JP2015010933A - Manufacturing method of cell for liquid - Google Patents

Manufacturing method of cell for liquid Download PDF

Info

Publication number
JP2015010933A
JP2015010933A JP2013136439A JP2013136439A JP2015010933A JP 2015010933 A JP2015010933 A JP 2015010933A JP 2013136439 A JP2013136439 A JP 2013136439A JP 2013136439 A JP2013136439 A JP 2013136439A JP 2015010933 A JP2015010933 A JP 2015010933A
Authority
JP
Japan
Prior art keywords
space
metal film
window member
window
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013136439A
Other languages
Japanese (ja)
Other versions
JP6142431B2 (en
Inventor
大場 健司
Kenji Oba
健司 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2013136439A priority Critical patent/JP6142431B2/en
Publication of JP2015010933A publication Critical patent/JP2015010933A/en
Application granted granted Critical
Publication of JP6142431B2 publication Critical patent/JP6142431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cell for liquid excellent in analysis accuracy in terahertz spectroscopic measurement.SOLUTION: A manufacturing method of a cell for liquid constituted of a tabular first window member, a space member and a second window member has a constitution including a first window member side metal film formation step (S1), a space member side metal film formation step (S2), a member bonding step (S3), a measuring object inclusion space formation step (S4), a whole resist film peeling step (S5), a second window member side metal film formation step (S6) and a whole member bonding step (S7).

Description

本発明は、透過した波形を計測する分光装置に用いられる液体用セルに関するものである。   The present invention relates to a liquid cell used in a spectroscopic device for measuring a transmitted waveform.

近年、光と電波の境界領域にあるテラヘルツ波が注目されており、各分野における分析等に使用されている。また、分析方法は、テラヘルツ分光計測装置が用いられている。このテラヘルツ分光計測装置は、気体、固体、粉体、液体などが測定可能であり、テラヘルツパルス波を被測定物に照射させ、被測定物から透過したテラヘルツパルス波の波形データをフーリエ変換することにより周波数ごとの振幅と位相を得る分光法である。また、テラヘルツ分光計測は、被測定物の材質が固体の場合は平板状に形成して測定し、粉体の場合は錠剤成形機で錠剤化して測定される。また、被測定物の材質が気体の場合は気体セルと言われる容器に被測定物を密封させて測定される。また、液体の場合は液体用セルと言われる容器に封入されて測定される。また、液体用セルは、例えば合成石英ガラス、水晶、高抵抗シリコンウエハなどの透過性器材よりなり、テラヘルツパルス波を透過させるように形成されている。また、液体用セルは、2つの透過性器材に挟まれた一定の距離を有した被測定物を封入する空間が形成されており、被測定物を封入する空間に被測定物を注入する導液口部が設けられている。なお、水はテラヘルツ波を吸収し透過させにくい性質を持っているため、被測定物は、テラヘルツパルス波を被測定物に照射させる方向の光路長が短く形成された液体用セルに封入されて測定される。   In recent years, terahertz waves in the boundary region between light and radio waves have attracted attention and are used for analysis in various fields. As an analysis method, a terahertz spectrometer is used. This terahertz spectrometer can measure gases, solids, powders, liquids, etc., irradiates the object to be measured with terahertz pulse waves, and performs Fourier transform on the waveform data of the terahertz pulse waves transmitted from the object to be measured This is a spectroscopic method for obtaining the amplitude and phase for each frequency. In the terahertz spectroscopic measurement, when the material of the object to be measured is solid, it is measured by forming a flat plate, and when the material is powder, it is measured by tableting with a tablet molding machine. Further, when the material of the object to be measured is gas, the measurement is performed by sealing the object to be measured in a container called a gas cell. In the case of liquid, it is measured by being enclosed in a container called a liquid cell. The liquid cell is made of a transmissive device such as synthetic quartz glass, crystal, or high-resistance silicon wafer, and is formed to transmit a terahertz pulse wave. The liquid cell is formed with a space for enclosing the object to be measured having a certain distance between two permeable devices. The liquid cell is guided to inject the object to be measured into the space for enclosing the object to be measured. A liquid mouth portion is provided. Since water has the property of absorbing and preventing transmission of terahertz waves, the object to be measured is sealed in a liquid cell formed with a short optical path length in the direction of irradiating the object to be measured with terahertz pulse waves. Measured.

次に、液体用セルの製造方法について説明する。液体用セルの製造方法は、透過性器材の一方の主面に金属膜を形成する。次に、透過性器材に設けられた金属膜表面にレジスト膜を形成する。次に、レジスト膜に光または電子ビームを照射して所望の形状を描画する。次に、レジスト膜に描画されて露出する部分の形状で金属膜をエッチングする。次に、金属膜がエッチングされて露出する透過性器材をエッチングする。次に、エッチングされた露光器材からレジスト膜および金属膜を剥離する。次に、透過性器材を積層して互いに接合することにより液体用セルが形成される(例えば、特許文献1参照)。   Next, a method for manufacturing a liquid cell will be described. In the method for manufacturing a liquid cell, a metal film is formed on one main surface of the permeable device. Next, a resist film is formed on the surface of the metal film provided on the permeable device. Next, a desired shape is drawn by irradiating the resist film with light or an electron beam. Next, the metal film is etched in the shape of the portion that is drawn and exposed on the resist film. Next, the transparent device exposed by etching the metal film is etched. Next, the resist film and the metal film are peeled off from the etched exposure apparatus. Next, a liquid cell is formed by laminating permeable devices and bonding them together (see, for example, Patent Document 1).

特開2009−288046号公報JP 2009-288046 A

しかしながら、従来の液体用セルにおいて被測定物が封入される空間は、エッチングにより形成されているため、エッチングの進捗状況により被測定物が封入される空間の深さのばらつき、残さ等が生じることがあった。そのため、テラヘルツ分光計測を行う被測定物の透過方向の距離にバラツキが生じることとなる。よって、テラヘルツ分光計測を行った場合、被測定物から透過したテラヘルツパルス波の波形データは、誤差が生じ被測定物の分析精度を悪化させる要因となる。
そこで、本発明は、前記問題を解決しテラヘルツ分光計測における分析精度が優れた液体用セルを提供することを課題とする。
However, since the space in which the object to be measured is enclosed in the conventional liquid cell is formed by etching, the depth of the space in which the object to be measured is enclosed, the residue, etc. are generated depending on the progress of the etching. was there. Therefore, the distance in the transmission direction of the object to be measured for terahertz spectroscopic measurement varies. Therefore, when terahertz spectroscopic measurement is performed, the waveform data of the terahertz pulse wave transmitted from the object to be measured causes an error and causes the analysis accuracy of the object to be deteriorated.
Therefore, an object of the present invention is to provide a liquid cell that solves the above problems and has excellent analysis accuracy in terahertz spectroscopy measurement.

本発明によれば、板状の第1窓部材と空間部材と第2窓部材とで構成された液体用セルの製造方法であって、第1窓部材の一方の主面に第1窓部材側金属膜を形成する第1窓部材側金属膜形成工程と、空間部材の一方の主面に空間部材側第1金属膜と空間部材の他方の主面に空間部材側第2金属膜を形成する空間部材側金属膜形成工程と、第1窓部材と空間部材を接合する部材接合工程と、空間部材の他方の主面に設けられた空間部材側第2金属膜の表面にレジスト膜を形成し所定の外形パターンで露光されたレジスト膜を剥離させ露出した空間部材側第2金属膜の形状で空間部材側第2金属膜から空間部材の一方の主面に設けられた空間部材側第1金属膜までエッチングする被測定物封入空間形成工程と、レジスト膜を全て剥離する全レジスト膜剥離工程と、第2窓部材の一方の主面に第2窓部材側金属膜を形成する第2窓部材側金属膜形成工程と、第1窓部材と空間部材と第2窓部材とを接合させ被測定物封入空間内の第1窓部材側金属膜と第2窓部材側金属膜をエッチングする全部材接合工程とを含んで構成されている。   According to the present invention, there is provided a liquid cell manufacturing method including a plate-like first window member, a space member, and a second window member, wherein the first window member is formed on one main surface of the first window member. A first window member side metal film forming step of forming a side metal film, and forming a space member side first metal film on one main surface of the space member and a space member side second metal film on the other main surface of the space member. Forming a resist film on the surface of the space member side second metal film provided on the other main surface of the space member; and forming a resist film on the surface of the space member side second metal film provided on the other main surface of the space member. Then, the space member-side first provided on one main surface of the space member from the space member-side second metal film in the shape of the exposed space member-side second metal film by peeling off the exposed resist film with a predetermined outer shape pattern. A process for forming a space to be measured that etches up to a metal film, and a resist that completely removes the resist film The peeling step, the second window member-side metal film forming step for forming the second window member-side metal film on one main surface of the second window member, the first window member, the space member, and the second window member are joined. And an all-member joining step for etching the first window member side metal film and the second window member side metal film in the measured object enclosure space.

また、板状の第1窓部材と空間部材とで構成された液体用セルの製造方法であって、第1窓部材の一方の主面に第1窓部材側金属膜を形成する第1窓部材側金属膜形成工程と、空間部材の一方の主面に空間部材側第1金属膜を形成する空間部材側第1金属膜形成工程と、第1窓部材と空間部材を接合する部材接合工程と、空間部材の他方の主面の表面にレジスト膜を形成し所定の外形パターンで露光されたレジスト膜を剥離させ露出した空間部材の形状で空間部材から空間部材の一方の主面に設けられた空間部材側第1金属膜までエッチングする被測定物封入空間形成工程と、レジスト膜を全て剥離する全レジスト膜剥離工程と、第1窓部材と空間部材とを接合させ被測定物封入空間内の第1窓部材側金属膜をエッチングする全部材接合工程とを含んで構成されている。   In addition, the liquid cell manufacturing method includes a plate-like first window member and a space member, and the first window member-side metal film is formed on one main surface of the first window member. Member-side metal film forming step, space member-side first metal film forming step for forming the space member-side first metal film on one main surface of the space member, and member joining step for joining the first window member and the space member A resist film is formed on the surface of the other main surface of the space member, and the resist film exposed in a predetermined outer shape pattern is peeled off to be exposed from the space member to the one main surface of the space member. The object-containing space forming step for etching up to the first metal film on the space member side, the entire resist film removing step for removing all the resist film, and the first window member and the space member are joined to each other in the object-containing space All member joining steps for etching the first window member side metal film In is configured.

本発明によれば、液体用セルにおける被測定物が封入される部分のテラヘルツパルス波を照射する方向、すなわち光路長が短い方向は、空間部材が接合された第1窓部材の主面から空間部材が接合された第2窓部材の主面までとなる。したがって、空間部材が接合された第1窓部材の主面から空間部材が接合された第2窓部材の主面までは同一の距離を有することとなる。よって、本発明の液体用セルにおける被測定物が封入される空間は、従来のエッチングにより被測定物が封入される空間を形成する方法よりも光路長が短い方向の距離のばらつきが少なく形成することができる。また、テラヘルツ分光計測は、被測定物の分析精度が向上した測定をすることができる。   According to the present invention, the direction in which the terahertz pulse wave in the portion where the measurement object is sealed in the liquid cell, that is, the direction in which the optical path length is short, is a space from the main surface of the first window member to which the space member is joined. It becomes to the main surface of the 2nd window member to which the member was joined. Therefore, it has the same distance from the main surface of the 1st window member to which the space member was joined to the main surface of the 2nd window member to which the space member was joined. Therefore, the space in which the object to be measured is enclosed in the liquid cell of the present invention is formed with less variation in the distance in the direction in which the optical path length is shorter than the method of forming the space in which the object to be measured is sealed by conventional etching. be able to. Further, the terahertz spectroscopic measurement can perform measurement with improved analysis accuracy of the object to be measured.

本発明の第1の実施形態における液体用セルの製造工程を説明するフローチャートである。It is a flowchart explaining the manufacturing process of the cell for liquids in the 1st Embodiment of this invention. 本発明の第1の実施形態における液体用セルの製造工程を示す図であり、(a)は第1窓部材に第1窓部材側金属膜を形成した状態を示す図であり、(b)は空間部材の一方の主面に空間部材側第1金属膜、空間部材の他方の主面に空間部材側第2金属膜を形成した状態を示す図であり、(c)は第1窓部材と空間部材を接合した状態を示す図であり、(d)は空間部材側第2金属膜の表面にレジスト膜を形成し所定の外形パターンで露光されたレジスト膜を剥離するとともに剥離されて露出した空間部材側第2金属膜の形状で空間部材側第2金属膜から空間部材側第1金属膜までエッチングした状態を示す図であり、(e)は全レジスト膜を剥離した状態を示す図であり、(f)は第2窓部材の一方の主面に第2窓部材側金属膜を形成した状態を示す図であり、(g)は第1窓部材と空間部材と第2窓部材を接合させ被測定物封入空間内の第1窓部材側金属膜と第2窓部材側金属膜をエッチングした状態を示す図である。It is a figure which shows the manufacturing process of the cell for liquid in the 1st Embodiment of this invention, (a) is a figure which shows the state which formed the 1st window member side metal film in the 1st window member, (b) FIG. 6 is a view showing a state in which a space member side first metal film is formed on one main surface of the space member and a space member side second metal film is formed on the other main surface of the space member, and (c) is a first window member. And (d) shows a state in which a resist film is formed on the surface of the second metal film on the space member side and the resist film exposed with a predetermined outer shape pattern is peeled off and peeled off and exposed. It is a figure which shows the state which etched from the space member side 2nd metal film to the space member side 1st metal film in the shape of the made space member side 2nd metal film, (e) is a figure which shows the state which peeled all the resist films (F) is a state in which the second window member-side metal film is formed on one main surface of the second window member. (G) is the state which joined the 1st window member, the space member, and the 2nd window member, and etched the 1st window member side metal film and the 2nd window member side metal film in the to-be-measured object enclosure space FIG. 本発明の第2の実施形態における液体用セルの製造工程を説明するフローチャートである。It is a flowchart explaining the manufacturing process of the cell for liquids in the 2nd Embodiment of this invention. 本発明の第2の実施形態における液体用セルを示す斜視図である。It is a perspective view which shows the cell for liquid in the 2nd Embodiment of this invention.

以下、本発明のいくつかの例示的な実施形態について、図面を参照して説明する。なお、同一要素には同一の符号を付し重複する説明を省略する。また、構成を明確にするために誇張して図示している。なお、本実施形態における主面とは、立体的に形成される例えば水晶板において、最も広い面およびそれと平行する平面のことである。   Hereinafter, some exemplary embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted. In addition, the illustration is exaggerated for the sake of clarity. In addition, the main surface in this embodiment is the widest surface and the plane parallel to it in the three-dimensionally formed crystal plate, for example.

(第1の実施形態)
図1および図2に示されているように、本発明の第1の実施形態における液体用セルの製造方法は、板状の第1窓部材10と空間部材20と第2窓部材30とで構成された液体用セル100であって、第1窓部材側金属膜形成工程(S1)、空間部材側金属膜形成工程(S2)、部材接合工程(S3)、被測定物封入空間形成工程(S4)、全レジスト膜剥離工程(S5)、第2窓部材側金属膜形成工程(S6)、全部材接合工程(S7)を含んで構成されている。また、部材接合工程(S3)および全部材接合工程(S7)での接合方法は、原子拡散接合方法により行われる。また、第1の実施形態における液体用セルの製造方法によって、第1窓部材10と第2窓部材30とで空間部材20を挟むことにより、テラヘルツ分光計測用の被測定物を封入する被測定物封入空間40が設けられる。
(First embodiment)
As shown in FIGS. 1 and 2, the liquid cell manufacturing method according to the first embodiment of the present invention includes a plate-like first window member 10, a space member 20, and a second window member 30. In the liquid cell 100 configured, the first window member-side metal film forming step (S1), the space member-side metal film forming step (S2), the member joining step (S3), the measured object enclosure space forming step ( S4), the entire resist film peeling step (S5), the second window member side metal film forming step (S6), and the all member joining step (S7). The joining method in the member joining step (S3) and the all member joining step (S7) is performed by an atomic diffusion joining method. In addition, by the method for manufacturing a liquid cell in the first embodiment, the measurement object for sealing the object to be measured for terahertz spectroscopy by sandwiching the space member 20 between the first window member 10 and the second window member 30. An object enclosure space 40 is provided.

まず液体用セルの構成要素について説明する。
第1窓部材10は、例えば人工水晶または無色透明な天然水晶からなる透明な平板状に形成されており、第1窓部材10の表裏主面は平行に形成されている。
First, components of the liquid cell will be described.
The first window member 10 is formed in a transparent flat plate shape made of, for example, artificial quartz or colorless and transparent natural quartz, and the front and back main surfaces of the first window member 10 are formed in parallel.

第2窓部材30は、第1窓部材10と同様に例えば人工水晶または無色透明な天然水晶からなる透明な平板状に形成されており、第2窓部材30の表裏主面は平行に形成されている。なお、第2窓部材30には、テラヘルツ分光計測用の被測定物封入空間40にテラヘルツ分光計測用の被測定物を注出入する導液口部(図示せず)が設けられている。   Similar to the first window member 10, the second window member 30 is formed in a transparent flat plate shape made of, for example, artificial quartz or colorless and transparent natural quartz, and the front and back main surfaces of the second window member 30 are formed in parallel. ing. The second window member 30 is provided with a liquid introduction port (not shown) through which the measurement object for terahertz spectroscopy measurement is poured into the measurement object enclosure space 40 for terahertz spectroscopy measurement.

導液口部(図示せず)は、第2窓部材30に設けられており、テラヘルツ分光計測用の被測定物封入空間40に被測定物を注出入する貫通孔である。また、この貫通孔は、第2窓部材30の被測定物封入空間40となる部分が設けられる主面から第2窓部材30の被測定物封入空間40となる部分が設けられる主面と相対する第2窓部材30の主面まで貫通している。また、導液口部(図示せず)は、被測定物封入空間40に被測定物を供給する孔と被測定物が封入された空間から被測定物を排出する孔の2つの穴で形成されている。   The liquid introduction port portion (not shown) is a through-hole that is provided in the second window member 30 and that pours the measured object into and into the measured object enclosure space 40 for terahertz spectroscopy measurement. In addition, the through hole is relatively opposite to the main surface where the portion of the second window member 30 that becomes the measured object enclosure space 40 is provided, and the main surface of the second window member 30 where the portion of the second window member 30 becomes the measured object enclosure space 40. It penetrates to the main surface of the second window member 30. Further, the liquid introduction port portion (not shown) is formed by two holes, a hole for supplying the object to be measured to the object to be measured enclosure space 40 and a hole for discharging the object to be measured from the space in which the object to be measured is enclosed. Has been.

空間部材20は、例えば人工水晶、無色透明な天然水晶、合成石英ガラス、高抵抗シリコンウエハからなる平板状に形成されており、空間部材20の表裏主面は平行に形成されている。   The space member 20 is formed in a flat plate shape made of, for example, artificial quartz, colorless and transparent natural quartz, synthetic quartz glass, or a high-resistance silicon wafer, and the front and back main surfaces of the space member 20 are formed in parallel.

次に本発明の第1の実施形態における液体用セルの製造方法について説明する。
[第1窓部材側金属膜形成工程(S1)]
図1および図2(a)に示すように、第1窓部材側金属膜形成工程(S1)は、第1窓部材10の一方の主面に第1窓部材側金属膜1を形成する工程である。
Next, a manufacturing method of the liquid cell in the first embodiment of the present invention will be described.
[First Window Member Side Metal Film Forming Step (S1)]
As shown in FIGS. 1 and 2A, the first window member side metal film forming step (S1) is a step of forming the first window member side metal film 1 on one main surface of the first window member 10. It is.

第1窓部材側金属膜1は、例えばCr(クロム)、Ni(ニッケル)、Ta(タンタル)、Ti(チタン)等の下地金属膜の上に設けられ、Au(金)等の金属材料より形成されている。なお、第1窓部材側金属膜1の形成方法は、例えば、スパッタリング法や真空蒸着法などにより形成される。   The first window member side metal film 1 is provided on a base metal film such as Cr (chromium), Ni (nickel), Ta (tantalum), or Ti (titanium), and is made of a metal material such as Au (gold). Is formed. In addition, the formation method of the 1st window member side metal film 1 is formed by sputtering method, a vacuum evaporation method, etc., for example.

[空間部材側金属膜形成工程(S2)]
図1および図2(b)に示すように、空間部材側金属膜形成工程(S2)は、空間部材20の一方の主面に空間部材側第1金属膜2と空間部材20の他方の主面に空間部材側第2金属膜3とを形成する工程である。
[Space member side metal film forming step (S2)]
As shown in FIG. 1 and FIG. 2B, the space member side metal film forming step (S 2) includes the space member side first metal film 2 and the other main member of the space member 20 on one main surface of the space member 20. This is a step of forming the space member side second metal film 3 on the surface.

空間部材側第1金属膜2は、第1窓部材側金属膜1と同様にCr(クロム)、Ni(ニッケル)、Ta(タンタル)、Ti(チタン)等の下地金属膜の上に設けられ、Au(金)等の金属材料より形成されている。なお、空間部材側第1金属膜2の形成方法は、例えば、スパッタリング法や真空蒸着法などにより形成される。   The space member side first metal film 2 is provided on a base metal film such as Cr (chromium), Ni (nickel), Ta (tantalum), Ti (titanium) and the like, similar to the first window member side metal film 1. , Made of a metal material such as Au (gold). In addition, the formation method of the space member side 1st metal film 2 is formed by sputtering method, a vacuum evaporation method, etc., for example.

空間部材側第2金属膜3は、空間部材側第1金属膜2と同様にCr(クロム)、Ni(ニッケル)、Ta(タンタル)、Ti(チタン)等の下地金属膜の上に設けられ、Au(金)等の金属材料より形成されている。なお、空間部材側第2金属膜3の形成方法は、例えば、スパッタリング法や真空蒸着法などにより形成される。   The space member side second metal film 3 is provided on a base metal film such as Cr (chromium), Ni (nickel), Ta (tantalum), Ti (titanium) and the like in the same manner as the space member side first metal film 2. , Made of a metal material such as Au (gold). In addition, the formation method of the space member side 2nd metal film 3 is formed by sputtering method, a vacuum evaporation method, etc., for example.

[部材接合工程(S3)]
図1および図2(c)に示すように、部材接合工程(S3)は、第1窓部材10と空間部材20とを第1窓部材側金属膜1と空間部材側第1金属膜2とを介して接合させる工程である。なお、第1窓部材10と空間部材20との接合方法は、原子拡散接合方法により行われる。
[Member joining step (S3)]
As shown in FIG. 1 and FIG. 2C, in the member joining step (S3), the first window member 10 and the space member 20 are combined with the first window member side metal film 1 and the space member side first metal film 2. It is the process made to join through. In addition, the joining method of the 1st window member 10 and the space member 20 is performed by the atomic diffusion joining method.

原子拡散接合方法は、第1窓部材10に形成された第1窓部材側金属膜1と空間部材20の一方の主面に形成された空間部材側第1金属膜2とを密着させ,第1窓部材側金属膜1と空間部材側第1金属膜2との融点以下の温度条件で,塑性変形をできるだけ生じない程度に加圧して,接合面間に生じる原子の拡散を利用して接合する方法である。   In the atomic diffusion bonding method, the first window member-side metal film 1 formed on the first window member 10 and the space member-side first metal film 2 formed on one main surface of the space member 20 are brought into close contact with each other. Bonding using diffusion of atoms generated between bonding surfaces under pressure conditions that do not cause plastic deformation as much as possible under temperature conditions below the melting point between the window member side metal film 1 and the space member side first metal film 2 It is a method to do.

[被測定物封入空間形成工程(S4)]
図1および図2(d)に示すように、被測定物封入空間形成工程(S4)は、空間部材20の他方の主面に設けられた空間部材側第2金属膜3の表面にレジスト膜5を形成し、所定の外形パターンで露光されたレジスト膜5を剥離するとともに剥離されて露出した空間部材側第2金属膜3の形状で空間部材側第2金属膜3をエッチングし、このエッチングで露出した空間部材20をエッチングし、さらにエッチングで露出した空間部材20の一方の主面に設けられた空間部材側第1金属膜2をエッチングする工程である。なお、エッチングにより形成された空間は、テラヘルツ分光計測の被測定物が封入される空間となる。また、レジスト膜5は、例えば感光性有機物質よりなり、スピンコート法,電着レジスト法,スプレーコート法等により形成される。
[Measurement Object Enclosing Space Formation Step (S4)]
As shown in FIG. 1 and FIG. 2 (d), the measured object enclosure space forming step (S 4) is performed on the surface of the space member side second metal film 3 provided on the other main surface of the space member 20. 5, the resist film 5 exposed with a predetermined outer shape pattern is peeled off, and the space member-side second metal film 3 is etched in the shape of the space member-side second metal film 3 that has been peeled and exposed. In this step, the space member 20 exposed in step 1 is etched, and the space member-side first metal film 2 provided on one main surface of the space member 20 exposed by etching is etched. The space formed by etching is a space in which an object to be measured for terahertz spectroscopy is enclosed. The resist film 5 is made of, for example, a photosensitive organic material, and is formed by a spin coat method, an electrodeposition resist method, a spray coat method, or the like.

露光は、レジスト膜5の上に外形パターンが形成されたマスクを設置してレジスト膜5を露光することである。これにより、レジスト膜5の面がマスクに設けられた外形パターンで露光される。また、マスクは、平板状の第1窓部材10と同じ外形寸法を有し、被測定物が封入されることとなる部分が貫通孔となっている。   The exposure is to expose the resist film 5 by placing a mask having an outer shape pattern formed on the resist film 5. Thereby, the surface of the resist film 5 is exposed with the external pattern provided on the mask. Further, the mask has the same outer dimensions as the flat plate-like first window member 10, and a portion in which the object to be measured is enclosed is a through hole.

[全レジスト膜剥離工程(S5)]
図1および図2(e)に示すように、全レジスト膜剥離工程(S5)は、被測定物封入空間形成工程(S4)でエッチングされなかった部分に残っているレジスト膜5を全て剥離する工程である。
[All resist film peeling step (S5)]
As shown in FIGS. 1 and 2 (e), in the all resist film peeling step (S5), all the resist film 5 remaining in the portion that has not been etched in the measured object enclosure space forming step (S4) is peeled off. It is a process.

[第2窓部材側金属膜形成工程(S6)]
図1および図2(f)に示すように、第2窓部材側金属膜形成工程(S6)は、第2窓部材30の一方の主面に第2窓部材側金属膜4を形成する工程である。
[Second Window Member Side Metal Film Forming Step (S6)]
As shown in FIG. 1 and FIG. 2 (f), the second window member side metal film forming step (S 6) is a step of forming the second window member side metal film 4 on one main surface of the second window member 30. It is.

第2窓部材側金属膜4は、空間部材側第2金属膜3と同様にCr(クロム)、Ni(ニッケル)、Ta(タンタル)、Ti(チタン)等の下地金属膜の上に設けられ、Au(金)等の金属材料より形成されている。なお、第2窓部材側金属膜4の形成方法は、例えば、スパッタリング法や真空蒸着法などにより形成される。   The second window member side metal film 4 is provided on a base metal film such as Cr (chromium), Ni (nickel), Ta (tantalum), Ti (titanium), like the space member side second metal film 3. , Made of a metal material such as Au (gold). In addition, the formation method of the 2nd window member side metal film 4 is formed by sputtering method, a vacuum evaporation method, etc., for example.

[全部材接合工程(S7)]
図1および図2(g)に示すように、全部材接合工程(S7)は、第1窓部材10と空間部材20と第2窓部材30とがそれぞれの部材間に形成された接合用金属膜を介して接合され、被測定物封入空間40内の第1窓部材側金属膜1と第2窓部材側金属膜4をエッチングする工程である。また、全部材接合工程(S7)の接合方法は、原子拡散接合方法により行われる。また、第2窓部材30に設けられた2つの導液口部(図示せず)には、例えばフッ素系プラスチックのチューブが孔内に挿入されており、シリコン系の接着剤で第2窓部材30に気密固定されている。
[All-member joining process (S7)]
As shown in FIGS. 1 and 2G, the all-member joining step (S7) is a joining metal in which the first window member 10, the space member 20, and the second window member 30 are formed between the respective members. This is a step of etching the first window member side metal film 1 and the second window member side metal film 4 in the object-to-be-measured object enclosing space 40, which are joined through the film. Further, the joining method of the all-member joining step (S7) is performed by an atomic diffusion joining method. In addition, for example, a fluorine-based plastic tube is inserted into a hole in two liquid introduction ports (not shown) provided in the second window member 30, and the second window member is made of silicon-based adhesive. 30 is airtightly fixed.

このように、本発明の第1の実施形態に係る液体用セルの製造方法を構成したことにより、被測定物が封入される部分において、テラヘルツパルス波が照射される方向、すなわち光路長が短い方向は、第1窓部材10と第2窓部材30とで空間部材20を挟んだ方向である。また、第1窓部材10と第2窓部材30と空間部材20の表裏主面は平行に形成されていることにより、被測定物が封入される部分の第1窓部材10の表面から被測定物が封入される部分の第2窓部材30の表面までの距離は一定の距離となる。つまり、本発明の液体用セル100における被測定物が封入される部分は、光路長が短い方向の距離のばらつきが少なく形成されることとなる。よって、本発明の第1の実施形態に係る液体用セルを用いたテラヘルツ分光計測は、被測定物の分析精度が向上した測定をすることができる。   As described above, by configuring the liquid cell manufacturing method according to the first embodiment of the present invention, the direction in which the terahertz pulse wave is irradiated, that is, the optical path length is short in the portion where the object to be measured is enclosed. The direction is a direction in which the space member 20 is sandwiched between the first window member 10 and the second window member 30. In addition, since the front and back main surfaces of the first window member 10, the second window member 30, and the space member 20 are formed in parallel, the measurement is performed from the surface of the first window member 10 where the measurement object is enclosed. The distance to the surface of the 2nd window member 30 of the part into which an object is enclosed becomes a fixed distance. That is, the portion of the liquid cell 100 according to the present invention in which the object to be measured is enclosed is formed with less variation in distance in the direction in which the optical path length is short. Therefore, the terahertz spectroscopic measurement using the liquid cell according to the first embodiment of the present invention can perform measurement with improved analysis accuracy of the object to be measured.

(第2の実施形態)
本発明の第2の実施形態における液体用セル200について図3および図4を参照して説明する。なお、本発明の第2の実施形態における液体用セル200において、第1の実施形態における液体用セル100と異なる構成は被測定物が封入される部分の一方向が開口されていることである。その他の構成については、第1の実施形態における液体用セル100と同様である。
(Second Embodiment)
A liquid cell 200 according to a second embodiment of the present invention will be described with reference to FIGS. In the liquid cell 200 according to the second embodiment of the present invention, a configuration different from the liquid cell 100 according to the first embodiment is that one direction in which the object to be measured is enclosed is opened. . About another structure, it is the same as that of the cell 100 for liquids in 1st Embodiment.

図3に示されているように、本発明の第2の実施形態における液体用セルの製造方法は、板状の第1窓部材10と空間部材20とで構成された液体用セル200の製造方法であって、第1窓部材側金属膜形成工程(S11)、空間部材側第1金属膜形成工程(S12)、部材接合工程(S13)、被測定物封入空間形成工程(S14)、全レジスト膜剥離工程(S15)、全部材接合工程(S16)を含んで構成されている。   As shown in FIG. 3, the method for manufacturing a liquid cell according to the second embodiment of the present invention is a method for manufacturing a liquid cell 200 including a plate-like first window member 10 and a space member 20. The first window member side metal film forming step (S11), the space member side first metal film forming step (S12), the member joining step (S13), the measured object enclosure space forming step (S14), The resist film peeling step (S15) and the all member joining step (S16) are included.

[第1窓部材側金属膜形成工程(S11)]
図3に示すように、第1窓部材側金属膜形成工程(S11)は、第1窓部材10の一方の主面に第1窓部材側金属膜1を形成する工程である。
[First Window Member Side Metal Film Forming Step (S11)]
As shown in FIG. 3, the first window member side metal film forming step (S <b> 11) is a step of forming the first window member side metal film 1 on one main surface of the first window member 10.

[空間部材側第1金属膜形成工程(S12)]
図3に示すように、空間部材側第1金属膜形成工程(S12)は、空間部材20の一方の主面に空間部材側第1金属膜2を形成する工程である。
[Space member side first metal film forming step (S12)]
As shown in FIG. 3, the space member side first metal film forming step (S <b> 12) is a step of forming the space member side first metal film 2 on one main surface of the space member 20.

[部材接合工程(S13)]
図3に示すように、部材接合工程(S13)は、第1窓部材10と空間部材20とを第1窓部材側金属膜1と空間部材側第1金属膜2とを介して接合させる工程である。なお、第1窓部材10と空間部材20との接合方法は、原子拡散接合方法により行われる。
[Member joining step (S13)]
As shown in FIG. 3, the member joining step (S 13) is a step of joining the first window member 10 and the space member 20 via the first window member side metal film 1 and the space member side first metal film 2. It is. In addition, the joining method of the 1st window member 10 and the space member 20 is performed by the atomic diffusion joining method.

[被測定物封入空間形成工程(S14)]
図3に示すように、被測定物封入空間形成工程(S14)は、空間部材側第1金属膜2が設けられていない空間部材20の主面の表面にレジスト膜5を形成し、所定の外形パターンで露光されたレジスト膜5を剥離するとともに剥離されて露出した空間部材20の形状で空間部材20をエッチングし、このエッチングで露出した空間部材20の一方の主面に設けられた空間部材側第1金属膜2をエッチングする工程である。なお、エッチングにより形成された空間は、テラヘルツ分光計測の被測定物が封入される被測定物封入空間40となる。また、レジスト膜5は、例えば感光性有機物質よりなり、スピンコート法,電着レジスト法,スプレーコート法等により形成される。
[Measurement Object Enclosing Space Formation Step (S14)]
As shown in FIG. 3, in the measured object enclosure space forming step (S14), a resist film 5 is formed on the surface of the main surface of the space member 20 where the space member side first metal film 2 is not provided, A space member provided on one main surface of the space member 20 exposed by this etching is formed by peeling the resist film 5 exposed in the outer shape pattern and etching the space member 20 in the shape of the space member 20 that is peeled and exposed. This is a step of etching the first side metal film 2. Note that the space formed by the etching is a measured object enclosure space 40 in which the measured object of terahertz spectroscopy is enclosed. The resist film 5 is made of, for example, a photosensitive organic material, and is formed by a spin coat method, an electrodeposition resist method, a spray coat method, or the like.

[全レジスト膜剥離工程(S15)]
図3に示すように、全レジスト膜剥離工程(S15)は、被測定物封入空間形成工程(S14)でエッチングされなかった部分に残っているレジスト膜5を全て剥離する工程である。
[All resist film peeling step (S15)]
As shown in FIG. 3, the all resist film removing step (S15) is a step of removing all of the resist film 5 remaining in the portion that has not been etched in the measured object enclosure space forming step (S14).

[全部材接合工程(S16)]
図3および図4に示すように、全部材接合工程(S16)は、第1窓部材10と空間部材20とが第1窓部材側金属膜1と空間部材側第1金属膜2とを介して接合され、被測定物封入空間40内の第1窓部材側金属膜1をエッチングする工程である。また、全部材接合工程(S16)の接合方法は、原子拡散接合方法により行われる。また、この全部材接合工程(S16)を経て、液体用セル200を形成する。
[All members joining step (S16)]
As shown in FIGS. 3 and 4, in the all-member joining step (S 16), the first window member 10 and the space member 20 pass through the first window member side metal film 1 and the space member side first metal film 2. And the first window member side metal film 1 in the measured object enclosure space 40 is etched. Further, the joining method of the all-member joining step (S16) is performed by an atomic diffusion joining method. Further, the liquid cell 200 is formed through the all-member joining step (S16).

このように、本発明の第2の実施形態に係る液体用セルの製造方法を構成したことにより、被測定物が封入される部分において、テラヘルツパルス波が照射される方向、すなわち光路長が短い方向は、第1窓部材10の一方の主面から第1窓部材10と接合された空間部材20の主面に相対する空間部材20の主面までの方向である。また、第1窓部材10と空間部材20の表裏主面は平行に形成されていることにより、被測定物が封入される部分の第1窓部材10の表面から被測定物が封入される部分の空間部材20の主面までの距離は一定の距離となる。つまり、本発明の液体用セル200における被測定物が封入される部分は、光路長が短い方向の距離のばらつきが少なく形成されることとなる。よって、本発明の第2の実施形態に係る液体用セルを用いたテラヘルツ分光計測は、被測定物の分析精度が向上した測定をすることができる。   As described above, by configuring the method for manufacturing a liquid cell according to the second embodiment of the present invention, the direction in which the terahertz pulse wave is irradiated, that is, the optical path length is short in the portion where the object to be measured is enclosed. The direction is a direction from one main surface of the first window member 10 to the main surface of the space member 20 facing the main surface of the space member 20 joined to the first window member 10. Further, since the front and back main surfaces of the first window member 10 and the space member 20 are formed in parallel, the portion in which the object to be measured is sealed from the surface of the first window member 10 in the portion in which the object to be measured is sealed. The distance to the main surface of the space member 20 is a constant distance. That is, the portion of the liquid cell 200 according to the present invention in which the object to be measured is enclosed is formed with less variation in distance in the direction in which the optical path length is short. Therefore, the terahertz spectroscopic measurement using the liquid cell according to the second embodiment of the present invention can perform measurement with improved analysis accuracy of the object to be measured.

なお、本発明はこれに限定されず、適宜変更可能である。
例えば、第1の実施形態の変形例として、空間部材20が、空間部材側金属膜形成工程(S2)の空間部材側第1金属膜2と空間部材側第2金属膜3を形成する前に物理的に研磨されていてもよい。
In addition, this invention is not limited to this, It can change suitably.
For example, as a modification of the first embodiment, before the space member 20 forms the space member side first metal film 2 and the space member side second metal film 3 in the space member side metal film forming step (S2). It may be physically polished.

また、例えば、第2の実施形態の変形例として、空間部材20が、空間部材側第1金属膜形成工程(S12)の空間部材側第1金属膜2を形成する前に物理的に研磨されていてもよい。   Further, for example, as a modification of the second embodiment, the space member 20 is physically polished before forming the space member side first metal film 2 in the space member side first metal film forming step (S12). It may be.

1 第1窓部材側金属膜
2 空間部材側第1金属膜
3 空間部材側第2金属膜
4 第2窓部材側金属膜
5 レジスト膜
10 第1窓部材
20 空間部材
30 第2窓部材
40 被測定物封入空間
100,200 液体用セル

DESCRIPTION OF SYMBOLS 1 1st window member side metal film 2 Space member side 1st metal film 3 Space member side 2nd metal film 4 2nd window member side metal film 5 Resist film 10 1st window member 20 Space member 30 2nd window member 40 Cover Measurement object enclosure space 100,200 Liquid cell

Claims (2)

板状の第1窓部材と空間部材と第2窓部材とで構成された液体用セルの製造方法であって、
前記第1窓部材の一方の主面に第1窓部材側金属膜を形成する第1窓部材側金属膜形成工程と、
前記空間部材の一方の主面に空間部材側第1金属膜と前記空間部材の他方の主面に空間部材側第2金属膜を形成する空間部材側金属膜形成工程と、
前記第1窓部材と前記空間部材を接合する部材接合工程と、
前記空間部材の他方の主面に設けられた前記空間部材側第2金属膜の表面にレジスト膜を形成し所定の外形パターンで露光された前記レジスト膜を剥離させ露出した前記空間部材側第2金属膜の形状で前記空間部材側第2金属膜から前記空間部材の一方の主面に設けられた空間部材側第1金属膜までエッチングする被測定物封入空間形成工程と、
前記レジスト膜を全て剥離する全レジスト膜剥離工程と、
前記第2窓部材の一方の主面に第2窓部材側金属膜を形成する第2窓部材側金属膜形成工程と、
前記第1窓部材と前記空間部材と前記第2窓部材とを接合させ被測定物封入空間内の前記第1窓部材側金属膜と前記第2窓部材側金属膜をエッチングする全部材接合工程とを含んで構成されていることを特徴とする液体用セルの製造方法。
A method for producing a liquid cell comprising a plate-like first window member, a space member, and a second window member,
A first window member-side metal film forming step of forming a first window member-side metal film on one main surface of the first window member;
A space member side metal film forming step of forming a space member side first metal film on one main surface of the space member and a space member side second metal film on the other main surface of the space member;
A member joining step for joining the first window member and the space member;
The space member-side second exposed by exposing a resist film formed on a surface of the space member-side second metal film provided on the other main surface of the space member and peeling the resist film exposed with a predetermined outer shape pattern. An object enclosing space forming step for etching from the space member side second metal film to the space member side first metal film provided on one main surface of the space member in the shape of a metal film;
A total resist film peeling step for peeling off the resist film;
A second window member side metal film forming step of forming a second window member side metal film on one main surface of the second window member;
An all-member joining step of joining the first window member, the space member, and the second window member to etch the first window member side metal film and the second window member side metal film in the measured object enclosure space. A method for producing a liquid cell, comprising:
板状の第1窓部材と空間部材とで構成された液体用セルの製造方法であって、
前記第1窓部材の一方の主面に第1窓部材側金属膜を形成する第1窓部材側金属膜形成工程と、
前記空間部材の一方の主面に空間部材側第1金属膜を形成する空間部材側第1金属膜形成工程と、
前記第1窓部材と前記空間部材を接合する部材接合工程と、
前記空間部材の他方の主面の表面にレジスト膜を形成し所定の外形パターンで露光された前記レジスト膜を剥離させ露出した前記空間部材の形状で前記空間部材から前記空間部材の一方の主面に設けられた空間部材側第1金属膜までエッチングする被測定物封入空間形成工程と、
前記レジスト膜を全て剥離する全レジスト膜剥離工程と、
前記第1窓部材と前記空間部材とを接合させ被測定物封入空間内の前記第1窓部材側金属膜をエッチングする全部材接合工程とを含んで構成されていることを特徴とする液体用セルの製造方法。
A method for producing a liquid cell composed of a plate-like first window member and a space member,
A first window member-side metal film forming step of forming a first window member-side metal film on one main surface of the first window member;
A space member-side first metal film forming step of forming a space member-side first metal film on one main surface of the space member;
A member joining step for joining the first window member and the space member;
A resist film is formed on the surface of the other main surface of the space member, and the resist film exposed with a predetermined outer shape pattern is peeled off to expose the one main surface of the space member from the space member in an exposed shape. A space to be measured enclosing space for etching up to the first metal film on the space member side provided in
A total resist film peeling step for peeling off the resist film;
And a liquid joining method including a whole member joining step of joining the first window member and the space member and etching the first window member side metal film in the space to be measured. Cell manufacturing method.
JP2013136439A 2013-06-28 2013-06-28 Method for manufacturing liquid cell Expired - Fee Related JP6142431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136439A JP6142431B2 (en) 2013-06-28 2013-06-28 Method for manufacturing liquid cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136439A JP6142431B2 (en) 2013-06-28 2013-06-28 Method for manufacturing liquid cell

Publications (2)

Publication Number Publication Date
JP2015010933A true JP2015010933A (en) 2015-01-19
JP6142431B2 JP6142431B2 (en) 2017-06-07

Family

ID=52304217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136439A Expired - Fee Related JP6142431B2 (en) 2013-06-28 2013-06-28 Method for manufacturing liquid cell

Country Status (1)

Country Link
JP (1) JP6142431B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036145A (en) * 1996-05-22 1998-02-10 Shimadzu Corp Parts-joining and optical measurement assembly manufactured thereby
JP2003130883A (en) * 2001-04-16 2003-05-08 Tosoh Corp Microchannel structure, method of manufacturing the same, and use of the same
JP2009288047A (en) * 2008-05-29 2009-12-10 Epson Toyocom Corp Liquid cell for terahertz spectroscopic analysis and method for manufacturing liquid cell for terahertz spectroscopic analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036145A (en) * 1996-05-22 1998-02-10 Shimadzu Corp Parts-joining and optical measurement assembly manufactured thereby
JP2003130883A (en) * 2001-04-16 2003-05-08 Tosoh Corp Microchannel structure, method of manufacturing the same, and use of the same
JP2009288047A (en) * 2008-05-29 2009-12-10 Epson Toyocom Corp Liquid cell for terahertz spectroscopic analysis and method for manufacturing liquid cell for terahertz spectroscopic analysis

Also Published As

Publication number Publication date
JP6142431B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
Awang et al. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids
Hasegawa et al. Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks
Li et al. PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters
US20070074579A1 (en) Wireless pressure sensor and method of forming same
Miao et al. Fabrication of 200 nm period hard X-ray phase gratings
CN105824189B (en) Mask plate, substrate spacer column, preparation methods of mask plate and substrate spacer column and display panel
US7947430B2 (en) Method of forming 3D micro structures with high aspect ratios
JP5908370B2 (en) Surface-enhanced Raman scattering unit
JP2006203700A (en) Method for manufacturing piezoelectric substrate, piezoelectric vibration element, piezoelectric vibrator and piezo-oscillator
Parsi Sreenivas et al. Ultraviolet transmittance of SU-8 photoresist and its importance in multi-wavelength photolithography
JP6142431B2 (en) Method for manufacturing liquid cell
Nair et al. Suspended silicon nitride thin films with enhanced and electrically tunable reflectivity
WO2013084421A1 (en) Microstructure, and imaging apparatus having the microstructure
WO2006080336A1 (en) Filter and method of manufacturing the same
JP2011139433A (en) Mems element for terahertz oscillator, and method of manufacturing the same
JP2016118494A (en) Pressure sensor and method for manufacturing the same
Jia et al. The microfabricated alkali vapor cell with high hermeticity for chip-scale atomic clock
CN105502281B (en) A kind of metal patternization method
Serra et al. Fabrication of low loss MOMS resonators for quantum optics experiments
Jones et al. Rapid prototyping MEMS with laminated resin printing
Singh et al. Development and characterization of atom chip for magnetic trapping of atoms
JP2016023121A (en) Sealing method of gas cell
Kim et al. Polymer-based zero-level packaging technology for high frequency RF applications by wafer bonding/debonding technique using an anti-adhesion layer
JP7267524B2 (en) Gas cell and gas cell manufacturing method
Schmidt et al. Technology towards a SAW based phononic crystal sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170420

R150 Certificate of patent or registration of utility model

Ref document number: 6142431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees