JP2015010748A - Trough-type solar heat collection device - Google Patents

Trough-type solar heat collection device Download PDF

Info

Publication number
JP2015010748A
JP2015010748A JP2013135737A JP2013135737A JP2015010748A JP 2015010748 A JP2015010748 A JP 2015010748A JP 2013135737 A JP2013135737 A JP 2013135737A JP 2013135737 A JP2013135737 A JP 2013135737A JP 2015010748 A JP2015010748 A JP 2015010748A
Authority
JP
Japan
Prior art keywords
heat collecting
solar heat
trough
collecting apparatus
mirror plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013135737A
Other languages
Japanese (ja)
Other versions
JP6192387B2 (en
Inventor
高橋 一雄
Kazuo Takahashi
一雄 高橋
小山 一仁
Kazuhito Koyama
一仁 小山
幸徳 片桐
Yukinori Katagiri
幸徳 片桐
孝朗 関合
Takao Sekiai
孝朗 関合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013135737A priority Critical patent/JP6192387B2/en
Publication of JP2015010748A publication Critical patent/JP2015010748A/en
Application granted granted Critical
Publication of JP6192387B2 publication Critical patent/JP6192387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

PROBLEM TO BE SOLVED: To provide a trough-type solar heat collection device which has curvature and reduces dirt on a mirror surface plate surface.SOLUTION: A trough-type solar heat collection device includes a plurality of vent holes 105 penetrating a mirror surface plate 104 having curvature to connect the front side and the back side thereof. The vent holes allow air, dustproof, and sand to pass from the front side to the back side of the mirror surface plate surface.

Description

本発明は、曲率を有する鏡面板で太陽光を集熱配管に集光照射するトラフ式太陽熱集熱装置に関するものである。   The present invention relates to a trough solar heat collecting apparatus that collects and irradiates sunlight onto a heat collecting pipe with a mirror surface plate having a curvature.

近年、化石燃料の消費量抑制や二酸化炭素の排出量低減を目的に、再生可能エネルギーを利用した発電・給湯・冷暖房に関する製品が開発され、実用化している。なかでも、太陽光により集熱器を加熱することで熱を得る太陽熱集熱装置は、集光過程でエネルギー密度の低い太陽光を集中可能な点、蓄熱によりエネルギーを貯蔵可能な点で優れる。太陽熱集熱装置の形式としてはタワー式、ディッシュ式、トラフ式等が提案されている。例としてトラフ式太陽熱集熱装置の構成を以下に述べる。   In recent years, products related to power generation, hot water supply, cooling and heating using renewable energy have been developed and put into practical use for the purpose of reducing fossil fuel consumption and reducing carbon dioxide emissions. Among them, a solar heat collecting apparatus that obtains heat by heating a heat collector with sunlight is excellent in that it can concentrate sunlight having a low energy density in a condensing process and can store energy by heat storage. As a solar heat collecting apparatus, a tower type, a dish type, a trough type, and the like have been proposed. As an example, the configuration of a trough solar heat collector will be described below.

トラフ式太陽熱集熱装置は、曲率を持った鏡面板を太陽に向けて配置し、鏡面板からの反射光を、焦点に設置した集熱配管へ照射する。集熱配管内には、熱の利用用途に応じて溶融塩等の熱媒体や水、油などが流れており、集熱配管内部を流れる流体が、加熱された集熱配管との熱交換により熱を回収する。   The trough solar heat collector arranges a mirror surface plate with a curvature toward the sun, and irradiates reflected light from the mirror surface plate to a heat collecting pipe installed at the focal point. In the heat collection pipe, a heat medium such as molten salt, water, oil, etc. flows depending on the heat application, and the fluid flowing inside the heat collection pipe is exchanged by heat exchange with the heated heat collection pipe. Recover heat.

なお、鏡面板は、太陽光の入射角を調整可能な可動式が一般的である。また、集熱配管は熱が効果的に回収されるよう、ガラス等の光透過性の高い材料で構成された透明断熱管を用い、管を真空断熱する。   The mirror plate is generally a movable type that can adjust the incident angle of sunlight. In addition, the heat collecting pipe uses a transparent heat insulating pipe made of a material having high light transmittance such as glass so that heat is effectively recovered, and the pipe is vacuum insulated.

ここで、太陽熱集熱装置の熱回収性能は、太陽光を反射する鏡面板の反射率、透明断熱管の光透過率の影響を受ける。熱回収性能を良好な状態に保つためには、鏡面板や透明断熱管の表面汚れを低減する必要がある。特に、太陽熱集熱装置を発電設備として適用する場合は、熱回収装置を大量に敷設しなければならず、熱回収性能を良好な状態に保つ清掃保守作業の省力化が課題となる。   Here, the heat recovery performance of the solar heat collector is affected by the reflectance of the mirror plate that reflects sunlight and the light transmittance of the transparent heat insulating tube. In order to keep the heat recovery performance in a good state, it is necessary to reduce the surface contamination of the mirror plate and the transparent heat insulating tube. In particular, when a solar heat collector is applied as a power generation facility, a large amount of heat recovery devices must be laid, which makes it a challenge to save labor in cleaning maintenance work that maintains heat recovery performance in a good state.

なお、特許文献1には、パネル状の集熱部を内部に配設した集熱箱に透光孔を開孔した太陽熱温水装置の例が記載されている。   Patent Document 1 describes an example of a solar water heater in which a light transmitting hole is opened in a heat collecting box in which a panel-shaped heat collecting portion is disposed.

特開平6−117703号公報JP-A-6-117703

特許文献1が提案する方法は、筐体である集熱箱の透光採入部(平板)に透光孔を設けることで、集熱箱を境界壁として使用するときに外面側の透視確認を容易にするものであり、トラフ式太陽熱集熱装置の主要部品たる曲率を有する鏡面板の汚れ低減に関する技術ではない。   The method proposed by Patent Document 1 is to provide a transparent hole in a light-transmitting portion (flat plate) of a heat collecting box that is a casing, so that when the heat collecting box is used as a boundary wall, the outer surface side perspective confirmation is performed. It is a technique that facilitates and is not a technique for reducing contamination of a mirror plate having a curvature as a main part of a trough solar heat collector.

トラフ式太陽熱集熱装置は、太陽熱発電設備として利用されることが多い。この場合、太陽光の照射が強く、敷地の確保が可能な砂漠,荒野地帯に設置する。砂漠,荒野地帯では、風が土埃や砂粒を巻き上げ鏡面板に吹き付ける。鏡面板の太陽光反射面に土埃や砂粒が付着すると、太陽光の反射率が低下し熱回収性能が低下する課題がある。   Trough solar thermal collectors are often used as solar thermal power generation equipment. In this case, it will be installed in a desert or wilderness area where sunlight is strong and the site can be secured. In the desert and wilderness areas, the wind winds up dust and sand particles and blows them onto the mirror plate. When dirt or sand particles adhere to the sunlight reflecting surface of the mirror plate, there is a problem that the reflectance of sunlight is lowered and the heat recovery performance is lowered.

また、鏡面板を利用した太陽熱集熱装置は、集光量の増加を目的に、近年鏡面板1枚辺りの寸法が大型化している。鏡面板の大型化により鏡面板の風に対する抵抗が増大する。特に、トラフ式太陽熱集熱装置の鏡面板は曲率を有しているため、風向によっては空気の流れが阻害され大きな空気抵抗が生じる。空気抵抗が増大すると、鏡面板を始めとする装置強度を高める必要が生じる。しかし、特許文献1が提案する方法は集熱板を自然風が吹きぬける流路上に設置する目的のものではない。   Moreover, the solar heat collecting device using a mirror surface plate has recently increased in size around one mirror surface plate for the purpose of increasing the amount of collected light. The resistance of the mirror plate to the wind is increased by increasing the size of the mirror plate. In particular, since the mirror plate of the trough solar heat collector has a curvature, depending on the wind direction, the air flow is hindered and a large air resistance is generated. When the air resistance increases, it is necessary to increase the strength of the device including the mirror plate. However, the method proposed in Patent Document 1 is not intended to install the heat collecting plate on a flow path through which natural wind blows.

本発明の目的は、曲率を持った鏡面板表面の汚れを低減するトラフ式太陽熱集熱装置を提供することにある。   An object of the present invention is to provide a trough solar heat collecting apparatus that reduces contamination on the surface of a mirror-finished plate having a curvature.

上記目的を達成するために、本発明のトラフ式太陽熱集熱装置は、流体が管内を流下する集熱配管と、曲率を有し太陽光を反射して前記集熱配管へ集光照射する鏡面板とを備えたトラフ式太陽熱集熱装置において、前記鏡面板は複数個の通風孔を有しており、該通風孔は前記鏡面板の太陽光反射面から該裏面へと貫通して形成されていることを特徴とする。   In order to achieve the above object, a trough solar heat collecting apparatus of the present invention includes a heat collecting pipe in which a fluid flows down in a pipe, and a mirror that has a curvature and reflects sunlight to collect and irradiate the heat collecting pipe. In the trough solar heat collecting apparatus provided with a face plate, the specular plate has a plurality of ventilation holes, and the ventilation holes are formed to penetrate from the sunlight reflecting surface of the specular plate to the back surface. It is characterized by.

本発明によれば、曲率を持った鏡面板表面の汚れを低減するトラフ式太陽熱集熱装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the trough type solar heat collecting device which reduces the stain | pollution | contamination of the mirror surface plate with a curvature can be provided.

通気孔を適用したトラフ式太陽熱集熱装置の概略図である。It is the schematic of the trough type solar heat collecting device to which the vent hole is applied. 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例1)。It is the schematic of the trough type solar heat collecting device of a present Example (Example 1). 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例2)。It is the schematic of the trough type solar heat collecting device of a present Example (Example 2). 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例3)。It is the schematic of the trough type solar thermal collector of a present Example (Example 3). 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例4)。It is the schematic of the trough type solar heat collecting device of a present Example (Example 4). 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例4)。It is the schematic of the trough type solar heat collecting device of a present Example (Example 4). 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例5)。It is the schematic of the trough type solar heat collecting device of a present Example (Example 5). 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例6)。It is the schematic of the trough type solar heat collecting device of a present Example (Example 6). 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例6)。It is the schematic of the trough type solar heat collecting device of a present Example (Example 6). 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例7)。It is the schematic of the trough type solar heat collecting device of a present Example (Example 7). 本実施例のトラフ式太陽熱集熱装置の概略図である(実施例8)。It is the schematic of the trough type solar heat collecting device of a present Example (Example 8). 本実施例のトラフ式太陽熱集熱装置を採用した温水生成プラントの概略図である(実施例9)。It is the schematic of the warm water production | generation plant which employ | adopted the trough type solar heat collecting device of a present Example (Example 9). 本実施例の制御器の清掃モード指令生成ロジックの概略図である(実施例9)。It is the schematic of the cleaning mode command generation logic of the controller of a present Example (Example 9). 本実施例のトラフ式太陽熱集熱装置を採用した温水生成プラントの概略図である(実施例10)。It is the schematic of the warm water production | generation plant which employ | adopted the trough-type solar heat collecting device of a present Example (Example 10).

本発明のトラフ式太陽熱集熱装置は、曲率を有する鏡面板について、鏡面板の表裏を貫通する通気孔を複数設けている。この通気孔は鏡面板表面から裏面への空気の通過を可能とする。また、通気孔は土埃、砂粒など鏡面板表面に付着する汚れが通過可能な大きさとする。   The trough solar heat collecting apparatus of the present invention is provided with a plurality of vent holes penetrating the front and back of the mirror surface plate with respect to the mirror surface plate having a curvature. This vent allows air to pass from the front surface to the back surface of the mirror plate. Also, the air holes are sized so that dirt, sand particles, and the like attached to the surface of the mirror plate can pass through.

本発明によれば、トラフ式太陽熱集熱装置において、鏡面板表面から通気孔を介して鏡面板裏面へ抜ける空気流を発生させる。この空気流により、鏡面板表面に付着する土埃や砂粒等の表面汚れを前記通気孔から空気とともに排出することで鏡面板表面の汚れを低減する。砂が曲率を持った鏡面板に堆積することも防げる。   According to the present invention, in the trough solar heat collecting apparatus, an air flow is generated from the surface of the mirror plate to the back surface of the mirror plate through the vent hole. By this air flow, dirt on the surface of the mirror plate, such as dirt and sand particles, is discharged together with air from the air vents, thereby reducing the dirt on the surface of the mirror plate. Sand can also be prevented from accumulating on a curved mirror plate.

汚れの低減により熱回収性能を良好な範囲に保ち長時間に渡り、トラフ式太陽熱集熱装置の運転継続が可能である。さらに、汚れを低減することで、定期的に実施しなければならない鏡面板の清掃保守期間を引き延ばし、清掃に係る労力の省力化が可能である。   The trough-type solar heat collector can be continuously operated for a long time by keeping the heat recovery performance within a good range by reducing the dirt. Furthermore, by reducing dirt, it is possible to prolong the cleaning maintenance period of the specular plate that must be periodically performed, and to save labor for cleaning.

また、鏡面板に強風が吹きつけた場合、通気孔を介して一部の空気を通過させることが可能であるため、鏡面板に生じる空気抵抗を低減する。   Further, when strong wind blows on the mirror plate, it is possible to allow a part of air to pass through the vent hole, thereby reducing air resistance generated in the mirror plate.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

先ず、本発明の適用対象とするトラフ式太陽熱集熱装置の概要、並びに後述する各実施例に共通する基本構造について図1(a)、(b)により説明する。図1(a)は通気孔を適用したトラフ式太陽熱集熱装置の概略図である。太陽熱により加熱する熱媒体が流れる集熱配管101は内部を真空とし、断熱性能を高めたガラス製の透明断熱管102に納められ、支持脚103によって固定される。支持脚103は地面へと固定される。鏡面板104は太陽光の反射し、集熱配管101へ照射する。   First, an outline of a trough solar heat collecting apparatus to which the present invention is applied and a basic structure common to each embodiment described later will be described with reference to FIGS. 1 (a) and 1 (b). FIG. 1A is a schematic view of a trough solar heat collecting apparatus to which a vent hole is applied. A heat collecting pipe 101 through which a heat medium heated by solar heat flows is housed in a glass transparent heat insulating tube 102 having a vacuum inside and improved heat insulating performance, and is fixed by a support leg 103. The support leg 103 is fixed to the ground. The mirror plate 104 reflects sunlight and irradiates the heat collecting pipe 101.

ここで図1(b)を参照する。図1(b)は通気孔を適用したトラフ式太陽熱集熱装置を集熱配管101の軸手方向に対し垂直な方向に切断した断面図である。通気孔105は鏡面板104を貫通し、太陽光を反射する表面から裏面へと空気が通過可能である。鏡面板104の表面は、集熱配管101へ反射光を集めるため一点鎖線106を軸とする双曲線を形成する曲率を有する。鏡面板104が一点鎖線106と太陽光107の照射角度の差が小さいほど、集熱配管101に反射光が集中する。   Reference is now made to FIG. FIG. 1B is a cross-sectional view of a trough solar heat collecting apparatus to which a ventilation hole is applied, cut in a direction perpendicular to the axial direction of the heat collecting pipe 101. The vent hole 105 passes through the mirror plate 104, and allows air to pass from the front surface to the back surface that reflects sunlight. The surface of the mirror plate 104 has a curvature that forms a hyperbola with the one-dot chain line 106 as an axis in order to collect the reflected light on the heat collecting pipe 101. As the specular plate 104 has a smaller difference in irradiation angle between the alternate long and short dash line 106 and the sunlight 107, the reflected light concentrates on the heat collecting pipe 101.

再び図1(a)による説明に戻る。鏡面板104は前記曲率を維持するため側板108にて軸手方向の両端から形状を固定された上で補強される。鏡面板104は、反射光の焦点位置が集熱配管101に定まる軌道上を移動可能な状態で支持脚103に支持される。駆動装置109は電線110より供給される電力でモーターを駆動し、該電線110を介して送信される制御信号に従い前記鏡面板104の位置を変更および保持する。本発明における通気孔105はこの鏡面板104に複数個設けられ、これにより鏡面板表面の汚れを低減することを可能とする。上述の内容を基本構成とし、以下、本発明の各実施例について説明する。   Returning to the description with reference to FIG. In order to maintain the curvature, the mirror plate 104 is reinforced after the shape is fixed from both ends in the axial direction by the side plate 108. The mirror plate 104 is supported by the support legs 103 in a state where the mirror plate 104 can move on the track where the focal position of the reflected light is determined by the heat collecting pipe 101. The driving device 109 drives the motor with electric power supplied from the electric wire 110 and changes and holds the position of the mirror plate 104 according to a control signal transmitted through the electric wire 110. In the present invention, a plurality of vent holes 105 are provided in the mirror plate 104, thereby making it possible to reduce contamination on the surface of the mirror plate. Each embodiment of the present invention will be described below with the above-described contents as a basic configuration.

本発明の実施例1を図2(a)、(b)により説明する。トラフ式太陽熱集熱装置の概要は先述した図1の説明の通りなので省略する。図2(a)は通気孔105を適用したトラフ式太陽熱集熱装置を、太陽光照射方向から見た概略図である。   A first embodiment of the present invention will be described with reference to FIGS. The outline of the trough solar heat collecting apparatus is the same as that described in FIG. FIG. 2A is a schematic view of the trough solar heat collecting apparatus to which the vent hole 105 is applied as seen from the sunlight irradiation direction.

図2(b)は通気孔105の配置を示すため、図2(a)より集熱配管101、透明断熱管102を除した概略図である。破線201は集熱配管101の軸手方向中心線を表す。複数個の通気孔105は、集熱配管101の軸手方向に沿って、鏡面板104を貫通するように設けられる。なお、通気孔105は、鏡面板104による太陽光の集光を阻害しないよう、鏡面板104が集熱配管101に太陽光を集光照射しているときに集熱配管101の影となり、太陽光の反射量が少ない、破線201の鏡面板104への投影線上、若しくはその近傍の部分に設けるのが良い。ただし、通気孔105の面積が小さいのであればこの限りではない。なお、通気孔105が砂粒で閉塞すると本発明が期待する効果が失われる。従って、砂粒の大きさを勘案して、通気孔105の大きさについては少なくとも5mm以上を有していることが望ましい。   FIG. 2B is a schematic view in which the heat collecting pipe 101 and the transparent heat insulating pipe 102 are removed from FIG. A broken line 201 represents a center line in the axial direction of the heat collecting pipe 101. The plurality of vent holes 105 are provided so as to penetrate the mirror plate 104 along the axial direction of the heat collecting pipe 101. The vent hole 105 becomes a shadow of the heat collecting pipe 101 when the mirror face plate 104 condenses and irradiates sunlight to the heat collecting pipe 101 so as not to hinder the collection of sunlight by the mirror face board 104, and the sun. It may be provided on the projection line of the broken line 201 onto the specular plate 104 or in the vicinity thereof where the amount of reflected light is small. However, this is not necessary as long as the area of the vent hole 105 is small. Note that the effect expected by the present invention is lost when the vent hole 105 is blocked with sand particles. Therefore, in consideration of the size of the sand grains, it is desirable that the size of the air hole 105 is at least 5 mm.

また、矢印202は空気の流れを示している。空気は鏡面板104の表面上を、曲率に沿って流れながら土埃、砂粒等の汚れを吹き飛ばす。従って、通気孔105は集熱配管101の軸手方向に広く分布するのが良い。前記分布により、通気孔105へと導かれる空気の流量が増大し、鏡面板104の裏面へ土埃、砂粒等の汚れを効果的に排出でき、鏡面板104に生じる空気抵抗を緩和しやすい構成とすることが可能である。   An arrow 202 indicates the air flow. The air blows away dirt such as dust and sand while flowing along the curvature on the surface of the mirror plate 104. Therefore, the vent holes 105 are preferably distributed widely in the axial direction of the heat collecting pipe 101. Due to the above distribution, the flow rate of air guided to the vent hole 105 is increased, dirt such as dust and sand particles can be effectively discharged to the back surface of the mirror plate 104, and the air resistance generated in the mirror plate 104 is easily relaxed. Is possible.

本実施例によれば、鏡面板104の表面から通気孔105を介して鏡面板裏面へ抜ける空気流を発生させる。この空気流により、鏡面板104の表面に付着する土埃や砂粒等の表面汚れを通気孔105から空気とともに排出することで、鏡面板表面の汚れを低減することができる。また、通気孔105の存在により、砂が曲率を持った鏡面板に堆積することも抑制可能となる。   According to the present embodiment, an air flow that flows from the front surface of the mirror surface plate 104 to the rear surface of the mirror surface plate through the vent hole 105 is generated. By this air flow, surface contamination such as dust and sand particles adhering to the surface of the mirror plate 104 is discharged together with air from the vent hole 105, so that contamination on the surface of the mirror plate can be reduced. In addition, the presence of the air holes 105 makes it possible to suppress sand from being deposited on a mirror-finished plate having a curvature.

本発明の実施例2を図3により説明する。トラフ式太陽熱集熱装置の概要は先述した図1の説明の通りなので省略する。図3は、図2(b)と同じくトラフ式太陽熱集熱装置を、集熱配管101、透明断熱管102を除した上で太陽光照射方向から見た概略図である。   A second embodiment of the present invention will be described with reference to FIG. The outline of the trough solar heat collecting apparatus is the same as that described in FIG. FIG. 3 is a schematic view of the trough solar heat collecting apparatus as seen from the direction of sunlight irradiation after removing the heat collecting pipe 101 and the transparent heat insulating pipe 102 as in FIG.

本実施例においては、通気孔105Aを集熱配管101の軸手方向に平行な、複数列の直線上に配した点が特徴である。配置の際、通気孔105Aは集熱配管101の影になり光量が低下する部分に配し、集熱配管101の集光を阻害しない位置とする。異なる直線状に配される通気孔105A同士は、集熱配管101の軸手方向に関して、互いに開口部をオーバーラップさせた状態で位置をずらして配置する(図3では通気孔105Aを2列で且つ千鳥状に配置した例を示している)。該配置方法により、鏡面板104の両端(側板108側)を除き、鏡面板104に対して、集熱配管101の軸手方向全体にわたって通気孔105Aが設けられる。これにより、実施例1にて説明した通気孔108に比して、より効果的に土埃、砂粒等の汚れを排出可能で、鏡面板104に生じる空気抵抗を緩和しやすい構成とすることが可能である。   The present embodiment is characterized in that the vent holes 105A are arranged on a plurality of straight lines parallel to the axial direction of the heat collecting pipe 101. At the time of arrangement, the vent hole 105 </ b> A is placed in a portion where the amount of light decreases due to the shadow of the heat collection pipe 101, and is set to a position that does not hinder the light collection of the heat collection pipe 101. The vent holes 105A arranged in different straight lines are arranged with their positions shifted with respect to the axial direction of the heat collecting pipe 101 with the openings overlapping each other (in FIG. 3, the vent holes 105A are arranged in two rows. In addition, an example of staggered arrangement is shown). With this arrangement method, the vent hole 105A is provided in the entire axial direction of the heat collecting pipe 101 with respect to the mirror plate 104 except for both ends (side plate 108 side) of the mirror plate 104. As a result, it is possible to discharge dirt such as dirt and sand particles more effectively than the vent hole 108 described in the first embodiment, and to easily reduce the air resistance generated in the mirror plate 104. It is.

本発明の実施例3を図4(a)、(b)により説明する。トラフ式太陽熱集熱装置の概要は先述した図1の説明の通りなので省略する。図4(a)は、図2(b)と同じくトラフ式太陽熱集熱装置を、集熱配管101、透明断熱管102を除した上で太陽光照射方向から見た概略図である。   A third embodiment of the present invention will be described with reference to FIGS. 4 (a) and 4 (b). The outline of the trough solar heat collecting apparatus is the same as that described in FIG. FIG. 4A is a schematic view of the trough solar heat collecting apparatus as seen from the direction of sunlight irradiation with the heat collecting pipe 101 and the transparent heat insulating pipe 102 removed, as in FIG. 2B.

本実施例においては、通気孔105Bの孔形状の長軸方向を集熱配管101の軸手方向に対して角度をつけて配した点が特徴である。なお、通気孔105を集熱配管101の軸手方向に沿って複数設ける点は前述の実施例と同様である。配置の際、通気孔105Bは集熱配管101の影になり光量が低下する部分に配し、集熱配管101の集光を阻害しない位置とする。   The present embodiment is characterized in that the long axis direction of the hole shape of the vent hole 105B is arranged at an angle with respect to the axial direction of the heat collecting pipe 101. In addition, the point provided with two or more ventilation holes 105 along the axial direction of the heat collection pipe | tube 101 is the same as that of the above-mentioned Example. At the time of arrangement, the vent hole 105 </ b> B is disposed in a portion where the amount of light decreases due to the shadow of the heat collection pipe 101, and is set to a position that does not hinder the light collection of the heat collection pipe 101.

ここで図4(b)を参照する。図4(b)は実施例2による通気孔105Aおよび実施例3による通気孔105Bを拡大比較した図である。点線401は各々の通気孔の長軸を示している。実施例3による通気孔105Bの配置方法によれば、同一列の個々の通気孔の長軸方向(点線401)が同一線上になることを防ぐことができる。風が吹き付けることにより生じる空気抵抗により、鏡面板104に応力が生じ、亀裂が進展してしまった場合、実施例2の通気孔105Aの配置方法は各々の通気孔105Aの亀裂がつながってしまう可能性があるが、実施例3の通気孔105Bの配置方法によれば、各々の通気孔105Bの長軸が同一線上にならないため、実施例2の配置方法に比して鏡面板104の空気抵抗に対する強度を向上できる。   Reference is now made to FIG. FIG. 4B is an enlarged comparison of the vent hole 105A according to the second embodiment and the vent hole 105B according to the third embodiment. A dotted line 401 indicates the major axis of each vent hole. According to the arrangement method of the vent holes 105B according to the third embodiment, it is possible to prevent the long axis directions (dotted lines 401) of the individual vent holes in the same row from being on the same line. In the case where stress is generated in the mirror plate 104 due to the air resistance generated by the blowing of the wind and the crack has progressed, the arrangement method of the vent holes 105A of the second embodiment may cause the cracks of the respective vent holes 105A to be connected. However, according to the arrangement method of the vent holes 105B of the third embodiment, the long axes of the respective vent holes 105B are not on the same line. Therefore, the air resistance of the mirror plate 104 is compared with the arrangement method of the second embodiment. The strength against can be improved.

また、集熱配管101の軸手方向(破線201方向)に配される通気孔105Bは、各々の通気孔105Bの長軸方向(点線401方向)を平行配置としつつ、集熱配管101の軸手方向(破線201方向)に隣接する通気孔105Bの両端を互いにオーバーラップさせた状態とすることにより、実施例2と同様に効果的に土埃、砂粒等の汚れを排出することができる。   The vent hole 105B arranged in the axial direction of the heat collecting pipe 101 (the direction of the broken line 201) is arranged in parallel with the major axis direction (the dotted line 401 direction) of each of the vent holes 105B, and the axis of the heat collecting pipe 101. By setting both ends of the air holes 105B adjacent to each other in the hand direction (the direction of the broken line 201) to be overlapped with each other, dirt such as dust and sand particles can be effectively discharged as in the second embodiment.

本発明の実施例4を図5(a)、(b)、図6により説明する。トラフ式太陽熱集熱装置の概要は先述した図1の説明の通りなので省略する。図5(a)は鏡面板104の表面に対し鉛直または鉛直に近い角度で通気孔105を貫通させた場合の概略図である。鏡面板104周囲の空気の流れは通気孔105の貫通方向に沿って形成される。このため、図5(a)の貫通方式の場合、空気の流れが鏡面板104表面上だけでなく、矢印501に示す空気の流れが発生し、集熱配管101を納めた透明断熱管102周囲の空気の流れまで引き起こす要因となる。透明断熱管102周囲の空気の流れが強くなると、空気と透明断熱管102との熱交換により、熱回収性能が低下する可能性がある。   A fourth embodiment of the present invention will be described with reference to FIGS. 5 (a), 5 (b), and 6. FIG. The outline of the trough solar heat collecting apparatus is the same as that described in FIG. FIG. 5A is a schematic view when the vent hole 105 is penetrated at a vertical or near vertical angle with respect to the surface of the mirror plate 104. The air flow around the mirror plate 104 is formed along the direction of penetration of the vent hole 105. For this reason, in the case of the penetration method of FIG. 5A, not only the air flow on the surface of the mirror plate 104 but also the air flow indicated by the arrow 501 is generated and the surroundings of the transparent heat insulating pipe 102 in which the heat collecting pipe 101 is accommodated. It is a factor that causes up to the air flow. When the air flow around the transparent heat insulating tube 102 becomes strong, heat recovery performance may be reduced due to heat exchange between the air and the transparent heat insulating tube 102.

一方、本発明の実施例4の通気孔105C貫通方向を図5(b)により説明する。本実施例の通気孔105Cは、鏡面板104の表面(反射面)に対し、鏡面板104の曲率方向(鏡面板表面の曲面の接線の垂直方向)に角度をもって貫通する。このような貫通方向とすることにより、空気の流れは矢印501Cに示すように変化し、図5(a)の貫通方式の場合に比して鏡面板104の表面近くの空気の流れを強く引き起こすことができる。これにより、空気と透明断熱管102との熱交換により、熱回収性能が低下する可能性を低減できるほか、鏡面板104の表面汚れを空気の流れにより吹き飛ばす効果も大きくなる。   On the other hand, the vent hole 105C penetration direction of the fourth embodiment of the present invention will be described with reference to FIG. The vent hole 105C of the present embodiment penetrates the surface (reflection surface) of the mirror plate 104 with an angle in the direction of curvature of the mirror plate 104 (perpendicular to the tangent to the curved surface of the mirror plate surface). By adopting such a penetration direction, the air flow changes as indicated by an arrow 501C, and causes a stronger air flow near the surface of the mirror plate 104 than in the penetration method of FIG. be able to. This can reduce the possibility that the heat recovery performance is deteriorated by heat exchange between the air and the transparent heat insulating tube 102, and also increases the effect of blowing off the surface contamination of the mirror plate 104 by the air flow.

なお、通気孔105C貫通方向を鏡面板104の表面鉛直方向に対し傾ける場合、複数個ある通気孔105Cの傾き方向を図6に示すように複数種類(通気孔105Cの傾き方向を交互に異なる方向)とすることで、鏡面板104表面の広い範囲へ空気流の発生を促すことができる。   In addition, when the through-hole 105C penetrating direction is inclined with respect to the surface vertical direction of the mirror surface plate 104, a plurality of inclination directions of the plurality of ventilation holes 105C are shown in FIG. 6 (directions in which the inclination directions of the ventilation holes 105C are alternately different). ), It is possible to promote the generation of airflow over a wide range of the surface of the mirror plate 104.

本発明の実施例5を図7(a)、(b)により説明する。発明を実施するための形態で前述した通り、一般にトラフ式太陽熱集熱装置は鏡面板104の駆動装置109を備えている。図7(a)に示すように、通常は鏡面板104が有する曲率の軸方向(一点鎖線106方向)と、太陽光の入射角とを近づけることができるよう位置を調整し、太陽光の反射光焦点位置を集熱配管101に定め熱回収性能を向上する。   A fifth embodiment of the present invention will be described with reference to FIGS. As described above in the mode for carrying out the invention, a trough solar heat collecting apparatus generally includes a driving device 109 for a mirror plate 104. As shown in FIG. 7A, the position of the mirror plate 104 is adjusted so that the axial direction of curvature of the mirror plate 104 (in the direction of the alternate long and short dash line 106) and the incident angle of sunlight can be brought close to each other, thereby reflecting sunlight. The light focus position is set in the heat collecting pipe 101 to improve the heat recovery performance.

本発明の実施例5では、トラフ式太陽熱集熱装置の運転モードの一つとして清掃モードを有し、清掃モードに移行した場合、制御指令により図7(b)に示すように駆動装置109により鏡面板104を加振し、鏡面板104の表面上に堆積する土埃、砂粒等の汚れを振るい落とす。なお、図7(b)では状態を比較しやすいように鏡面板104は表面の外形線104A、104B、104Cのみ表記している。外形線104Aが熱回収性能を高めるため鏡面板104が有する曲率の軸方向と、太陽光の入射角とを近づけた位置である。鏡面板104が通気孔105を有していない場合は、汚れを鏡面板104の外縁から落とすので鏡面板104を大きく傾ける必要がある。一方、通気孔105を有する本実施例の場合には、鏡面板104の中央付近からも汚れを排出できるため、通気孔105を有していない場合に比して効率よく汚れを排出できる。また、鏡面板104を大きく傾けずとも、通気孔105から汚れを排出できるため、駆動装置109が消費する電力を抑えることもでき経済的である。   In Example 5 of the present invention, the cleaning mode is provided as one of the operation modes of the trough solar heat collector, and when the mode is shifted to the cleaning mode, the drive device 109 causes the control command to change the mode as shown in FIG. The mirror plate 104 is vibrated, and dirt such as dust and sand particles deposited on the surface of the mirror plate 104 is shaken off. In FIG. 7B, only the outer contour lines 104A, 104B, and 104C are shown on the mirror plate 104 so that the states can be easily compared. The outline 104A is a position where the axial direction of the curvature of the mirror plate 104 is close to the incident angle of sunlight in order to improve the heat recovery performance. When the mirror plate 104 does not have the vent hole 105, dirt is removed from the outer edge of the mirror plate 104, so it is necessary to tilt the mirror plate 104 greatly. On the other hand, in the case of the present embodiment having the vent hole 105, the dirt can be discharged also from the vicinity of the center of the mirror plate 104, so that the dirt can be discharged more efficiently than when the vent hole 105 is not provided. In addition, since dirt can be discharged from the vent hole 105 without greatly tilting the mirror plate 104, the power consumed by the driving device 109 can be suppressed, which is economical.

本発明の実施例6を図8、図9(a)、(b)により説明する。トラフ式太陽熱集熱装置の概要は先述した図1の説明の通りなので省略するが、図8に示すように本実施例の太陽熱集熱装置は水平方向駆動装置801(位置変更機構)により、鏡面板104を水平方向に回転可能な構成とし、風向計802により、太陽熱集熱装置設置環境における風向きを計測し、水平方向駆動装置801へと送信可能である。図9(a)に示すように、通常の通常運転モードでは、鏡面板104が風から受ける空気抵抗を低減するため、風向きと集熱配管101の軸手方向とを近づけるよう角度調整する。   A sixth embodiment of the present invention will be described with reference to FIGS. 8, 9A, and 9B. The outline of the trough-type solar heat collecting apparatus is the same as that described above with reference to FIG. 1, but will be omitted. However, as shown in FIG. 8, the solar heat collecting apparatus of this embodiment is a mirror by a horizontal driving device 801 (position changing mechanism). The face plate 104 can be rotated in the horizontal direction, and the wind direction in the installation environment of the solar heat collector can be measured by the anemometer 802 and transmitted to the horizontal direction driving device 801. As shown in FIG. 9A, in the normal normal operation mode, the angle is adjusted so that the wind direction and the axial direction of the heat collecting pipe 101 are close to reduce the air resistance that the mirror plate 104 receives from the wind.

一方で、清掃モードに移行した場合、制御指令により図9(b)に示すように水平方向駆動装置801により鏡面板104を水平方向に回転させ、矢印901にて示した風向きと、破線201にて示した集熱配管101の軸手方向とが垂直に近づくよう角度調整する。これにより、鏡面板104の表面に吹き付ける空気流量が増加し、通気孔105から土埃、砂粒等の汚れを排出する効果を高めることができる。さらに、水平方向駆動装置701による鏡面板104の加振機能により鏡面板104の表面上に堆積する土埃、砂粒等の汚れを通気孔105から振るい落とすことが可能となり、効果的に鏡面板104の汚れを低減できる。   On the other hand, when the mode is shifted to the cleaning mode, the mirror plate 104 is rotated in the horizontal direction by the horizontal direction driving device 801 as shown in FIG. The angle is adjusted so that the axial direction of the heat collecting pipe 101 shown in FIG. Thereby, the flow rate of the air sprayed on the surface of the mirror plate 104 is increased, and the effect of discharging dirt such as dust and sand particles from the vent hole 105 can be enhanced. Furthermore, the vibration function of the mirror surface plate 104 by the horizontal direction driving device 701 makes it possible to shake off dirt, sand particles, and the like accumulated on the surface of the mirror surface plate 104 from the vent hole 105. Dirt can be reduced.

一般にトラフ式太陽熱集熱装置はアレイ構成されることが多い。アレイ構成された場合は水平方向の回転は透明断熱管の形状自由度が低いためアレイ全体を1つの装置として水平方向に回転させる構成とする。一般家庭向けなど、トラフ式太陽熱集熱装置が単体構成となった場合、図7(a)に示す構成をとることができ水平方向の回転自由度が高いため、清掃モードに移行した場合に鏡面板104の汚れを低減する効果が高い。   In general, trough solar heat collectors are often configured in an array. In the case of an array configuration, since the horizontal rotation has a low degree of freedom in shape of the transparent heat insulating tube, the entire array is rotated in the horizontal direction as one device. When a trough solar heat collecting device has a single structure, such as for general households, the structure shown in FIG. 7A can be adopted, and the horizontal rotational freedom is high. The effect of reducing the contamination of the face plate 104 is high.

本発明の実施例7を図10(a)、(b)により説明する。トラフ式太陽熱集熱装置の概要は先述した図1の説明の通りなので省略する。図10(a)は放風ヘッド1001を取り付けたことを特徴とする、通風孔105を有するトラフ式太陽熱集熱装置である。放風ヘッド1001は鏡面板104に固定され、送風配管1002が接続される。送風配管1002はブロワ等の送風装置(図示省略)に接続されており、空気を放風ヘッド1001へと送ることが可能である。送風配管1002の材質は、鏡面板104が可動であることを考慮してフレキシブル性を有しているものが良い。   A seventh embodiment of the present invention will be described with reference to FIGS. 10 (a) and 10 (b). The outline of the trough solar heat collecting apparatus is the same as that described in FIG. FIG. 10A shows a trough solar heat collecting apparatus having a ventilation hole 105, to which a discharge head 1001 is attached. The air discharge head 1001 is fixed to the mirror surface plate 104, and a blower pipe 1002 is connected thereto. The blower pipe 1002 is connected to a blower (not shown) such as a blower, and can send air to the blower head 1001. The material of the blower pipe 1002 is preferably flexible so that the mirror plate 104 is movable.

ここで図10(b)を参照する。図10(b)は放風ヘッド1001を鏡面板104側から見た概略図である。放風ヘッド1001には放風口1003が設けてあり、送風配管1002から送られる空気は放風口1003から鏡面板104に吹き付け、矢印1004で示した空気の流れを発生させる。放風口1003は、鏡面板104に対して空気の流れが集熱配管101の軸手方向に広がるように配する。   Reference is now made to FIG. FIG. 10B is a schematic view of the air discharge head 1001 as viewed from the mirror plate 104 side. The air discharge head 1001 is provided with an air outlet 1003, and air sent from the blower pipe 1002 is blown from the air outlet 1003 to the mirror plate 104 to generate an air flow indicated by an arrow 1004. The air outlet 1003 is arranged so that the air flow spreads in the axial direction of the heat collecting pipe 101 with respect to the mirror plate 104.

再び図10(a)による説明に戻る。通常はブロワを駆動させず、放風口1003から空気を放風しない。鏡面板104の汚れを低減するため清掃モードに移行した場合、制御指令によりブロワを駆動し、放風口1003より空気を吹き付ける。放風口1003から吹き付けられる空気により、鏡面板104の表面に吹き付ける空気流量が増加し、通気孔105から土埃、砂粒等の汚れを排出する効果を高めることができる。なお、放風ヘッド1001を取り付けるのは鏡面板104の地面に近い側が良い。これは、送風配管1002の引き回しが容易となる点、鏡面板104の上端部に付着した土埃、砂粒等の汚れは重力の効果で通気孔105へ流れやすいが、下端側は土埃、砂粒等の汚れが堆積しやすく、前記汚れを吹き飛ばすことが可能となるためである。   Returning to the description with reference to FIG. Normally, the blower is not driven and air is not discharged from the air outlet 1003. When shifting to the cleaning mode in order to reduce dirt on the mirror surface plate 104, the blower is driven by a control command and air is blown from the air outlet 1003. The air blown from the air outlet 1003 increases the flow rate of air blown onto the surface of the mirror plate 104, and the effect of discharging dirt such as dust and sand particles from the vent hole 105 can be enhanced. Note that it is preferable to attach the air discharge head 1001 on the side of the mirror plate 104 close to the ground. This is because the air duct 1002 can be easily routed, and dirt and sand particles adhering to the upper end of the mirror plate 104 easily flow to the vent hole 105 due to the effect of gravity. This is because dirt is likely to accumulate and the dirt can be blown away.

また、ブロワを駆動して送風を行うタイミングは任意であるが、例えば、DSS(daily start and stop:毎日発停)運転向けの太陽熱発電に適用する場合は、夕刻のプラント停止直前に太陽熱集熱装置の余剰の回収熱によりブロワを駆動し送風することで、日々、鏡面板104の表面を太陽光反射に良好な状態に維持することができる。   Also, the timing to drive the blower to blow air is arbitrary, but for example, when applied to solar power generation for DSS (daily start and stop) operation, solar heat collection just before the plant stop in the evening By driving and blowing the blower with the excessive recovered heat of the apparatus, the surface of the specular plate 104 can be maintained in a good state for sunlight reflection every day.

本発明の実施例8を図11(a)、(b)により説明する。トラフ式太陽熱集熱装置の概要は先述した図1の説明の通りなので省略する。図11(a)は鏡面板の反射面側に電機集塵機1101を取り付けたことを特徴とする、通風孔105を有するトラフ式太陽熱集熱装置の概略図である。電気集塵機1101は集熱配管101の軸手方向と平行に配置し、通気孔105の近傍に配置する。電源は駆動装置109から分岐する。   An eighth embodiment of the present invention will be described with reference to FIGS. 11 (a) and 11 (b). The outline of the trough solar heat collecting apparatus is the same as that described in FIG. FIG. 11A is a schematic view of a trough solar heat collecting apparatus having a ventilation hole 105, wherein an electric dust collector 1101 is attached to the reflection surface side of the mirror plate. The electric dust collector 1101 is arranged in parallel with the axial direction of the heat collecting pipe 101 and is arranged near the vent hole 105. The power source branches from the driving device 109.

通常運転の場合、電気集塵機1101は停止している。   In the normal operation, the electric dust collector 1101 is stopped.

図11(b)は前記太陽熱集熱装置の断面図である。清掃モードに移行した場合に電気集塵機1101の電源を入力し、鏡面板104の表面上に付着する汚れを吸着する。図中に示すように、例えば砂粒1102を吸着し、通気孔105付近で再び電源を電気集塵機1101の電源を切断することで、砂粒1102は電気集塵機1101を離れ、通気孔105を通過して鏡面板104の裏側へ排出される。   FIG. 11B is a cross-sectional view of the solar heat collector. When the mode is shifted to the cleaning mode, the power of the electrostatic precipitator 1101 is input to adsorb dirt adhering to the surface of the mirror plate 104. As shown in the figure, for example, sand particles 1102 are adsorbed, and the power is turned off again in the vicinity of the vent hole 105, so that the sand particles 1102 leave the electric dust collector 1101 and pass through the vent hole 105 to be mirrored. It is discharged to the back side of the face plate 104.

さらに、駆動装置109により鏡面板104を動作させることで鏡面板104表面の広い範囲に電気集塵機1101を近づけ、汚れを吸着可能である。以上の操作により、電気集塵機1101を有していない場合に比して効率よく汚れを排出できる。本実施例においては汚れの吸着機構として電気集塵機1101を設置したが、代替機構としてブラシ、布、スポンジ等、鏡面板104の表面を傷つけない素材を電気集塵機1101配置部分に配置し、清掃モードのオンオフにより出し入れする機構としても良い。   Furthermore, by operating the mirror plate 104 by the driving device 109, the electrostatic precipitator 1101 can be brought close to a wide area on the surface of the mirror plate 104, and dirt can be adsorbed. By the above operation, dirt can be discharged more efficiently than when the electric dust collector 1101 is not provided. In this embodiment, the electrostatic precipitator 1101 is installed as a dirt adsorption mechanism. However, as an alternative mechanism, a material that does not damage the surface of the specular plate 104 such as a brush, cloth, sponge, etc. is arranged in the electric precipitator 1101 arrangement portion, It is good also as a mechanism to put in and out by on-off.

本発明の実施例9を図12、13により説明する。トラフ式太陽熱集熱装置の概要は先述した図1の説明の通りなので省略する。図12は本発明のトラフ式太陽熱集熱装置を採用した温水生成プラントの概略図である。給水タンク1201には加熱対象である真水が充填されている。真水は給水配管から送水ポンプ1202を経由してトラフ式太陽熱集熱装置1203のグリッドへと送水される。トラフ式太陽熱集熱装置1203にて加熱された真水は温水として温水タンク1204に貯蔵される。貯蔵された温水は需要が生じる度に、流量調整弁1205を介して供給される。温度計1206は温水タンク1204へ流入する温水温度を計測し、光度計1207はトラフ式太陽熱集熱装置1203へ照射する太陽光の光度を計測する。温度計1206、光度計1207の計測値は制御器1208へと送信される。制御器1208は各トラフ式太陽熱集熱装置に対し、鏡面板104の位置指令を出力する他、実施例5、6、7、8にて述べた清掃モードの制御指令を送信可能である。   A ninth embodiment of the present invention will be described with reference to FIGS. The outline of the trough solar heat collecting apparatus is the same as that described in FIG. FIG. 12 is a schematic view of a hot water generation plant employing the trough solar heat collecting apparatus of the present invention. The water supply tank 1201 is filled with fresh water to be heated. Fresh water is fed from the water supply pipe to the grid of the trough solar heat collector 1203 via the water pump 1202. Fresh water heated by the trough solar heat collector 1203 is stored in the hot water tank 1204 as hot water. The stored hot water is supplied via the flow rate adjustment valve 1205 every time demand is generated. A thermometer 1206 measures the temperature of hot water flowing into the hot water tank 1204, and a photometer 1207 measures the luminous intensity of sunlight irradiated to the trough solar heat collector 1203. Measurement values of the thermometer 1206 and the photometer 1207 are transmitted to the controller 1208. The controller 1208 can transmit the cleaning mode control commands described in the fifth, sixth, seventh, and eighth embodiments to the trough solar heat collectors in addition to outputting the position command of the mirror plate 104.

図13は制御器1208の清掃モード指令生成ロジックの概略図である。制御器1208には実測結果に基づく、あるいは解析によって予め計算した関数1301が設定されている、関数1301は光度計1207の計測値に対し、温度計1206で計測する温水温度の予測値を出力する。バイアス信号発生器1302は温水温度の許容できる低下量が設定されている。関数1301の出力からバイアス信号発生器1302の出力を差し引いた値と温度計1206の計測値を比較器1303にて比較し、温度計1206の計測値の方が小さい場合には臨時清掃モード指令を出力し、清掃モード発令ロジック1304へ送信する。清掃モード発令ロジック1304は定期清掃などのスケジュールに則って清掃モード指令を生成するが、比較器1303より臨時清掃モード指令を受信した場合、実施例5、6、7、8にて述べた清掃モードを実施すべくトラフ式太陽熱集熱装置1203へ清掃モード指令を送信可能である。   FIG. 13 is a schematic diagram of the cleaning mode command generation logic of the controller 1208. A function 1301 based on an actual measurement result or calculated in advance by analysis is set in the controller 1208. The function 1301 outputs a predicted value of the hot water temperature measured by the thermometer 1206 with respect to the measurement value of the photometer 1207. . In the bias signal generator 1302, an allowable reduction amount of the hot water temperature is set. A value obtained by subtracting the output of the bias signal generator 1302 from the output of the function 1301 and the measured value of the thermometer 1206 are compared by the comparator 1303. If the measured value of the thermometer 1206 is smaller, a temporary cleaning mode command is issued. Output to the cleaning mode issuing logic 1304. The cleaning mode issuing logic 1304 generates a cleaning mode command in accordance with a schedule such as periodic cleaning. When the temporary cleaning mode command is received from the comparator 1303, the cleaning mode described in the fifth, sixth, seventh, and eighth embodiments. The cleaning mode command can be transmitted to the trough solar heat collecting apparatus 1203 to carry out the above.

以上により、鏡面板104表面に汚れが付着し、トラフ式太陽熱集熱装置1203の熱回収性能が低下した場合、制御器1208が有する機能により清掃モード指令を出力しトラフ式太陽熱集熱装置1203の熱回収性能の改善を図る運転が可能となり、保守性能を向上した温水生成プラントの提供が可能である。   As described above, when dirt is attached to the surface of the mirror surface plate 104 and the heat recovery performance of the trough solar heat collector 1203 is lowered, a cleaning mode command is output by the function of the controller 1208 to output the trough solar heat collector 1203. Operation that improves heat recovery performance becomes possible, and a hot water generation plant with improved maintenance performance can be provided.

本発明の実施例10を図14により説明する。トラフ式太陽熱集熱装置の概要は先述した図1の、温水生成プラントの概要は先述した図12の、制御器の清掃モード指令生成ロジックの概要は先述した図13の説明の通りなので省略する。図14は本実施例のトラフ式太陽熱集熱装置を採用した温水生成プラントのトラフ式太陽熱集熱装置構成の概略図である。   A tenth embodiment of the present invention will be described with reference to FIG. The outline of the trough type solar thermal collector is shown in FIG. 1, the outline of the hot water generating plant is shown in FIG. 12, and the outline of the cleaning mode command generation logic of the controller is the same as that explained in FIG. FIG. 14 is a schematic diagram of the configuration of a trough solar heat collector of a hot water generation plant that employs the trough solar heat collector of the present embodiment.

本実施例ではトラフ式太陽熱集熱装置をグリット1集熱装置1401、グリット2集熱装置1402、グリットN集熱装置1403にグループ分けする。本実施例のグループ分けはN組としたが、数は特定するもののではなく前記温水生成プラントの形式に合わせて自由に変更できる。各グリッドにはグリット1温度計1404、グリット2温度計1405、グリットN温度計1406が設けられており各グリットで加熱した温水温度を計測可能である。グリット1温度計1404、グリット2温度計1405、グリットN温度計1406、光度計1207の計測値は制御器1208へと送信される。制御器1407は前記グリッド毎に実施例で説明した清掃モード指令を送信可能である。   In this embodiment, the trough solar heat collector is grouped into a grit 1 heat collector 1401, a grit 2 heat collector 1402, and a grit N heat collector 1403. Although the grouping of the present embodiment is N sets, the number is not specified and can be freely changed according to the type of the hot water generating plant. Each grid is provided with a grit 1 thermometer 1404, a grit 2 thermometer 1405, and a grit N thermometer 1406, and the hot water temperature heated by each grit can be measured. The measured values of the grit 1 thermometer 1404, the grit 2 thermometer 1405, the grit N thermometer 1406, and the photometer 1207 are transmitted to the controller 1208. The controller 1407 can transmit the cleaning mode command described in the embodiment for each grid.

以上により、鏡面板104表面に汚れが付着し、グリット1集熱装置1401、グリット2集熱装置1402、グリットN集熱装置1403いずれかの熱回収性能が低下した場合、制御器1407が有する機能により該当するグリット集熱装置に清掃モード指令を出力し、該当するグリット集熱装置の熱回収性能の改善を図る運転が可能となり、保守性能を向上した温水生成プラントの提供が可能である。   As described above, when dirt is attached to the surface of the mirror plate 104 and the heat recovery performance of any one of the grit 1 heat collecting device 1401, the grit 2 heat collecting device 1402, and the grit N heat collecting device 1403 is deteriorated, the function of the controller 1407 Thus, the cleaning mode command is output to the corresponding grit heat collecting device, the operation for improving the heat recovery performance of the corresponding grit heat collecting device can be performed, and the hot water generating plant with improved maintenance performance can be provided.

清掃モード指令出力先を各々のグリッドへと別々に出力できることから、清掃モードを実施するトラフ式太陽熱集熱装置の数を低減でき、清掃モード実施中による温水生成プラントの熱回収性能低下量を実施例9に比して縮小できる。また、清掃モードを実施するトラフ式太陽熱集熱装置の数を必要以上に増やさないため省電力化可能である。   Since the cleaning mode command output destination can be output separately to each grid, the number of trough solar heat collectors that implement the cleaning mode can be reduced, and the amount of heat recovery performance of the hot water generation plant is reduced during the cleaning mode. Compared to Example 9, it can be reduced. Moreover, since the number of trough-type solar thermal collectors that carry out the cleaning mode is not increased more than necessary, it is possible to save power.

本実施例ではグリッドを並列に構成したが、直列のグリッド構成でも適用可能である。直列グリッド構成の場合は、関数1301で出力する値を各グリッドにおける温水の温度上昇量の予測値に変更し、比較対象となる計測温度についてもグリッド前後の計測温度の差分に変更すると良い。   In this embodiment, the grids are configured in parallel, but a series grid configuration is also applicable. In the case of a series grid configuration, the value output by the function 1301 may be changed to a predicted value of the temperature rise of hot water in each grid, and the measured temperature to be compared may be changed to the difference between the measured temperatures before and after the grid.

101…集熱配管、102…透明断熱管、103…支持脚、104…鏡面板、
104A…実線(鏡面板表面の外形線を表す)、
104B…破線(鏡面板表面の外形線を表す)、
104C…破線(鏡面板表面の外形線を表す)、
105…通気孔、105A…通気孔、105B…通気孔、105C…通気孔、
106…一点鎖線(鏡面板曲率の双曲線軸を表す)、107…太陽光、
108…側板、109…駆動装置、110…電線
201…破線(集熱配管の軸手方向中心線を表す)、
202…矢印(空気の流れを表す)、
401…点線(各通気孔の長軸方向を表す)
501…矢印(空気の流れを表す)、501C…矢印(空気の流れを表す)
801…水平方向駆動装置、802…風向計
901…矢印(風向きを表す)
1001…放風ヘッド、1002…送風配管、
1003…矢印(放風される空気の流れを表す)、1004…放風口
1101…電気集塵機、1102…砂粒
1201…給水タンク、1202…送水ポンプ、
1203…トラフ式太陽熱集熱装置、1204…温水タンク、
1205…流量調整弁、1206…温度計、
1207…光度計、1208…制御器
1301…関数、1302…バイアス信号発生器、1303…比較器、
1304…清掃モード発令ロジック
1401…グリット1集熱装置、1402…グリット2集熱装置、
1403…グリットN集熱装置、1404…グリット1温度計、
1405…グリット2温度計、1406…グリットN温度計、
1407…制御器
101 ... Heat collecting pipe, 102 ... Transparent heat insulation pipe, 103 ... Support leg, 104 ... Mirror plate,
104A ... Solid line (represents the outline of the mirror surface)
104B ... broken line (represents the outline of the surface of the mirror plate),
104C ... broken line (represents the outline of the mirror surface),
105 ... vent hole, 105A ... vent hole, 105B ... vent hole, 105C ... vent hole,
106 ... alternate long and short dash line (representing the hyperbolic axis of the mirror surface curvature), 107 ...
108 ... side plate, 109 ... driving device, 110 ... electric wire 201 ... broken line (represents the axial line in the axial direction of the heat collecting pipe),
202 ... arrow (representing air flow),
401... Dotted line (represents major axis direction of each vent hole)
501 ... Arrow (represents air flow), 501C ... Arrow (represents air flow)
801 ... Horizontal direction driving device, 802 ... Anemometer 901 ... Arrow (represents wind direction)
1001 ... Ventilation head, 1002 ... Blower pipe,
DESCRIPTION OF SYMBOLS 1003 ... Arrow (representing the flow of the air ventilated), 1004 ... Air vent 1101 ... Electric dust collector, 1102 ... Sand grain 1201 ... Water supply tank, 1202 ... Water supply pump,
1203 ... Trough solar collector, 1204 ... Hot water tank,
1205 ... Flow control valve, 1206 ... Thermometer,
1207 ... Photometer, 1208 ... Controller 1301 ... Function, 1302 ... Bias signal generator, 1303 ... Comparator,
1304 ... Cleaning mode issuing logic 1401 ... Grit 1 heat collector, 1402 ... Grit 2 heat collector,
1403 ... Grit N heat collector, 1404 ... Grit 1 thermometer,
1405 ... Grit 2 thermometer, 1406 ... Grit N thermometer,
1407 ... Controller

Claims (16)

流体が管内を流下する集熱配管と、
曲率を有し太陽光を反射して前記集熱配管へ集光照射する鏡面板とを備えたトラフ式太陽熱集熱装置において、
前記鏡面板は複数個の通風孔を有しており、該通風孔は前記鏡面板の太陽光反射面から該裏面へと貫通して形成されていることを特徴とするトラフ式太陽熱集熱装置。
A heat collecting pipe through which the fluid flows down the pipe;
In the trough type solar heat collecting apparatus comprising a mirror plate having a curvature and reflecting the sunlight to collect and irradiate the heat collecting pipe,
The mirror surface plate has a plurality of ventilation holes, and the ventilation holes are formed so as to penetrate from the sunlight reflecting surface to the back surface of the mirror surface plate. .
請求項1に記載のトラフ式太陽熱集熱装置において、
前記通風孔は、前記鏡面板が前記集熱配管に太陽光を集光照射しているときに前記集熱配管の影となる部分に配置することを特徴とするトラフ式太陽熱集熱装置。
The trough solar heat collecting apparatus according to claim 1,
The trough solar heat collecting apparatus, wherein the ventilation hole is arranged in a portion which is a shadow of the heat collecting pipe when the mirror plate is collecting and irradiating sunlight on the heat collecting pipe.
請求項1に記載のトラフ式太陽熱集熱装置において、
前記通風孔は、前記集熱配管の軸手方向に沿って直線状に複数列に並んで配置することを特徴とするトラフ式太陽熱集熱装置。
The trough solar heat collecting apparatus according to claim 1,
The trough solar heat collecting apparatus, wherein the ventilation holes are arranged in a plurality of lines in a straight line along the axial direction of the heat collecting pipe.
請求項1または2に記載のトラフ式太陽熱集熱装置において、
前記通風孔は一方向に細長い孔形状であり、該孔形状の長軸方向を前記集熱配管の軸手方向と角度を有して配置したことを特徴とするトラフ式太陽熱集熱装置。
In the trough type solar heat collecting device according to claim 1 or 2,
The trough solar heat collecting apparatus according to claim 1, wherein the ventilation hole has an elongated hole shape in one direction, and the major axis direction of the hole shape is arranged at an angle with the axial direction of the heat collecting pipe.
請求項1から4の何れかに記載のトラフ式太陽熱集熱装置において、
前記通風孔の孔貫通方向は、前記集熱配管の軸手方向から見て前記鏡面板の太陽光反射面の垂直方向に対して角度を有していることを特徴とするトラフ式太陽熱集熱装置。
In the trough type solar heat collecting device according to any one of claims 1 to 4,
The trough-type solar heat collector characterized in that the through-hole direction of the ventilation hole has an angle with respect to the vertical direction of the solar light reflecting surface of the specular plate as viewed from the axial direction of the heat collecting pipe. apparatus.
図6
請求項5に記載のトラフ式太陽熱集熱装置において、
複数の前記通風孔は、その孔貫通方向を複数種類としたことを特徴とするトラフ式太陽熱集熱装置。
FIG.
In the trough type solar heat collecting apparatus according to claim 5,
The trough solar heat collecting apparatus characterized in that the plurality of ventilation holes have a plurality of types of through-hole penetration directions.
請求項1から6の何れかに記載のトラフ式太陽熱集熱装置において、
前記鏡面板を前記集熱配管の軸回転方向に回転可能と駆動するとともに前記鏡面板を加振する駆動装置を有することを特徴とするトラフ式太陽熱集熱装置。
In the trough type solar heat collecting device according to any one of claims 1 to 6,
A trough-type solar heat collecting apparatus, comprising: a driving device that drives the mirror plate to be rotatable in the axial rotation direction of the heat collecting pipe and vibrates the mirror plate.
請求項1から6の何れかに記載のトラフ式太陽熱集熱装置において、
前記鏡面板を前記太陽熱集熱装置設置面と水平な方向に回転可能な位置変更機構と、前記太陽熱集熱装置設置場所の風向き計測手段とを有し、
前記位置変更機構により前記鏡面板を風向き方向へ向けるようにしたことを特徴とするトラフ式太陽熱集熱装置。
In the trough type solar heat collecting device according to any one of claims 1 to 6,
A position changing mechanism capable of rotating the mirror plate in a horizontal direction with the solar heat collector installation surface, and a wind direction measuring means for the solar heat collector installation location,
A trough solar heat collecting apparatus, wherein the mirror plate is directed in a wind direction by the position changing mechanism.
請求項8に記載のトラフ式太陽熱集熱装置において、
前記位置変更機構は前記鏡面板を加振する機能を有することを特徴とするトラフ式太陽熱集熱装置。
The trough solar heat collecting apparatus according to claim 8,
The said position change mechanism has a function which vibrates the said mirror-surface plate, The trough type solar heat collecting device characterized by the above-mentioned.
請求項1から6の何れかに記載のトラフ式太陽熱集熱装置において、
前記鏡面板の太陽光反射面へ空気を吹き付ける放風ヘッドを備えたことを特徴とするトラフ式太陽熱集熱装置。
In the trough type solar heat collecting device according to any one of claims 1 to 6,
A trough-type solar heat collecting apparatus comprising a discharge head for blowing air to a sunlight reflecting surface of the mirror plate.
請求項10に記載のトラフ式太陽熱集熱装置において、
前記放風ヘッドの取り付け位置が、太陽熱集熱装置の設置面に近い鏡面板の下端側であることを特徴とするトラフ式太陽熱集熱装置。
The trough solar heat collecting apparatus according to claim 10,
The trough solar heat collector, wherein the installation position of the air discharge head is on the lower end side of the mirror plate near the installation surface of the solar heat collector.
請求項10または11に記載のトラフ式太陽熱集熱装置において、
DDS運転の太陽熱発電プラントに適用される太陽熱集熱装置であって、前記放風ヘッドは、前記太陽熱発電プラントの停止前に、余剰回収熱分の発電による駆動されることを特徴とするトラフ式太陽熱集熱装置。
The trough solar heat collecting apparatus according to claim 10 or 11,
A solar heat collecting apparatus applied to a solar thermal power plant operated by DDS, wherein the discharge head is driven by power generation of surplus recovered heat before the solar thermal power plant is stopped. Solar heat collector.
請求項8に記載のトラフ式太陽熱集熱装置において、
前記鏡面板の反射面側に電気集塵機を取り付けたこと特徴とするトラフ式太陽熱集熱装置。
The trough solar heat collecting apparatus according to claim 8,
A trough solar heat collecting apparatus, wherein an electric dust collector is attached to the reflecting surface side of the mirror plate.
請求項8に記載のトラフ式太陽熱集熱装置において、
ブラシ、布またはスポンジを鏡面板表面に接触させる機構を有することを特徴とするトラフ式太陽熱集熱装置。
The trough solar heat collecting apparatus according to claim 8,
A trough solar heat collecting apparatus having a mechanism for bringing a brush, cloth, or sponge into contact with a mirror plate surface.
請求項7から14の何れかに記載のトラフ式太陽熱集熱装置において、
前記集熱配管内の加熱対象物の温度計測機能と、
前記太陽熱集熱装置設置場所の太陽光照射光度計測機能を有すると共に、
運転モードとして前記鏡面板の清掃モードを具備し、
前記温度計測機能と、前期太陽光照射光度計測機能による測定値に基づき前記清掃モードに移行する機能を有することを特徴とするトラフ式太陽熱集熱装置。
The trough solar heat collecting apparatus according to any one of claims 7 to 14,
A temperature measurement function of a heating object in the heat collecting pipe;
While having the solar radiation photometric measurement function of the solar heat collector installation location,
The operation mode includes a cleaning mode of the mirror plate,
A trough solar heat collecting apparatus having a function of shifting to the cleaning mode based on the temperature measurement function and a measurement value obtained by a solar irradiation light intensity measurement function in the previous period.
請求項15に記載のトラフ式太陽熱集熱装置において、
前記太陽熱集熱装置は複数台あり、
前記太陽熱集熱装置が複数のグリッドに分類されており、
前記グリッド毎に前記集熱配管内の加熱対象物の温度計測機能と、
前記温度計測機能と、前期太陽光照射光度計測機能による測定値に基づき前記グリット毎に前記清掃モードに移行する機能を有することを特徴とするトラフ式太陽熱集熱装置。
The trough solar heat collecting apparatus according to claim 15,
There are a plurality of solar heat collectors,
The solar thermal collector is classified into a plurality of grids,
A function for measuring the temperature of the heating object in the heat collecting pipe for each grid,
A trough solar heat collecting apparatus having a function of shifting to the cleaning mode for each grit based on the temperature measurement function and a measurement value obtained by the solar light intensity measurement function in the previous period.
JP2013135737A 2013-06-28 2013-06-28 Trough solar collector Active JP6192387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135737A JP6192387B2 (en) 2013-06-28 2013-06-28 Trough solar collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013135737A JP6192387B2 (en) 2013-06-28 2013-06-28 Trough solar collector

Publications (2)

Publication Number Publication Date
JP2015010748A true JP2015010748A (en) 2015-01-19
JP6192387B2 JP6192387B2 (en) 2017-09-06

Family

ID=52304067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135737A Active JP6192387B2 (en) 2013-06-28 2013-06-28 Trough solar collector

Country Status (1)

Country Link
JP (1) JP6192387B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548213A (en) * 2014-10-31 2016-05-04 中广核太阳能开发有限公司 Mirror surface cleanliness analyzer and mirror surface cleanliness analysis method
US20170370618A1 (en) * 2016-06-24 2017-12-28 Alliance For Sustainable Energy, Llc Secondary reflectors for solar collectors and methods of making the same
JP2018084365A (en) * 2016-11-24 2018-05-31 荒川電工株式会社 Solar heat collector

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110850U (en) * 1976-02-20 1977-08-23
JPS55116052A (en) * 1979-02-27 1980-09-06 Nippon Chem Plant Consultant:Kk Solar-heat utilizing device
JPS60156224A (en) * 1983-12-29 1985-08-16 三菱電機株式会社 Power source
JP2010539724A (en) * 2007-10-01 2010-12-16 韓國電子通信研究院 Solar panel surface cleaning system
WO2012070436A1 (en) * 2010-11-26 2012-05-31 コニカミノルタオプト株式会社 Reflecting mirror, mirror structure, and solar thermal power generation system
JP2012122642A (en) * 2010-12-07 2012-06-28 Hitachi Plant Technologies Ltd Solar thermal collector
JP2012242043A (en) * 2011-05-23 2012-12-10 Celestica Japan Kk Solar heat collector having different focus condensing structure
JP2012242042A (en) * 2011-05-23 2012-12-10 Celestica Japan Kk Solar heat collector having multiple trough type reflectors
JP2013019640A (en) * 2011-07-13 2013-01-31 Tomonobu Sato Wind-proof reflection panel, inspection robot for reflection mirror for inspecting the same, and polygonal trough and pyramid dish using the panel
US20130047978A1 (en) * 2011-08-31 2013-02-28 Massachusetts Institute Of Technology Vortex-induced cleaning of surfaces
JP2013061080A (en) * 2011-09-10 2013-04-04 Jfe Engineering Corp Method and device for generating steam using solar heat
JP2013076507A (en) * 2011-09-30 2013-04-25 Hitachi Plant Technologies Ltd Solar thermal collector device, and automatic solar tracking method for solar thermal collector device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110850U (en) * 1976-02-20 1977-08-23
JPS55116052A (en) * 1979-02-27 1980-09-06 Nippon Chem Plant Consultant:Kk Solar-heat utilizing device
JPS60156224A (en) * 1983-12-29 1985-08-16 三菱電機株式会社 Power source
JP2010539724A (en) * 2007-10-01 2010-12-16 韓國電子通信研究院 Solar panel surface cleaning system
WO2012070436A1 (en) * 2010-11-26 2012-05-31 コニカミノルタオプト株式会社 Reflecting mirror, mirror structure, and solar thermal power generation system
JP2012122642A (en) * 2010-12-07 2012-06-28 Hitachi Plant Technologies Ltd Solar thermal collector
JP2012242043A (en) * 2011-05-23 2012-12-10 Celestica Japan Kk Solar heat collector having different focus condensing structure
JP2012242042A (en) * 2011-05-23 2012-12-10 Celestica Japan Kk Solar heat collector having multiple trough type reflectors
JP2013019640A (en) * 2011-07-13 2013-01-31 Tomonobu Sato Wind-proof reflection panel, inspection robot for reflection mirror for inspecting the same, and polygonal trough and pyramid dish using the panel
US20130047978A1 (en) * 2011-08-31 2013-02-28 Massachusetts Institute Of Technology Vortex-induced cleaning of surfaces
JP2013061080A (en) * 2011-09-10 2013-04-04 Jfe Engineering Corp Method and device for generating steam using solar heat
JP2013076507A (en) * 2011-09-30 2013-04-25 Hitachi Plant Technologies Ltd Solar thermal collector device, and automatic solar tracking method for solar thermal collector device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548213A (en) * 2014-10-31 2016-05-04 中广核太阳能开发有限公司 Mirror surface cleanliness analyzer and mirror surface cleanliness analysis method
US20170370618A1 (en) * 2016-06-24 2017-12-28 Alliance For Sustainable Energy, Llc Secondary reflectors for solar collectors and methods of making the same
US10808965B2 (en) * 2016-06-24 2020-10-20 Alliance For Sustainable Energy, Llc Secondary reflectors for solar collectors and methods of making the same
US11644219B2 (en) 2016-06-24 2023-05-09 Alliance For Sustainable Energy, Llc Secondary reflectors for solar collectors and methods of making the same
JP2018084365A (en) * 2016-11-24 2018-05-31 荒川電工株式会社 Solar heat collector

Also Published As

Publication number Publication date
JP6192387B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
CN1997859B (en) Structure using multi-systems for electricity generation and water desalination
EP2902120A1 (en) Autonomous-travel cleaning robot
JP6192387B2 (en) Trough solar collector
JP7359450B2 (en) cleaning robot
JP3091001U (en) Solar power generator
JP4627700B2 (en) Wind power generator
CN109217779A (en) A kind of cooling tower of wind light mutual complementing energy supply
US9086059B2 (en) Method and apparatus for electricity production by means of solar thermal transformation
US20190264663A1 (en) Method for generating electrical power using a solar chimney having an inflatable fresnel lens
JP6583733B2 (en) Work system using self-propelled robot
JP2015094533A (en) Trough solar thermal collector with solar-collection-unit washing mechanism
JP2012202556A (en) Solar heat collecting apparatus and solar power generating system
KR101998222B1 (en) Heating block by intercepting sunlight, and heating wall system comprising heating block
US20210273606A1 (en) Solar panel system
CN109737332A (en) A kind of water wave Landscape Lamp of automatic dust separation
CN211018379U (en) Solar power generation system
CN108599703A (en) A kind of method of solar photovoltaic power plant snow removing, dedusting and solar panel cooling
JP6548925B2 (en) Solar heat collection system
CN109140796B (en) Solar power generation device
CN219299353U (en) Solar tower type natural ventilation system
KR102656003B1 (en) frame for setting solar module
JP2021010248A (en) Sunlight collecting and diffusing panel
JP2013545065A (en) Extraction of economic value from waste heat of concentrating photovoltaic systems
CN210569299U (en) Net type solar energy heating device
CN113566331B (en) Building energy-saving equipment based on photovoltaic technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250