JP2015010931A - Semiconductor pressure sensor device and manufacturing method of the same - Google Patents

Semiconductor pressure sensor device and manufacturing method of the same Download PDF

Info

Publication number
JP2015010931A
JP2015010931A JP2013136304A JP2013136304A JP2015010931A JP 2015010931 A JP2015010931 A JP 2015010931A JP 2013136304 A JP2013136304 A JP 2013136304A JP 2013136304 A JP2013136304 A JP 2013136304A JP 2015010931 A JP2015010931 A JP 2015010931A
Authority
JP
Japan
Prior art keywords
film
pressure sensor
layer
sensor device
semiconductor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013136304A
Other languages
Japanese (ja)
Other versions
JP6136644B2 (en
Inventor
和宏 松並
Kazuhiro Matsunami
和宏 松並
克之 植松
Katsuyuki Uematsu
克之 植松
睦雄 西川
Mutsuo Nishikawa
睦雄 西川
篠田 茂
Shigeru Shinoda
茂 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013136304A priority Critical patent/JP6136644B2/en
Priority to US14/313,704 priority patent/US9200974B2/en
Priority to CN201410302783.9A priority patent/CN104251758B/en
Publication of JP2015010931A publication Critical patent/JP2015010931A/en
Application granted granted Critical
Publication of JP6136644B2 publication Critical patent/JP6136644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0045Diaphragm associated with a buried cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0055Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements bonded on a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor pressure sensor device that can suppress corrosion even under a harsh environment such as in an exhaust system, and a manufacturing method of the semiconductor pressure sensor device.SOLUTION: A semiconductor pressure sensor device 100 comprises: a semiconductor substrate 1 having a recess 10 that serves as a vacuum standard chamber 9; a diaphragm 2a arranged on a surface of the semiconductor substrate 1; a distortion gage resistor 2; an aluminum wiring layer 4 arranged on the semiconductor substrate 1; an antireflection film which is a TiN film 5 arranged on the aluminum wiring layer 4; an adhesion-degree-securing and diffusion preventing film 7 which is a laminate film of a Cr film 7a and a Pt film 7b arranged on the TiN film 5; and an Au film 8 laminated on the adhesion-degree-securing and diffusion preventing film 7. Processing an end face 14 of a laminate metal film 13 including the Cr film 7a, the Pt film 7b and the Au film 8 into a tapered shape expanding toward the semiconductor substrate 1 prevents a dent from being formed on an end face of the adhesion-degree-securing and diffusion preventing film 7, suppressing corrosion by an exhaust gas.

Description

この発明は、自動車用、医療用または産業用などの各種装置等に用られる半導体圧力センサ装置において、例えば、自動車の排気系などの劣悪な環境で使用される半導体圧力センサ装置およびその製造方法に関する。   The present invention relates to a semiconductor pressure sensor device used in various devices such as automobiles, medical devices, and industrial devices, for example, a semiconductor pressure sensor device used in a poor environment such as an automobile exhaust system, and a manufacturing method thereof. .

図7は、半導体圧力センサ装置500の全体の構成図である。従来の半導体圧力センサ装置500は、表面側に形成されるダイアフラム52a、歪ゲージ抵抗52および図示しない集積回路などを形成した半導体基板51と、この半導体基板51の裏面に形成される凹部60と、半導体基板51の裏面に固着するガラス基板61と、半導体基板51とガラス基板61を格納する樹脂ケース66を備える。半導体基板51の凹部60をガラス基板61で塞さぐことで真空基準室59が形成され、半導体圧力センサICチップ501となる。前記の樹脂ケース66には金属端子69が設けられ、半導体圧力センサICチップ501はボンディングワイヤ68(AlワイヤやAuワイヤ)を介して金属端子69に接続する。ガラス基板61は樹脂ケース66に接着剤67で固定され、半導体圧力センサICチップ501の表面はシリコーンゲル70などの保護材が被覆される。   FIG. 7 is an overall configuration diagram of the semiconductor pressure sensor device 500. A conventional semiconductor pressure sensor device 500 includes a semiconductor substrate 51 formed with a diaphragm 52a, a strain gauge resistor 52 and an integrated circuit (not shown) formed on the front surface side, and a recess 60 formed on the back surface of the semiconductor substrate 51. A glass substrate 61 fixed to the back surface of the semiconductor substrate 51 and a resin case 66 for storing the semiconductor substrate 51 and the glass substrate 61 are provided. A vacuum reference chamber 59 is formed by closing the recess 60 of the semiconductor substrate 51 with a glass substrate 61, thereby forming a semiconductor pressure sensor IC chip 501. The resin case 66 is provided with a metal terminal 69, and the semiconductor pressure sensor IC chip 501 is connected to the metal terminal 69 through a bonding wire 68 (Al wire or Au wire). The glass substrate 61 is fixed to the resin case 66 with an adhesive 67, and the surface of the semiconductor pressure sensor IC chip 501 is covered with a protective material such as a silicone gel 70.

前記の半導体基板51上には、シリコン酸化膜53の層間絶縁膜、アルミ配線層54、密着度確保・拡散防止層であるTiW膜57、Au膜58が積層配置されている。この密着度確保・拡散防止層であるTiW膜57の働きは、アルミ配線層54への密着度を向上させ、Au膜58のAu原子がアルミ配線層54へ拡散することを防止する。   On the semiconductor substrate 51, an interlayer insulating film of a silicon oxide film 53, an aluminum wiring layer 54, a TiW film 57 which is an adhesion securing / diffusion preventing layer, and an Au film 58 are laminated. The function of the TiW film 57 serving as the adhesion securing / diffusion preventing layer improves the adhesion to the aluminum wiring layer 54 and prevents the Au atoms of the Au film 58 from diffusing into the aluminum wiring layer 54.

半導体圧力センサICチップ501上に設けたダイアフラム52aにシリコーンゲル70等の保護材を介して圧力が印加される。前記したように、ダイアフラム52a上には歪みゲージ抵抗52が設けられ、この歪ゲージ抵抗52はダイアフラム52aの歪み量が大きいほど、抵抗値の変化も大きくなる。この歪ゲージ抵抗52でブリッジ回路を構成し、抵抗変化を電圧変化に変換し、その電圧変化を増幅回路等のアナログ回路(集積回路)を介して、外部に電圧出力される。   Pressure is applied to the diaphragm 52a provided on the semiconductor pressure sensor IC chip 501 via a protective material such as a silicone gel 70. As described above, the strain gauge resistor 52 is provided on the diaphragm 52a, and the change in the resistance value of the strain gauge resistor 52 increases as the strain amount of the diaphragm 52a increases. The strain gauge resistor 52 constitutes a bridge circuit, converts the resistance change into a voltage change, and the voltage change is output to the outside via an analog circuit (integrated circuit) such as an amplifier circuit.

このような半導体圧力センサ装置500は、自動車等の内燃機関(エンジン)の吸気系の圧力を測る吸気圧センサとして用いられているが、近年、環境規制、安全規制が強化される中で、排気系の圧力の検出にも用いられるようになってきている。吸気系の圧力測定に用いられる場合、半導体圧力センサ装置500は比較的きれいな空気や噴霧されたガソリンのみに曝されるため、半導体圧力センサ装置500に求められる耐薬品性としては主にガソリン等の燃料への耐性のみであった。よって、集積回路の電極およびボンディングワイヤはアルミやアルミを主原料とする合金で構成され、集積回路表面を耐薬品性の高いシリコーンゲル70等で保護することで充分にその耐性を確保できた。   Such a semiconductor pressure sensor device 500 is used as an intake pressure sensor for measuring the pressure of an intake system of an internal combustion engine (engine) such as an automobile. It is also used to detect system pressure. When used for pressure measurement in the intake system, the semiconductor pressure sensor device 500 is exposed only to relatively clean air or sprayed gasoline, so that the chemical resistance required for the semiconductor pressure sensor device 500 is mainly gasoline or the like. It was only resistant to fuel. Therefore, the electrodes and bonding wires of the integrated circuit are made of aluminum or an alloy mainly made of aluminum, and the resistance can be sufficiently secured by protecting the surface of the integrated circuit with the silicone gel 70 having high chemical resistance.

しかし、排気系の圧力測定に用いられる場合、内燃機関から排出される窒素化合物、硫化物等から生成される腐食性物質にも曝されるため、半導体圧力センサ装置500には様々な腐食性物質への耐性が求められ、これらの対策として、アルミ電極の表面に腐食防止のためのTi膜とPd膜を設ける技術が提案されている(例えば、特許文献1など)。   However, since it is also exposed to corrosive substances generated from nitrogen compounds, sulfides, and the like discharged from the internal combustion engine when used for exhaust system pressure measurement, the semiconductor pressure sensor device 500 includes various corrosive substances. As a countermeasure against these problems, a technique of providing a Ti film and a Pd film for preventing corrosion on the surface of an aluminum electrode has been proposed (for example, Patent Document 1).

また、特許文献1の構造では排気ガスに含まれる窒素酸化物による硝酸イオンによる腐食に対する耐性が不十分であるとし、アルミ電極上にTiW膜を密着度確保・拡散防止層とし、その表面を耐腐食性の高いAu膜で覆う技術が提案されている(例えば、特許文献2など)。   Further, in the structure of Patent Document 1, it is assumed that the resistance to corrosion by nitrate ions caused by nitrogen oxides contained in the exhaust gas is insufficient, and a TiW film is used as an adhesion securing / diffusion preventing layer on the aluminum electrode, and the surface is made resistant to damage. A technique of covering with a highly corrosive Au film has been proposed (for example, Patent Document 2).

また、特許文献3では、拡散防止膜のアンダーカットを防ぐために、拡散防止膜がシール膜より横方向に張り出した構成(階段構造)が記載されている。
前記したアルミ配線層の表面を被覆するTiW膜やAu膜は、半導体における一般的な金属膜の成膜方法であるスパッタリングや蒸着によって形成し、成膜した金属膜のパターニングのためのエッチングは、ウェットエッチングやリフトオフなどが用いられる。
Further, Patent Document 3 describes a configuration (step structure) in which the diffusion prevention film projects laterally from the seal film in order to prevent undercutting of the diffusion prevention film.
The TiW film or Au film covering the surface of the aluminum wiring layer is formed by sputtering or vapor deposition, which is a general method for forming a metal film in a semiconductor, and etching for patterning the formed metal film is performed as follows: Wet etching or lift-off is used.

特開平10−153508号公報JP 10-153508 A 特願2007−542184号公報Japanese Patent Application No. 2007-542184 特願2007−251158号公報Japanese Patent Application No. 2007-251158

前記したように、アルミ配線層54にTiW膜57からなる密着度確保・拡散防止層および耐食性の高いAu膜58等の複数の膜をスパッタリングまたは蒸着によって成膜する。その成膜のエッチングにウェットエッチングを用いた場合、上層から順番に各層(Au膜58とTiW膜57)に適したエッチング液を用いてウェットエッチングする。そのため、アルミ配線層54に近い密着度確保・拡散防止層層であるTiW膜57のサイドエッチングが大きくなる。このサイドエッチングによって、最表面の耐食性の高いAu膜58とパッシベーション膜56の間のTiW膜57の端部が引っ込んで窪みである微小隙間80ができる(図8)。尚、図8は図7のB部に対応する製造工程断面図である。   As described above, a plurality of films such as the adhesion securing / diffusion prevention layer made of the TiW film 57 and the highly corrosion-resistant Au film 58 are formed on the aluminum wiring layer 54 by sputtering or vapor deposition. When wet etching is used for the film formation, wet etching is performed using an etching solution suitable for each layer (Au film 58 and TiW film 57) in order from the upper layer. Therefore, side etching of the TiW film 57 which is an adhesion securing / diffusion prevention layer close to the aluminum wiring layer 54 becomes large. By this side etching, the end portion of the TiW film 57 between the Au film 58 having the highest corrosion resistance on the outermost surface and the passivation film 56 is retracted to form a minute gap 80 that is a depression (FIG. 8). FIG. 8 is a sectional view of the manufacturing process corresponding to the portion B in FIG.

このような微小隙間80に気体が到達した場合、毛管凝縮作用によって、気体から液体81になり易くなる。
一方、TiW膜57などの金属の腐食は気体状態の窒素化合物や硫化物によっても進行するが、水分が介在することによって、腐食の進行が速まることが多い。よって、気体状態で前記の微小隙間80に入り込んだ窒素化合物や硫化物および水蒸気等が、この微小隙間80で液体81となり、それによって腐食が進行してしまうことがある。この腐食は2層金属(例えば、TiW膜57とAu膜58)間でのボルタの電池と呼ばれるガルバニック腐食(異種金属間での腐食)も加わり、TiW膜57とAu膜58の界面82に発生する。この腐食が進行するとAu膜58(パッド電極)とTiW膜57の密着性が低下して界面82で剥離83が起こる。
When the gas reaches such a minute gap 80, the gas tends to become the liquid 81 due to the capillary condensation action.
On the other hand, the corrosion of the metal such as the TiW film 57 proceeds also by a nitrogen compound or sulfide in a gaseous state, but the progress of the corrosion is often accelerated by the presence of moisture. Therefore, nitrogen compounds, sulfides, water vapor, and the like that have entered the minute gap 80 in the gas state become the liquid 81 in the minute gap 80, which may lead to corrosion. This corrosion also occurs at the interface 82 between the TiW film 57 and the Au film 58 due to the addition of galvanic corrosion (corrosion between different metals) called a voltaic cell between two layers of metal (for example, the TiW film 57 and the Au film 58). To do. As this corrosion proceeds, the adhesion between the Au film 58 (pad electrode) and the TiW film 57 decreases, and peeling 83 occurs at the interface 82.

前記したように、排気系など劣悪な環境ではTiW膜57からなる密着度確保・拡散防止層は耐腐食性が低いために使用することは難しい。
また、リフトオフ法では、レジスト除去時に金属膜を機械的に切り離してパターンを形成するため、数十μmの微細なパターン形成には適さない。
As described above, in a poor environment such as an exhaust system, the adhesion ensuring / diffusion preventing layer made of the TiW film 57 is difficult to use because of its low corrosion resistance.
Also, the lift-off method is not suitable for forming a fine pattern of several tens of μm because the pattern is formed by mechanically separating the metal film when removing the resist.

また、特許文献3では、排気系の圧力センサとして使用する場合の腐食を課題とするものではない。さらに、TiW膜57とAu膜58の側壁を後述する正テーパー形状にして微小隙間80の形成を防止し、腐食を抑制することについては記載されていない。   Further, Patent Document 3 does not address corrosion when used as an exhaust system pressure sensor. Furthermore, there is no description about preventing the formation of the minute gap 80 and suppressing the corrosion by making the side walls of the TiW film 57 and the Au film 58 into a positive taper shape which will be described later.

この発明は、上記問題点に鑑みてなされたものであって、排気系など劣悪な環境でも腐食を抑制できる半導体圧力センサ装置およびその製造方法を提供することにある。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide a semiconductor pressure sensor device capable of suppressing corrosion even in a poor environment such as an exhaust system and a method for manufacturing the same.

前記の目的を達成するために、特許請求の範囲の請求項1に記載の発明によれば、内燃機関の排気系に設置される半導体圧力センサ装置において、半導体基板上に配置され、圧力に応じて歪むダイアフラムと、該ダイアフラムに接続し前記ダイアフラムに配置される歪みゲージと、該歪みゲージに接続し、前記半導体基板上に層間絶縁膜を介して配置される金属配線層と、該金属配線層が露出する開口部を有するパッシベーション膜と、前記露出した金属配線層上と該金属配線層の端部を被覆する前記パッシベーション膜上に配置される密着度確保・拡散防止層と、該密着度確保・拡散防止層上に積層されるパッド電極を構成する導電層とを備え、前記密着度確保・拡散防止層と前記導電層で構成される積層金属層の端面が前記半導体基板側に向かって広がる正テーパー形状もしくは階段形状である構成とする。   In order to achieve the above object, according to the first aspect of the present invention, in the semiconductor pressure sensor device installed in the exhaust system of the internal combustion engine, the semiconductor pressure sensor device is disposed on the semiconductor substrate and is responsive to the pressure. And a strain gauge connected to the diaphragm and disposed on the diaphragm, a metal wiring layer connected to the strain gauge and disposed on the semiconductor substrate via an interlayer insulating film, and the metal wiring layer A passivation film having an opening through which the metal layer is exposed, an adhesion ensuring / diffusion preventing layer disposed on the exposed metal wiring layer and on the passivation film covering an end of the metal wiring layer, and ensuring the adhesion A conductive layer that constitutes a pad electrode laminated on the diffusion prevention layer, and the end face of the laminated metal layer constituted by the adhesion prevention and diffusion prevention layer and the conductive layer is on the semiconductor substrate side Towards a positive tapered or stepped shapes and configurations spread.

また、特許請求の範囲の請求項2記載の発明によれば、請求項1に記載の発明において、前記半導体基板の裏面にガラス基板が静電接合によって固着されるとよい。
また、特許請求の範囲の請求項3記載の発明によれば、請求項1または2に記載の発明において、前記金属配線層がアルミ配線層であり、前記密着度確保・拡散防止層が前記半導体基板側から上方に向かってCr膜とPt膜の積層膜またはTi膜とPt膜の積層膜であり、前記導電層が前記Pt膜上に積層されるAu膜であるとよい。
According to the second aspect of the present invention, in the first aspect of the present invention, the glass substrate may be fixed to the back surface of the semiconductor substrate by electrostatic bonding.
According to a third aspect of the present invention, in the first or second aspect, the metal wiring layer is an aluminum wiring layer, and the adhesion securing / diffusion prevention layer is the semiconductor. A Cr film and a Pt film or a Ti film and a Pt film may be laminated upward from the substrate side, and the conductive layer may be an Au film laminated on the Pt film.

また、特許請求の範囲の請求項4記載の発明によれば、請求項1または2に記載の発明において、前記密着度確保・拡散防止層がCr膜もしくはTi膜のいずれかの単層膜であり、、前記導電層がPt膜またはAu膜であるとよい。   According to the invention described in claim 4 of the claims, in the invention described in claim 1 or 2, the adhesion ensuring / diffusion preventing layer is a single layer film of either a Cr film or a Ti film. In addition, the conductive layer may be a Pt film or an Au film.

また、特許請求の範囲の請求項5に記載の発明によれば、請求項1〜4のいずれか一項に記載の発明において、前記金属配線層と前記密着度確保・拡散防止層の間に反射防止膜を介在させるとよい。   According to the invention described in claim 5 of the claims, in the invention described in any one of claims 1 to 4, between the metal wiring layer and the adhesion securing / diffusion preventing layer. An antireflection film may be interposed.

また、特許請求の範囲の請求項6に記載の発明によれば、請求項5に記載の発明において、前記反射防止膜がTiN膜であるとよい。
また、特許請求の範囲の請求項7に記載の発明によれば、請求項5または6に記載の半導体圧力センサ装置の製造方法において、前記金属配線層上に前記反射防止膜を形成する工程と、開口部を有する前記パッシベーション膜を形成する工程と、前記半導体基板の裏面に前記ガラス基板を静電接合により固着する工程と、前記密着度確保・拡散防止層および前記導電層を前記反射防止膜上および前記パッシベーション膜上に形成する積層金属層形成工程とを備え、前記積層金属層形成工程は、前記半導体基板の表面側全面に前記密着度確保・拡散防止層および前記導電層をスパッタにより成膜する工程と、成膜した前記導電層上に選択的にレジストマスクを形成する工程と、イオンミリングにより前記導電層および前記密着度確保・拡散防止層をエッチングする工程とを備える半導体圧力センサ装置の製造方法とする。
According to the invention described in claim 6, it is preferable that the antireflection film is a TiN film in the invention described in claim 5.
According to the invention described in claim 7, the method for manufacturing a semiconductor pressure sensor device according to claim 5 or 6 includes the step of forming the antireflection film on the metal wiring layer. A step of forming the passivation film having an opening, a step of fixing the glass substrate to the back surface of the semiconductor substrate by electrostatic bonding, an adhesion ensuring / diffusion preventing layer, and the conductive layer as the antireflection film. And a laminated metal layer forming step formed on the passivation film, wherein the laminated metal layer forming step forms the adhesion securing / diffusion preventing layer and the conductive layer on the entire surface side of the semiconductor substrate by sputtering. A step of forming a film, a step of selectively forming a resist mask on the formed conductive layer, and securing and preventing diffusion of the conductive layer by ion milling. The the method of manufacturing a semiconductor pressure sensor device and a step of etching.

また、特許請求の範囲の請求項8に記載の発明によれば、前記請求項1〜請求項6のいずれか一項に記載の半導体圧力センサ装置の製造方法において、前記積層金属層の端面の正テーパー形状が、マスクを介してArイオンを前記積層金属層に衝突させてエッチングするイオンミリングで形成されるとよい。   Moreover, according to invention of Claim 8 of Claim, in the manufacturing method of the semiconductor pressure sensor apparatus as described in any one of the said Claims 1-6, of the end surface of the said laminated metal layer The positive taper shape may be formed by ion milling in which Ar ions collide with the laminated metal layer through a mask to perform etching.

また、特許請求の範囲の請求項9に記載の発明によれば、請求項8に記載の発明において、前記Arイオンの飛程軸に対して垂直方向を基準にして前記積層金属層の表面が鋭角になるように下方に傾けるとよい。   According to the invention described in claim 9, the surface of the laminated metal layer according to the invention described in claim 8 is based on a direction perpendicular to the range axis of the Ar ions. It is good to incline downward so that it becomes an acute angle.

また、特許請求の範囲の請求項10に記載の発明によれば、請求項9に記載の発明において、前記Arイオンの飛程軸を水平にし、該飛程軸に対して垂直方向を基準にして前記積層金属層の表面が下方に傾く角度θが、0°≦θ≦50°であるとよい。   According to the invention described in claim 10 of the claims, in the invention described in claim 9, the range axis of the Ar ions is horizontal, and the direction perpendicular to the range axis is used as a reference. The angle θ at which the surface of the laminated metal layer is inclined downward is preferably 0 ° ≦ θ ≦ 50 °.

また、特許請求の範囲の請求項11に記載の発明によれば、請求項10に記載の発明において、前記角度θが、10°≦θ≦50°であるとよい。
また、特許請求の範囲の請求項12に記載の発明によれば、請求項8に記載の発明において、前記半導体基板の裏面に前記ガラス基板が静電接合で固着されるとよい。
According to the invention described in claim 11 of the claims, in the invention described in claim 10, the angle θ is preferably 10 ° ≦ θ ≦ 50 °.
According to the invention described in claim 12 of the claims, in the invention described in claim 8, the glass substrate is preferably fixed to the back surface of the semiconductor substrate by electrostatic bonding.

この発明により、排気系など劣悪な環境でも腐食を抑制できる半導体圧力センサ装置およびその製造方法を製作することができる。   According to the present invention, it is possible to manufacture a semiconductor pressure sensor device that can suppress corrosion even in a poor environment such as an exhaust system and a manufacturing method thereof.

この発明に係る第1実施例の半導体圧力センサ装置100の構成図であり、(a)は全体構成図、(b)は半導体圧力センサICチップ101の要部断面図であるBRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the semiconductor pressure sensor apparatus 100 of 1st Example based on this invention, (a) is a whole block diagram, (b) is principal part sectional drawing of the semiconductor pressure sensor IC chip 101. 図1に示した半導体圧力センサ装置100の変形例を示す半導体圧力センサ装置100aの要部断面図である。It is principal part sectional drawing of the semiconductor pressure sensor apparatus 100a which shows the modification of the semiconductor pressure sensor apparatus 100 shown in FIG. この発明に係る第2実施例の半導体圧力センサ装置200の要部断面図である。It is principal part sectional drawing of the semiconductor pressure sensor apparatus 200 of 2nd Example which concerns on this invention. この発明に係る第3実施例の半導体圧力センサ装置100の要部製造工程断面図である。It is principal part manufacturing process sectional drawing of the semiconductor pressure sensor apparatus 100 of 3rd Example concerning this invention. 図4に続く、この発明に係る第3実施例の半導体圧力センサ装置100の要部製造工程断面図である。FIG. 5 is a cross-sectional view of the essential part manufacturing process of the semiconductor pressure sensor device 100 of the third embodiment according to the present invention continued from FIG. 4. 図6は、イオンミリング工程を説明する図である。FIG. 6 is a diagram illustrating an ion milling process. 半導体圧力センサ装置500の全体の構成図である。1 is an overall configuration diagram of a semiconductor pressure sensor device 500. FIG. 図7のB部に対応する製造工程断面図である。FIG. 8 is a manufacturing process cross-sectional view corresponding to part B of FIG. 7.

実施の形態を以下の実施例で説明する。
(実施例1)
図1は、この発明に係る第1実施例の半導体圧力センサ装置100の構成図であり、同図(a)は全体構成図、同図(b)は,半導体圧力センサICチップ101の要部断面図である。
Embodiments will be described in the following examples.
Example 1
1A and 1B are configuration diagrams of a semiconductor pressure sensor device 100 according to a first embodiment of the present invention. FIG. 1A is an overall configuration diagram, and FIG. 1B is a main part of a semiconductor pressure sensor IC chip 101. It is sectional drawing.

同図(a)において、半導体圧力センサ装置100は、表面側に形成されるダイアフラム2a、歪ゲージ抵抗2および図示しない集積回路などを形成した半導体基板1と、この半導体基板1の裏面に形成される凹部10と、半導体基板1の裏面に固着するガラス基板11と、半導体基板1とガラス基板11を格納する樹脂ケース16を備える。半導体基板1の凹部10をガラス基板11で塞さぐことで真空基準室9が形成され、半導体圧力センサICチップ101となる。前記の樹脂ケース16には金属端子19が設けられ、半導体圧力センサICチップ101はボンディングワイヤ18(AlワイヤやAuワイヤ)を介して金属端子19に接続する。ガラス基板11は樹脂ケース16に接着剤17で固定され、半導体圧力センサICチップ101の表面はシリコーンゲル20などの保護材が被覆される。   In FIG. 2A, a semiconductor pressure sensor device 100 is formed on a semiconductor substrate 1 on which a diaphragm 2a, a strain gauge resistor 2 and an integrated circuit (not shown) formed on the front surface side are formed, and a back surface of the semiconductor substrate 1. A recess 10, a glass substrate 11 fixed to the back surface of the semiconductor substrate 1, and a resin case 16 for storing the semiconductor substrate 1 and the glass substrate 11. The vacuum reference chamber 9 is formed by closing the concave portion 10 of the semiconductor substrate 1 with the glass substrate 11, and the semiconductor pressure sensor IC chip 101 is formed. The resin case 16 is provided with a metal terminal 19, and the semiconductor pressure sensor IC chip 101 is connected to the metal terminal 19 via a bonding wire 18 (Al wire or Au wire). The glass substrate 11 is fixed to the resin case 16 with an adhesive 17, and the surface of the semiconductor pressure sensor IC chip 101 is covered with a protective material such as a silicone gel 20.

同図(b)において、この半導体圧力センサ装置100を構成する半導体圧力センサICチップ101は、前記した真空基準室9となる凹部10を有する半導体基板1と、半導体基板1の表面に配置されるダイアフラム2aと、このダイアフラム2aと電気的に接続する歪ゲージ抵抗2とを備える。この歪ゲージ抵抗2に電気的に接続し、半導体基板1上に配置されるシリコン酸化膜3である層間絶縁膜と、このシリコン酸化膜3上に配置されるAl−Si−Cu膜であるアルミ配線層4とを備える。このアルミ配線層4上に配置されるTiN膜5である反射防止膜と、このTiN膜5上に配置され、開口部を有するシリコン酸化膜6aとシリコン窒化膜6bからなるパッシベーション膜6とを備える。前記の開口部から露出したTiN膜5上に配置されるCr膜7aとPt膜7bの積層膜(図4参照)である密着度確保・拡散防止膜7と、前記密着度確保・拡散防止膜7上に積層されたAu膜8(Au電極となる)を備える。また、凹部10の開口部側の半導体基板1(裏面)に静電接合されるガラス基板11を備える。半導体基板1にガラス基板11が固着することで真空基準室9が形成される。   In FIG. 2B, a semiconductor pressure sensor IC chip 101 constituting the semiconductor pressure sensor device 100 is disposed on the surface of the semiconductor substrate 1 having the recess 10 serving as the vacuum reference chamber 9 and on the surface of the semiconductor substrate 1. A diaphragm 2a and a strain gauge resistor 2 electrically connected to the diaphragm 2a are provided. An interlayer insulating film which is a silicon oxide film 3 disposed on the semiconductor substrate 1 and electrically connected to the strain gauge resistor 2 and an aluminum which is an Al—Si—Cu film disposed on the silicon oxide film 3 And a wiring layer 4. An antireflection film that is a TiN film 5 disposed on the aluminum wiring layer 4 and a passivation film 6 that is disposed on the TiN film 5 and includes an opening and a silicon oxide film 6a and a silicon nitride film 6b. . The adhesion securing / diffusion preventing film 7 which is a laminated film (see FIG. 4) of the Cr film 7a and the Pt film 7b disposed on the TiN film 5 exposed from the opening, and the adhesion securing / diffusion preventing film. 7 is provided with an Au film 8 (which becomes an Au electrode) laminated on the substrate 7. Moreover, the glass substrate 11 electrostatically joined to the semiconductor substrate 1 (back surface) on the opening side of the recess 10 is provided. The vacuum reference chamber 9 is formed by fixing the glass substrate 11 to the semiconductor substrate 1.

前記の反射防止膜であるTiN膜5の本来の働きは、フォトリソグラフィーの露光時に発生するハレーションを防止する働きをする。本発明でのこの働きの他に、ガラス基板11を半導体基板1に静電接合するときの温度(400℃程度)でアルミ配線層4に発生する大きなヒロックを抑制する働きがある。そのため、Au膜8の膜厚を薄くすることができる。   The original function of the TiN film 5 serving as the antireflection film is to prevent halation that occurs during photolithography exposure. In addition to this function in the present invention, there is a function to suppress a large hillock generated in the aluminum wiring layer 4 at a temperature (about 400 ° C.) when the glass substrate 11 is electrostatically bonded to the semiconductor substrate 1. Therefore, the film thickness of the Au film 8 can be reduced.

また、前記の密着度確保・拡散防止層7として用いたCr膜7aとPt膜7bの積層膜は排気系のような劣悪な環境下でも腐食を防止する働きがある。
前記のCr膜7a、Pt膜7b、Au膜8は半導体基板1側から上方に向かって積層された積層金属層13であり、この積層金属層13の端面14を、前記半導体基板1側に向かって広がるテーパー形状(ここでは正テーパー形状15と称す)に加工する。この正テーパー形状15に加工にすることで、Cr膜7aとPt膜7bからなる密着度確保・拡散防止膜7の端面に窪みが形成されなる。窪みが形成されないことで、Au膜8(パッド電極)に到達した気体状態の腐食性ガスが液体状態になり難く、この箇所での排ガスによる腐食を抑制することができる。その結果、密着度確保・拡散防止膜7であるCr膜7aとPt膜7bの間の界面が腐食によって剥離することが防止される。前記の密着度確保・拡散防止膜7のCr膜7aは下地のTiN膜5(TiN膜5が無いばあいにはアルミ配線層4)との密着と、下地のアルミ配線層4と上部のAu膜8間での拡散防止の働きをする。Pt膜7bは下地のアルミ配線層4と上部のAu膜8間での拡散防止の働きをする。
Further, the laminated film of the Cr film 7a and the Pt film 7b used as the adhesion ensuring / diffusion preventing layer 7 has a function of preventing corrosion even in a poor environment such as an exhaust system.
The Cr film 7a, the Pt film 7b, and the Au film 8 are the laminated metal layer 13 laminated upward from the semiconductor substrate 1 side, and the end surface 14 of the laminated metal layer 13 faces the semiconductor substrate 1 side. To a taper shape (referred to herein as a positive taper shape 15). By processing this positive taper shape 15, a recess is formed on the end face of the adhesion securing / diffusion prevention film 7 composed of the Cr film 7a and the Pt film 7b. Since no depression is formed, the corrosive gas in the gaseous state that has reached the Au film 8 (pad electrode) is unlikely to be in a liquid state, and corrosion due to exhaust gas at this location can be suppressed. As a result, the interface between the Cr film 7a, which is the adhesion securing / diffusion prevention film 7, and the Pt film 7b is prevented from peeling off due to corrosion. The Cr film 7a of the adhesion securing / diffusion prevention film 7 is in close contact with the underlying TiN film 5 (the aluminum wiring layer 4 in the absence of the TiN film 5), the underlying aluminum wiring layer 4 and the upper Au film. It functions to prevent diffusion between the membranes 8. The Pt film 7b functions to prevent diffusion between the underlying aluminum wiring layer 4 and the upper Au film 8.

前記では、積層金属層13はCr膜7a、Pt膜7b、Au膜8の三層で構成されたが、半導体基板1側から上方に向ってCr膜7aとAu膜8、Pt膜7bとAu膜8、Cr膜7aとPt膜7bおよびTi膜とPt膜7bなどの二層で構成する場合もある。つまり、積層金属層13としては、Cr膜7aとPt膜7bとAu膜8の三層構造の他に、Ti膜とPt膜とAu膜の三層構造、Cr膜とAu膜、Ti膜とAu膜、Cr膜とPt膜、Ti膜とPt膜の各二層構造などある。これらの積層金属層13の端面14を正テーパー形状15にすることで、腐食が防止され、剥離が防止される。この腐食には、各金属膜間で発生する電池効果によるガルバニック腐食も関与している。   In the above, the laminated metal layer 13 is composed of three layers of the Cr film 7a, the Pt film 7b, and the Au film 8, but the Cr film 7a and the Au film 8, the Pt film 7b and the Au film 8 are directed upward from the semiconductor substrate 1 side. The film 8 may be composed of two layers such as a Cr film 7a and a Pt film 7b and a Ti film and a Pt film 7b. That is, as the laminated metal layer 13, in addition to the three-layer structure of the Cr film 7a, the Pt film 7b, and the Au film 8, the three-layer structure of the Ti film, the Pt film, and the Au film, the Cr film, the Au film, and the Ti film There are two-layer structures such as an Au film, a Cr film and a Pt film, and a Ti film and a Pt film. By making the end surface 14 of these laminated metal layers 13 into the regular taper shape 15, corrosion is prevented and peeling is prevented. In this corrosion, galvanic corrosion due to the battery effect generated between the metal films is also involved.

また、前記のアルミ配線層4は、Al−Si膜(Siが1%程度混入したAl膜)やAl−Si−Cu膜(Siが1%程度とCuが0.5%程度混入したAl膜)である。
尚、前記密着度確保・拡散防止層7はCr膜もしくはTi膜のいずれかの単層膜であってもよい。また、前記のAu膜8の代わりにPt膜としても構わない。また、積層金属層13は前記の組み合わせで構成しても構わない。
<変形例1>
図2は、図1に示した半導体圧力センサ装置100の変形例を示す半導体圧力センサ装置100aの要部断面図である。この図は、半導体圧力センサICチップ101aの要部断面図である。
The aluminum wiring layer 4 includes an Al—Si film (an Al film containing about 1% Si) or an Al—Si—Cu film (an Al film containing about 1% Si and about 0.5% Cu). ).
The adhesion securing / diffusion preventing layer 7 may be a single layer film of either a Cr film or a Ti film. Further, instead of the Au film 8, a Pt film may be used. Moreover, you may comprise the laminated metal layer 13 by the said combination.
<Modification 1>
FIG. 2 is a cross-sectional view of a main part of a semiconductor pressure sensor device 100a showing a modification of the semiconductor pressure sensor device 100 shown in FIG. This figure is a cross-sectional view of the main part of the semiconductor pressure sensor IC chip 101a.

図1との違いは、アルミ配線層4と密着度確保・拡散防止層7との間に挿設されたTiN膜5からなる反射防止膜を削除した点である。この場合も積層金属層13の側面を正テーパー形状15にすることで、窪みの形成は抑制されるので、図1と同様の効果が得られる。しかし、反射防止膜であるTiN膜5がないために、アルミ配線層4からの大きなヒロックの発生を抑制できないので、密着度確保・拡散防止層7およびAu膜8を厚くする必要がある。
(実施例2)
図3は、この発明に係る第2実施例の半導体圧力センサ装置200の要部断面図である。この図は、半導体圧力センサICチップ201の要部断面図である。
The difference from FIG. 1 is that the antireflection film composed of the TiN film 5 inserted between the aluminum wiring layer 4 and the adhesion securing / diffusion prevention layer 7 is deleted. Also in this case, by forming the side surface of the laminated metal layer 13 to have the positive taper shape 15, the formation of the depression is suppressed, so that the same effect as in FIG. 1 can be obtained. However, since there is no TiN film 5 which is an antireflection film, the generation of large hillocks from the aluminum wiring layer 4 cannot be suppressed.
(Example 2)
FIG. 3 is a cross-sectional view of an essential part of a semiconductor pressure sensor device 200 according to the second embodiment of the present invention. This figure is a cross-sectional view of the main part of the semiconductor pressure sensor IC chip 201.

図1との違いは、積層金属層13を構成するCr膜7a、Pt膜7b、Au膜8の端面14が半導体基板側に向って広くなる階段形状21をしている点である。この場合も窪みの形成は抑制される。
(実施例3)
図4および図5は、この発明に係る第3実施例の半導体圧力センサ装置100の製造方法であり、工程順に示した要部製造工程断面図である。
(1)図4(a)において、半導体基板1の表面側には歪ゲージ抵抗2を形成し、その上に層間絶縁膜であるシリコン酸化膜3を形成する。続いて、シリコン酸化膜3上にアルミ配線層4を形成する。続いて、このアルミ配線層4上に反射防止膜であるTiN膜5を形成する。このTiN膜5およびアルミ配線層4の端部周囲を被覆するようにシリコン酸化膜6aとシリコン窒化膜6bからなるパッシベーション膜6を形成する。
(2)図4(b)において、TiN膜5上にCr膜7aとPt膜7bからなる密着度確保・拡散防止層7をスパッタ法により形成する。
(3)図4(c)において、密着度確保・拡散防止層7上にAu膜8をスパッタ法により形成する。半導体基板1を裏面から研削して厚みを減らした後、凹部10を形成する。続いて、裏面にガラス基板11を貼り付ける。この貼り付けにより凹部10がガラス基板11で塞がれて真空基準室9となる。また、この貼り付けは400℃程度の高い温度で静電接合(陽極接合)により行なわれるが、アルミ配線層4は反射防止膜であるTiN膜5が被覆されているので、アルミ配線層4からの大きなヒロックの発生は抑制される。そのため、密着度確保・拡散防止層7およびAu膜8の厚さを薄くできる。
(4)図5(d)において、アルミ配線層4の直上のAu膜8にレジストマスク12を被覆する。図5(d)は図4(c)のA部拡大図である。
(5)図5(e)において、Cr膜7a、Pt膜7b、Au膜8の積層金属層13をイオンミリングでドライエッチングし、積層金属層13の端面14を正テーパー形状15に加工する。このイオンミリングは通常のドライエッチングに比べてエッチングレートが速いので加工時間を短縮できる。積層金属層13の端面14に正テーパー形状15を形成することで、窪み(図8の微小隙間80に相当する)の形成が防止される。また、このイオンミリングにより正テーパー形状15となった積層金属層13の箇所はパッド電極となる。
The difference from FIG. 1 is that the end faces 14 of the Cr film 7a, the Pt film 7b, and the Au film 8 constituting the laminated metal layer 13 have a stepped shape 21 that widens toward the semiconductor substrate side. Also in this case, the formation of the depression is suppressed.
Example 3
4 and 5 show a method for manufacturing the semiconductor pressure sensor device 100 according to the third embodiment of the present invention, and are cross-sectional views of the main part manufacturing process shown in the order of the processes.
(1) In FIG. 4A, a strain gauge resistor 2 is formed on the surface side of the semiconductor substrate 1, and a silicon oxide film 3 as an interlayer insulating film is formed thereon. Subsequently, an aluminum wiring layer 4 is formed on the silicon oxide film 3. Subsequently, a TiN film 5 as an antireflection film is formed on the aluminum wiring layer 4. A passivation film 6 composed of a silicon oxide film 6a and a silicon nitride film 6b is formed so as to cover the periphery of the ends of the TiN film 5 and the aluminum wiring layer 4.
(2) In FIG. 4B, an adhesion securing / diffusion preventing layer 7 composed of a Cr film 7a and a Pt film 7b is formed on the TiN film 5 by sputtering.
(3) In FIG. 4C, an Au film 8 is formed on the adhesion securing / diffusion prevention layer 7 by sputtering. After the semiconductor substrate 1 is ground from the back surface to reduce the thickness, the recess 10 is formed. Subsequently, the glass substrate 11 is attached to the back surface. By this sticking, the concave portion 10 is closed by the glass substrate 11 to form the vacuum reference chamber 9. In addition, this bonding is performed by electrostatic bonding (anodic bonding) at a high temperature of about 400 ° C., but since the aluminum wiring layer 4 is covered with the TiN film 5 which is an antireflection film, the aluminum wiring layer 4 The occurrence of large hillocks is suppressed. Therefore, the thickness of the adhesion ensuring / diffusion preventing layer 7 and the Au film 8 can be reduced.
(4) In FIG. 5D, a resist mask 12 is coated on the Au film 8 immediately above the aluminum wiring layer 4. FIG. 5D is an enlarged view of a portion A in FIG.
(5) In FIG. 5E, the laminated metal layer 13 of the Cr film 7a, the Pt film 7b, and the Au film 8 is dry-etched by ion milling, and the end face 14 of the laminated metal layer 13 is processed into a positive taper shape 15. Since this ion milling has a higher etching rate than ordinary dry etching, the processing time can be shortened. By forming the positive taper shape 15 on the end face 14 of the laminated metal layer 13, formation of a depression (corresponding to the minute gap 80 in FIG. 8) is prevented. Further, the portion of the laminated metal layer 13 having the positive taper shape 15 by this ion milling becomes a pad electrode.

その後、半導体基板1および接合されたガラス基板台座11を合わせてダイシングすることで半導体圧力センサICチップ101となる。この半導体圧力センサICチップ101を樹脂ケース16に接着剤17で固着して格納し、金からなるボンディングワイヤ18でパッド電極を構成するAu膜8と樹脂ケース16の金属端子19を接続する。続いて、シリコーンゲル20を充填して、図1(a)に示す半導体圧力センサ装置100が形成される。   Thereafter, the semiconductor pressure sensor IC chip 101 is obtained by dicing the semiconductor substrate 1 and the bonded glass substrate base 11 together. The semiconductor pressure sensor IC chip 101 is fixed and stored in the resin case 16 with an adhesive 17, and the Au film 8 constituting the pad electrode and the metal terminal 19 of the resin case 16 are connected by a bonding wire 18 made of gold. Subsequently, the silicone gel 20 is filled to form the semiconductor pressure sensor device 100 shown in FIG.

図6は、図4(c)のイオンミリング工程を説明する図である。ガラス基板11が付いた半導体基板1を傾けて、直進するArイオン22を積層金属層13の表面に衝突させて(Arイオンビームを照射して)イオンミリングを施し、積層金属層13の端面14を正テーパー形状15に加工する。水平方向に走るArイオン22の飛程軸23(Arイオンビーム軸)に対して垂直方向24を基準にして半導体基板1の表面(ガラス基板11の裏面)が鋭角になる角度θに傾ける。このように、半導体基板1の表面を傾け、半導体基板1を自転させることで、イオンミリングで積層金属層13がら飛び出した飛散物25が重力方向26に落下して再度半導体基板1の表面に付着することが防止される。付着が防止されることで、積層金属層13の残渣を防ぐことができる。また、Arイオン源が飛散物25で汚染されることも防止できる。この傾ける角度θは0°≦θ≦50°にするよい。   FIG. 6 is a diagram for explaining the ion milling process of FIG. The semiconductor substrate 1 with the glass substrate 11 is tilted, and Ar ions 22 traveling straight are made to collide with the surface of the laminated metal layer 13 (irradiate Ar ion beam) to perform ion milling. Is processed into a positive taper shape 15. The surface of the semiconductor substrate 1 (the back surface of the glass substrate 11) is inclined at an angle θ with respect to the vertical direction 24 with respect to the range axis 23 (Ar ion beam axis) of the Ar ions 22 running in the horizontal direction. In this way, by tilting the surface of the semiconductor substrate 1 and rotating the semiconductor substrate 1, the scattered matter 25 protruding from the laminated metal layer 13 by ion milling falls in the gravity direction 26 and adheres to the surface of the semiconductor substrate 1 again. Is prevented. By preventing the adhesion, residues of the laminated metal layer 13 can be prevented. In addition, the Ar ion source can be prevented from being contaminated with the scattered matter 25. The tilting angle θ may be 0 ° ≦ θ ≦ 50 °.

この角度θが0°未満(マイナスの角度で半導体基板の表面が上方を向くようになる)になると、再付着が発生しやすくなる。また、50°超になると、マスクの厚みでシャドー(影)ができて、エッチング箇所でのArイオンの衝突密度が低下してイオンミリングのエッチング速度が低下する。そのため、好ましくは、10°≦θ≦50°がよい。   When this angle θ is less than 0 ° (the surface of the semiconductor substrate faces upward at a minus angle), redeposition tends to occur. On the other hand, when the angle exceeds 50 °, shadows (shadows) are formed due to the thickness of the mask, and the collision density of Ar ions at the etching site is reduced, and the etching rate of ion milling is reduced. Therefore, preferably 10 ° ≦ θ ≦ 50 °.

尚、半導体基板1を水平に載置し、垂直方向から積層金属層13の表面にArイオンを衝突させても積層金属層13の端面14に正テーパー形状15を形成できる。しかし、半導体基板1の表面が上方を向いている場合には、半導体基板1の表面に飛散物25が付着しやすくなるので、付着を防止する対策が必要になる。一方、半導体基板1の表面が真下に向いている場合には、今度は半導体基板1の真下に配置されるArイオン源に飛散物25が落下して付着しないようにする対策が必要になる。そのため、前記した角度(0°≦θ≦50°)にすることで、これらの対策が不要となるのでよい。   Even when the semiconductor substrate 1 is placed horizontally and Ar ions collide with the surface of the laminated metal layer 13 from the vertical direction, the positive tapered shape 15 can be formed on the end face 14 of the laminated metal layer 13. However, when the surface of the semiconductor substrate 1 is facing upward, the scattered matter 25 tends to adhere to the surface of the semiconductor substrate 1, so a measure to prevent the attachment is necessary. On the other hand, when the surface of the semiconductor substrate 1 is directed downward, it is necessary to take measures to prevent the scattered matter 25 from dropping and adhering to the Ar ion source disposed immediately below the semiconductor substrate 1. Therefore, these measures may be unnecessary by setting the angle (0 ° ≦ θ ≦ 50 °).

また、排気系などの劣悪な環境で使用される前記した半導体圧力センサ装置100,200,300の他に、半導体加速度センサー装置などの半導体物理量センサ装置が排気系などの劣悪な環境で使用される場合には本発明の構成が有効である。   In addition to the semiconductor pressure sensor devices 100, 200, and 300 used in a poor environment such as an exhaust system, a semiconductor physical quantity sensor device such as a semiconductor acceleration sensor device is used in a poor environment such as an exhaust system. In this case, the configuration of the present invention is effective.

尚、本発明は、ガラス基板11にダイアフラム2aに通じる貫通孔を設け、ダイアフラム2aの表面側と裏面側の差圧を測るセンサにも適用できる。また、ガラス基板11を用いずに半導体基板1内に空洞を設けることによって、真空基準室を形成した半導体圧力センサ装置にも適用できる。   The present invention can also be applied to a sensor for measuring a differential pressure between the front surface side and the back surface side of the diaphragm 2a by providing a through hole communicating with the diaphragm 2a in the glass substrate 11. Further, the present invention can be applied to a semiconductor pressure sensor device in which a vacuum reference chamber is formed by providing a cavity in the semiconductor substrate 1 without using the glass substrate 11.

1 半導体基板
2 歪ゲージ抵抗
2a ダイアフラム
3 シリコン酸化膜
4 アルミ配線層
5 TiN膜
6 パッシベーション膜
6a シリコン酸化膜
6b シリコン窒化膜
7 密着度確保・拡散防止層
7a Cr膜
7b Pt膜
8 Au膜
9 真空基準室
10 凹部
11 ガラス基板
12 レジストマスク
13 積層金属層
14 端面
15 正テーパー形状
16 樹脂ケース
17 接着剤
18 ボンディングワイヤ
19 金属端子
20 シリコーンゲル
21 階段形状
22 Arイオン
23 飛程軸
24 垂直方向
25 飛散物
100,100a,200 半導体圧力センサ装置
101,101a,201 半導体圧力センサICチップ
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Strain gauge resistance 2a Diaphragm 3 Silicon oxide film 4 Aluminum wiring layer 5 TiN film 6 Passivation film 6a Silicon oxide film 6b Silicon nitride film 7 Adhesion ensuring / diffusion prevention layer 7a Cr film 7b Pt film 8 Au film 9 Vacuum Reference chamber 10 Recess 11 Glass substrate 12 Resist mask 13 Laminated metal layer 14 End face 15 Positive taper shape 16 Resin case 17 Adhesive 18 Bonding wire 19 Metal terminal 20 Silicone gel 21 Staircase shape 22 Ar ion 23 Range axis 24 Vertical direction 25 Scattering Object 100, 100a, 200 Semiconductor pressure sensor device 101, 101a, 201 Semiconductor pressure sensor IC chip

Claims (12)

内燃機関の排気系に設置される半導体圧力センサ装置において、半導体基板上に配置され、圧力に応じて歪むダイアフラムと、該ダイアフラムに接続し前記ダイアフラムに配置される歪みゲージと、該歪みゲージに接続し、前記半導体基板上に層間絶縁膜を介して配置される金属配線層と、該金属配線層が露出する開口部を有するパッシベーション膜と、前記露出した金属配線層上と該金属配線層の端部を被覆する前記パッシベーション膜上に配置される密着度確保・拡散防止層と、該密着度確保・拡散防止層上に積層されるパッド電極を構成する導電層とを備え、前記密着度確保・拡散防止層と前記導電層で構成される積層金属層の端面が前記半導体基板側に向かって広がる正テーパー形状もしくは階段形状であることを特徴とする半導体圧力センサ装置。 In a semiconductor pressure sensor device installed in an exhaust system of an internal combustion engine, a diaphragm disposed on a semiconductor substrate and distorted according to pressure, a strain gauge connected to the diaphragm and disposed on the diaphragm, and connected to the strain gauge A metal wiring layer disposed on the semiconductor substrate via an interlayer insulating film, a passivation film having an opening through which the metal wiring layer is exposed, and the exposed metal wiring layer and an end of the metal wiring layer. An adhesion ensuring / diffusion preventing layer disposed on the passivation film covering a portion, and a conductive layer constituting a pad electrode laminated on the adhesion securing / diffusion preventing layer. A semiconductor having a positive taper shape or a staircase shape in which an end face of a laminated metal layer composed of a diffusion prevention layer and the conductive layer extends toward the semiconductor substrate side A force sensor device. 前記半導体基板の裏面にガラス基板が静電接合によって固着されることを特徴とする請求項1に記載の半導体圧力センサ装置。 The semiconductor pressure sensor device according to claim 1, wherein a glass substrate is fixed to the back surface of the semiconductor substrate by electrostatic bonding. 前記金属配線層がアルミ配線層であり、前記密着度確保・拡散防止層が前記半導体基板側から上方に向かってCr膜とPt膜の積層膜もしくはTi膜とPt膜の積層膜であり、前記導電層が前記Pt膜上に積層されるAu膜であることを特徴とする請求項1または2に記載の半導体圧力センサ装置。 The metal wiring layer is an aluminum wiring layer, and the adhesion securing / diffusion prevention layer is a laminated film of a Cr film and a Pt film or a laminated film of a Ti film and a Pt film from the semiconductor substrate side upward, The semiconductor pressure sensor device according to claim 1, wherein the conductive layer is an Au film laminated on the Pt film. 前記密着度確保・拡散防止層がCr膜もしくはTi膜のいずれかの単層膜であり、前記導電層がPt膜であることを特徴とする請求項1または2に記載の半導体圧力センサ装置。 3. The semiconductor pressure sensor device according to claim 1, wherein the adhesion securing / diffusion preventing layer is a single layer film of either a Cr film or a Ti film, and the conductive layer is a Pt film. 前記金属配線層と前記密着度確保・拡散防止層の間に反射防止膜を介在させることを特徴とする請求項1〜4のいずれか一項に記載の半導体圧力センサ装置。 The semiconductor pressure sensor device according to any one of claims 1 to 4, wherein an antireflection film is interposed between the metal wiring layer and the adhesion ensuring / diffusion prevention layer. 前記反射防止膜がTiN膜であることを特徴とする請求項5に記載の半導体圧力センサ装置。 The semiconductor pressure sensor device according to claim 5, wherein the antireflection film is a TiN film. 請求項5または6に記載の半導体圧力センサ装置の製造方法において、
前記金属配線層上に前記反射防止膜を形成する工程と、
開口部を有する前記パッシベーション膜を形成する工程と、
前記半導体基板の裏面に前記ガラス基板を静電接合により固着する工程と、
前記密着度確保・拡散防止層および前記導電層を前記反射防止膜上および前記パッシベーション膜上に形成する前記積層金属層形成工程とを備え、
前記積層金属層形成工程は、前記半導体基板の表面側全面に前記密着度確保・拡散防止層および前記導電層をスパッタにより成膜する工程と、成膜した前記導電層上に選択的にレジストマスクを形成する工程と、イオンミリングにより前記導電層および前記密着度確保・拡散防止層をエッチングする工程とを備えることを特徴とする半導体圧力センサ装置の製造方法。
In the manufacturing method of the semiconductor pressure sensor device according to claim 5 or 6,
Forming the antireflection film on the metal wiring layer;
Forming the passivation film having an opening;
Fixing the glass substrate to the back surface of the semiconductor substrate by electrostatic bonding;
The laminated metal layer forming step of forming the adhesion ensuring / diffusion preventing layer and the conductive layer on the antireflection film and the passivation film,
The laminated metal layer forming step includes a step of forming the adhesion securing / diffusion prevention layer and the conductive layer on the entire surface side of the semiconductor substrate by sputtering, and a resist mask selectively on the formed conductive layer. And a step of etching the conductive layer and the adhesion securing / diffusion prevention layer by ion milling. A method of manufacturing a semiconductor pressure sensor device, comprising:
前記請求項1〜請求項6のいずれか一項に記載の半導体圧力センサ装置の製造方法において、前記積層金属層の端面の正テーパー形状が、マスクを介してArイオンを前記積層金属層に衝突させてエッチングするイオンミリングで形成されることを特徴とする半導体圧力センサ装置の製造方法。 7. The method of manufacturing a semiconductor pressure sensor device according to claim 1, wherein a positive taper shape of an end face of the laminated metal layer collides Ar ions with the laminated metal layer through a mask. A method of manufacturing a semiconductor pressure sensor device, characterized by being formed by ion milling for etching. 前記Arイオンの飛程軸に対して垂直方向を基準にして前記積層金属層の表面が鋭角になるように下方に傾けることを特徴とする請求項8に記載の半導体圧力センサ装置の製造方法。 9. The method of manufacturing a semiconductor pressure sensor device according to claim 8, wherein the surface of the laminated metal layer is tilted downward so as to have an acute angle with respect to a direction perpendicular to the range axis of the Ar ions. 前記Arイオンの飛程軸を水平にし、該飛程軸に対して垂直方向を基準にして前記積層金属層の表面が下方に傾く角度θが、0°≦θ≦50°であることを特徴とする請求項9に記載の半導体圧力センサ装置の製造方法。 The angle θ at which the surface of the laminated metal layer is inclined downward with respect to the vertical direction with respect to the range of the Ar ion is set to 0 ° ≦ θ ≦ 50 °. A method for manufacturing a semiconductor pressure sensor device according to claim 9. 前記角度θが、10°≦θ≦50°であることを特徴とする請求項9に記載の半導体圧力センサ装置の製造方法。 The method of manufacturing a semiconductor pressure sensor device according to claim 9, wherein the angle θ is 10 ° ≦ θ ≦ 50 °. 前記半導体基板の裏面に前記ガラス基板が静電接合で固着されることを特徴とする請求項8に記載の半導体圧力センサ装置の製造方法。
The method for manufacturing a semiconductor pressure sensor device according to claim 8, wherein the glass substrate is fixed to the back surface of the semiconductor substrate by electrostatic bonding.
JP2013136304A 2013-06-28 2013-06-28 Semiconductor pressure sensor device and manufacturing method thereof Active JP6136644B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013136304A JP6136644B2 (en) 2013-06-28 2013-06-28 Semiconductor pressure sensor device and manufacturing method thereof
US14/313,704 US9200974B2 (en) 2013-06-28 2014-06-24 Semiconductor pressure sensor device and method of manufacturing the same
CN201410302783.9A CN104251758B (en) 2013-06-28 2014-06-27 Semiconductor pressure sensor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136304A JP6136644B2 (en) 2013-06-28 2013-06-28 Semiconductor pressure sensor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015010931A true JP2015010931A (en) 2015-01-19
JP6136644B2 JP6136644B2 (en) 2017-05-31

Family

ID=52114767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136304A Active JP6136644B2 (en) 2013-06-28 2013-06-28 Semiconductor pressure sensor device and manufacturing method thereof

Country Status (3)

Country Link
US (1) US9200974B2 (en)
JP (1) JP6136644B2 (en)
CN (1) CN104251758B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932108A (en) * 2017-12-18 2019-06-25 富士电机株式会社 Pressure sensor
US10882318B2 (en) 2018-02-28 2021-01-05 Canon Kabushiki Kaisha Method of manufacturing semiconductor substrate and method of manufacturing substrate for liquid ejection head
WO2022186088A1 (en) * 2021-03-03 2022-09-09 Tdk株式会社 Stacked electrode, electrode-equipped strain resistance film, and pressure sensor
WO2023058201A1 (en) * 2021-10-07 2023-04-13 Tdk株式会社 Laminated electrode, electrode-equipped strain resistance film, and pressure sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10542271B2 (en) * 2013-12-27 2020-01-21 Hfi Innovation Inc. Method and apparatus for major color index map coding
LU92378B1 (en) * 2014-02-17 2015-08-18 Iee Internat Electronics & Enigineering Sa Occupant sensor and seat with such an occupant sensor
US10469870B2 (en) * 2014-09-26 2019-11-05 Kt Corporation Method and apparatus for predicting and restoring a video signal using palette entry
KR102422484B1 (en) * 2015-01-29 2022-07-20 주식회사 케이티 Method and apparatus for processing a video signal
EP3211394B1 (en) 2016-02-29 2021-03-31 Melexis Technologies NV Semiconductor pressure sensor for harsh media application
DE102017212866A1 (en) * 2017-07-26 2019-01-31 Robert Bosch Gmbh Pressure sensor arrangement, measuring device and method for the production thereof
JP7008618B2 (en) * 2018-08-28 2022-01-25 ミネベアミツミ株式会社 Battery pack
US20240068891A1 (en) * 2022-08-31 2024-02-29 Tdk Corporation Sensor member
JP2024034271A (en) * 2022-08-31 2024-03-13 Tdk株式会社 Sensor member and physical quantity sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976437A (en) * 1982-10-26 1984-05-01 Fujitsu Ltd Semiconductor device
JPS60160644A (en) * 1984-02-01 1985-08-22 Hitachi Ltd Semiconductor integrated circuit device
JPH01316949A (en) * 1988-04-29 1989-12-21 Advanced Micro Devicds Inc Corrosion resistant bonding pad
JPH04124880A (en) * 1990-09-17 1992-04-24 Hitachi Ltd Semiconductor type pressure sensor
JPH05144846A (en) * 1991-11-18 1993-06-11 Matsushita Electric Ind Co Ltd Compound semiconductor field-effect transistor
JPH07335690A (en) * 1994-06-03 1995-12-22 Yamaha Corp Semiconductor device
JP2002109986A (en) * 2000-10-02 2002-04-12 Denso Corp Manufacturing method of membrane
JP2008034562A (en) * 2006-07-27 2008-02-14 Yamaha Corp Method for forming bump for electric connection
JP2009294044A (en) * 2008-06-04 2009-12-17 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153508A (en) 1996-11-26 1998-06-09 Fuji Electric Co Ltd Semiconductor pressure sensor
EP1947439B1 (en) 2005-11-01 2012-02-08 Hitachi, Ltd. Semiconductor pressure sensor
US20070210450A1 (en) 2006-03-13 2007-09-13 Jang Woo-Jin Method of forming a bump and a connector structure having the bump
JP4659925B2 (en) * 2008-08-04 2011-03-30 パナソニック株式会社 Flexible semiconductor device and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976437A (en) * 1982-10-26 1984-05-01 Fujitsu Ltd Semiconductor device
JPS60160644A (en) * 1984-02-01 1985-08-22 Hitachi Ltd Semiconductor integrated circuit device
JPH01316949A (en) * 1988-04-29 1989-12-21 Advanced Micro Devicds Inc Corrosion resistant bonding pad
JPH04124880A (en) * 1990-09-17 1992-04-24 Hitachi Ltd Semiconductor type pressure sensor
JPH05144846A (en) * 1991-11-18 1993-06-11 Matsushita Electric Ind Co Ltd Compound semiconductor field-effect transistor
JPH07335690A (en) * 1994-06-03 1995-12-22 Yamaha Corp Semiconductor device
JP2002109986A (en) * 2000-10-02 2002-04-12 Denso Corp Manufacturing method of membrane
JP2008034562A (en) * 2006-07-27 2008-02-14 Yamaha Corp Method for forming bump for electric connection
JP2009294044A (en) * 2008-06-04 2009-12-17 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932108A (en) * 2017-12-18 2019-06-25 富士电机株式会社 Pressure sensor
US10962430B2 (en) 2017-12-18 2021-03-30 Fuji Electric Co., Ltd. Pressure sensor
US10882318B2 (en) 2018-02-28 2021-01-05 Canon Kabushiki Kaisha Method of manufacturing semiconductor substrate and method of manufacturing substrate for liquid ejection head
WO2022186088A1 (en) * 2021-03-03 2022-09-09 Tdk株式会社 Stacked electrode, electrode-equipped strain resistance film, and pressure sensor
WO2023058201A1 (en) * 2021-10-07 2023-04-13 Tdk株式会社 Laminated electrode, electrode-equipped strain resistance film, and pressure sensor

Also Published As

Publication number Publication date
CN104251758A (en) 2014-12-31
US20150001650A1 (en) 2015-01-01
JP6136644B2 (en) 2017-05-31
CN104251758B (en) 2018-11-06
US9200974B2 (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP6136644B2 (en) Semiconductor pressure sensor device and manufacturing method thereof
JP4732902B2 (en) Humidity sensor and semiconductor device having the same
WO2007052335A1 (en) Semiconductor pressure sensor
US20110241136A1 (en) Mems device
US7615866B2 (en) Contact surrounded by passivation and polymide and method therefor
US6897669B2 (en) Semiconductor device having bonding pads and probe pads
EP1760442A2 (en) Metal contact systems for semiconductor-based pressure sensors exposed to harsh chemical and thermal environments
JP5157654B2 (en) Manufacturing method of semiconductor device
CN100432645C (en) Method for manufacturing pressure sensor
US7268008B2 (en) Method for manufacturing pressure sensor
US8299549B2 (en) Layer structure for electrical contacting of semiconductor components
US6600174B2 (en) Light receiving element and semiconductor laser device
US20140374853A1 (en) Component including means for reducing assembly-related mechanical stresses and methods for manufacturing same
JPH09116173A (en) Semiconductor sensor and its manufacture
US9625536B2 (en) Magnetic sensor and method for manufacturing the same
US6107170A (en) Silicon sensor contact with platinum silicide, titanium/tungsten and gold
JP3458761B2 (en) Structure of semiconductor pressure sensor
JP2006317155A (en) Gas sensor and manufacturing method therefor
CN109037049B (en) Method for completely removing metal layer between wafer-level SOI material and glass electrostatic bonding surface
JP3435369B2 (en) Semiconductor devices
JP4250387B2 (en) Converter and manufacturing method thereof
JP2009002802A (en) Water sensor and dew condensation sensor
JP2006302936A (en) Method of manufacturing semiconductor device
JPS61255039A (en) Semiconductor device
JP2848059B2 (en) Manufacturing method of semiconductor acceleration sensor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6136644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250