JP2015011770A - イオンビーム測定装置及びイオンビーム測定方法 - Google Patents

イオンビーム測定装置及びイオンビーム測定方法 Download PDF

Info

Publication number
JP2015011770A
JP2015011770A JP2013134052A JP2013134052A JP2015011770A JP 2015011770 A JP2015011770 A JP 2015011770A JP 2013134052 A JP2013134052 A JP 2013134052A JP 2013134052 A JP2013134052 A JP 2013134052A JP 2015011770 A JP2015011770 A JP 2015011770A
Authority
JP
Japan
Prior art keywords
ion beam
mask
ion
measurement
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013134052A
Other languages
English (en)
Other versions
JP6150632B2 (ja
Inventor
徳安 井門
Tokuyasu Imon
徳安 井門
耕二 稲田
Koji Inada
耕二 稲田
一浩 渡邉
Kazuhiro Watanabe
一浩 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ion Technology Co Ltd
Original Assignee
SEN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEN Corp filed Critical SEN Corp
Priority to JP2013134052A priority Critical patent/JP6150632B2/ja
Priority to TW103114232A priority patent/TWI626674B/zh
Priority to CN201410168751.4A priority patent/CN104253010B/zh
Priority to KR1020140049365A priority patent/KR102085385B1/ko
Priority to US14/314,448 priority patent/US9564292B2/en
Publication of JP2015011770A publication Critical patent/JP2015011770A/ja
Application granted granted Critical
Publication of JP6150632B2 publication Critical patent/JP6150632B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24405Faraday cages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24528Direction of beam or parts thereof in view of the optical axis, e.g. beam angle, angular distribution, beam divergence, beam convergence or beam landing angle on sample or workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24535Beam current

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Measurement Of Radiation (AREA)

Abstract

【課題】単純な構成で二方向のビーム角度を測定する。【解決手段】イオンビーム測定装置100は、もとのイオンビームBを、イオンビーム進行方向に垂直であるy方向に長いyビーム部分と、前記進行方向及びy方向に垂直であるx方向に長いxビーム部分と、を備える測定用イオンビームBmに整形するためのマスク102と、yビーム部分のx方向位置を検出し、xビーム部分のy方向位置を検出するよう構成されている検出部104と、x方向位置を用いてx方向ビーム角度を演算し、y方向位置を用いてy方向ビーム角度を演算するよう構成されているビーム角度演算部108と、を備える。【選択図】図2

Description

本発明は、イオン注入装置に適するイオンビーム測定装置及び測定方法に関する。
イオンビームの進行方向の角度を測定する方法が知られている。こうした方法においては例えば、リボン状のイオンビームの一部を通過させる円形小孔を有するマスク板がビームモニタの上流側に配置される。ある他の方法においては、並進メカニズムにより移動されるフラグが使用され、このフラグは、イオンビーム角度の測定を可能にする第1の形状と第2の形状とを有する。第1の形状は垂直スロットであり、第2の形状は傾斜エッジである。
特開2010−50108号公報 特表2009−524195号公報
イオン注入処理においては注入するイオンビームの角度が制御され又は管理されている。とりわけ高エネルギー領域のイオン注入では、高精度の角度制御又は管理が望まれるようになりつつある。しかし、そうした領域では一般にビーム電流が小さいので、高精度の測定は簡単ではない。上述のようにマスク板の円形小孔でビームの通過を制限すれば、ビーム電流は極小となり、求められる精度で測定することができないかもしれない。また、イオンビームの進行方向に垂直な二方向それぞれのビーム角度を、可動式の傾斜エッジを用いて測定するのは複雑である。
本発明のある態様の例示的な目的のひとつは、単純な構成で二方向のビーム角度を測定することができるイオンビーム測定装置及び測定方法を提供することにある。
本発明のある態様によると、もとのイオンビームを、イオンビーム進行方向に垂直であるy方向に長いyビーム部分と、前記進行方向及びy方向に垂直であるx方向に長いxビーム部分と、を備える測定用イオンビームに整形するためのマスクと、前記yビーム部分のx方向位置を検出し、前記xビーム部分のy方向位置を検出するよう構成されている検出部と、前記x方向位置を用いてx方向ビーム角度を演算し、前記y方向位置を用いてy方向ビーム角度を演算するよう構成されているビーム角度演算部と、を備えることを特徴とするイオンビーム測定装置が提供される。
本発明のある態様によると、イオンビーム進行方向に垂直であるy方向に長いyビーム部分と、前記進行方向及びy方向に垂直であるx方向に長いxビーム部分と、を備える測定用イオンビームを準備することと、前記yビーム部分のx方向位置を検出することと、前記xビーム部分のy方向位置を検出することと、前記x方向位置を用いてx方向ビーム角度を演算することと、前記y方向位置を用いてy方向ビーム角度を演算することと、を備えることを特徴とするイオンビーム測定方法が提供される。
なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
本発明によれば、単純な構成で二方向のビーム角度を測定することができるイオンビーム測定装置及び測定方法を提供することができる。
本発明の第1の実施形態に係るイオン注入装置を概略的に示す図である。 本発明の第1の実施形態に係るイオンビーム測定装置を概略的に示す図である。 図2に示すイオンビーム測定装置をマスクのy方向中央で切断してy方向から見た図である。 図2に示すイオンビーム測定装置をマスクのyスリットのx方向位置で切断してx方向から見た図である。 図2に示すイオンビーム測定装置をマスクのxスリットのx方向位置で切断してx方向から見た図である。 本発明の第2の実施形態に係るイオン注入装置の処理室を概略的に示す図である。 本発明の第2の実施形態に係るイオンビーム測定装置を概略的に示す図である。 図7に示すイオンビーム測定装置をマスクのy方向中央で切断してy方向から見た図である。 本発明の第3の実施形態に係るイオンビーム測定装置を概略的に示す図である。 本発明の第4の実施形態に係るイオンビーム測定装置に使用されるマスクを示す図である。 本発明の第5の実施形態に係るイオンビーム測定装置に使用されるマスクを示す図である。 本発明のある実施形態に係るイオンビーム測定方法を説明するためのフローチャートである。
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。
(第1の実施形態)
図1は、本発明の第1の実施形態に係るイオン注入装置10を概略的に示す図である。図1の上部はイオン注入装置10の概略構成を示す上面図であり、図1の下部はイオン注入装置10の概略構成を示す側面図である。
イオン注入装置10は、被処理物Wの表面にイオン注入処理をするよう構成されている。被処理物Wは、例えば基板であり、例えば半導体ウエハである。よって以下では説明の便宜のため被処理物Wを基板Wと呼ぶことがあるが、これは注入処理の対象を特定の物体に限定することを意図していない。
イオン注入装置10は、ビームスキャン及びメカニカルスキャンの少なくとも一方により基板Wの全体にわたってイオンビームBを照射するよう構成されている。本書では説明の便宜上、設計上のイオンビームBの進行方向をz方向とし、z方向に垂直な面をxy面と定義する。後述するようにイオンビームBを被処理物Wに対し走査する場合には走査方向をx方向とし、z方向及びx方向に垂直な方向をy方向とする。よって、ビームスキャンはx方向に行われ、メカニカルスキャンはy方向に行われる。
イオン注入装置10は、イオンソース12と、ビームライン装置14と、真空処理室16と、を備える。イオンソース12は、イオンビームBをビームライン装置14に与えるよう構成されている。ビームライン装置14は、イオンソース12から真空処理室16へとイオンを輸送するよう構成されている。また、イオン注入装置10は、イオンソース12、ビームライン装置14、及び真空処理室16に所望の真空環境を提供するための真空排気系(図示せず)を備える。
図示されるように、ビームライン装置14は例えば、上流から順に、質量分析磁石装置18、ビーム整形装置20、偏向走査装置22、Pレンズ24又はビーム平行化装置、及び、角度エネルギーフィルター26を備える。なお本書において、上流とはイオンソース12に近い側を指し、下流とは真空処理室16(またはビームストッパ28)に近い側を指す。
質量分析磁石装置18は、イオンソース12の下流に設けられており、イオンソース12から引き出されたイオンビームBから必要なイオン種を質量分析により選択するよう構成されている。ビーム整形装置20は、Qレンズなどの収束レンズを備えており、イオンビームBを所望の断面形状に整形するよう構成されている。
また、偏向走査装置22は、ビームスキャンを提供するよう構成されている。偏向走査装置22は、整形されたイオンビームBをx方向に走査する。こうして、イオンビームBは、y方向の幅よりも長いx方向の走査範囲にわたって走査される。図1において矢印Cによりビームスキャン及びその走査範囲を例示し、走査範囲の一端及び他端でのイオンビームBをそれぞれ実線及び破線で示す。なお明確化のためにイオンビームBに斜線を付して図示する。
Pレンズ24は、走査されたイオンビームBの進行方向を平行にするよう構成されている。角度エネルギーフィルター26は、イオンビームBのエネルギーを分析し必要なエネルギーのイオンを下方に偏向して真空処理室16に導くよう構成されている。このようにして、ビームライン装置14は、基板Wに照射されるべきイオンビームBを真空処理室16に供給する。
真空処理室16は、1枚又は複数枚の基板Wを保持し、イオンビームBに対する例えばy方向の相対移動(いわゆるメカニカルスキャン)を必要に応じて基板Wに提供するよう構成されている物体保持部(図示せず)を備える。図1において矢印Dによりメカニカルスキャンを例示する。また、真空処理室16は、ビームストッパ28を備える。イオンビームB上に基板Wが存在しない場合には、イオンビームBはビームストッパ28に入射する。
ある他の実施形態においては、イオン注入装置10は、z方向に垂直な一方向に長い断面を有するイオンビームを真空処理室16に与えるよう構成されていてもよい。この場合、イオンビームは例えば、y方向の幅よりも長いx方向の幅を有する。こうした細長断面のイオンビームはリボンビームと呼ばれることもある。あるいは、更なる他の実施形態においては、イオン注入装置10は、イオンビームを走査することなく、スポット状の断面を有するイオンビームを真空処理室16に与えるよう構成されていてもよい。
詳しくは図2ないし図5を参照して後述するが、真空処理室16にはイオンビーム測定装置100が設けられている。イオンビーム測定装置100は、もとのイオンビームBを測定用イオンビームBmに整形するためのマスク102と、測定用イオンビームBmを検出するよう構成されている検出部104と、を備える。
図1の下部に例示するように、基板WにイオンビームBが照射されるとき、マスク102及び検出部104はイオンビームBから外れた待避位置にある。このときマスク102及び検出部104にイオンビームBは照射されない。測定の際には、マスク102及び検出部104は、図示しない移動機構により、イオンビームBを横切る測定位置(図2参照)に移動される。このときマスク102は、イオンビームBの経路上において角度エネルギーフィルター26と検出部104との間にあり、検出部104は、イオン注入処理において基板Wの表面が置かれるz方向位置にある。
また、イオンビーム測定装置100は、イオンビーム測定処理を実行するための測定制御部106を備える。測定制御部106は、イオン注入装置10を制御するよう構成されている制御装置の一部であってもよいし、それとは別個に設けられていてもよい。測定制御部106は、上述のようなマスク102及び検出部104の待避位置と測定位置との間の移動を司るよう構成されていてもよい。ある実施形態においては、イオン注入装置10は、イオンビーム測定装置100による測定結果に基づいてイオン注入処理を制御するよう構成されていてもよい。
測定制御部106は、検出結果を表す検出部104の出力に基づいて、設計上の進行方向であるz方向に対して実際のイオンビームBの進行方向がなす角度を演算するよう構成されているビーム角度演算部108を備える。ビーム角度演算部108は、測定用イオンビームBmのyビーム部分のx方向位置を用いてx方向ビーム角度を演算し、測定用イオンビームBmのxビーム部分のy方向位置を用いてy方向ビーム角度を演算するよう構成されている。
図2は、本発明の第1の実施形態に係るイオンビーム測定装置100を概略的に示す図である。図3は、図2に示すイオンビーム測定装置100をマスク102のy方向中央で切断してy方向から見た図である。図4は、図2に示すイオンビーム測定装置100をマスク102のyスリット110yのx方向位置で切断してx方向から見た図である。図5は、図2に示すイオンビーム測定装置100をマスク102のxスリット110xのx方向位置で切断してx方向から見た図である。
マスク102は、上流から供給されるイオンビームBを部分的に透過させ測定用イオンビームBmを生成するよう構成されている。測定用イオンビームBmは、yビーム部分112y及びxビーム部分112xを備える(図3ないし図5参照)。yビーム部分112yは、xy面においてy方向に細長い断面を有する。xビーム部分112xは、xy面においてx方向に細長い断面を有する。
マスク102は、イオンビームBを通過させる複数のスリット又は開口を有する板状の部材を備える。マスク102上の複数のスリットは、y方向に細長いyスリット110yと、x方向に細長いxスリット110xと、を含む。本書では、yスリット110yが形成されているマスク102の部分を「第1マスク部分」と称し、xスリット110xが形成されているマスク102の部分を「第2マスク部分」と称することがある。
図2に示されるマスク102は、もとのイオンビームBが入射するマスク102上の被照射領域に、3つの第1マスク部分及び2つの第2マスク部分を備える。これらの第1マスク部分及び第2マスク部分は、x方向に互い違いに配置されている。各第1マスク部分は1本のyスリット110yを備え、各第2マスク部分は1本のxスリット110xを備える。
よって、マスク102は、3本のyスリット110yと2本のxスリット110xとを有し、yスリット110yとxスリット110xとがx方向に互い違いに並んでいる。中央のyスリット110yは、イオンビームBが入射するマスク102上の被照射領域においてx方向中央に配置されている。残りの2本のyスリット110yはそれぞれ、マスク102上の被照射領域においてx方向端部に配置されている。一方、2本のxスリット110xは、y方向に関して同じ位置にあり、マスク102上の被照射領域においてy方向中央に配置されている。
yスリット110yは、yビーム部分112yに対応する形状を有する貫通孔である。従ってyスリット110yは、ある狭いスリット幅をx方向に有し、それよりも長いスリット長さをy方向に有する。一方、xスリット110xは、xビーム部分112xに対応する形状を有する貫通孔である。従ってxスリット110xは、ある狭いスリット幅をy方向に有し、それよりも長いスリット長さをx方向に有する。
yスリット110y及びxスリット110xのスリット長さはスリット幅よりも顕著に長く、スリット長さはスリット幅の例えば少なくとも10倍である。測定の精度を重視する場合にはスリット幅を狭くすることが望ましく、測定時間を短縮することを重視する場合にはスリット幅を広くすることが望ましい。yスリット110yのスリット長さはイオンビームBのy方向の幅に応じて定められる。
また、マスク102は、測定用イオンビームBmが検出部104に入射するとき隣接する2つのビーム部分が互いに分離されているように、隣接する2つのスリットの間隔が定められている。図3に示されるように、隣接するyビーム部分112yとxビーム部分112xとが検出部104のz方向位置において互いに重なり合わないように、隣接するyスリット110yとxスリット110xとのx方向の間隔が定められている。このようにすれば、マスク102から検出部104に各ビーム部分が達するまでに各ビーム部分の発散により、隣接するビーム部分が互いに混ざり合うことを避けることができる。
イオンビームBが第1マスク部分に照射されyスリット110yを通過することにより、yビーム部分112yが生成される。イオンビームBが第2マスク部分に照射されxスリット110xを通過することにより、xビーム部分112xが生成される。マスク102上のyスリット110y及びxスリット110xの配置に対応して、3本のyビーム部分112yと2本のxビーム部分112xとがx方向に互い違いに配列された測定用イオンビームBmが生成される。
検出部104による検出の間、マスク102は静止している。よって、yビーム部分112y及びxビーム部分112xは、もとのイオンビームBから切り出された特定の一部分に相当する。そのため、yビーム部分112y及びxビーム部分112xは、xy面におけるイオンビームBの特定の位置でのビーム角度を保持する。
検出部104は、yビーム部分112yのx方向位置を検出し、xビーム部分112xのy方向位置を検出するよう構成されている。検出部104は、測定用イオンビームBmを横切るようにx方向に移動可能である移動検出器を備える。検出部104のx方向への移動を図2において矢印Eにより例示する。検出器のx方向移動により、yビーム部分112yのx方向位置が検出される。また、検出部104は、y方向に配列された複数の検出要素114を備える。検出部104におけるxビーム部分112xの到達位置から、xビーム部分112xのy方向位置が検出される。
このようにして、検出部104は、移動検出器が測定用イオンビームBmを1回横切る間にyビーム部分112yのx方向位置及びxビーム部分112xのy方向位置を検出することができる。
検出部104または各検出要素114は、例えば、入射するイオンの量に応じて電流を生成する素子を備えており、あるいはイオンビームを検出可能である任意の構成であってもよい。検出部104または各検出要素114は、例えばファラデーカップであってもよい。また、図示される検出部104は5つの検出要素114が代表的に例示されているが、検出部104は典型的には、それより多数(例えば少なくとも10個)の検出要素114の配列を備えてもよい。
図3に示されるように、検出部104が測定用イオンビームBmを検出するためにx方向に移動するとき、例えばx方向位置xaにおいて、検出部104は、マスク102上のx方向端部のyスリット110yからのyビーム部分112yを受ける。また、検出部104は、例えばx方向位置xbにおいて、一方のxスリット110xからのxビーム部分112xを受ける。さらに、検出部104は、例えばx方向位置xcにおいて、x方向中央のyスリット110yからのyビーム部分112yを受ける。同様にして、検出部104は、例えばx方向位置xdにおいて他方のxスリット110xからのxビーム部分112xを受け、例えばx方向位置xeにおいてx方向端部のyスリット110yからのyビーム部分112yを受ける。
検出部104は、x方向移動の結果得られたx方向位置とビーム電流との関係をビーム角度演算部108に出力する。ビーム角度演算部108は、x方向位置とビーム電流との関係から、yビーム部分112yのx方向位置を特定する。ビーム角度演算部108は、例えば、yビーム部分112yに対応するビーム電流ピークのx方向位置を、そのyビーム部分112yのx方向位置と決定する。
図4に示されるように、yビーム部分112yは、y方向に並ぶいくつかの検出要素114にわたって入射する。そこで、本実施形態においては、個々の検出要素114から出力されるビーム電流が合計され、その合計のビーム電流がyビーム部分112yのx方向位置を特定するために使用される。
知られているように、z方向における第1位置と第2位置との間でのx方向のビーム変位量と、第1位置と第2位置とのz方向距離との比から、x方向ビーム角度θxを演算することができる。検出中にマスク102は規定の場所に保持されるから、マスク102上の各スリットのz方向位置、及び当該z方向位置における各スリットのxy面内位置は既知である。また、検出部104のz方向位置も既知である。したがって、これら既知の位置関係と、検出されたyビーム部分112yのx方向位置とを用いて、x方向ビーム角度θxを演算することができる。
yビーム部分112yのx方向の幅は、図3に示されるように、yスリット110yのx方向の幅に対応して細くなっている。したがって、yビーム部分112yに対応するビーム電流ピークのx方向位置の特定が容易である。また、yビーム部分112yは、図4に示されるように、yスリット110yに対応してy方向に幅広である。そのため、従前のように円形小孔を有するマスクを使用する場合に比べて、検出部104が受けるビーム電流を大きくとることができる。
同様に、z方向における第1位置と第2位置との間でのy方向のビーム変位量と、第1位置と第2位置とのz方向距離との比から、y方向ビーム角度θyを演算することができる。図5に示されるように、xビーム部分112xのy方向の幅はxスリット110xのy方向の幅に対応して細くなっている。xビーム部分112xは検出部104のある特定の検出要素114に到達し、その検出要素114のy方向位置をxビーム部分112xのy方向位置とみなすことができる。こうして検出されたxビーム部分112xのy方向位置と、マスク102と検出部104との既知の位置関係とを用いて、y方向ビーム角度θyを演算することができる。図3に示されるように、xビーム部分112xはxスリット110xに対応してx方向に幅広であるので、検出部104が受けるビーム電流を大きくとることができる。
このように、第1の実施形態によると、単一のマスクにx方向スリット及びy方向スリットを形成することにより、1つのマスクでx方向ビーム角度θx及びy方向ビーム角度θyを同時に測定することができる。
複数のyスリット110yをそれぞれx方向に異なる位置に設けることにより、イオンビームBのx方向ビーム角度θxのx方向分布を求めることができる。例えば、中央のyビーム部分112yから得られるx方向ビーム角度θxを、イオンビームBのx方向ビーム角度の代表値として用いることができる。また、x方向ビーム角度θxの均一性を表す指標として例えば、この代表値と、端部のyビーム部分112yから得られるx方向ビーム角度θxとの差を用いることもできる。
また、複数のxスリット110xをそれぞれx方向に異なる位置に設けることにより、イオンビームBのy方向ビーム角度θyのx方向分布を求めることができる。
上述の実施形態においては、検出部104は一定速度でx方向に移動している。これには検出部104の動作が単純になるという利点がある。しかし、ある実施形態においては、検出部104が受けるビーム電流量を大きくするために、検出部104は、移動検出器が測定用イオンビームBmを1回横切る間にその移動速度を調整するよう構成されていてもよい。例えば、移動検出器は、xビーム部分110xを受けるために減速し又は静止してもよい。具体的には例えば、移動検出器は、xビーム部分110xを受ける直前に減速し、そのxビーム部分110xを通過するまで減速を継続してもよい。あるいは、移動検出器は、xビーム部分110xを受ける位置で所定時間停止してもよい。
(第2の実施形態)
図6は、本発明の第2の実施形態に係るイオン注入装置の真空処理室216を概略的に示す図である。図6の上部は真空処理室216の概略構成を示す上面図であり、図6の下部は真空処理室216の概略構成を示す側面図である。第2の実施形態に係るイオン注入装置は、図1に示すイオンソース12及びビームライン装置14を備えてもよい。
また、図7は、本発明の第2の実施形態に係るイオンビーム測定装置200を概略的に示す図である。図8は、図7に示すイオンビーム測定装置200をマスク102のy方向中央で切断してy方向から見た図である。
第2の実施形態に係るイオンビーム測定装置200は、第1の実施形態に係るイオンビーム測定装置100とは測定用イオンビームBmの検出のための構成が異なる。マスク102については、第1の実施形態と第2の実施形態とで同一である。
イオンビーム測定装置200は、もとのイオンビームBを測定用イオンビームBmに整形するためのマスク102と、測定用イオンビームBmを検出するよう構成されている検出部204と、を備える。また、イオンビーム測定装置100は、検出部204の出力に基づいて、設計上の進行方向であるz方向に対して実際のイオンビームBの進行方向がなす角度を演算するよう構成されているビーム角度演算部108を備える。
検出部204は、yビーム部分112yのx方向位置を検出し、xビーム部分112xのy方向位置を検出するよう構成されている。検出部204は、測定用イオンビームBmを横切るようにx方向に移動可能である移動検出器204aと、イオンビーム進行方向において移動検出器204aの下流に配置されている固定検出器204bと、を備える。
移動検出器204aは、測定用イオンビームBmを横切るようにx方向に移動可能である。移動検出器204aのx方向移動により、yビーム部分112yのx方向位置が検出される。移動検出器204aは、yビーム部分112yに対応してy方向に長い移動検出要素214aを備える。ある実施形態においては、移動検出器204aは、第1の実施形態に係る検出部104であってもよく、その場合、移動検出器204aは、y方向に配列された複数の検出要素を備えてもよい。
一方、固定検出器204bは、xビーム部分112xを受けるようにビームストッパ28に配設されている。つまり、ビームストッパ28上でxビーム部分112xが入射する場所に固定検出器204bが設けられている。固定検出器204bは、y方向に配列された複数の固定検出要素214bを備える。本実施形態においては測定用イオンビームBmが2本のxビーム部分112xを有するので、固定検出器204bは、複数の固定検出要素214bのy方向配列を2つ備える。固定検出器204bにおけるxビーム部分112xの到達位置から、xビーム部分112xのy方向位置が検出される。
図8に示されるように、移動検出器204aは、測定用イオンビームBmを検出するためにx方向に移動する。このとき、移動検出器204aは、例えばx方向位置xaにおいて、マスク102上のx方向端部のyスリット110yからのyビーム部分112yを受ける。移動検出器204aは、xビーム部分112xを通過する。また、移動検出器204aは、例えばx方向位置xcにおいて、x方向中央のyスリット110yからのyビーム部分112yを受ける。さらに、移動検出器204aは、xビーム部分112xを通過し、例えばx方向位置xeにおいてx方向端部のyスリット110yからのyビーム部分112yを受ける。
移動検出器204aは、x方向移動の結果得られたyビーム部分112yのx方向位置とビーム電流との関係をビーム角度演算部108に出力する。ビーム角度演算部108は、この関係から、yビーム部分112yのx方向位置を特定する。ビーム角度演算部108は、例えば、yビーム部分112yに対応するビーム電流ピークのx方向位置を、そのyビーム部分112yのx方向位置と決定する。ビーム角度演算部108は、得られたyビーム部分112yのx方向位置と、マスク102と移動検出器204aとの既知の位置関係とを用いて、x方向ビーム角度θxを演算する。
一方、固定検出器204bは、移動検出器204aがxビーム部分112xから離れているときにxビーム部分112xのy方向位置を検出する。固定検出器204bは、対応するxビーム部分112xが移動検出器204aによって遮られていないとき、xビーム部分112xを受ける。xビーム部分112xは固定検出器204bのある特定の固定検出要素214bに到達する。したがって、その固定検出要素214bのy方向位置をxビーム部分112xのy方向位置とみなすことができる。ビーム角度演算部108は、こうして検出されたxビーム部分112xのy方向位置と、マスク102と固定検出器204bとの既知の位置関係とを用いて、y方向ビーム角度θyを演算する。
このようにして、検出部204は、移動検出器204aが測定用イオンビームBmを1回横切る間にyビーム部分112yのx方向位置及びxビーム部分112xのy方向位置を検出することができる。
第2の実施形態によると、第1の実施形態と同様に、幅広のスリットにより検出部204が受けるビーム電流を大きくとることができる。また、単一のマスクにx方向スリット及びy方向スリットを形成することにより、1つのマスクでx方向ビーム角度及びy方向ビーム角度を同時に測定することができる。
既存のイオン注入装置にはたいてい、移動検出器204a及び固定検出器204bに相当する検出器が設けられている。したがって、第2の実施形態によると、そうした既存の検出器を流用してイオンビーム測定装置200を構成することができるという利点もある。
なお、ある実施形態においては、x方向ビーム角度とy方向ビーム角度とを同時に測定しなくてもよい。例えば、移動検出器204aによりx方向ビーム角度θxを測定した後、移動検出器204aを退避させ、固定検出器204bでy方向ビーム角度を測定することもできる。
また、マスク102を基板Wより上流に配置することに代えて、基板Wが置かれるべきz方向位置にマスク102が配置されてもよい。この場合、移動検出器204aは、基板Wが置かれるべきz方向位置よりも下流に配置されてもよい。
(第3の実施形態)
図9は、本発明の第3の実施形態に係るイオンビーム測定装置300を概略的に示す図である。第3の実施形態に係るイオンビーム測定装置300は、第1及び第2の実施形態に係るイオンビーム測定装置とは測定用イオンビームBmの検出のための構成が異なる。マスク102については、既述の実施形態と第3の実施形態とで同一である。
イオンビーム測定装置300は、もとのイオンビームBを測定用イオンビームBmに整形するためのマスク102と、測定用イオンビームBmを検出するよう構成されている検出部304と、を備える。また、イオンビーム測定装置100は、検出部304の出力に基づいて、設計上の進行方向であるz方向に対して実際のイオンビームBの進行方向がなす角度を演算するよう構成されているビーム角度演算部108を備える。
検出部304は、測定用イオンビームBmのyビーム部分のx方向位置を検出し、測定用イオンビームBmのxビーム部分のy方向位置を検出するよう構成されている。検出部304は、測定用イオンビームBmを受けるよう配設されている固定検出器を備える。固定検出器は、検出要素314の二次元配列を備える。検出要素314はx方向及びy方向にマトリックス状に配列されている。
検出部304におけるyビーム部分の到達位置から、yビーム部分のx方向位置が検出される。yビーム部分は検出部304上のあるx方向位置にてy方向に並ぶいくつかの検出要素314に到達し、それら検出要素314のx方向位置をyビーム部分のx方向位置とみなすことができる。個々の検出要素314から出力されるビーム電流が合計され、その合計のビーム電流がyビーム部分のx方向位置を特定するために使用される。検出されたyビーム部分のx方向位置と、マスク102と検出部304との既知の位置関係とを用いて、x方向ビーム角度θxが演算される。
同様に、検出部304におけるxビーム部分の到達位置から、xビーム部分のy方向位置が検出される。xビーム部分は検出部304上のあるy方向位置にてx方向に並ぶいくつかの検出要素314に到達し、それら検出要素314のy方向位置をxビーム部分のy方向位置とみなすことができる。検出されたxビーム部分のy方向位置と、マスク102と検出部304との既知の位置関係とを用いて、y方向ビーム角度θyが演算される。
このようにして、第3の実施形態によると、既述の実施形態と同様に、幅広のスリットにより検出部304が受けるビーム電流を大きくとることができる。また、単一のマスクにx方向スリット及びy方向スリットを形成することにより、1つのマスクでx方向ビーム角度及びy方向ビーム角度を同時に測定することができる。
第3の実施形態においては、検出部304による検出の間、マスク102は静止している。しかし、ある実施形態においては、検出部304による検出の間、マスク102は例えばx方向に移動されてもよい。そのようにしてもビーム角度を測定することは可能である。
ある実施形態においては、検出部304は、検出要素314の二次元配列を備える固定検出器と、既述の実施形態に係る移動検出器と、を備えてもよい。この場合、固定検出器は、移動検出器のz方向下流に配置される。
(第4の実施形態)
図10は、本発明の第4の実施形態に係るイオンビーム測定装置に使用されるマスク402を示す図である。第4の実施形態に係るマスク402は、特にxスリット110xのy方向位置に関して、既述の実施形態に係るマスク102と異なる。なお図10においてy方向は縦方向であり、x方向は横方向である。
図10に示されるマスク402は、もとのイオンビームBが入射するマスク102上の被照射領域に、4つの第1マスク部分及び3つの第2マスク部分を備える。これらの第1マスク部分及び第2マスク部分は、x方向に互い違いに配置されている。各第1マスク部分は1本のyスリット110yを備え、各第2マスク部分は1本のxスリット110xを備える。よって、マスク402は、4本のyスリット110yと3本のxスリット110xとを有し、yスリット110yとxスリット110xとがx方向に互い違いに並んでいる。
3本のうち中央のxスリット110xは、イオンビームBが入射するマスク402上の被照射領域においてx方向及びy方向に関して中央に配置されている。残りの2本のxスリット110xはそれぞれ、マスク402上の被照射領域において中央のxスリット110xとは異なるy方向位置に配置されている。また、これら残りの2本のxスリット110xのy方向位置は互いに異なる。図示されるマスク402において隣り合うxスリット110xのy方向間隔は等しいが、そうである必要はない。
このように複数のxスリット110xをそれぞれy方向に異なる位置に設けることにより、イオンビームBのy方向ビーム角度θyのy方向分布を求めることができる。
第4の実施形態に係るマスク402は、既述の実施形態のいずれかに係る測定用イオンビームBmの検出のための構成と組み合わせて使用することができる。よって、ある実施形態に係るイオンビーム測定装置は、互いに異なるy方向位置に形成された複数のxスリット110xを備えるマスク402と、移動検出器である検出部104と、を備えてもよい。また、ある実施形態に係るイオンビーム測定装置は、互いに異なるy方向位置に形成された複数のxスリット110xを備えるマスク402と、移動検出器204a及び固定検出器204bを備える検出部204と、を備えてもよい。ある実施形態に係るイオンビーム測定装置は、互いに異なるy方向位置に形成された複数のxスリット110xを備えるマスク402と、固定検出器である検出部304と、を備えてもよい。
(第5の実施形態)
図11は、本発明の第5の実施形態に係るイオンビーム測定装置に使用されるマスク502を示す図である。図11の上部はマスク502の正面図であり、図11の下部はマスク502の側面図である。第5の実施形態に係るマスク502は、スリットの配置に関して、既述の実施形態に係るマスクと異なる。図11の上部においてy方向は縦方向であり、x方向は横方向である。なお説明の便宜上、図11の下部においてイオンビームの進行方向を矢印Fで示す。
図11に示されるマスク502は、もとのイオンビームBが入射するマスク502上の被照射領域に、3つの第1マスク部分503y及び2つの第2マスク部分503xを備える。これらの第1マスク部分503y及び第2マスク部分503xは、x方向に互い違いに配置されている。中央の第1マスク部分503yは3本のyスリット110yを備え、両端の第1マスク部分503yはそれぞれ2本のyスリット110yを備える。各第1マスク部分503yのyスリット110yは互いに平行にx方向に配列されている。また、各第2マスク部分503xは1本のxスリット110xを備える。
よって、マスク502は、合計7本のyスリット110yと2本のxスリット110xとを有する。中央の3本のyスリット110yは、イオンビームBが入射するマスク502上の被照射領域においてx方向中央に配置されている。端部の2本のyスリット110yは、マスク502上の被照射領域においてx方向端部に配置されている。一方、2本のxスリット110xは、y方向に関して同じ位置にあり、マスク102上の被照射領域においてy方向中央に配置されている。
イオンビームが第1マスク部分503yに照射されyスリット110yを通過することにより、yビーム部分が生成される。イオンビームが第2マスク部分503xに照射されxスリット110xを通過することにより、xビーム部分が生成される。マスク502上のyスリット110y及びxスリット110xの配置に対応して、7本のyビーム部分と2本のxビーム部分とを備える測定用イオンビームが生成される。
図11の下部に示されるように、yスリット110y及びxスリット110xのx方向(図において横方向)の幅は、イオンビーム進行方向の上流側よりも下流側において広くなるようにテーパ状である。スリットを広げる度合いはイオンビームの発散角に依存して定められる。こうしたスリット形状は、スリットを通過したビーム部分の角度成分をすべて検出するのに役立つ。図示されていないが、yスリット110y及びxスリット110xのy方向の幅についても同様に、イオンビーム進行方向の上流側よりも下流側において広くなるようにテーパ状であってもよい。
ある実施形態においては、イオンビーム測定装置は、隣接して平行に配列された複数のスリット(例えばyスリット110y)を通過したビーム部分を検出器で観測して得られたプロファイルを比較し、それらの類似性を評価してもよい。イオンビーム測定装置は、その評価結果に基づいて、測定が正常に行われたか否かを判定してもよい。測定中に例えば放電などの異常が生じた場合には、隣接する2つの平行なスリットに由来する2つのビーム電流プロファイルが互いに異なる形状をとりうる。
そこで、各スリットに対応するビーム電流プロファイルが類似すると評価される場合には、イオンビーム測定装置は、測定が正常に行われたと判定してもよい。逆に、各スリットに対応するビーム電流プロファイルが類似しないと評価される場合には、イオンビーム測定装置は、測定が正常に行われていないと判定してもよい。測定が正常に行われていないと判定された場合には、イオンビーム測定装置は、再測定を実行してもよい。
また、上述のマスク102と同様に、マスク502は、測定用イオンビームが検出部に入射するとき隣接する2つのビーム部分が互いに分離されているように、隣接する2つのスリットの間隔が定められている。スリット間隔は例えば、マスク502と検出部との距離に応じて定められる。スリットと検出器の距離が大きければスリット間隔を広く、距離が小さければスリット間隔を狭くする。スリット間隔が狭いほど多数のスリットをマスク502に配置することができる。
第5の実施形態に係るマスク502は、既述の実施形態のいずれかに係る測定用イオンビームBmの検出のための構成と組み合わせて使用することができる。よって、ある実施形態に係るイオンビーム測定装置は、各々が複数のyスリット110yを有する複数の第1マスク部分503yを備えるマスク502と、移動検出器である検出部104と、を備えてもよい。また、ある実施形態に係るイオンビーム測定装置は、各々が複数のyスリット110yを有する複数の第1マスク部分503yを備えるマスク502と、移動検出器204a及び固定検出器204bを備える検出部204と、を備えてもよい。ある実施形態に係るイオンビーム測定装置は、各々が複数のyスリット110yを有する複数の第1マスク部分503yを備えるマスク502と、固定検出器である検出部304と、を備えてもよい。
図12は、本発明のある実施形態に係るイオンビーム測定方法を説明するためのフローチャートである。まず、イオンビームが通過する位置にマスクがセットされる(S1)。この操作は機械的に行われる。マスクには上述のようにyスリット及びxスリットが設けられている。以降、本方法の終了までマスクはその位置に保持され、測定の間マスクは静止している。
次にイオンビームの照射が開始される(S2)。イオンビームがマスクのスリットを通過することにより、測定用イオンビームが準備される。測定用イオンビームは上述のように、イオンビーム進行方向に垂直であるy方向に長いyビーム部分と、前記進行方向及びy方向に垂直であるx方向に長いxビーム部分と、を備える。
続いて、ビーム角度が測定される(S3)。マスクを通過したイオンビームの到達位置が、検出部を使用して測定される。yビーム部分のx方向位置が検出され、xビーム部分のy方向位置が検出される。このとき、必要に応じて検出部が測定用イオンビームに対して移動される。検出されたx方向位置を用いてx方向ビーム角度が演算され、検出されたy方向位置を用いてy方向ビーム角度が演算される。その後イオンビームの照射は終了され(S4)、最後にマスクのセットが解除される(S5)。マスクは待避位置へと戻される。こうして、本方法は終了する。
本発明の代表的ないくつかの実施形態を説明した。本発明の実施形態によると、単一のマスクにx方向スリット及びy方向スリットを形成することにより、1つのマスクでx方向ビーム角度θx及びy方向ビーム角度θyを同時に測定することができる。
また、一般に、イオンビームBのビーム角度は二方向の角度成分、典型的にはx方向及びy方向のビーム角度で特徴づけられる。本発明の実施形態によると、yビーム部分112yのx方向位置及びxビーム部分112xのy方向位置を用いてx方向ビーム角度θx及びy方向ビーム角度θyを直接的に求めることができる。
したがって、本発明の実施形態によると、単純な構成で二方向のビーム角度を測定することができる。
以上、本発明を実施形態にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
上述の実施形態においては、yビーム部分112yはy方向に連続する細長いビーム断面を有する。しかし、本書においてyビーム部分は、y方向に不連続の小ビーム断面を有してもよい。ある実施形態においては、yビーム部分は、y方向に整列された複数の小ビーム部分を備えてもよい。これらの小ビーム部分は、y方向に連続するビーム断面と機能的に同一又は類似するように配列される。こうして、y方向に長いyビーム部分を、複数の小ビーム部分が集合的に形成していてもよい。xビーム部分についても同様である。
そのため、マスクのスリットは細長い単一の開口には限られない。ある実施形態においては、マスクは、複数の小開口を備え、これら小開口の各々が対応する小ビーム部分を生成してもよい。したがって、マスクは、全体としてyスリット及びxスリットを形成する多数の小開口の配列を備えてもよい。例えば、マスクは、yスリット110yのようにy方向に配列された多数の小孔と、xスリット110xのようにx方向に配列された多数の小孔と、を備えてもよい。
ある実施形態に係るイオン注入装置は、x方向にスキャンされるイオンビームを使用し又はx方向の径がy方向の径より長いイオンビームを使用し、y方向にウェハーをメカニカルスキャンするよう構成されている。ここで、イオンビームの進行方向をz方向とし、z方向と直交する平面上で互いに直交する二方向をx方向及びy方向とする。また、イオン注入装置は、x方向及びy方向のビーム角度を測定するよう構成されているイオンビーム角度測定機構を備える。測定機構は、x方向及びy方向のビーム角度測定時に所定の位置にセットされたz方向に垂直なマスクにイオンビームの一部分を通過させ、z方向下流において通過ビームの到達位置を検出する手段を備える。この検出手段は、通過ビームの到達位置分布を測定可能である。また、測定機構は、検出された到達位置分布から通過ビームの角度を計算する手段を備える。マスクには、イオンビームの一部分を通過させるy方向に長い少なくとも一つのスリットと、x方向に長い少なくとも一つのスリットと、が設けられている。測定機構は、x方向のビーム角度とy方向のビーム角度とを同時に測定する。
通過ビームの検出手段は、y方向に配置された複数の検出器からなり、測定機構は、それら複数の検出器をx方向に移動させながらイオンビームを測定してもよい。測定機構は、複数の検出器がx方向に長いスリットの前面に位置するとき当該複数の検出器を減速または一定時間停止して、y方向角度を測定してもよい。
移動測定のための検出手段は、y方向に長い移動検出器と、マスクから見て該移動検出器の移動線よりz方向に遠い場所に配置された固定検出器と、を備えてもよい。固定検出器は、マスクのx方向に長いスリットの前面にy方向に配列された複数の検出要素を備えてもよい。測定機構は、y方向に長い移動検出器がx方向に長いスリットの前面に位置しない時だけ、固定検出器でビームの到達位置を検出してもよい。
検出手段は、二次元に配列され固定された検出器であってもよい。
ある実施形態に係るイオン注入装置は、x方向にスキャンされるイオンビームを使用し又はx方向の径がy方向の径より長いイオンビームを使用し、y方向にウェハーをメカニカルスキャンするよう構成されている。ここで、イオンビームの進行方向をz方向とし、z方向と直交する平面上で互いに直交する二方向をx方向及びy方向とする。また、イオン注入装置は、x方向及びy方向のビーム角度を測定するよう構成されているイオンビーム角度測定機構を備える。測定機構は、x方向及びy方向のビーム角度測定時に所定の位置にセットされたz方向に垂直なマスクにイオンビームの一部分を通過させ、z方向下流において通過ビームの到達位置を検出する手段を備える。この検出手段は、通過ビームの到達位置分布を測定可能である。また、測定機構は、検出された到達位置分布から通過ビームの角度を計算する手段を備える。マスクには、イオンビームの一部分を通過させるy方向に長い少なくとも一つのスリットと、x方向に長い少なくとも一つのスリットと、が設けられている。通過ビームの検出手段は、y方向に配置された複数の検出器からなり、測定機構は、それら複数の検出器をx方向に移動させながらイオンビームを測定する。移動測定のための検出手段は、y方向に長い移動検出器と、マスクから見て該移動検出器の移動線よりz方向に遠い場所に配置された固定検出器と、を備える。固定検出器は、マスクのx方向に長いスリットの前面にy方向に配列された複数の検出要素を備える。測定機構は、y方向に長い検出器をx方向に移動させながらx方向のビーム角度測定を行い、y方向に長い検出器をx方向に長いスリットの前面以外に停止させてy方向のビーム角度測定を行う。
ある実施形態に係るイオン注入装置は、x方向にスキャンされるイオンビームを使用し又はx方向の径がy方向の径より長いイオンビームを使用し、y方向にウェハーをメカニカルスキャンするよう構成されている。ここで、イオンビームの進行方向をz方向とし、z方向と直交する平面上で互いに直交する二方向をx方向及びy方向とする。また、イオン注入装置は、x方向及びy方向のビーム角度を測定するよう構成されているイオンビーム角度測定機構を備える。測定機構は、x方向及びy方向のビーム角度測定時に所定の位置にセットされたz方向に垂直なマスクにイオンビームの一部分を通過させ、z方向下流において通過ビームの到達位置を検出する手段を備える。この検出手段は、通過ビームの到達位置分布を測定可能である。また、測定機構は、検出された到達位置分布から通過ビームの角度を計算する手段を備える。マスクには、イオンビームの一部分を通過させるy方向に長い少なくとも一つのスリットと、x方向に長い複数のスリットと、が設けられている。x方向に長い複数のスリットはマスク上のy方向位置が異なる様に配置されている。測定機構は、x方向のビーム角度とy方向のビーム角度とを同時に測定する。
通過ビームの検出手段は、y方向に配置された複数の検出器からなり、測定機構は、それら複数の検出器をx方向に移動させながらイオンビームを測定してもよい。測定機構は、複数の検出器がx方向に長いスリットの前面に位置するとき当該複数の検出器を減速または一定時間停止して、y方向角度を測定してもよい。
移動測定のための検出手段は、y方向に長い移動検出器と、マスクから見て該移動検出器の移動線よりz方向に遠い場所に配置された固定検出器と、を備えてもよい。固定検出器は、マスクのx方向に長いスリットの前面にy方向に配列された複数の検出要素を備えてもよい。測定機構は、y方向に長い移動検出器がx方向に長いスリットの前面に位置しない時だけ、固定検出器でビームの到達位置を検出してもよい。
検出手段は、二次元に配列され固定された検出器であってもよい。
ある実施形態に係るイオン注入装置は、x方向にスキャンされるイオンビームを使用し又はx方向の径がy方向の径より長いイオンビームを使用し、y方向にウェハーをメカニカルスキャンするよう構成されている。ここで、イオンビームの進行方向をz方向とし、z方向と直交する平面上で互いに直交する二方向をx方向及びy方向とする。また、イオン注入装置は、x方向及びy方向のビーム角度を測定するよう構成されているイオンビーム角度測定機構を備える。測定機構は、x方向及びy方向のビーム角度測定時に所定の位置にセットされたz方向に垂直なマスクにイオンビームの一部分を通過させ、z方向下流において通過ビームの到達位置を検出する手段を備える。この検出手段は、通過ビームの到達位置分布を測定可能である。また、測定機構は、検出された到達位置分布から通過ビームの角度を計算する手段を備える。マスクには、イオンビームの一部分を通過させるy方向に長い少なくとも一つのスリットと、x方向に長い複数のスリットと、が設けられている。x方向に長い複数のスリットはマスク上のy方向位置が異なる様に配置されている。通過ビームの検出手段は、y方向に配置された複数の検出器からなり、測定機構は、それら複数の検出器をx方向に移動させながらイオンビームを測定する。移動測定のための検出手段は、y方向に長い移動検出器と、マスクから見て該移動検出器の移動線よりz方向に遠い場所に配置された固定検出器と、を備える。固定検出器は、マスクのx方向に長いスリットの前面にy方向に配列された複数の検出要素を備える。測定機構は、y方向に長い検出器をx方向に移動させながらx方向のビーム角度測定を行い、y方向に長い検出器をx方向に長いスリットの前面以外に停止させてy方向のビーム角度測定を行う。
以下、本発明の幾つかの態様を挙げる。
1.もとのイオンビームを、イオンビーム進行方向に垂直であるy方向に長いyビーム部分と、前記進行方向及びy方向に垂直であるx方向に長いxビーム部分と、を備える測定用イオンビームに整形するためのマスクと、
前記yビーム部分のx方向位置を検出し、前記xビーム部分のy方向位置を検出するよう構成されている検出部と、
前記x方向位置を用いてx方向ビーム角度を演算し、前記y方向位置を用いてy方向ビーム角度を演算するよう構成されているビーム角度演算部と、を備えることを特徴とするイオンビーム測定装置。
2.前記もとのイオンビームは、y方向の幅よりも長いx方向の走査範囲にわたって走査されるイオンビーム、または、y方向の幅よりも長いx方向の幅を有するイオンビームであり、
前記マスクは、前記もとのイオンビームが入射する当該マスク上の被照射領域に、複数の第1マスク部分及び複数の第2マスク部分を備えており、
前記複数の第1マスク部分の各々は、前記yビーム部分に対応する少なくとも1つのyスリットを備え、
前記複数の第2マスク部分の各々は、前記xビーム部分に対応する少なくとも1つのxスリットを備え、
前記複数の第1マスク部分及び複数の第2マスク部分は、x方向に互い違いに配置されていることを特徴とする実施形態1に記載のイオンビーム測定装置。
3.前記複数の第1マスク部分は、前記被照射領域のx方向中央に配置される中央第1マスク部分と、前記被照射領域のx方向端部に配置される端部第1マスク部分と、を備えることを特徴とする実施形態2に記載のイオンビーム測定装置。
4.前記複数の第1マスク部分の少なくとも1つは、x方向に配列された複数のyスリットを備えることを特徴とする実施形態2または3に記載のイオンビーム測定装置。
5.前記複数の第2マスク部分は、あるy位置にxスリットを備える第2マスク部分と、別のy位置にxスリットを備える第2マスク部分と、を備えることを特徴とする実施形態2から4のいずれかに記載のイオンビーム測定装置。
6.前記yスリット及び/または前記xスリットの幅は、前記イオンビーム進行方向の上流側よりも下流側において広いことを特徴とする実施形態2から5のいずれかに記載のイオンビーム測定装置。
7.前記マスクは、前記測定用イオンビームが前記検出部に入射するとき隣接する2つのビーム部分が互いに分離されているように、隣接する2つのスリットの間隔が定められていることを特徴とする実施形態1から6のいずれかに記載のイオンビーム測定装置。
8.前記検出部による検出の間、前記マスクは静止していることを特徴とする実施形態1から7のいずれかに記載のイオンビーム測定装置。
9.前記検出部は、前記測定用イオンビームを横切るように少なくともx方向に移動可能である移動検出器を備え、前記移動検出器は、少なくとも前記yビーム部分のx方向位置を検出することを特徴とする実施形態1から8のいずれかに記載のイオンビーム測定装置。
10.前記移動検出器は、前記yビーム部分に対応してy方向に長い検出要素を備えることを特徴とする実施形態9に記載のイオンビーム測定装置。
11.前記検出部は、少なくとも前記xビーム部分を受けるよう配設されている固定検出器を備え、前記固定検出器は、少なくともy方向に配列された複数の検出要素を備え、前記xビーム部分のy方向位置を検出することを特徴とする実施形態9または10に記載のイオンビーム測定装置。
12.前記固定検出器は、前記イオンビーム進行方向において前記移動検出器の下流に配置されていることを特徴とする実施形態11に記載のイオンビーム測定装置。
13.前記固定検出器は、前記移動検出器が前記xビーム部分から離れているときに前記xビーム部分のy方向位置を検出することを特徴とする実施形態12に記載のイオンビーム測定装置。
14.前記移動検出器は、少なくともy方向に配列された複数の検出要素を備え、前記xビーム部分のy方向位置も検出することを特徴とする実施形態9に記載のイオンビーム測定装置。
15.前記移動検出器は、前記xビーム部分を受けるために減速し又は静止することを特徴とする実施形態9から14のいずれかに記載のイオンビーム測定装置。
16.前記検出部は、前記移動検出器が前記測定用イオンビームを1回横切る間に前記yビーム部分のx方向位置及び前記xビーム部分のy方向位置を検出するよう構成されていることを特徴とする実施形態9から15のいずれかに記載のイオンビーム測定装置。
17.前記検出部は、前記測定用イオンビームを受けるよう配設されている固定検出器を備え、前記固定検出器は、検出要素の二次元配列を備え、前記yビーム部分のx方向位置及び前記xビーム部分のy方向位置を検出することを特徴とする実施形態1から8のいずれかに記載のイオンビーム測定装置。
18.実施形態1から17のいずれかに記載のイオンビーム測定装置を備えるイオン注入装置。
19.前記イオンビーム測定装置は、被処理物にイオン注入処理をするための処理室に設けられていることを特徴とする実施形態18に記載のイオン注入装置。
20.イオンビーム進行方向に垂直であるy方向に長いyビーム部分と、前記進行方向及びy方向に垂直であるx方向に長いxビーム部分と、を備える測定用イオンビームを準備することと、
前記yビーム部分のx方向位置を検出することと、
前記xビーム部分のy方向位置を検出することと、
前記x方向位置を用いてx方向ビーム角度を演算することと、
前記y方向位置を用いてy方向ビーム角度を演算することと、を備えることを特徴とするイオンビーム測定方法。
B イオンビーム、 Bm 測定用イオンビーム、 10 イオン注入装置、 16 真空処理室、 100 イオンビーム測定装置、 102 マスク、 104 検出部、 108 ビーム角度演算部、 110y yスリット、 110x xスリット、 112y yビーム部分、 112x xビーム部分、 114 検出要素、 200 イオンビーム測定装置、 204 検出部、 204a 移動検出器、 204b 固定検出器、 216 真空処理室、 304 検出部、 314 検出要素、 402 マスク、 502 マスク、 503y 第1マスク部分、 503x 第2マスク部分。

Claims (20)

  1. もとのイオンビームを、イオンビーム進行方向に垂直であるy方向に長いyビーム部分と、前記進行方向及びy方向に垂直であるx方向に長いxビーム部分と、を備える測定用イオンビームに整形するためのマスクと、
    前記yビーム部分のx方向位置を検出し、前記xビーム部分のy方向位置を検出するよう構成されている検出部と、
    前記x方向位置を用いてx方向ビーム角度を演算し、前記y方向位置を用いてy方向ビーム角度を演算するよう構成されているビーム角度演算部と、を備えることを特徴とするイオンビーム測定装置。
  2. 前記もとのイオンビームは、y方向の幅よりも長いx方向の走査範囲にわたって走査されるイオンビーム、または、y方向の幅よりも長いx方向の幅を有するイオンビームであり、
    前記マスクは、前記もとのイオンビームが入射する当該マスク上の被照射領域に、複数の第1マスク部分及び複数の第2マスク部分を備えており、
    前記複数の第1マスク部分の各々は、前記yビーム部分に対応する少なくとも1つのyスリットを備え、
    前記複数の第2マスク部分の各々は、前記xビーム部分に対応する少なくとも1つのxスリットを備え、
    前記複数の第1マスク部分及び複数の第2マスク部分は、x方向に互い違いに配置されていることを特徴とする請求項1に記載のイオンビーム測定装置。
  3. 前記複数の第1マスク部分は、前記被照射領域のx方向中央に配置される中央第1マスク部分と、前記被照射領域のx方向端部に配置される端部第1マスク部分と、を備えることを特徴とする請求項2に記載のイオンビーム測定装置。
  4. 前記複数の第1マスク部分の少なくとも1つは、x方向に配列された複数のyスリットを備えることを特徴とする請求項2または3に記載のイオンビーム測定装置。
  5. 前記複数の第2マスク部分は、あるy位置にxスリットを備える第2マスク部分と、別のy位置にxスリットを備える別の第2マスク部分と、を備えることを特徴とする請求項2から4のいずれかに記載のイオンビーム測定装置。
  6. 前記yスリット及び/または前記xスリットの幅は、前記イオンビーム進行方向の上流側よりも下流側において広いことを特徴とする請求項2から5のいずれかに記載のイオンビーム測定装置。
  7. 前記マスクは、前記測定用イオンビームが前記検出部に入射するとき隣接する2つのビーム部分が互いに分離されているように、隣接する2つのスリットの間隔が定められていることを特徴とする請求項1から6のいずれかに記載のイオンビーム測定装置。
  8. 前記検出部による検出の間、前記マスクは静止していることを特徴とする請求項1から7のいずれかに記載のイオンビーム測定装置。
  9. 前記検出部は、前記測定用イオンビームを横切るように少なくともx方向に移動可能である移動検出器を備え、前記移動検出器は、少なくとも前記yビーム部分のx方向位置を検出することを特徴とする請求項1から8のいずれかに記載のイオンビーム測定装置。
  10. 前記移動検出器は、前記yビーム部分に対応してy方向に長い検出要素を備えることを特徴とする請求項9に記載のイオンビーム測定装置。
  11. 前記検出部は、少なくとも前記xビーム部分を受けるよう配設されている固定検出器を備え、前記固定検出器は、少なくともy方向に配列された複数の検出要素を備え、前記xビーム部分のy方向位置を検出することを特徴とする請求項9または10に記載のイオンビーム測定装置。
  12. 前記固定検出器は、前記イオンビーム進行方向において前記移動検出器の下流に配置されていることを特徴とする請求項11に記載のイオンビーム測定装置。
  13. 前記固定検出器は、前記移動検出器が前記xビーム部分から離れているときに前記xビーム部分のy方向位置を検出することを特徴とする請求項12に記載のイオンビーム測定装置。
  14. 前記移動検出器は、少なくともy方向に配列された複数の検出要素を備え、前記xビーム部分のy方向位置も検出することを特徴とする請求項9に記載のイオンビーム測定装置。
  15. 前記移動検出器は、前記xビーム部分を受けるために減速し又は静止することを特徴とする請求項9から14のいずれかに記載のイオンビーム測定装置。
  16. 前記検出部は、前記移動検出器が前記測定用イオンビームを1回横切る間に前記yビーム部分のx方向位置及び前記xビーム部分のy方向位置を検出するよう構成されていることを特徴とする請求項9から15のいずれかに記載のイオンビーム測定装置。
  17. 前記検出部は、前記測定用イオンビームを受けるよう配設されている固定検出器を備え、前記固定検出器は、検出要素の二次元配列を備え、前記yビーム部分のx方向位置及び前記xビーム部分のy方向位置を検出することを特徴とする請求項1から8のいずれかに記載のイオンビーム測定装置。
  18. 請求項1から17のいずれかに記載のイオンビーム測定装置を備えるイオン注入装置。
  19. 前記イオンビーム測定装置は、被処理物にイオン注入処理をするための処理室に設けられていることを特徴とする請求項18に記載のイオン注入装置。
  20. イオンビーム進行方向に垂直であるy方向に長いyビーム部分と、前記進行方向及びy方向に垂直であるx方向に長いxビーム部分と、を備える測定用イオンビームを準備することと、
    前記yビーム部分のx方向位置を検出することと、
    前記xビーム部分のy方向位置を検出することと、
    前記x方向位置を用いてx方向ビーム角度を演算することと、
    前記y方向位置を用いてy方向ビーム角度を演算することと、を備えることを特徴とするイオンビーム測定方法。
JP2013134052A 2013-06-26 2013-06-26 イオンビーム測定装置及びイオンビーム測定方法 Active JP6150632B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013134052A JP6150632B2 (ja) 2013-06-26 2013-06-26 イオンビーム測定装置及びイオンビーム測定方法
TW103114232A TWI626674B (zh) 2013-06-26 2014-04-18 Ion beam measuring device, ion implantation device and ion beam measuring method
CN201410168751.4A CN104253010B (zh) 2013-06-26 2014-04-24 离子束测定装置及离子束测定方法
KR1020140049365A KR102085385B1 (ko) 2013-06-26 2014-04-24 이온빔 측정장치 및 이온빔 측정방법
US14/314,448 US9564292B2 (en) 2013-06-26 2014-06-25 Ion beam measuring device and method of measuring ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134052A JP6150632B2 (ja) 2013-06-26 2013-06-26 イオンビーム測定装置及びイオンビーム測定方法

Publications (2)

Publication Number Publication Date
JP2015011770A true JP2015011770A (ja) 2015-01-19
JP6150632B2 JP6150632B2 (ja) 2017-06-21

Family

ID=52114668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134052A Active JP6150632B2 (ja) 2013-06-26 2013-06-26 イオンビーム測定装置及びイオンビーム測定方法

Country Status (5)

Country Link
US (1) US9564292B2 (ja)
JP (1) JP6150632B2 (ja)
KR (1) KR102085385B1 (ja)
CN (1) CN104253010B (ja)
TW (1) TWI626674B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176750A (ja) * 2014-03-14 2015-10-05 住友重機械イオンテクノロジー株式会社 イオン注入装置、ビームエネルギー測定装置、及びビームエネルギー測定方法
JP2019100794A (ja) * 2017-11-30 2019-06-24 株式会社東芝 ビームエミッタンス測定装置及び方法
KR20190096284A (ko) * 2018-02-08 2019-08-19 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤 이온 주입 장치 및 측정 장치
KR20190096283A (ko) * 2018-02-08 2019-08-19 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤 이온 주입 장치 및 이온 주입 방법
JP2019169407A (ja) * 2018-03-26 2019-10-03 住友重機械イオンテクノロジー株式会社 イオン注入装置および測定装置
US11205560B2 (en) 2019-11-01 2021-12-21 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion implanter and beam profiler

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097400B (zh) * 2015-08-03 2017-10-17 京东方科技集团股份有限公司 离子注入系统及方法
JP6689544B2 (ja) * 2016-09-06 2020-04-28 住友重機械イオンテクノロジー株式会社 イオン注入装置及びイオン注入方法
US10338013B1 (en) * 2018-01-25 2019-07-02 Kla-Tencor Corporation Position feedback for multi-beam particle detector
US10665421B2 (en) 2018-10-10 2020-05-26 Applied Materials, Inc. In-situ beam profile metrology
CN109581470A (zh) * 2018-11-29 2019-04-05 德淮半导体有限公司 用于离子束测量的装置和方法
CN110416045A (zh) * 2019-08-07 2019-11-05 德淮半导体有限公司 法拉第杯组件及其离子束注入角度的测量方法、装置
US11598890B2 (en) * 2020-06-17 2023-03-07 Battelle Energy Alliance, Llc Ion beam profiling system and related methods
US11810754B2 (en) 2021-12-09 2023-11-07 Applied Materials, Inc. System using pixelated faraday sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020121889A1 (en) * 2001-01-17 2002-09-05 Varian Semiconductor Equipment Associates, Inc. In situ ion beam incidence angle and beam divergence monitor
US20040149926A1 (en) * 2002-12-11 2004-08-05 Purser Kenneth H. Emittance measuring device for ion beams
JP2008506239A (ja) * 2004-07-07 2008-02-28 アクセリス テクノロジーズ インコーポレーテッド ビーム角度と、スキャンされるビームまたはリボンビームの平面に対して直交する発散の測定のための装置及び方法
JP2009524195A (ja) * 2006-01-20 2009-06-25 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド 2つの次元でイオンビーム角を測定する方法及び装置
US20090314959A1 (en) * 2008-06-19 2009-12-24 George Michael Gammel Horizontal and vertical beam angle measurement technique
JP2011517837A (ja) * 2008-03-28 2011-06-16 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド イオン注入機システムにおける改良した均一チューニングのための技術

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335534B1 (en) * 1998-04-17 2002-01-01 Kabushiki Kaisha Toshiba Ion implantation apparatus, ion generating apparatus and semiconductor manufacturing method with ion implantation processes
US6791094B1 (en) * 1999-06-24 2004-09-14 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for determining beam parallelism and direction
US6677598B1 (en) * 2003-04-29 2004-01-13 Axcelis Technologies, Inc. Beam uniformity and angular distribution measurement system
US20100013833A1 (en) 2008-04-14 2010-01-21 Mallikarjuna Gandikota System and method for modifying features in a solid model
US7897944B2 (en) * 2008-07-21 2011-03-01 Axcelis Technologies, Inc. Method and apparatus for measurement of beam angle in ion implantation
US8164068B2 (en) * 2009-07-30 2012-04-24 Varian Semiconductor Equipment Associates, Inc. Mask health monitor using a faraday probe
US8461030B2 (en) * 2009-11-17 2013-06-11 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for controllably implanting workpieces
JP5311140B2 (ja) 2009-12-01 2013-10-09 日新イオン機器株式会社 イオンビーム測定方法
JP6117136B2 (ja) * 2014-03-14 2017-04-19 住友重機械イオンテクノロジー株式会社 イオン注入装置、ビームエネルギー測定装置、及びビームエネルギー測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020121889A1 (en) * 2001-01-17 2002-09-05 Varian Semiconductor Equipment Associates, Inc. In situ ion beam incidence angle and beam divergence monitor
US20040149926A1 (en) * 2002-12-11 2004-08-05 Purser Kenneth H. Emittance measuring device for ion beams
JP2008506239A (ja) * 2004-07-07 2008-02-28 アクセリス テクノロジーズ インコーポレーテッド ビーム角度と、スキャンされるビームまたはリボンビームの平面に対して直交する発散の測定のための装置及び方法
JP2009524195A (ja) * 2006-01-20 2009-06-25 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド 2つの次元でイオンビーム角を測定する方法及び装置
JP2011517837A (ja) * 2008-03-28 2011-06-16 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド イオン注入機システムにおける改良した均一チューニングのための技術
US20090314959A1 (en) * 2008-06-19 2009-12-24 George Michael Gammel Horizontal and vertical beam angle measurement technique

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176750A (ja) * 2014-03-14 2015-10-05 住友重機械イオンテクノロジー株式会社 イオン注入装置、ビームエネルギー測定装置、及びビームエネルギー測定方法
JP2019100794A (ja) * 2017-11-30 2019-06-24 株式会社東芝 ビームエミッタンス測定装置及び方法
TWI786261B (zh) * 2018-02-08 2022-12-11 日商住友重機械離子科技股份有限公司 離子植入裝置及離子植入方法
KR20190096283A (ko) * 2018-02-08 2019-08-19 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤 이온 주입 장치 및 이온 주입 방법
JP2019139909A (ja) * 2018-02-08 2019-08-22 住友重機械イオンテクノロジー株式会社 イオン注入装置およびイオン注入方法
JP2019139908A (ja) * 2018-02-08 2019-08-22 住友重機械イオンテクノロジー株式会社 イオン注入装置および測定装置
KR20190096284A (ko) * 2018-02-08 2019-08-19 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤 이온 주입 장치 및 측정 장치
KR102523799B1 (ko) 2018-02-08 2023-04-20 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤 이온 주입 장치 및 측정 장치
KR102573022B1 (ko) * 2018-02-08 2023-09-01 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤 이온 주입 장치 및 이온 주입 방법
JP2019169407A (ja) * 2018-03-26 2019-10-03 住友重機械イオンテクノロジー株式会社 イオン注入装置および測定装置
CN110364407A (zh) * 2018-03-26 2019-10-22 住友重机械离子科技株式会社 离子注入装置及测量装置
CN110364407B (zh) * 2018-03-26 2023-07-25 住友重机械离子科技株式会社 离子注入装置及测量装置
US11205560B2 (en) 2019-11-01 2021-12-21 Sumitomo Heavy Industries Ion Technology Co., Ltd. Ion implanter and beam profiler

Also Published As

Publication number Publication date
JP6150632B2 (ja) 2017-06-21
TWI626674B (zh) 2018-06-11
US20150001418A1 (en) 2015-01-01
CN104253010B (zh) 2017-12-26
US9564292B2 (en) 2017-02-07
KR102085385B1 (ko) 2020-03-05
TW201501166A (zh) 2015-01-01
KR20150001606A (ko) 2015-01-06
CN104253010A (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
JP6150632B2 (ja) イオンビーム測定装置及びイオンビーム測定方法
US10388487B2 (en) Method for operating a multi-beam particle microscope
JP6117136B2 (ja) イオン注入装置、ビームエネルギー測定装置、及びビームエネルギー測定方法
KR101196965B1 (ko) 주사된 빔 또는 리본 빔의 평면에 수직인 빔 각 및다이버전스의 측정을 위한 장치 및 방법
KR102307017B1 (ko) 이온주입방법 및 이온주입장치
KR20220038037A (ko) 이온주입장치, 이온주입방법 및 빔계측장치
US10403472B2 (en) Ion implantation apparatus and measurement device
JP6253524B2 (ja) ビーム照射装置及びビーム照射方法
JP4151703B2 (ja) イオンビーム測定装置、測定方法およびイオンビーム照射装置
KR20080080391A (ko) 이온 빔 각 측정 시스템 및, 이온 주입 시스템을 위한 가변각 슬롯 어레이를 사용하는 방법
KR102523799B1 (ko) 이온 주입 장치 및 측정 장치
US10790117B2 (en) Ion implantation apparatus and measurement device
JP4784544B2 (ja) イオンビームのビーム幅、発散角の測定方法およびイオン注入装置
JP6440809B2 (ja) ビーム照射装置

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6150632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150