JP2015014055A - Cellulose fabric for frp - Google Patents

Cellulose fabric for frp Download PDF

Info

Publication number
JP2015014055A
JP2015014055A JP2013139948A JP2013139948A JP2015014055A JP 2015014055 A JP2015014055 A JP 2015014055A JP 2013139948 A JP2013139948 A JP 2013139948A JP 2013139948 A JP2013139948 A JP 2013139948A JP 2015014055 A JP2015014055 A JP 2015014055A
Authority
JP
Japan
Prior art keywords
warp
weft
holes
woven
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013139948A
Other languages
Japanese (ja)
Other versions
JP6124712B2 (en
Inventor
健太郎 三谷
Kentaro Mitani
健太郎 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Trading Co Ltd
Original Assignee
Unitika Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Trading Co Ltd filed Critical Unitika Trading Co Ltd
Priority to JP2013139948A priority Critical patent/JP6124712B2/en
Publication of JP2015014055A publication Critical patent/JP2015014055A/en
Application granted granted Critical
Publication of JP6124712B2 publication Critical patent/JP6124712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cellulose fabric for FRP which has a high warp density and a high weft density while having through-holes for removing air bubbles in curable resin.SOLUTION: In the cellulose fabric, through-holes 1a, 1b, 1c, 1d, 1e, 1f... having a diameter of 0.3-0.7 mm are aligned in a warp and a weft direction. Three or more warps 2a, 2x, 2y, 2z and 2a in a group are overlapped closely between neighboring through-holes 1a and 1b in the weft direction. Three or more wefts 3a, 3x, 3y, 3z and 3a in a group are overlapped closely between neighboring through-holes 1a and 1d in the warp direction. The warp 2a and the weft 3a which face the through-hole are woven into a structure in which they sink and float vertically and alternately. The warps 2x and 2z which do not face the through-holes are woven into a structure in which they do not sink and float vertically between the neighboring through-holes 1a and 1d. The wefts 3x and 3z which do not face the through-holes are woven into a structure in which they do not sink and float vertically between the neighboring through-holes 1a and 1b.

Description

本発明は、繊維強化プラスチック(FRP)を製造する際に用いるセルロース織物に関するものである。   The present invention relates to a cellulosic fabric used when producing fiber reinforced plastic (FRP).

従来より、FRPはガラス繊維織物や炭素繊維織物に硬化性樹脂を含浸させて製造している。特に、ガラス繊維織物を用いたFRPは、強度に優れ安価であるため、種々の分野で多用されている。しかしながら、ガラス繊維織物を用いたFRPは、焼却によって廃棄する際に、焼却炉内でガラス繊維が溶融して固着し、焼却炉が毀損され、その寿命が短くなるという欠点があった。また、FRPを製造する際に、ガラス繊維が飛散して、作業者の皮膚に付着し、痛みやかゆみを生じさせるという欠点もあった。   Conventionally, FRP is manufactured by impregnating a curable resin into a glass fiber fabric or a carbon fiber fabric. In particular, FRP using a glass fiber fabric is widely used in various fields because of its excellent strength and low cost. However, the FRP using the glass fiber fabric has a drawback that when it is discarded by incineration, the glass fiber is melted and fixed in the incinerator, the incinerator is damaged, and its life is shortened. Moreover, when manufacturing FRP, there also existed a fault that glass fiber scattered and adhered to an operator's skin, and caused pain and itching.

このため、ガラス繊維織物に代えて、セルロース織物を採用することが提案されている(特許文献1、特許請求の範囲)。特許文献1には、セルロース織物を構成するセルロース繊維として、有機系溶剤を用いて木質パルプを紡糸したセルロース繊維を用いることが記載されている(特許文献1、3頁3〜29行目)。そして、このセルロース繊維よりなる紡績糸を用いて、平織組織で織成した織物を採用することも記載されている(特許文献1、3頁30〜39行目)。   For this reason, it is proposed to use a cellulose fabric instead of the glass fiber fabric (Patent Document 1, Claims). Patent Document 1 describes that cellulose fibers obtained by spinning wood pulp using an organic solvent are used as cellulose fibers constituting a cellulose fabric (Patent Document 1, page 3, lines 3 to 29). It is also described that a woven fabric woven with a plain weave structure using a spun yarn made of cellulose fibers is employed (Patent Document 1, page 3, lines 30 to 39).

特許文献1記載のFRPは、焼却によって廃棄する場合、セルロース織物は燃焼により二酸化炭素及び水蒸気となるから、焼却炉を毀損することはない。また、FRPの製造時に、セルロース繊維が飛散しても、ガラス繊維のような痛みやかゆみを生じさせない。したがって、ガラス繊維織物に代えて、セルロース織物を採用することが試みられている。しかしながら、セルロース平織物の場合には、ガラス繊維織物と同様の機械的強度等の物性を実現するためには、経糸及び緯糸密度を高くしなければならないということがあった。しかるに、平織物は、経糸及び緯糸が上下に交互に浮沈する組織であるから、経糸及び緯糸密度を高くするには限界があった。すなわち、平織物の場合、隣り合う経糸又は緯糸を重ねて織成することはできないから、経糸又は緯糸の太さによって、経糸密度及び緯糸密度が決定されてしまうのである。また、隣り合う経糸及び緯糸が密着するようにして織成し、限界まで高密度にすると、平織物に全く空隙がなく、硬化性樹脂を塗布した後に、硬化性樹脂内の気泡を脱泡することができないという欠点があった。   When the FRP described in Patent Document 1 is discarded by incineration, the cellulose fabric becomes carbon dioxide and water vapor by combustion, so that the incinerator is not damaged. Further, even when cellulose fibers are scattered during the production of FRP, pain and itching like glass fibers are not caused. Therefore, it has been attempted to employ a cellulose fabric instead of the glass fiber fabric. However, in the case of a cellulose plain fabric, in order to realize the same physical strength and other physical properties as the glass fiber fabric, the warp and weft densities have to be increased. However, since the plain woven fabric has a structure in which the warp and the weft are alternately floated up and down, there is a limit to increasing the warp and the weft density. That is, in the case of a plain woven fabric, adjacent warp yarns or weft yarns cannot be woven together, so the warp yarn density and the weft yarn density are determined by the thickness of the warp yarn or the weft yarn. Also, when weaving so that adjacent warp and weft are in close contact with each other and increasing the density to the limit, there is no void in the plain woven fabric, and after applying the curable resin, bubbles in the curable resin may be degassed. There was a disadvantage that it was not possible.

特許第3858040号公報(特許請求の範囲、3頁3〜39行目)Japanese Patent No. 3858040 (Claims, page 3, lines 3 to 39)

本発明の課題は、経糸密度及び緯糸密度を高密度化しながら、なおかつ、硬化性樹脂の脱泡のための貫通孔を持つFRP用セルロース織物を提供しようというものである。   An object of the present invention is to provide a cellulosic fabric for FRP having a through hole for defoaming a curable resin while increasing the warp density and the weft density.

本発明は、FRP用セルロース織物を工夫された織組織で織成することにより、上記課題を解決したものである。すなわち、本発明は、経方向及び緯方向に、その径が0.3〜0.7mmである貫通孔が配列しているセルロース織物であり、緯方向に隣り合う貫通孔の間には3本以上の経糸群が密接に重なり合って存在し、経方向に隣り合う貫通孔の間には3本以上の緯糸群が密接に重なり合って存在し、貫通孔に接する経糸及び緯糸は、上下に交互に浮沈する組織で織成されており、貫通孔に接しない少なくとも1本の経糸は、経方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されており、貫通孔に接しない少なくとも1本の緯糸は、緯方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されていることを特徴とするFRP用セルロース織物に関するものである。   This invention solves the said subject by weaving the cellulose fabric for FRP with the woven structure which was devised. That is, the present invention is a cellulose fabric in which through holes having a diameter of 0.3 to 0.7 mm are arranged in the warp direction and the weft direction, and there are three between the through holes adjacent in the weft direction. The above warp groups are closely overlapped, and three or more weft groups are closely overlapped between adjacent through holes in the warp direction, and the warp and wefts in contact with the through holes are alternately turned up and down. At least one warp that is woven with a floating structure and does not contact the through hole is woven with a structure that does not float vertically between the through holes adjacent in the warp direction, and at least one that does not contact the through hole The weft of the book relates to a cellulosic fabric for FRP, which is woven with a structure that does not float up and down between through holes adjacent in the weft direction.

本発明に係るセルロース織物は、経方向及び緯方向に、その径が0.3〜0.7mmである貫通孔が配列している。貫通孔が経方向及び緯方向に配列しているというのは、図1に示す如き状態を示している。すなわち、貫通孔1(図1で黒色の方形部位)が経方向に一定の間隔を置いて配列しており、緯方向にも一定の間隔を置いて配列していることを意味している。貫通孔1の径は、0.3〜0.7mmである。貫通孔1の径が0.3mm未満であると、塗布した硬化性樹脂の気泡を脱泡しにくくなるので、好ましくない。また、貫通孔1の径が0.7mm以上になると、セルロース織物の機械的強度等の物性が低下するので、好ましくない。貫通孔1の形状は方形や円形などの任意の形状となっているが、その径とは最長の長さ(最大径)のことを意味している。なお、この径を測定するには、たとえば、デジタルマイクロスコープVHX−1000(キーエンス社製)を用いれば、容易に行うことができる。   In the cellulose fabric according to the present invention, through-holes having a diameter of 0.3 to 0.7 mm are arranged in the warp direction and the weft direction. The fact that the through holes are arranged in the longitudinal direction and the weft direction indicates a state as shown in FIG. That is, it means that the through holes 1 (black square portions in FIG. 1) are arranged at a certain interval in the longitudinal direction and are arranged at a certain interval in the weft direction. The diameter of the through hole 1 is 0.3 to 0.7 mm. If the diameter of the through hole 1 is less than 0.3 mm, it is difficult to defoam bubbles of the applied curable resin, which is not preferable. On the other hand, when the diameter of the through hole 1 is 0.7 mm or more, the physical properties such as mechanical strength of the cellulose fabric are deteriorated, which is not preferable. The shape of the through hole 1 is an arbitrary shape such as a square or a circle, and the diameter means the longest length (maximum diameter). Note that this diameter can be easily measured by using, for example, a digital microscope VHX-1000 (manufactured by Keyence Corporation).

本発明に係るセルロース織物は、以下のような織組織となっている。すなわち、緯方向に隣り合う貫通孔1の間には3本以上の経糸群が密接に重なり合って存在し、経方向に隣り合う貫通孔1の間には3本以上の緯糸群が密接に重なり合って存在し、貫通孔1に接する経糸及び緯糸は、上下に交互に浮沈する組織で織成されており、貫通孔に接しない少なくとも1本の経糸は、経方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されており、貫通孔に接しない少なくとも1本の緯糸は、緯方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されているものである。かかる織組織について、模式図である図2に基づいて説明する。なお、図2は単に織組織を説明するための模式図であって、経糸及び緯糸が重なり合わないようになっているなど、現実とは異なるものである。現実は、図1に示す如く、経糸及び緯糸は密接に重なり合っている。   The cellulose fabric according to the present invention has the following woven structure. That is, there are three or more warp groups closely overlapping between the through holes 1 adjacent in the weft direction, and three or more weft groups closely overlapping between the through holes 1 adjacent in the warp direction. The warp and weft that are in contact with the through-hole 1 are woven in a structure that floats up and down alternately, and at least one warp that is not in contact with the through-hole is vertically moved between adjacent through-holes in the warp direction. At least one weft not contacting the through hole is woven with a structure that does not float up and down between the adjacent through holes in the weft direction. Such a woven structure will be described with reference to FIG. 2 which is a schematic diagram. Note that FIG. 2 is a schematic diagram for simply explaining the woven structure, and is different from the actual situation such that warp and weft are not overlapped. Actually, as shown in FIG. 1, the warp and the weft are closely overlapped.

緯方向に隣り合う貫通孔1a及び1bの間には、5本の経糸群2a,2x,2y,2z及び2aが存在する。図2では、織組織を説明するため、経糸群2a,2x,2y,2z及び2aは重なり合っていないが、現実には、経糸2a及び2x、経糸2x及び2y、経糸2y及び2z、経糸2z及び2aは密接に重なり合って存在する。同様に、緯方向に隣り合う貫通孔1b及び1cの間にも、5本の経糸群2a,2x,2y,2z及び2aが存在する。さらに、貫通孔1d及び1e、貫通孔1e及び1fの間にも、5本の経糸群2a,2x,2y,2z及び2aが存在する。また、経方向に隣り合う貫通孔1a及び1dの間には、5本の緯糸群3a,3x,3y,3z及び3aが存在する。緯糸群3a,3x,3y,3z及び3aについても、現実には、緯糸3a及び3x、緯糸3x及び3y、緯糸3y及び3z、緯糸3z及び3aは密接に重なり合って存在する。また、貫通孔1b及び1e、貫通孔1c及び1fの間にも、5本の緯糸群3a,3x,3y,3z及び3aが存在する。   Between the through holes 1a and 1b adjacent in the weft direction, there are five warp groups 2a, 2x, 2y, 2z and 2a. In FIG. 2, the warp groups 2a, 2x, 2y, 2z and 2a are not overlapped to explain the woven structure, but in reality, the warps 2a and 2x, the warps 2x and 2y, the warps 2y and 2z, the warps 2z and 2a exists closely overlapping. Similarly, five warp groups 2a, 2x, 2y, 2z, and 2a exist also between the through holes 1b and 1c adjacent in the weft direction. Furthermore, five warp groups 2a, 2x, 2y, 2z and 2a exist between the through holes 1d and 1e and the through holes 1e and 1f. In addition, there are five weft groups 3a, 3x, 3y, 3z and 3a between the through holes 1a and 1d which are adjacent in the warp direction. Regarding the weft groups 3a, 3x, 3y, 3z and 3a, in reality, the wefts 3a and 3x, the wefts 3x and 3y, the wefts 3y and 3z, and the wefts 3z and 3a are closely overlapped. There are also five weft groups 3a, 3x, 3y, 3z and 3a between the through holes 1b and 1e and the through holes 1c and 1f.

ここで、貫通孔1aに接する経糸2aは、上下に交互に浮沈する組織で織成されている。すなわち、経糸2aは緯糸3aの上に浮き、次に緯糸3xの下に沈み、次に緯糸3yの上に浮き、次に緯糸3zの下に沈み、次に、緯糸3aの上に浮いた組織となっている。貫通孔1bに接する左側の経糸2aは、緯糸3aの上に浮き、緯糸3xの下に沈み、緯糸3yの上に浮き、緯糸3zの下に沈み、緯糸3aの上に浮いた組織となっている。貫通孔1bに接する右側の経糸2aは、緯糸3aの下に沈み、緯糸3xの上に浮き、緯糸3yの下に沈み、緯糸3zの上に浮き、緯糸3aの下に沈んだ組織となっている。また、貫通孔1aに接する緯糸3aも、上下に交互に浮沈する組織で織成されており、図2の左側から、経糸2aの下に沈み、経糸2xの上に浮き、経糸2yの下に沈み、経糸2zの上に浮き、経糸2aの下に沈み、次いで貫通孔1bを隔てて、経糸2aの上に浮き、経糸2xの下に沈み、経糸2yの上に浮き、経糸2zの下に沈み、経糸2aの上に浮いた組織となっている。以上のように、貫孔孔1a,1b,1c,1d,1e及び1fに接する経糸2a及び緯糸3aは、上下に交互に浮沈する組織で織成されている。かかる組織は経糸2a及び緯糸3aがずれにくく、貫通孔1の形態を確実に保持しうるのである。   Here, the warp 2a in contact with the through hole 1a is woven with a structure that floats up and down alternately. That is, the warp 2a floats on the weft 3a, then sinks below the weft 3x, then floats on the weft 3y, then sinks below the weft 3z, and then floats on the weft 3a. It has become. The left warp 2a in contact with the through hole 1b floats on the weft 3a, sinks under the weft 3x, floats on the weft 3y, sinks under the weft 3z, and floats on the weft 3a. Yes. The right warp 2a in contact with the through hole 1b sinks under the weft 3a, floats on the weft 3x, sinks under the weft 3y, floats on the weft 3z, and sinks under the weft 3a. Yes. Further, the weft 3a in contact with the through-hole 1a is also woven with a structure that alternately floats up and down. From the left side of FIG. 2, the weft 3a sinks under the warp 2a, floats over the warp 2x, and under the warp 2y. Sink, float above the warp 2z, sink below the warp 2a, then float through the through hole 1b, float above the warp 2a, sink below the warp 2x, float above the warp 2y, below the warp 2z It becomes a structure that sinks and floats on the warp 2a. As described above, the warp yarn 2a and the weft yarn 3a in contact with the through-holes 1a, 1b, 1c, 1d, 1e and 1f are woven with a structure that alternately floats up and down. In such a structure, the warp 2a and the weft 3a are not easily displaced, and the form of the through hole 1 can be reliably held.

貫通孔に接しない少なくとも1本の経糸は、経方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されており、貫通孔に接しない少なくとも1本の緯糸は、緯方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されている。これを具体的に説明すると、以下のとおりである。図2において、貫通孔1a,1bに接しない経糸は、経糸2x,2y及び2zである。このうち、経糸2x及び2zは、貫通孔1a及び1dと貫通孔1b及び1e間において、緯糸3a,3x,3y,3z及び3aの下に沈んだままで全く浮沈のない組織となっている。また、貫通孔1b、1cに接しない経糸も、経糸2x,2y及び2zであり、このうち、経糸2x及び2zは、貫通孔1b及び1eと貫通孔1c及び1f間において、緯糸3a,3x,3y,3z及び3aの上に浮いたままで全く浮沈のない組織となっている。なお、図2中では、経糸2yについては、上下に交互に浮沈する組織となっている。一方、貫通孔に接しない緯糸は、緯糸3x,3y及び3zであり、このうち、緯糸3x及び3zが、貫通孔1a及び1b間で、経糸2a,2x,2y,2z及び2aの上に浮いた組織となっており、貫通孔1b及び1c間では、経糸2a,2x,2y,2z及び2aの下に沈んだ組織となっている。なお、緯糸3yについては、上下に交互に浮沈する組織となっている。以上のとおり、貫通孔に接しない少なくとも1本の経糸及び緯糸が、隣り合う貫通孔間で上に浮いたまま、又は下に沈んだままとなって浮沈しない組織となっているので、隣り合う経糸及び緯糸を密接に重なり合って織成することが可能となる。したがって、セルロース織物の経糸密度及び緯糸密度を高くすることができ、セルロース織物を機械的強度を高くすることができる。   At least one warp not in contact with the through hole is woven with a structure that does not float up and down between the adjacent through holes in the warp direction, and at least one weft not in contact with the through hole is adjacent in the weft direction. It is woven with a structure that does not float up and down between the through holes. This will be specifically described as follows. In FIG. 2, the warps that do not contact the through holes 1a and 1b are the warps 2x, 2y, and 2z. Among these, the warp yarns 2x and 2z have a structure in which there is no floating at all between the through-holes 1a and 1d and the through-holes 1b and 1e while remaining below the wefts 3a, 3x, 3y, 3z and 3a. The warp yarns that do not contact the through holes 1b and 1c are also warp yarns 2x, 2y, and 2z. Of these, the warp yarns 2x and 2z are between the through holes 1b and 1e and the through holes 1c and 1f, and the weft yarns 3a, 3x, It is a structure that floats on 3y, 3z, and 3a and has no ups and downs. In FIG. 2, the warp 2y has a structure that alternately floats up and down. On the other hand, the wefts that do not contact the through hole are the wefts 3x, 3y, and 3z. Among these, the wefts 3x and 3z float on the warps 2a, 2x, 2y, 2z, and 2a between the through holes 1a and 1b. The structure between the through holes 1b and 1c is a structure that sank under the warps 2a, 2x, 2y, 2z, and 2a. The weft 3y has a structure that floats up and down alternately. As described above, since at least one warp and weft that do not contact the through-holes float up between adjacent through-holes, or remain down, and have a structure that does not float up and down. It becomes possible to weave the warp and weft closely overlapping each other. Therefore, the warp density and the weft density of the cellulose fabric can be increased, and the mechanical strength of the cellulose fabric can be increased.

本発明に係るセルロース織物は、その組織によって、経方向及び緯方向に配列している貫通孔の形態を確実に保持することができるので、塗布した硬化性樹脂の気泡を、この貫通孔から脱泡することができ、得られるFRP中に気泡が残存しにくくなるという効果を奏する。また、本発明に係るセルロース織物は、その組織によって、経糸密度及び緯糸密度を高密度化できるので、セルロース織物自体の機械的強度等の物性が良好となる。以上の結果、セルロース織物を使用しているにも拘わらず、得られるFRPの曲げ強度や曲げ弾性率も高くなるという効果を奏する。   The cellulosic fabric according to the present invention can reliably hold the shape of the through-holes arranged in the warp direction and the weft direction depending on the structure, so that the air bubbles of the applied curable resin are removed from the through-holes. There is an effect that bubbles can be formed and bubbles hardly remain in the obtained FRP. Moreover, since the cellulose fabric which concerns on this invention can make a warp density and a weft density high according to the structure | tissue, physical properties, such as mechanical strength of cellulose fabric itself, become favorable. As a result, although the cellulose woven fabric is used, there is an effect that the bending strength and bending elastic modulus of the obtained FRP are increased.

本発明で用いる経糸及び緯糸としては、任意のセルロース糸が用いられる。特に、公知のリヨセル繊維よりなる紡績糸を用いるのが好ましい。リヨセル繊維は、有機系溶剤を用いてユーカリから得られたパルプを紡糸した得られたものであり、機械的強度に優れているからである。紡績糸の番手(太さ)も任意であるが、10〜40番手程度が好ましい。40番手を超えると紡績糸の強度が低下する傾向が生じ、10番手未満であると平坦な織物を織成しにくい傾向となる。また、紡績糸の撚係数は、2.2〜4.0程度であるのが好ましい。撚係数が2.2未満であると紡績糸の強度が低下する傾向が生じ、4.0を超えると紡績糸に撚り縮みが生じ平坦な織物を織成しにくい傾向となる。なお、撚係数とは、以下の式で算出されるものである。すなわち、K=T/N1/2(ここで、Kは撚係数であり、Tは1インチ長さにおける撚数であり、Nは紡績糸の番手である。)である。 Arbitrary cellulose yarn is used as the warp and weft used in the present invention. In particular, it is preferable to use a spun yarn made of a known lyocell fiber. This is because the lyocell fiber is obtained by spinning a pulp obtained from eucalyptus using an organic solvent and is excellent in mechanical strength. The count (thickness) of the spun yarn is also arbitrary, but is preferably about 10 to 40. If it exceeds 40, the strength of the spun yarn tends to decrease, and if it is less than 10, it tends to be difficult to weave a flat fabric. The twist coefficient of the spun yarn is preferably about 2.2 to 4.0. If the twisting coefficient is less than 2.2, the strength of the spun yarn tends to decrease. If it exceeds 4.0, the spun yarn tends to twist and shrink, and it becomes difficult to weave a flat fabric. The twist coefficient is calculated by the following formula. That is, K = T / N 1/2 (where K is a twist coefficient, T is the number of twists in a length of 1 inch, and N is a yarn count).

本発明に係るセルロース織物を織成するときの組織は、たとえば、図2に示した組織であってもよいし、図3に示した組織であってもよい。図3に示した組織は意匠図であって、貫通孔が形成される箇所が分かりにくくなっているが、図3中に丸印で示した箇所に貫通孔が形成されるものである。図2及び図3に示した組織以外にも種々の組織を採用しうる。すなわち、緯方向に隣り合う貫通孔の間に3本以上の経糸群が密接に重なり合って存在し、経方向に隣り合う貫通孔の間にも3本以上の緯糸群が密接に重なり合って存在し、貫通孔に接する経糸及び緯糸が、上下に交互に浮沈する組織で織成されており、貫通孔に接しない少なくとも1本の経糸は、経方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されており、貫通孔に接しない少なくとも1本の緯糸は、緯方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されていれば、その他の組織であっても差し支えない。   The structure when weaving the cellulose fabric according to the present invention may be, for example, the structure shown in FIG. 2 or the structure shown in FIG. The structure shown in FIG. 3 is a design drawing, and it is difficult to understand the place where the through hole is formed. However, the through hole is formed at the place indicated by a circle in FIG. Various organizations other than those shown in FIGS. 2 and 3 can be adopted. That is, there are three or more warp groups closely overlapping between the through holes adjacent in the weft direction, and there are three or more weft groups closely overlapping between the through holes adjacent in the warp direction. The warp and weft that are in contact with the through hole are woven with a structure that floats up and down alternately, and at least one warp that does not contact the through hole does not float up and down between the through holes adjacent in the warp direction. The at least one weft yarn that is woven in and that does not contact the through-holes may be another structure as long as it is woven with a structure that does not float up and down between the adjacent through-holes in the weft direction. .

本発明に係るセルロース織物の引張強さは500N以上であるのが好ましい。また、経方向と緯方向における引張強さは同程度が好ましく、具体的には、両者の比が0.8〜1.2の範囲であるのが好ましい。引張強さが500N未満になると、機械的強度等の物性が低下する傾向が生じる。また、経方向と緯方向における引張強さの比が0.8未満であったり1.2を超えると、得られるFRPにも経方向と緯方向で強度差が大きくなる傾向が生じる。なお、セルロース織物の引張強さは、JIS L 1096に記載の方法に準拠した測定したものである。   The tensile strength of the cellulose fabric according to the present invention is preferably 500 N or more. Further, the tensile strength in the warp direction and the weft direction is preferably about the same, and specifically, the ratio between the two is preferably in the range of 0.8 to 1.2. When the tensile strength is less than 500 N, the physical properties such as mechanical strength tend to decrease. If the ratio of the tensile strength in the warp direction to the weft direction is less than 0.8 or exceeds 1.2, the resulting FRP also tends to have a large strength difference between the warp direction and the weft direction. In addition, the tensile strength of a cellulose fabric is measured based on the method described in JIS L 1096.

FRPを製造する際に用いる樹脂は、従来公知の各種樹脂を用いることができる。たとえば、熱硬化性樹脂や熱可塑性樹脂を用いることができる。一般的には、熱硬化性樹脂等の硬化性樹脂が用いられる。硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ポリウレタン樹脂等が挙げられるが、一般的には不飽和ポリエステル樹脂が用いられる。   Conventionally known various resins can be used as the resin used in manufacturing the FRP. For example, a thermosetting resin or a thermoplastic resin can be used. Generally, a curable resin such as a thermosetting resin is used. Examples of the curable resin include a phenol resin, an epoxy resin, a melamine resin, a urea resin, an unsaturated polyester resin, an alkyd resin, a polyurethane resin, and the like. Generally, an unsaturated polyester resin is used.

本発明に係るセルロース織物に樹脂を塗布する方法も、ハンドレイアップ法、スプレーアップ法又はSMCプレス法等の従来公知の方法を採用することができる。特に、本発明に係るセルロース織物の場合、セルロース織物に樹脂を塗布し、脱泡しながら、セルロース織物と樹脂を多重に積層するハンドレイアップ法やスプレーアップ法を採用するのが好ましい。   As a method of applying a resin to the cellulose fabric according to the present invention, a conventionally known method such as a hand lay-up method, a spray-up method, or an SMC press method can be employed. In particular, in the case of the cellulose fabric according to the present invention, it is preferable to employ a hand lay-up method or a spray-up method in which a cellulose fabric and a resin are laminated in layers while applying a resin to the cellulose fabric and degassing it.

実施例1
(経糸及び緯糸の準備)
平均単糸直径が11μmで平均繊維長が38mmのリヨセル繊維(レンチング社製)を用い、混打綿、梳綿、練条、粗紡、精紡の通常の紡績工程で、撚係数3.6で30番手の紡績糸を得た。この紡績糸を経糸及び緯糸とした。
(セルロース織物の製織)
エアージェットZA(津田駒工業社製のエアージェット織機)を用い、上記した経糸及び緯糸で、図3の意匠図に示した組織で、経糸密度90本/インチ、緯糸密度90本/インチのセルロース織物を得た。このセルロース織物には、図3の丸印を付した箇所に、0.68mm径の貫通孔が設けられていた。なお、このセルロース織物の目付は170g/m2で、経方向の引張強さは990Nで緯方向の引張強さは940Nであった。
(FRPの製造)
上記したセルロース織物を三層にすると共に、硬化性樹脂としてユピカ4505(日本ユピカ社製の不飽和ポリエステル樹脂)を用いて、ハンドレイアップ法にて脱泡しながら、300mm×300mmの大きさのFRP成型板を得た。このFRP成型板中におけるセルロース織物と硬化樹脂の質量割合は、セルロース織物:硬化樹脂=38:62であった。このFRP成型板の曲げ強度は170MPaであり、曲げ弾性率は6.3GPaであった。なお、曲げ強度及び曲げ弾性率は、JIS K 6911に記載の方法に準拠して測定した。
Example 1
(Preparation of warp and weft)
Using a lyocell fiber (manufactured by Lenzing) having an average single yarn diameter of 11 μm and an average fiber length of 38 mm, a normal spinning process of blended cotton, cotton wool, kneading, roving and fine spinning, with a twist coefficient of 3.6 30th spun yarn was obtained. This spun yarn was used as warp and weft.
(Weaving cellulose fabric)
Cellulose with a warp density of 90 yarns / inch and a weft density of 90 yarns / inch in the structure shown in the design diagram of FIG. A woven fabric was obtained. The cellulose woven fabric was provided with a 0.68 mm diameter through hole at a location marked with a circle in FIG. The basis weight of this cellulose fabric was 170 g / m 2 , the tensile strength in the warp direction was 990 N, and the tensile strength in the weft direction was 940 N.
(FRP production)
While making the above cellulose fabric into three layers and using Iupica 4505 (unsaturated polyester resin made by Nippon Iupika Co., Ltd.) as a curable resin, it is 300 mm × 300 mm in size while defoaming by the hand lay-up method. An FRP molded plate was obtained. The mass ratio of the cellulose fabric and the cured resin in this FRP molded plate was cellulose fabric: cured resin = 38: 62. The FRP molded plate had a bending strength of 170 MPa and a flexural modulus of 6.3 GPa. In addition, bending strength and a bending elastic modulus were measured based on the method of JISK6911.

実施例2
(経糸及び緯糸の準備)
平均単糸直径が13.8μmで平均繊維長が30mmのリヨセル繊維(レンチング社製)を用い、混打綿、梳綿、練条、粗紡、精紡の通常の紡績工程で、撚係数3.8で15番手の紡績糸を得た。この紡績糸を経糸及び緯糸とした。
(セルロース織物の製織)
エアージェットZA(津田駒工業社製のエアージェット織機)を用い、上記した経糸及び緯糸で、図3の意匠図に示した組織で、経糸密度76本/インチ、緯糸密度76本/インチのセルロース織物を得た。このセルロース織物には、図3の丸印を付した箇所に、0.65mm径の貫通孔が設けられていた。なお、このセルロース織物の目付は220g/m2で、経方向の引張強さは1530Nで緯方向の引張強さは1390Nであった。
(FRPの製造)
実施例1の場合と同一の方法で、300mm×300mmの大きさのFRP成型板を得た。このFRP成型板中におけるセルロース織物と硬化樹脂の質量割合は、セルロース織物:硬化樹脂=40:60であった。このFRP成型板の曲げ強度は185MPaであり、曲げ弾性率は6.7GPaであった。
Example 2
(Preparation of warp and weft)
Using a lyocell fiber (manufactured by Lenzing) having an average single yarn diameter of 13.8 μm and an average fiber length of 30 mm, a twisting factor of 3. 8 gave 15th spun yarn. This spun yarn was used as warp and weft.
(Weaving cellulose fabric)
Cellulose with a warp density of 76 / inch and a weft density of 76 / inch with the structure shown in the design diagram of FIG. A woven fabric was obtained. This cellulose fabric was provided with a through-hole having a diameter of 0.65 mm at the location marked with a circle in FIG. The basis weight of this cellulose fabric was 220 g / m 2 , the tensile strength in the warp direction was 1530 N, and the tensile strength in the weft direction was 1390 N.
(FRP production)
By the same method as in Example 1, an FRP molded plate having a size of 300 mm × 300 mm was obtained. The mass ratio of the cellulose fabric and the cured resin in the FRP molded plate was cellulose fabric: cured resin = 40: 60. The bending strength of this FRP molded plate was 185 MPa, and the bending elastic modulus was 6.7 GPa.

本発明の一例に係るセルロース織物表面の写真である。It is a photograph of the cellulose fabric surface concerning an example of the present invention. 本発明の一例に係るセルロース織物の組織を示す模式図である。It is a schematic diagram which shows the structure | tissue of the cellulose fabric based on an example of this invention. 本発明の一例に係るセルロース織物の織成する際に用いる意匠図である。It is a design figure used when weaving a cellulose fabric according to an example of the present invention.

1,1a,1b,1c,1d,1e,1f 貫通孔
2a,2x,2y,2z 経糸
3a,3x,3y,3z 緯糸
1, 1a, 1b, 1c, 1d, 1e, 1f Through hole 2a, 2x, 2y, 2z Warp 3a, 3x, 3y, 3z Weft

Claims (3)

経方向及び緯方向に、その径が0.3〜0.7mmである貫通孔が配列しているセルロース織物であり、
緯方向に隣り合う貫通孔の間には3本以上の経糸群が密接に重なり合って存在し、経方向に隣り合う貫通孔の間には3本以上の緯糸群が密接に重なり合って存在し、
貫通孔に接する経糸及び緯糸は、上下に交互に浮沈する組織で織成されており、
貫通孔に接しない少なくとも1本の経糸は、経方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されており、貫通孔に接しない少なくとも1本の緯糸は、緯方向に隣り合う貫通孔間で上下に浮沈しない組織で織成されていることを特徴とするFRP用セルロース織物。
A cellulose fabric in which through holes having a diameter of 0.3 to 0.7 mm are arranged in the warp direction and the weft direction,
There are three or more warp groups closely overlapping between the through holes adjacent in the weft direction, and there are three or more weft groups closely overlapping between the through holes adjacent in the warp direction,
The warp and weft in contact with the through hole are woven with a structure that alternately floats up and down,
At least one warp not in contact with the through hole is woven with a structure that does not float up and down between the adjacent through holes in the warp direction, and at least one weft not in contact with the through hole is adjacent in the weft direction. A cellulose woven fabric for FRP, which is woven with a structure that does not float up and down between through holes.
経糸及び緯糸は、リヨセル繊維よりなる紡績糸である請求項1記載のFRP用セルロース織物。   The cellulose fabric for FRP according to claim 1, wherein the warp and the weft are spun yarns made of lyocell fibers. 請求項1記載のFRP用セルロース織物に、硬化性樹脂を含浸して硬化させたFRP成型品。   An FRP molded article obtained by impregnating a curable resin into the FRP cellulose woven fabric according to claim 1 and curing it.
JP2013139948A 2013-07-03 2013-07-03 Cellulose fabric for FRP Expired - Fee Related JP6124712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139948A JP6124712B2 (en) 2013-07-03 2013-07-03 Cellulose fabric for FRP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139948A JP6124712B2 (en) 2013-07-03 2013-07-03 Cellulose fabric for FRP

Publications (2)

Publication Number Publication Date
JP2015014055A true JP2015014055A (en) 2015-01-22
JP6124712B2 JP6124712B2 (en) 2017-05-10

Family

ID=52435981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139948A Expired - Fee Related JP6124712B2 (en) 2013-07-03 2013-07-03 Cellulose fabric for FRP

Country Status (1)

Country Link
JP (1) JP6124712B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192351A (en) * 1998-12-22 2000-07-11 Nitto Boseki Co Ltd Glass fiber woven fabric and laminated sheet using the same as reinforcing material
JP2002054270A (en) * 2000-08-10 2002-02-20 Toray Ind Inc Basic material for reinforcement
JP2003027349A (en) * 2001-07-16 2003-01-29 Sakai Composite Kk Woven fabric for reinforcement
WO2004052967A1 (en) * 2002-12-12 2004-06-24 Caco Chemical Inc. Plant fiber reinforced plastic formed article
JP2006138031A (en) * 2004-11-11 2006-06-01 Toray Ind Inc Reinforcing fiber substrate, preform and method for producing them
JP2008013886A (en) * 2006-07-07 2008-01-24 Sakai Sangyo Kk Reinforcing fiber fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192351A (en) * 1998-12-22 2000-07-11 Nitto Boseki Co Ltd Glass fiber woven fabric and laminated sheet using the same as reinforcing material
JP2002054270A (en) * 2000-08-10 2002-02-20 Toray Ind Inc Basic material for reinforcement
JP2003027349A (en) * 2001-07-16 2003-01-29 Sakai Composite Kk Woven fabric for reinforcement
WO2004052967A1 (en) * 2002-12-12 2004-06-24 Caco Chemical Inc. Plant fiber reinforced plastic formed article
JP2006138031A (en) * 2004-11-11 2006-06-01 Toray Ind Inc Reinforcing fiber substrate, preform and method for producing them
JP2008013886A (en) * 2006-07-07 2008-01-24 Sakai Sangyo Kk Reinforcing fiber fabric

Also Published As

Publication number Publication date
JP6124712B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
KR100570229B1 (en) Carbon fiber fabrics, fiber-reinforced plastic molded articles using the fabrics, and methods of making the molded articles
JP5703542B2 (en) Carbon fiber reinforced resin sheet and roll wound body thereof
JP4615398B2 (en) Carbon fiber composite material molded body
KR101538032B1 (en) Basalt fiber reinforced composite material and manufacturing method thereof
JP7007630B2 (en) Carbon fiber reinforced plastic containing cellulose nanofibers
JP4889741B2 (en) Carbon fiber-containing laminated molded body and method for producing the same
JPH02173044A (en) Fiber-reinforced plastics and reinforcing material therefor
KR930017948A (en) Unidirectional Prepreg and Carbon Fiber Reinforced Composites
Ratim et al. The effect of woven and non-woven fiber structure on mechanical properties polyester composite reinforced kenaf
Chen et al. Manufacturing and properties of cotton and jute fabrics reinforced epoxy and PLA composites
JP2002138344A (en) Unidirectional carbon fiber woven fabric, method for producing the same, and reinforced concrete structure
JPH0575575B2 (en)
JP6124712B2 (en) Cellulose fabric for FRP
Olonisakin et al. Influence of stacking sequence on mechanical properties and moisture absorption of epoxy-based woven flax and basalt fabric hybrid composites
JP2007152672A (en) Three-dimensional fiber-reinforced resin composite material and three-dimensional fabric
CN108221135A (en) A kind of preparation method of incompressible composite material
CN201762607U (en) Three-layer papermaking forming mesh with high air permeability
CN104772949B (en) A kind of high-performance aramid fiber shuffling cloth peculiar to vessel and its manufacture method
CN214449087U (en) High-performance fiber-reinforced composite material containing carbon fibers
Shinde et al. Flexural behavior of fiberglass polymer composite with and without TEOS electrospun nanofibers
JP2010144646A (en) Windmill blade
JP2006257573A (en) Carbon fiber fabric
CN2863826Y (en) Glass fiber integer interval woven fabric
JP3807106B2 (en) Carbon fiber reinforced resin
Boroomand et al. Mechanical Behavior of 3D Orthogonal Woven Jute-polyester Hybrid Composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170404

R150 Certificate of patent or registration of utility model

Ref document number: 6124712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees