する自己潤滑性を発揮する。また、潤滑剤を構成する物質の沸点が高いため、印刷時における厚みがそのまま皮膜の厚みになる。従って、軸受装置においては、転動体ないしは軌道面の少なくとも一方に、ないしは、軸受部材ないしは軸部材の少なくとも一方に、塗布した潤滑剤の量に応じた皮膜が形成される。
本実施例において作成した潤滑剤2及び3が形成する皮膜構造の一部を、図1に拡大して模式的に示す。潤滑剤2及び3は皮膜1を形成し、この皮膜1は、オレイン酸ブチルからなる0.2μmの球状微粒子2と、潤滑油からなる0.2μmの球状微粒子3との集まりと、全体に均一に分散したマグネタイトの40−60nmの粒状微粒子4とから構成される。
Next, the film structure formed by the three types of lubricants prepared was observed with an electron microscope. For this reason, three types of lubricants are printed on a 5 cm × 5 cm aluminum plate with a width of 1 cm, a length of 5 cm and a thickness of 10 μm, and an aluminum plate of 5 cm × 5 cm is overlaid thereon, and a weight of 1 kg is further provided. And then left at 100 ° C. for 10 minutes, the coated surface coated with the lubricant was cut, and the cut surface of the lubricant was observed with an electron microscope. The electron microscope used was an ultra-low acceleration voltage SEM from JFE Techno-Research Corporation. This apparatus is capable of observing the surface with an extremely low acceleration voltage from 100 V, and has a feature that the surface of the sample can be directly observed without forming a conductive film.
First, an extremely low acceleration voltage of 100 V was applied to observe the cut surfaces of the three types of lubricants. As a result, all the lubricants form a film having a thickness of 10 μm in the gaps between the aluminum plates. This film consists of a collection of particles of about 2 μm in the lubricant 1, and spherical fine particles of about 0.2 μm in the lubricant 2. Similarly, it was found that the lubricant 3 is similarly composed of a collection of spherical fine particles of about 0.2 μm, and that each coating has an infinite number of smaller fine particles dispersed therein.
Next, the secondary electron beam between 900-1000 V of the reflected electron beam was taken out and subjected to image processing, and smaller particles were observed. As a result, the smaller particles were granular particles having a size of 40-60 nm.
Further, the granular fine particles having a size of 40 to 60 nm were subjected to image processing by extracting energy between 900 to 1000 V of the reflected electron beam, and the material of the fine particles was observed by the density of the image. Since light and shade were observed, it was found that the film was formed from multiple types of elements.
Next, the energy of the characteristic X-ray and its intensity were image-processed to analyze the elements. The granular fine particles are iron oxide because both iron atoms and oxygen atoms are present uniformly and no unevenly distributed portions are observed. Furthermore, an EBSP analysis function was added to the SEM function to analyze the crystal structure. As a result, granular particles were confirmed to be magnetite Fe 3 O 4. The EBSP analysis function means that when a sample is irradiated with an electron beam, reflected electrons are diffracted by the atomic plane in the sample to form a band-like pattern, and the symmetry of this band corresponds to the crystal system. Since the band interval corresponds to the atomic plane interval, analyzing this pattern means analyzing the crystal orientation and crystal system.
From these results, it was found that the refinement of the particles of butyl oleate and the lubricating oil proceeded in a short time by the ultrasonic homogenizer, and the refinement of the particles was finished at 0.2 μm. The particle pulverization by shock waves in this ultrasonic homogenizer corresponds to a phenomenon in which particles are pulverized by shearing stress or compression stress applied to the lubricant in the bearing device. Therefore, in the bearing device, butyl oleate and lubricating oil become 0.2 μm spherical fine particles, and the 0.2 μm spherical fine particles do not become finer particles even when subjected to stress. It exhibits self-lubricating properties that relieve stress. Moreover, since the boiling point of the substance constituting the lubricant is high, the thickness at the time of printing becomes the thickness of the film as it is. Therefore, in the bearing device, a film corresponding to the amount of applied lubricant is formed on at least one of the rolling elements or the raceway surface, or at least one of the bearing member or the shaft member.
A part of the film structure formed by the lubricants 2 and 3 prepared in this example is schematically shown in an enlarged manner in FIG. Lubricants 2 and 3 form film 1, which is uniform throughout the collection of 0.2 μm spherical fine particles 2 made of butyl oleate and 0.2 μm spherical fine particles 3 made of lubricating oil. And 40 to 60 nm granular fine particles 4 dispersed in magnetite.

実施例2
本実施例は、マグヘマイトの粒状微粒子が、有機化合物と潤滑油とに分散された懸濁液からなる潤滑剤を作成する実施例である。マグヘマイトの原料は、実施例1のナフテン酸第一鉄を用いた。有機化合物は、実施例1のオレイン酸ブチルを用いた。また、潤滑油は実施例1の出光興産株式会社のダフニーメカニックオイル10を用いた。
最初に、オレイン酸ブチルにマグヘマイトの粒状微粒子を析出させる。このため、ナフテン酸第一鉄の0.5モルに相当する200グラムをメタノールに10重量%として分散させ、このメタノール分散液にオレイン酸ブチルの0.125モルに相当する42.5グラムを混合した。この混合液を大気中で熱処理する。最初に混合液を65℃に昇温してメタノールを気化させ、オレイン酸ブチルにナフテン酸鉄の微細結晶を均一に析出させた。次に、40℃/min.の昇温速度で340℃まで昇温し、340℃に5分間放置してナフテン酸鉄を熱分解し、酸化第一鉄FeOの粒状微粒子をオレイン酸ブチルに均一に析出させた。この後、1℃/min.の昇温速度で380℃まで昇温し、380℃に30分間放置し、酸化第一鉄FeOをマグヘマイトγ−Feに酸化させ、0.125モルのオレイン酸ブチル中に、0.5モルに相当するマグヘマイトの粒状微粒子の集まりを均一に析出させた。次に、熱処理した混合液に、潤滑油の44グラムを混合し、実施例1と同様に超音波ホモジナイザーによって、20kHzの超音波振動を混合液に30秒間加え、潤滑剤4を作成した。さらに、潤滑剤4の一部を取り出し、20kHzの超音波振動を懸濁液4に5分間加え、潤滑剤5を作成した。さらに、潤滑剤5を取り出し、20kHzの超音波振動を潤滑剤5に10分間加え、潤滑剤6を作成した。
Example 2
In this example, a lubricant composed of a suspension in which particulate fine particles of maghemite are dispersed in an organic compound and a lubricating oil is prepared. The raw material for maghemite was ferrous naphthenate of Example 1. As the organic compound, butyl oleate of Example 1 was used. As the lubricating oil, Daphne Mechanic Oil 10 of Idemitsu Kosan Co., Ltd. of Example 1 was used.
First, particulate maghemite particles are deposited on butyl oleate. Therefore, 200 grams corresponding to 0.5 mole of ferrous naphthenate was dispersed in methanol as 10% by weight, and 42.5 grams corresponding to 0.125 mole of butyl oleate was mixed with this methanol dispersion. did. This mixed solution is heat-treated in the atmosphere. First, the mixture was heated to 65 ° C. to vaporize methanol, and fine crystals of iron naphthenate were uniformly deposited on butyl oleate. Next, 40 ° C./min. The temperature was raised to 340 ° C. at a heating rate of 340 ° C. and allowed to stand at 340 ° C. for 5 minutes to thermally decompose iron naphthenate, and particulate fine particles of ferrous oxide FeO were uniformly deposited on butyl oleate. Thereafter, 1 ° C./min. The temperature was raised to 380 ° C. at a heating rate of 380 ° C. and left at 380 ° C. for 30 minutes to oxidize ferrous oxide FeO to maghemite γ-Fe 2 O 3 , and in 0.125 mol of butyl oleate, 0. A collection of granular fine particles of maghemite corresponding to 5 mol was uniformly deposited. Next, 44 grams of lubricating oil was mixed with the heat-treated mixed solution, and ultrasonic vibration of 20 kHz was added to the mixed solution for 30 seconds using an ultrasonic homogenizer in the same manner as in Example 1 to prepare Lubricant 4. Furthermore, a part of the lubricant 4 was taken out, and 20 kHz ultrasonic vibration was added to the suspension 4 for 5 minutes to prepare the lubricant 5. Further, the lubricant 5 was taken out, and 20 kHz ultrasonic vibration was added to the lubricant 5 for 10 minutes to prepare the lubricant 6.

次に、作成した3種類の潤滑剤が形成する皮膜構造を、実施例1と同様に電子顕微鏡で観察した。アルミニウム板の間隙に10μmの厚みで3種類の潤滑剤を印刷し、各々の潤滑剤が塗布された塗布面を切断し、潤滑剤の切断面を電子顕微鏡で観察した。
最初に、極低加速電圧の100Vを印加して3種類の潤滑剤の切断面を観察した。この結果、アルミニウム板の間隙に、全ての潤滑剤が10μmの厚みの皮膜を形成し、この皮膜は潤滑剤4では2μm程度の粒子の集まりからなり、潤滑剤5では0.2μm程度の球状微粒子からなり、潤滑剤6では同様に0.2μm程度の球状微粒子の集まりから構成され、さらに各々の皮膜にはさらに小さい微粒子が無数に分散されていることが分かった。
次に、反射電子線の900−1000Vの間にある2次電子線を取り出して画像処理を行ない、さらに小さい微粒子を観察した。この結果、さらに小さい微粒子は40−60nmの大きさの粒状の微粒子であった。
さらに、40−60nmの大きさの粒状微粒子について、反射電子線の900−1000Vの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡によって微粒子の材質を観察した。濃淡が認められため、複数種類の元素から形成されていることが分かった。
次に、特性エックス線のエネルギーとその強度を画像処理し元素を分析した。粒状微粒子は、鉄原子と酸素原子の双方が均一に存在し、偏在する箇所が見られなかったため、酸化鉄である。さらに、SEMの機能にEBSP解析機能を付加し、結晶構造の解析を行なった。この結果、粒状の微粒子がマグヘマイトγ−Feであることが確認できた。
この結果から、超音波ホモジナイザーに依る粒子の微細化は、実施例1と同様に0.2μmの球状微粒子で終えた。従って、実施例1と同様に、軸受装置においては、オレイン酸ブチルと潤滑油とは0.2μmの球状微粒子となり、0.2μmの球状微粒子は応力を受けてもさらに微細な粒子にならず、自らが滑ることで応力を緩和する自己潤滑性を持つ。なお、潤滑剤5および6の被膜構造は、図1と同様であるため図示しない。
Next, the film structure formed by the prepared three types of lubricants was observed with an electron microscope in the same manner as in Example 1. Three types of lubricants were printed at a thickness of 10 μm in the gaps between the aluminum plates, the coated surfaces coated with the respective lubricants were cut, and the cut surfaces of the lubricants were observed with an electron microscope.
First, an extremely low acceleration voltage of 100 V was applied to observe the cut surfaces of the three types of lubricants. As a result, all the lubricant forms a film having a thickness of 10 μm in the gap between the aluminum plates. This film is made up of a collection of particles of about 2 μm in the lubricant 4 and spherical fine particles of about 0.2 μm in the lubricant 5. Similarly, it was found that the lubricant 6 is similarly composed of a collection of spherical fine particles of about 0.2 μm, and that each coating has an infinite number of smaller fine particles dispersed therein.
Next, the secondary electron beam between 900-1000 V of the reflected electron beam was taken out and subjected to image processing, and smaller particles were observed. As a result, the smaller particles were granular particles having a size of 40-60 nm.
Further, the granular fine particles having a size of 40 to 60 nm were subjected to image processing by extracting energy between 900 to 1000 V of the reflected electron beam, and the material of the fine particles was observed by the density of the image. Since light and shade were observed, it was found that the film was formed from multiple types of elements.
Next, the energy of the characteristic X-ray and its intensity were image-processed to analyze the elements. The particulate fine particles are iron oxide because both iron atoms and oxygen atoms are present uniformly and no unevenly distributed portions are observed. Furthermore, an EBSP analysis function was added to the SEM function to analyze the crystal structure. As a result, it was confirmed that the granular fine particles were maghemite γ-Fe 2 O 3 .
From this result, the miniaturization of the particles by the ultrasonic homogenizer was completed with spherical fine particles of 0.2 μm as in Example 1. Therefore, as in Example 1, in the bearing device, butyl oleate and lubricating oil become 0.2 μm spherical fine particles, and the 0.2 μm spherical fine particles do not become finer particles even under stress, It has self-lubricating properties that relieve stress by sliding itself. Note that the coating structure of the lubricants 5 and 6 is the same as that shown in FIG.

実施例3
次に、三球式転動疲労試験機(株式会社富士試験機製作所の製品)を用い、転動体へ潤滑剤を付与することで、転動疲労に依る軌道面の傷の発生がどの程度遅れるかを調べた。本試験機は、軌道面に相当する円板に、転動体に相当する3個の鋼球を載せ、これらの鋼球を回転させて負荷を円板に加え、点接触に依る転動疲労を円板に連続して加える。円板にピッチングやフレーキングなどの傷が発生すると、負荷を加えるレバー上に設置した振動加速度センサが傷の発生に依る振動を検知して試験機を停止させる。円板と鋼球との材質は、軌道面と転動体とに汎用的に用いられている高炭素クロム軸受鋼を用いた。3個の鋼球の表面に潤滑剤を塗布したものとしないものとの比較で、潤滑剤の自己潤滑性によって円板に傷が発生する時期が遅れる効果を調べた。潤滑剤は実施例1で作成した潤滑剤3と実施例2で作成した潤滑剤6とを用い、鋼球に5回ずつ塗布して10回の試験を行った。
最初の試験条件は、負荷を100kgfとし、回転速度を1000rpmとした。試験温度が200℃の場合は、潤滑剤を塗布しない場合は、わずか6時間で試験装置が停止した。これに対し、潤滑剤3と潤滑剤6とを塗布した場合では、動作時間が48−50時間まで伸びた。試験温度が室温の場合は、潤滑剤を塗布しない場合は、わずか10時間で試験装置が停止したのに対し、潤滑剤を塗布した場合は、100時間でも動作したため、試験を途中で中止した。試験温度が−30℃では、潤滑剤を塗布しない場合は、わずか5時間であったのに対し、潤滑剤を塗布した場合は、動作時間が40−42時間まで伸びた。
次に、試験条件を、負荷を550kgfとし、回転速度を2000rpmとした。試験温度が200℃の場合は、潤滑剤を塗布しない場合は、わずか4時間で試験装置が停止した。これに対し、潤滑剤3と潤滑剤6とを塗布した場合では、動作時間が40−45時間まで伸びた。試験温度が室温の場合は、潤滑剤を塗布しない場合は、わずか6時間で試験装置が停止したのに対し、潤滑剤を塗布した場合は、動作時間が84−86時間まで伸びた。試験温度が−30℃では、潤滑剤を塗布しない場合は、わずか3時間であったのに対し、潤滑剤を塗布した場合は、動作時間が36−38時間まで伸びた。
さらに試験条件を、負荷を1000kgfまで増大し、回転速度を3000rpmまで速めた。試験温度が200℃の場合は、潤滑剤を塗布しない場合は、わずか2時間で試験装置が停止した。これに対し、潤滑剤3と潤滑剤6とを塗布した場合では、動作時間が26−28時間まで伸びた。試験温度が室温の場合は、潤滑剤を塗布しない場合は、わずか3.5時間で試験装置が停止したのに対し、潤滑剤を塗布した場合は、動作時間が52−55時間まで伸びた。試験温度が−30℃では、潤滑剤を塗布しない場合は、わずか1.5時間であったのに対し、潤滑剤を塗布した場合は、動作時間が20−23時間まで伸びた。
以上の結果から、試験温度が室温に限らず200℃と−30℃でも、潤滑剤の自己潤滑性によって軌道面に加わる負荷が緩和され、転動疲労に依る傷の発生時期が8倍以上に伸びた。また、負荷が大きいほど、回転速度が速いほど、さらに、高温であるほど、低温であるほど、潤滑剤の自己潤滑性による効果が高まり、潤滑剤を塗布しない際に傷が発生する時期に対する、潤滑剤を塗布した際に傷が発生時期の比率が増大することが分かった。従って、潤滑剤の自己潤滑性によって、軌道面に加わる負荷が緩和され、転動体と軌道面との摩擦力が縮減される効果は、負荷が大きいほど、回転速度が速いほど、高温であるほど、低温であるほど大きいことが実証された。このため、摺接面に潤滑剤を塗布すると、転がり軸受装置と滑り軸受装置とに関わらず、装置が稼働される温度が高いほど、また、温度が低いほど、さらに、摺接面に加わる負荷の大きいほど、さらに、摺接面の回転速度が速いほど、潤滑剤による自己潤滑性の効果が、摺接面において顕著に表れることが実証された。
Example 3
Next, using a three-ball rolling fatigue tester (a product of Fuji Testing Machine Co., Ltd.), applying lubricant to the rolling elements delays the occurrence of scratches on the raceway surface due to rolling fatigue. I investigated. This testing machine places three steel balls corresponding to rolling elements on a disk corresponding to the raceway surface, rotates these steel balls, applies a load to the disk, and causes rolling fatigue due to point contact. Add continuously to the disc. When scratches such as pitching and flaking occur on the disc, the vibration acceleration sensor installed on the lever to which the load is applied detects the vibration due to the scratch and stops the testing machine. As the material for the disc and the steel ball, high-carbon chromium bearing steel, which is generally used for the raceway surface and rolling elements, was used. In comparison with the case where the surface of the three steel balls was coated with a lubricant and the case where a lubricant was not applied, the effect of delaying the time when the disk was damaged due to the self-lubricating property of the lubricant was investigated. As the lubricant, the lubricant 3 prepared in Example 1 and the lubricant 6 prepared in Example 2 were used, and applied to steel balls 5 times each, and the test was performed 10 times.
The initial test conditions were a load of 100 kgf and a rotation speed of 1000 rpm. When the test temperature was 200 ° C., the test apparatus stopped in only 6 hours when no lubricant was applied. On the other hand, when the lubricant 3 and the lubricant 6 were applied, the operation time was extended to 48-50 hours. When the test temperature was room temperature, when the lubricant was not applied, the test apparatus stopped in only 10 hours, whereas when the lubricant was applied, the test was stopped halfway because it operated even for 100 hours. At the test temperature of −30 ° C., when the lubricant was not applied, it was only 5 hours, whereas when the lubricant was applied, the operation time was extended to 40-42 hours.
Next, the test conditions were a load of 550 kgf and a rotation speed of 2000 rpm. When the test temperature was 200 ° C., the test apparatus stopped in only 4 hours when no lubricant was applied. On the other hand, when the lubricant 3 and the lubricant 6 were applied, the operation time was extended to 40-45 hours. When the test temperature was room temperature, when the lubricant was not applied, the test apparatus stopped in only 6 hours, whereas when the lubricant was applied, the operation time was extended to 84 to 86 hours. At the test temperature of −30 ° C., when the lubricant was not applied, the time was only 3 hours, whereas when the lubricant was applied, the operation time was extended to 36-38 hours.
Further, the test conditions were that the load was increased to 1000 kgf and the rotation speed was increased to 3000 rpm. When the test temperature was 200 ° C., the test apparatus stopped in only 2 hours when no lubricant was applied. On the other hand, when the lubricant 3 and the lubricant 6 were applied, the operation time was extended to 26 to 28 hours. When the test temperature was room temperature, when the lubricant was not applied, the test apparatus stopped in only 3.5 hours, whereas when the lubricant was applied, the operation time was extended to 52-55 hours. At the test temperature of −30 ° C., when the lubricant was not applied, it was only 1.5 hours, whereas when the lubricant was applied, the operation time was extended to 20-23 hours.
From the above results, even when the test temperature is not limited to room temperature, even when the temperature is 200 ° C. and −30 ° C., the load applied to the raceway surface is relieved by the self-lubricating property of the lubricant, and the generation time of scratches due to rolling fatigue is more than 8 times Extended. Also, the greater the load, the faster the rotation speed, the higher the temperature, and the lower the temperature, the greater the effect of the self-lubricating property of the lubricant, and the time when scratches occur when the lubricant is not applied, It was found that when the lubricant was applied, the ratio of the occurrence of scratches increased. Therefore, the load applied to the raceway surface is reduced by the self-lubricating property of the lubricant, and the friction force between the rolling elements and the raceway surface is reduced. The greater the load, the higher the rotational speed, and the higher the temperature. It was proved that the lower the temperature, the larger. For this reason, when lubricant is applied to the sliding contact surface, regardless of whether it is a rolling bearing device or a sliding bearing device, the higher the temperature at which the device is operated and the lower the temperature, the more the load applied to the sliding contact surface. It has been proved that the larger the value of the sliding contact surface, the higher the rotation speed of the sliding contact surface, and the more remarkable the self-lubricating effect by the lubricant appears on the sliding contact surface.

実施例4
さらに、プラスチックの滑り摩耗試験(JIS K7218A法 1986)におけるリング対ディスクの摩耗試験に準拠する試験装置(高千穂精機株式会社の製品で3T―2000−5000N型)を用い、滑り軸受装置の軸受部材への潤滑剤の塗布に依る焼き付け性の向上と、静粛性の向上とを調べた。本装置に依る試験は、軸受部材としてのリングを回転させ、この回転するリングに軸部材としてのディスクを押し付け、押し付け荷重を増大させ、リングの摩耗の深さ、摩擦係数、摩擦熱の経過を同時に測定し、これらのデータから限界PV値を測定する。
リングをPOM樹脂で構成し、ディスクをS45Cで構成し、リングを周速度0.5m/sで回転させ、押し付け荷重を10分間ごとに20Nの割合で増加させた。この結果、押し付け荷重が160Nになった際に、摩擦係数、摩擦熱、摩擦深さのいずれもが急増したため、160NがPOM樹脂からなるリングの溶融荷重になり、限界PV値は400kPa・m/sになった。
次に、潤滑剤3と潤滑剤6との各々を、個別にPOM樹脂の表面に塗布し、前記と同一の条件で試験装置を稼働させ、リングの溶融荷重を求めた。その結果、溶融荷重が350−380Nまで増大し、限界PV値は875−950Pa・m/sまで伸び、併せて滑り面の静粛性も350−380Nまで拡大された。
この結果から、自己潤滑性を有する潤滑剤は、摺動性に優れるPOM樹脂からなる摺動部品の焼き付け荷重を、さらに2倍以上増大させる効果をもたらすことが実証された。
Example 4
Furthermore, using a test device (3T-2000-5000N type in the product of Takachiho Seiki Co., Ltd.) that complies with the ring-to-disk wear test in the plastic sliding wear test (JIS K7218A method 1986), to the bearing member of the slide bearing device The improvement of the baking property and the improvement of the silence due to the application of the lubricant were investigated. In the test using this device, a ring as a bearing member is rotated, a disk as a shaft member is pressed against the rotating ring, the pressing load is increased, and the wear depth of the ring, the friction coefficient, and the progress of friction heat are measured. Measure simultaneously and determine the critical PV value from these data.
The ring was composed of POM resin, the disk was composed of S45C, the ring was rotated at a peripheral speed of 0.5 m / s, and the pressing load was increased at a rate of 20 N every 10 minutes. As a result, when the pressing load reached 160 N, all of the friction coefficient, frictional heat, and friction depth increased rapidly. Therefore, 160 N became the melting load of the ring made of POM resin, and the limit PV value was 400 kPa · m / s.
Next, each of the lubricant 3 and the lubricant 6 was individually applied to the surface of the POM resin, the test apparatus was operated under the same conditions as described above, and the melt load of the ring was obtained. As a result, the melt load increased to 350-380N, the limit PV value increased to 875-950 Pa · m / s, and the quietness of the sliding surface was also increased to 350-380N.
From this result, it was proved that the lubricant having self-lubricating property brings about an effect of further increasing the baking load of the sliding component made of the POM resin excellent in sliding property by more than twice.

1 皮膜 2 オレイン酸ブチルの球状微粒子 3 潤滑油の球状微粒子
4 マグネタイトの粒状微粒子
1 Coating 2 Spherical Fine Particles of Butyl Oleate 3 Spherical Fine Particles of Lubricating Oil 4 Granular Fine Particles of Magnetite

Claims (1)

転動体と内輪および外輪とが軟磁性体からなる転がり軸受装置の軌道面ないしは転動体の少なくとも一方に付与する潤滑剤の製造方法は、ないしは、軸部材が軟磁性体である滑り軸受装置の軸受部材ないしは軸部材の少なくとも一方の滑り面に付与する潤滑剤の製造方法は、熱分解で酸化第一鉄を析出するナフテン酸第一鉄をアルコールに分散してアルコール分散液を作成する第一の工程と、該アルコール分散液に、融点がパラフィン系ベースオイルからなる潤滑油の流動点より低い第一の性質と、沸点が前記酸化第一鉄をマグネタイトないしはマグヘマイトに酸化する温度より高い第二の性質と、前記潤滑油と相溶しない第三の性質と、前記アルコールに溶解ないしは混和する第四の性質と、前記アルコールより粘度が高い第五の性質とからなる、これら5つの性質を兼備する不飽和カルボン酸からなるカルボン酸のエステル類、ないしは、芳香族カルボン酸からなるカルボン酸のエステル類、ないしは、ジカルボン酸からなるカルボン酸のエステル類のいずれか1種類のカルボン酸のエステル類に属する有機化合物を混合して混合液を作成する第二の工程と、該混合液を大気雰囲気で熱処理し、前記ナフテン酸第一鉄を熱分解して酸化第一鉄の粒状微粒子を生成し、さらに昇温し、前記酸化第一鉄の粒状微粒子を、マグネタイトないしはマグヘマイトの粒状微粒子に酸化し、前記混合液に前記マグネタイトないしは前記マグヘマイトのいずれか一方の材質からなる粒状微粒子の集まりを析出させる第三の工程と、前記第三の工程で熱処理した混合液に、パラフィン系ベースオイルからなる潤滑油を混合して撹拌し、濁液からなる潤滑剤を作成する第四の工程とからなり、これら4つの工程を連続して実施して前記懸濁液からなる潤滑剤を製造する、潤滑剤の製造方法
A method of manufacturing a lubricant applied to at least one of a raceway surface or a rolling element of a rolling bearing device in which a rolling element, an inner ring, and an outer ring are made of a soft magnetic material, or a bearing of a sliding bearing device in which a shaft member is a soft magnetic material lubricant manufacturing method of imparting at least one of the sliding surfaces of the member or the shaft member, a naphthenate ferrous to deposit ferrous oxide by thermal decomposition dispersed in the alcohol first to create an alcohol dispersion A first property having a melting point lower than the pour point of a lubricating oil composed of a paraffinic base oil, and a second property having a boiling point higher than the temperature at which the ferrous oxide is oxidized to magnetite or maghemite. When, a third nature incompatible with the lubricating oil, a fourth property of dissolving or mixing in the alcohol, Toka fifth nature than the viscosity is high the alcohol Becomes, esters of these five properties consisting unsaturated carboxylic acids having both a carboxylic acid, or esters of carboxylic acids comprising an aromatic carboxylic acid, or any of the esters of carboxylic acids consisting of a dicarboxylic acid A second step in which an organic compound belonging to one kind of carboxylic acid ester is mixed to prepare a mixed solution; and the mixed solution is heat-treated in an air atmosphere to thermally decompose the ferrous naphthenate and Ferrous particulate fine particles are generated, and the temperature is further raised, and the ferrous oxide granular fine particles are oxidized to magnetite or maghemite granular fine particles, and the mixed liquid is made of any one of the materials of magnetite or maghemite. a third step of collection of the particulate particles Ru precipitating made, the mixture was heat-treated at the third step, paraffinic Besuoi Stirring a mixture of lubricating oil consisting of suspension consists of a fourth step of creating a lubricant consisting Nigoeki, producing a lubricant comprising the suspension was carried out continuously these four steps A method for producing a lubricant.
JP2015138151A 2015-06-23 2015-06-23 Method for producing lubricant applied to at least one of raceway surface or rolling element of rolling bearing device, or method for producing lubricant applied to at least one sliding surface of bearing member or shaft member of sliding bearing device Expired - Fee Related JP6583994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138151A JP6583994B2 (en) 2015-06-23 2015-06-23 Method for producing lubricant applied to at least one of raceway surface or rolling element of rolling bearing device, or method for producing lubricant applied to at least one sliding surface of bearing member or shaft member of sliding bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138151A JP6583994B2 (en) 2015-06-23 2015-06-23 Method for producing lubricant applied to at least one of raceway surface or rolling element of rolling bearing device, or method for producing lubricant applied to at least one sliding surface of bearing member or shaft member of sliding bearing device

Publications (3)

Publication Number Publication Date
JP2017008278A JP2017008278A (en) 2017-01-12
JP2017008278A5 JP2017008278A5 (en) 2018-03-29
JP6583994B2 true JP6583994B2 (en) 2019-10-02

Family

ID=57760994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138151A Expired - Fee Related JP6583994B2 (en) 2015-06-23 2015-06-23 Method for producing lubricant applied to at least one of raceway surface or rolling element of rolling bearing device, or method for producing lubricant applied to at least one sliding surface of bearing member or shaft member of sliding bearing device

Country Status (1)

Country Link
JP (1) JP6583994B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174113A (en) * 1996-06-24 1999-03-16 Ferrotec Corp Magnetic fluid using poly(12-hydroxystearic acid) dispersant having acidic end
WO2006123453A1 (en) * 2005-05-20 2006-11-23 Aisin Seiki Kabushiki Kaisha Metal bearing
JP6228765B2 (en) * 2013-06-19 2017-11-08 小林 博 Method for producing nanoparticles
JP6283459B2 (en) * 2013-07-04 2018-02-21 小林 博 Rolling bearing device and method for magnetically adhering to rolling element

Also Published As

Publication number Publication date
JP2017008278A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
Dai et al. Roles of nanoparticles in oil lubrication
Zhou et al. Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nano-particle additives in baseoil
Miyoshi et al. Solid lubrication by multiwalled carbon nanotubes in air and in vacuum
US10138439B2 (en) Lubrication material using self-dispersed crumpled graphene balls as additives in oil for friction and wear reduction
Jia et al. Effects of magnetic ionic liquid as a lubricant on the friction and wear behavior of a steel-steel sliding contact under elevated temperatures
Maharaj et al. Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments
Peng et al. The tribological behavior of modified diamond nanoparticles in liquid paraffin
Zhang et al. Effect of nano-Cu lubrication additive on the contact fatigue behavior of steel
WO2006123453A1 (en) Metal bearing
Hu et al. Diisooctyl sebacate-containing nickel nanoparticles for lubrication of steel sliding parts under magnetic fields
JP6583994B2 (en) Method for producing lubricant applied to at least one of raceway surface or rolling element of rolling bearing device, or method for producing lubricant applied to at least one sliding surface of bearing member or shaft member of sliding bearing device
Islam et al. Microstructural evaluation of inductively sintered aluminum matrix nanocomposites reinforced with silicon carbide and/or graphene nanoplatelets for tribological applications
JP6598002B2 (en) Method for producing lubricant for vacuum impregnation of porous body made of sintered metal
Chen et al. Effect of magnetic field on tribological performance of laser dimple textured surface
Mushtaq et al. Tribological characterization of Fe-Cu-Sn alloy with graphite as solid lubricant
JP2017008278A5 (en)
CN106590817A (en) Lubricating oil containing oleic acid-modified superparamagnetic nanometer hollow beads and preparation method thereof
JP4936080B2 (en) Metal bearing
JP2017014473A5 (en)
Hu et al. Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS 2 nanoparticles investigated using lateral force microscopy (LFM)
JP6283459B2 (en) Rolling bearing device and method for magnetically adhering to rolling element
JP6283458B2 (en) Manufacturing method of shaft member
Padgurskas et al. Tribologic behaviour and suspension stability of iron and copper nanoparticles in rapeseed and mineral oils
JP2021178930A (en) Production method of lubricant applied on at least one of raceway surface or rolling element of rolling bearing device, production method of lubricant applied on sliding surface of at least one of bearing member or shaft member of plain bearing device, or production method of lubricant vacuum-impregnated into porous body composed of sintered metal used in oil retaining bearing device
Li et al. The tribological performance of W-DLC in solid–liquid lubrication system addivated with Cu nanoparticles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6583994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees