JP2013061080A - Method and device for generating steam using solar heat - Google Patents

Method and device for generating steam using solar heat Download PDF

Info

Publication number
JP2013061080A
JP2013061080A JP2011197733A JP2011197733A JP2013061080A JP 2013061080 A JP2013061080 A JP 2013061080A JP 2011197733 A JP2011197733 A JP 2011197733A JP 2011197733 A JP2011197733 A JP 2011197733A JP 2013061080 A JP2013061080 A JP 2013061080A
Authority
JP
Japan
Prior art keywords
heat
steam
medium gas
flow path
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011197733A
Other languages
Japanese (ja)
Other versions
JP5799692B2 (en
Inventor
Kazumasa Wakimoto
一政 脇元
Toki Iemoto
勅 家本
Yutaka Suzukawa
豊 鈴川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2011197733A priority Critical patent/JP5799692B2/en
Publication of JP2013061080A publication Critical patent/JP2013061080A/en
Application granted granted Critical
Publication of JP5799692B2 publication Critical patent/JP5799692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

PROBLEM TO BE SOLVED: To provide a steam generation method for stably generating and supplying steam while reducing troubles due to a heat medium, in a system for generating steam using solar heat.SOLUTION: The method for generating steam using solar heat includes: a step (X) of circulating a heat medium gas g between a receiver 1, on which sunbeams are condensed by a light condensing device having a plurality of mirror bodies, and a regenerative furnace 2 including a breathable heat reservoir and, during the circulation, heating the heat medium gas g by sunbeams condensed to the receiver 1 while storing heat of the heat medium gas g in the regenerative furnace 2; and a step (Y) of circulating the heat medium gas g between the regenerative furnace 2 having passed the step (X) and a heat exchanger 3, and during the circulation, radiating heat stored in the regenerative furnace 2 to the heat medium gas g while exchanging heat between the heat medium gas g and water using the heat exchanger 3 to generate steam.

Description

本発明は、太陽熱を利用した蒸気生成方法とその実施に供される蒸気生成装置に関する。   The present invention relates to a steam generation method using solar heat and a steam generation apparatus used for the implementation.

従来、太陽熱発電プラントとして、非特許文献1に示されるようなものが知られている。この太陽熱発電プラントでは、図5に示すように、昼間は太陽光線をパラボラトラフ21で集光し、溶融塩を循環・加熱して熱回収する。加熱された溶融塩の一部は、2基の蓄熱タンク22に蓄えられる。また、残りの溶融塩は熱交換器23で水と熱交換し、蒸気を発生させて蒸気タービン及び発電機24を駆動して発電を行う。蒸気タービンを通過した蒸気は、凝縮機25で復水し、再び熱交換器23に循環する。一方、夜は、蓄熱タンク22に蓄えた高温の溶融塩を熱交換器23に循環させて蒸気を発生させ、上記と同様に発電を行う。   Conventionally, what is shown by the nonpatent literature 1 is known as a solar thermal power generation plant. In this solar thermal power plant, as shown in FIG. 5, sunlight is collected by the parabolic trough 21 during the daytime, and the molten salt is circulated and heated to recover heat. A part of the heated molten salt is stored in the two heat storage tanks 22. The remaining molten salt exchanges heat with water in the heat exchanger 23 to generate steam to drive the steam turbine and the generator 24 to generate electricity. The steam that has passed through the steam turbine is condensed by the condenser 25 and circulated to the heat exchanger 23 again. On the other hand, at night, high-temperature molten salt stored in the heat storage tank 22 is circulated through the heat exchanger 23 to generate steam, and power is generated in the same manner as described above.

「The parabolic trough power plants Andasol 1 to 3」、Solar Millennium AG、2008年、p.12`` The parabolic trough power plants Andasol 1 to 3 '', Solar Millennium AG, 2008, p.12

非特許文献1に示されるような従来技術では、太陽エネルギーを、太陽熱で溶融塩を加熱し、蓄熱タンクに蓄える方法で回収している。この方法は、夜間でも蒸気を発生させて発電を行うことができる利点があるが、溶融塩の温度が低下すると、溶融塩が凝固して配管内で詰まりを生じ、操業ができなくなるという問題がある。そのため、配管全体を電器ヒーターで保温するなどの対策を講じる必要があり、設備費と運転費の増大を招いていた。   In the prior art as shown in Non-Patent Document 1, solar energy is recovered by a method in which molten salt is heated by solar heat and stored in a heat storage tank. This method has the advantage that steam can be generated even at night to generate electricity, but when the temperature of the molten salt decreases, the molten salt solidifies and clogs in the piping, making it impossible to operate. is there. For this reason, it is necessary to take measures such as keeping the entire pipe warmed with an electric heater, which increases equipment costs and operating costs.

したがって本発明の目的は、以上のような従来技術の課題を解決し、太陽熱を利用して蒸気を生成させるシステムにおいて、熱媒によるトラブルを生じにくく、しかも雲の通過などによる日照量の変動などに影響されず、蒸気を安定して生成・供給することができる蒸気生成方法及び装置を提供することにある。   Therefore, the object of the present invention is to solve the above-described problems of the prior art, and in a system for generating steam using solar heat, troubles caused by the heat medium are unlikely to occur, and fluctuations in the amount of sunlight due to passage of clouds, etc. It is an object of the present invention to provide a steam generation method and apparatus capable of stably generating and supplying steam without being affected by the above.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]熱媒ガスgを、複数の鏡体を備えた集光装置により太陽光線が集光されるレシーバー(1)と、内部に通気性蓄熱体を備えた蓄熱炉(2)との間で循環させ、この循環中、レシーバー(1)に集光された太陽光線で熱媒ガスgを加熱するとともに、該熱媒ガスgの熱を蓄熱炉(2)に蓄熱する工程(X)と、熱媒ガスgを、前記工程(X)を経た蓄熱炉(2)と熱交換器(3)との間で循環させ、この循環中、蓄熱炉(2)に蓄えられた熱を熱媒ガスgに放熱するとともに、該熱媒ガスgを熱交換器(3)で水と熱交換させて蒸気を生成させる工程(Y)を有することを特徴とする太陽熱を利用した蒸気生成方法。
The gist of the present invention for solving the above problems is as follows.
[1] Between a receiver (1) in which sunlight rays are condensed by a condensing device having a plurality of mirror bodies, and a heat storage furnace (2) having a breathable heat storage body inside. In the circulation, the heating medium gas g is heated with solar rays condensed on the receiver (1), and the heat of the heating medium gas g is stored in the regenerative furnace (2) (X) The heat medium gas g is circulated between the heat storage furnace (2) and the heat exchanger (3) having undergone the step (X), and the heat stored in the heat storage furnace (2) is circulated during the circulation. A method for generating steam using solar heat, comprising the step (Y) of generating heat by radiating heat to the gas g and causing the heat medium gas g to exchange heat with water in a heat exchanger (3).

[2]上記[1]の蒸気生成方法において、複数基の蓄熱炉(2)を用い、各蓄熱炉(2)で工程(X)と工程(Y)を交互に行うとともに、複数基の蓄熱炉(2)で工程(Y)を順番に行うことにより、蒸気を連続的に生成させることを特徴とする太陽熱を利用した蒸気生成方法。
[3]上記[1]又は[2]の蒸気生成方法において、熱交換器(3)で生成した蒸気をさらに加熱装置(7)で加熱することを特徴とする太陽熱を利用した蒸気生成方法。
[4]上記[1]〜[3]のいずれかの方法で生成した蒸気で蒸気タービンと発電機を駆動し、発電を行うことを特徴とする太陽熱発電方法。
[2] In the steam generation method according to [1] above, a plurality of regenerative furnaces (2) are used, and each of the regenerative furnaces (2) performs steps (X) and (Y) alternately, and a plurality of regenerators. A steam generation method using solar heat, wherein steam is continuously generated by sequentially performing the steps (Y) in the furnace (2).
[3] A steam generation method using solar heat, wherein the steam generated by the heat exchanger (3) is further heated by a heating device (7) in the steam generation method of [1] or [2].
[4] A solar thermal power generation method, wherein the steam turbine and the generator are driven by the steam generated by any one of the methods [1] to [3] to generate power.

[5]熱媒ガスgを循環させる循環流路(4)に、複数の鏡体を備えた集光装置により集光された太陽光線で熱媒ガスgを加熱するレシーバー(1)と、内部に通気性蓄熱体を備え、熱媒ガスgの通過により蓄熱又は放熱が行われる複数基の蓄熱炉(2)と、熱媒ガスgと水との熱交換で蒸気を生成させる熱交換器(3)が配置されるとともに、循環流路(4)は、各蓄熱炉(2)について蓄熱工程と放熱工程の切り替えが可能であって、且つ蓄熱工程中の蓄熱炉(2)とレシーバー(1)との間で熱媒ガスgを循環させるガス循環系と、放熱工程中の蓄熱炉(2)と熱交換器(3)との間で熱媒ガスgを循環させるガス循環系を同時に形成させることが可能な、複数の開閉弁(5)及び循環ファン(6)を備えた配管機構を有することを特徴とする太陽熱を利用した蒸気生成装置。
[6]上記[5]の蒸気生成装置において、熱交換器(3)で生成した蒸気をさらに加熱する加熱装置(7)を備えることを特徴とする太陽熱を利用した蒸気生成装置。
[5] A receiver (1) that heats the heat medium gas g with solar rays collected by a condensing device having a plurality of mirrors in a circulation channel (4) that circulates the heat medium gas g; And a heat exchanger (2) in which a heat storage gas (g) is stored and heat is radiated or dissipated by the passage of the heat medium gas g, and a heat exchanger that generates steam by heat exchange between the heat medium gas g and water ( 3) is arranged, and the circulation channel (4) is capable of switching between the heat storage process and the heat dissipation process for each heat storage furnace (2), and the heat storage furnace (2) and the receiver (1) during the heat storage process ) And a gas circulation system for circulating the heating medium gas g between the heat storage furnace (2) and the heat exchanger (3) during the heat radiation process are simultaneously formed. And a piping mechanism having a plurality of on-off valves (5) and a circulation fan (6). A steam generator using solar heat.
[6] The steam generating apparatus using solar heat according to [5], further comprising a heating device (7) for further heating the steam generated by the heat exchanger (3).

[7]上記[5]又は[6]の蒸気生成装置において、各蓄熱炉(2)の一端側に接続される流路(44)は2つの分岐流路(440),(441)を有し、このうち分岐流路(440)がレシーバー(1)の熱媒ガス出側の流路(40)に接続され、分岐流路(441)が熱交換器(3)の熱媒ガス入側の流路(41)に接続され、各蓄熱炉(2)の他端側に接続される流路(45)は2つの分岐流路(450),(451)を有し、このうち分岐流路(450)がレシーバー(1)の熱媒ガス入側の流路(42)に接続され、分岐流路(451)が熱交換器(3)の熱媒ガス出側の流路(43)に接続され、流路(42)又は(40)と流路(43)又は(41)には、それぞれ循環ファン(6)が設けられ、各分岐流路(440),(441),(450),(451)には、それぞれ開閉弁(5)が設けられることを特徴とする太陽熱を利用した蒸気生成装置。
[8]上記[5]〜[7]のいずれかの蒸気生成装置と、該蒸気生成装置で生成した蒸気で駆動する蒸気タービン及び発電機を備えることを特徴とする太陽熱発電装置。
[7] In the steam generator of [5] or [6] above, the flow path (44) connected to one end of each regenerative furnace (2) has two branch flow paths (440) and (441). Of these, the branch channel (440) is connected to the channel (40) on the heat medium gas outlet side of the receiver (1), and the branch channel (441) is on the heat medium gas inlet side of the heat exchanger (3). The flow path (45) connected to the other flow path (41) and connected to the other end of each regenerative furnace (2) has two branch flow paths (450) and (451), of which the branch flow The channel (450) is connected to the flow channel (42) on the heating medium gas inlet side of the receiver (1), and the branch channel (451) is the flow channel (43) on the heating medium gas outlet side of the heat exchanger (3). A circulation fan (6) is provided in each of the flow path (42) or (40) and the flow path (43) or (41), and each branch flow path (440), (44 ), (450), (451 A), respectively off valve (5) steam generator using solar heat, characterized in that is provided.
[8] A solar thermal power generation apparatus comprising the steam generation apparatus according to any one of the above [5] to [7], a steam turbine driven by steam generated by the steam generation apparatus, and a generator.

本発明によれば、熱媒ガスで蓄熱・放熱を行う蓄熱炉を利用することにより、太陽熱を利用して蒸気を安定的に生産することができる。また、熱媒に溶融塩を使用しないため、運転停止時や雨天が続いたような場合でも、配管内で熱媒が凝固するなどのトラブルを生じることがなく、このため保熱のための設備やその運転費用が不要であり、低コストに実施することができる。   ADVANTAGE OF THE INVENTION According to this invention, a steam can be stably produced using a solar heat by utilizing the thermal storage furnace which stores and heat-radiates with heat-medium gas. In addition, since no molten salt is used for the heat medium, troubles such as solidification of the heat medium in the piping do not occur even when the operation is stopped or when it rains. And its operating cost is unnecessary, and can be implemented at low cost.

本発明の蒸気生成装置の一実施形態の全体フロー図Overall flow diagram of one embodiment of a steam generator of the present invention 図1の装置を用いた本発明の蒸気生成方法の実施状況を示す説明図Explanatory drawing which shows the implementation condition of the steam generation method of this invention using the apparatus of FIG. 図1の装置を用いた本発明の蒸気生成方法の実施状況を示す説明図Explanatory drawing which shows the implementation condition of the steam generation method of this invention using the apparatus of FIG. 本発明法の操業形態例を示す説明図Explanatory drawing showing an example of operation mode of the method of the present invention 従来装置を示す説明図Explanatory drawing showing a conventional device

図1は、本発明の蒸気生成装置の一実施形態の全体フロー図である。
本発明の蒸気生成装置は、熱媒ガスg(例えば、空気)を循環させる循環流路4に、集光装置Sにより集光された太陽光線で熱媒ガスgを加熱するレシーバー1と、内部に通気性蓄熱体を備え、熱媒ガスgの通過により蓄熱又は放熱が行われる複数基の蓄熱炉2と、熱媒ガスgと水との熱交換で蒸気を生成させる熱交換器3が配置される。
前記集光装置Sは、複数の鏡体を備え、この鏡体に太陽光線を反射させてレシーバー1に集光させるものであり、本実施形態では、鏡体と太陽光線をレシーバー方向に導くための鏡角度制御装置とを組み合わせたヘリオスタットで構成されている。通常、このヘリオスタットは数百台〜数千台設置され、太陽の位置が変化しても、常にレシーバー1に太陽光線が集まるように鏡角度が制御される。なお、集光装置Sとしては、ヘリオスタット以外に、例えば、パラボラトラフ、リニアフレネル、パラボラディッシュなどの各方式の装置を用いてもよい。
FIG. 1 is an overall flow diagram of an embodiment of the steam generating apparatus of the present invention.
The steam generating apparatus of the present invention includes a receiver 1 that heats the heat medium gas g with solar rays condensed by the light condensing device S in a circulation channel 4 that circulates the heat medium gas g (for example, air), and an internal Are provided with a breathable heat storage body, a plurality of heat storage furnaces 2 in which heat is stored or released by passage of the heat medium gas g, and a heat exchanger 3 that generates steam by heat exchange between the heat medium gas g and water are arranged. Is done.
The condensing device S includes a plurality of mirror bodies, and reflects sunlight rays on the mirror bodies to collect the light rays on the receiver 1, and in this embodiment, guides the mirror bodies and the sun rays in the receiver direction. It is composed of a heliostat combined with a mirror angle control device. Usually, hundreds to thousands of heliostats are installed, and the mirror angle is controlled so that the sunlight rays always gather at the receiver 1 even if the position of the sun changes. In addition to the heliostat, for example, a parabolic trough, a linear Fresnel, a parabolic dish, or the like may be used as the light collecting device S.

前記レシーバー1は、図示しないタワー(鉄骨などで構成されるタワー)の上部に取り付けられる。タワーの高さは任意であるが、通常50m〜100m程度であり、各レシーバー1が受ける光の量により高さが適切に設計される。タワーは複数本設置してもよい。レシーバー1の受光面には、例えば、ボイラーチューブのような伝熱管が密に並べられ、集光された太陽光線を受けて加熱される。伝熱管内は熱媒ガスgが流れており、伝熱管からの伝熱により熱媒ガスgが加熱される。1基のレシーバー1の受光面の大きさは任意であるが、通常、高さ・幅ともに数メートル〜十メートル程度、面積は数十平方メートル〜百平方メートル程度である。   The receiver 1 is attached to an upper portion of a tower (a tower composed of a steel frame or the like) (not shown). Although the height of a tower is arbitrary, it is about 50m-100m normally, and height is designed appropriately by the quantity of the light which each receiver 1 receives. Multiple towers may be installed. On the light receiving surface of the receiver 1, for example, heat transfer tubes such as boiler tubes are densely arranged and heated by receiving the concentrated sunlight. The heat transfer gas g flows in the heat transfer tube, and the heat transfer gas g is heated by heat transfer from the heat transfer tube. Although the size of the light receiving surface of one receiver 1 is arbitrary, the height and the width are usually several meters to ten meters, and the area is about several tens square meters to one hundred square meters.

前記蓄熱炉2(ホットストーブ)は、製鉄プロセスにおいて溶鉱炉羽口に高温空気を供給するために使用される熱風炉と同じく、内部に通気性蓄熱体を備えている。この通気性蓄熱体は、例えば、多数のガス通気孔が形成された耐火物(煉瓦)を積み上げることにより構成される。この通気性蓄熱体を高温の熱媒ガスgが通過することにより、熱媒ガスgの熱が通気性蓄熱体に蓄えられ(蓄熱工程)、一方、蓄熱された高温の通気性蓄熱体を低温の熱媒ガスgが通過することにより、通気性蓄熱体の熱で熱媒ガスgが加熱される(放熱工程)。通常、蓄熱炉2の外殻は鋼製の耐圧容器である。本実施形態では、蓄熱炉2は2基(蓄熱炉2,2)設けられているが、3基以上設けてもよい。各蓄熱炉2の大きさは任意であるが、通常、直径が数メートル〜十メートル程度、高さが数十メートル〜百メートル程度である。 The regenerative furnace 2 (hot stove) includes a breathable heat accumulator in the inside, similar to a hot stove used for supplying high-temperature air to the blast furnace tuyere in the iron making process. This breathable heat storage body is configured by, for example, stacking refractories (bricks) in which a large number of gas vent holes are formed. When the high-temperature heat transfer gas g passes through the breathable heat storage body, the heat of the heat transfer medium gas g is stored in the breathable heat storage body (heat storage process), while the stored high-temperature breathable heat storage body is cooled to a low temperature. When the heat transfer medium gas g passes, the heat transfer medium gas g is heated by the heat of the breathable heat storage body (heat radiation step). Usually, the outer shell of the regenerative furnace 2 is a steel pressure vessel. In the present embodiment, two heat storage furnaces 2 (heat storage furnaces 2 A and 2 B ) are provided, but three or more heat storage furnaces may be provided. The size of each regenerative furnace 2 is arbitrary, but the diameter is usually about several meters to ten meters and the height is about several tens meters to hundred meters.

前記熱交換器3は、器内を通過する熱媒ガスgと水を熱交換させ、水から蒸気を生成させるものであり、この熱交換器3には、ポンプ9により水タンク8から給水配管10を通じて必要量且つ必要水質の水が供給される。
前記循環流路4は、2基の蓄熱炉2で蓄熱工程と放熱工程を交互に行うために必要な開閉弁及び循環ファンを備えた配管機構を有する。すなわち、この配管機構は複数の開閉弁5と循環ファン6を備え、各蓄熱炉2について蓄熱工程と放熱工程の切り替えが可能であって、且つ蓄熱工程中の蓄熱炉2とレシーバー1との間で熱媒ガスgを循環させるガス循環系と、放熱工程中の蓄熱炉2と熱交換器3との間で熱媒ガスgを循環させるガス循環系を同時に形成させることが可能な配管機構である。
The heat exchanger 3 heat-exchanges the heat transfer medium gas g passing through the inside of the vessel and water to generate steam from the water. The heat exchanger 3 is connected to a water supply pipe from a water tank 8 by a pump 9. The required amount of water is supplied through 10.
The circulation channel 4 has a piping mechanism provided with an on-off valve and a circulation fan necessary for alternately performing a heat storage process and a heat dissipation process in the two heat storage furnaces 2. That is, this piping mechanism includes a plurality of on-off valves 5 and a circulation fan 6, and can switch between the heat storage process and the heat dissipation process for each heat storage furnace 2, and between the heat storage furnace 2 and the receiver 1 during the heat storage process. A piping mechanism capable of simultaneously forming a gas circulation system that circulates the heat medium gas g and a gas circulation system that circulates the heat medium gas g between the heat storage furnace 2 and the heat exchanger 3 during the heat radiation process. is there.

配管機構は、具体的には以下のような構成を有する。すなわち、各蓄熱炉2,2の一端側に接続される流路44,44は、それぞれ2つの分岐流路440,441を有し、このうち分岐流路440がレシーバー1の熱媒ガス出側の流路40に接続され、一方、分岐流路441が熱交換器3の熱媒ガス入側の流路41に接続されている。また、各蓄熱炉2,2の他端側に接続される流路45,45は、それぞれ2つの分岐流路450,451を有し、このうち分岐流路450がレシーバー1の熱媒ガス入側の流路42に接続され、一方、分岐流路451が熱交換器3の熱媒ガス出側の流路43に接続されている。そして、流路42と流路43には、それぞれ循環ファン6a,6bが設けられている。また、各分岐流路440には開閉弁5a,5bが、各分岐流路441には開閉弁5c,5dが、各分岐流路450には開閉弁5e,5fが、各分岐流路451には開閉弁5g,5hが、それぞれ設けられている。なお、以上の配管機構を構成する配管は、必要な保温構造を有する。 Specifically, the piping mechanism has the following configuration. That is, the flow paths 44 A and 44 B connected to one end side of each of the heat storage furnaces 2 A and 2 B have two branch flow paths 440 and 441, respectively, of which the branch flow path 440 is the heat of the receiver 1. The branch channel 441 is connected to the channel 41 on the heat medium gas inlet side of the heat exchanger 3. The flow paths 45 A and 45 B connected to the other ends of the regenerative furnaces 2 A and 2 B have two branch flow paths 450 and 451, respectively, of which the branch flow path 450 is the receiver 1. The branch channel 451 is connected to the channel 43 on the heat medium gas outlet side of the heat exchanger 3. Circulating fans 6a and 6b are provided in the channel 42 and the channel 43, respectively. Each branch channel 440 has on / off valves 5a and 5b, each branch channel 441 has on / off valves 5c and 5d, and each branch channel 450 has on / off valves 5e and 5f on each branch channel 451. Open / close valves 5g and 5h are respectively provided. In addition, the piping which comprises the above piping mechanism has a required heat retention structure.

循環ファン6aは、レシーバー1と任意の蓄熱炉2との間で熱媒ガスgを循環させ、循環ファン6bは、任意の蓄熱炉2と熱交換器3との間で熱媒ガスgを循環させる。なお、循環ファン6aを流路40に、循環ファン6bを流路41に、それぞれ設けてもよい。
循環ファン6a,6bは、300℃程度の温度にも耐えられる耐熱性を有しており、図示しない制御装置により、送風量を調節できるようになっている。
この実施形態では、熱交換器3で生成した蒸気をさらに加熱することができる加熱装置7を備えている。この加熱装置7では熱源として燃料が用いられ、必要に応じて蒸気を加熱した後、下工程に送る。
下工程が蒸気タービン及び発電機による発電工程である場合には、この発電用の蒸気タービン及び発電機と上述した蒸気生成装置とにより太陽熱発電装置が構成される。
The circulation fan 6 a circulates the heat medium gas g between the receiver 1 and the arbitrary heat storage furnace 2, and the circulation fan 6 b circulates the heat medium gas g between the arbitrary heat storage furnace 2 and the heat exchanger 3. Let The circulation fan 6a may be provided in the flow path 40 and the circulation fan 6b may be provided in the flow path 41, respectively.
The circulation fans 6a and 6b have heat resistance that can withstand temperatures of about 300 ° C., and the air flow rate can be adjusted by a control device (not shown).
In this embodiment, the heating apparatus 7 which can further heat the vapor | steam produced | generated with the heat exchanger 3 is provided. In this heating device 7, fuel is used as a heat source. After heating the steam as necessary, it is sent to the lower process.
When the lower process is a power generation process using a steam turbine and a generator, a solar thermal power generation apparatus is configured by the power generation steam turbine and power generator and the steam generation device described above.

次に、本発明の蒸気生成方法について説明する。
本発明の蒸気生成方法は、熱媒ガスgを、複数の鏡体を備えた集光装置により太陽光線が集光されるレシーバー1と、内部に通気性蓄熱体を備えた蓄熱炉2との間で循環させ、この循環中、レシーバー1に集光された太陽光線で熱媒ガスgを加熱するとともに、該熱媒ガスgの熱を蓄熱炉2に蓄熱する工程X(蓄熱工程)と、熱媒ガスgを、前記工程Xを経た蓄熱炉2と熱交換器3との間で循環させ、この循環中、蓄熱炉2に蓄えられた熱を熱媒ガスgに放熱するとともに、該熱媒ガスgを熱交換器3で水と熱交換させて蒸気を生成させる工程Y(放熱工程)を有する。この蒸気生成方法では、複数基の蓄熱炉2を用い、各蓄熱炉2で工程Xと工程Yを交互に行うとともに、複数基の蓄熱炉2で工程Yを順番に行うことにより、蒸気を連続的に生成させることが好ましい。また、熱交換器3で生成した蒸気をさらに加熱装置7で加熱することができる。
熱媒ガスgの種類は任意であるが、通常は空気が用いられる。
Next, the steam generation method of the present invention will be described.
The steam generation method of the present invention includes a receiver 1 in which sunlight rays are collected by a condensing device having a plurality of mirror bodies, and a heat storage furnace 2 having a breathable heat storage body therein. In the circulation, the heating medium gas g is heated with solar rays condensed on the receiver 1, and the heat X of the heating medium gas g is stored in the heat storage furnace 2 (heat storage process); The heat medium gas g is circulated between the heat storage furnace 2 and the heat exchanger 3 that have undergone the process X, and during this circulation, the heat stored in the heat storage furnace 2 is radiated to the heat medium gas g, and the heat It has process Y (heat dissipation process) which carries out heat exchange of medium gas g with water with heat exchanger 3, and generates steam. In this steam generation method, a plurality of regenerative furnaces 2 are used, and the process X and the process Y are alternately performed in each regenerative furnace 2, and the process Y is sequentially performed in the plurality of regenerative furnaces 2 to continuously steam. It is preferable to generate them automatically. Further, the steam generated by the heat exchanger 3 can be further heated by the heating device 7.
The type of the heat transfer gas g is arbitrary, but usually air is used.

以下、図1に示す実施形態の装置を用いる場合を例に、図2及び図3に基づき本発明の蒸気生成方法の一実施形態を説明する。この実施形態では、熱媒ガスgとして空気を用いる。なお、図2及び図3に示す開閉弁5a〜5hは、白抜きのものが開状態、黒く塗りつぶしたものが閉状態であることを示す。
ここで、蓄熱炉2で蓄熱工程が、蓄熱炉2で放熱工程がそれぞれ行われるとした場合(第1ステップ)、図2に示すように、開閉弁5b,5c,5f,5gを閉状態、開閉弁5a,5d,5e,5hを開状態とし、空気をレシーバー1と蓄熱炉2間で循環させる流路42→流路40→流路44(分岐流路440を含む)→流路45(分岐流路450を含む)からなるガス循環系(以下、「ガス循環系(i)」という)と、空気を熱交換器3と蓄熱炉2間で循環させる流路43→流路45(分岐流路451を含む)→流路44(分岐流路441を含む)→流路41からなるガス循環系(以下、「ガス循環系(ii)」という)を、それぞれ形成する。
Hereinafter, an embodiment of the steam generation method of the present invention will be described based on FIGS. 2 and 3 by taking the case of using the apparatus of the embodiment shown in FIG. 1 as an example. In this embodiment, air is used as the heating medium gas g. The open / close valves 5a to 5h shown in FIGS. 2 and 3 indicate that the white ones are in an open state and the ones that are blacked out are in a closed state.
Here, the heat storage process in regenerative furnace 2 A If the regenerative furnace 2 B in the heat radiation step is respectively carried out (first step), as shown in FIG. 2, the on-off valve 5b, 5c, 5f, and 5g closed state, (including branched flow path 440) opening and closing valve 5a, 5d, 5e, 5h was opened and air receiver 1 and regenerative furnace 2 stream is circulated between a path 42 → the passage 40 → the passage 44 a → flow path 45 a gas circulation system consisting of (including branch channel 450) (hereinafter, "the gas circulation system (i)") and, flow causes air to circulate between the regenerative furnace 2 B and the heat exchanger 3 channel 43 → Flow path 45 B (including branch flow path 451) → Flow path 44 B (including branch flow path 441) → A gas circulation system including the flow path 41 (hereinafter referred to as “gas circulation system (ii)”) Form each one.

前記ガス循環系(i)では、循環ファン6aにより空気をレシーバー1と蓄熱炉2間で循環させ、さきに述べた工程X(蓄熱工程)が行われる。集光装置Sにより太陽光線がレシーバー1の受光面に集光され、レシーバー1(受光面にある伝熱管)を通過する空気が加熱される。このときレシーバー受光面での集光倍率(ヘリオスタット鏡面積の合計÷レシーバー受光面積)は500〜1000倍程度である。また、受光面にある伝熱管の外面温度は600〜900℃程度で、レシーバー出口における空気の温度は500〜700℃である。このとき、レシーバー受光面に届く太陽光線のエネルギーに対して、空気が加熱されて得るエネルギーの割合は75%以上になるようにレシーバーが設計されている。レシーバー1から出た500〜700℃の高温空気は、蓄熱炉2を通過する過程で炉内部の通気性蓄熱体を加熱して蓄熱炉2に熱を蓄え、300℃以下の温度で蓄熱炉2を出る。このようにして、蓄熱炉2に太陽光線のエネルギーが蓄えられる。このとき、蓄熱炉2内部の温度分布は、ガス入側(流路44側)が500〜700℃、ガス出側(流路45側)が300℃程度である。 The gas circulation system in (i), the circulation fan 6a air is circulated between the heat storage furnace 2 A and receiver 1, the process previously described X (heat storage process) is performed. The sunlight is condensed on the light receiving surface of the receiver 1 by the light collecting device S, and the air passing through the receiver 1 (heat transfer tube on the light receiving surface) is heated. At this time, the condensing magnification (total heliostat mirror area / receiver light receiving area) on the receiver light receiving surface is about 500 to 1000 times. Moreover, the outer surface temperature of the heat exchanger tube in a light-receiving surface is about 600-900 degreeC, and the temperature of the air in a receiver exit is 500-700 degreeC. At this time, the receiver is designed so that the ratio of the energy obtained by heating the air to the energy of the sunlight reaching the receiver light-receiving surface is 75% or more. 500 to 700 ° C. hot air exiting from the receiver 1, regenerative furnace 2 to heat the furnace interior breathable regenerator while passing through the A and stored heat in the heat storage furnace 2 A heat storage at 300 ° C. below the temperature exiting the furnace 2 a. In this manner, the energy of the sunlight stored in the heat storage furnace 2 A. At this time, the temperature distribution inside the heat storage furnace 2 A, a gas inlet side (the flow path 44 A side) 500 to 700 ° C., the gas outlet side (the flow path 45 A side) is about 300 ° C..

一方、前記ガス循環系(ii)では、循環ファン6bにより空気を熱交換器3と蓄熱炉2間で循環させ、さきに述べた工程Y(放熱工程)が行われる。熱交換器3には、ポンプ9により水タンク8から水が供給される。この工程Yが行われる蓄熱炉2は、既に前工程(工程X)で蓄熱された状態にある。空気は蓄熱炉2を通過する過程で炉内部の通気性蓄熱体により480〜680℃程度まで加熱された後、熱交換器3に入る。この熱交換器3では、空気と水が熱交換されて蒸気(飽和蒸気又は過熱蒸気)が生成する。空気は200℃以下の温度で熱交換器3を出る。
熱交換器3で生成した蒸気は、下工程の要求を満たさない場合は、加熱装置7で燃料を熱源として加熱された後、下工程に送られる。このような加熱が可能であることにより、下工程で要求する蒸気の温度条件が高温側に変化した場合でも、容易に対応することができる。
Meanwhile, the In the gas circulation system (ii), the circulation fan 6b air is circulated between the heat storage furnace 2 B and the heat exchanger 3, the steps previously described Y (radiating step) is performed. Water is supplied from the water tank 8 to the heat exchanger 3 by a pump 9. Regenerative furnace 2 B of the process Y is performed in a state already been heated in the previous step (step X). Air after being heated to approximately four hundred and eighty to six hundred eighty ° C. The breathable regenerator furnace interior in the process of passing through the regenerative furnace 2 B, it enters the heat exchanger 3. In the heat exchanger 3, heat is exchanged between air and water to generate steam (saturated steam or superheated steam). The air leaves the heat exchanger 3 at a temperature below 200 ° C.
When the steam generated by the heat exchanger 3 does not satisfy the requirements of the lower process, the steam is heated by the heating device 7 using the fuel as a heat source and then sent to the lower process. Since such heating is possible, even when the temperature condition of the steam required in the lower process is changed to a high temperature side, it can be easily handled.

以上のような操業を一定時間行うと、蓄熱炉2には熱(太陽エネルギー)が十分蓄えられて、蓄熱炉2の出側の流路45,42を流れる空気の温度が上昇し、循環ファン6aの耐熱使用温度に近づいてくる。一方、蓄熱炉2では熱(太陽エネルギー)が消費されて、蓄熱炉2の出側の流路44,41を流れる空気の温度が低下し、熱交換器3で製造される蒸気の温度が低下してくる。
そのような時点で、蓄熱炉2で前記工程X(蓄熱工程)が、蓄熱炉2で前記工程Y(放熱工程)がそれぞれ行われる操業に切り替える(第2ステップ)。すなわち、図3に示すように、開閉弁5a,5d,5e,5hを閉状態、開閉弁5b,5c,5f,5gを開状態とし、空気をレシーバー1と蓄熱炉2間で循環させる流路42→流路40→流路44(分岐流路440を含む)→流路45(分岐流路450を含む)からなるガス循環系と、空気を熱交換器3と蓄熱炉2間で循環させる流路43→流路45(分岐流路451を含む)→流路44(分岐流路441を含む)→流路41からなるガス循環系を、それぞれ形成する。そして、両ガス循環系において蓄熱工程と放熱工程が行われるが、その詳細は、蓄熱炉2と蓄熱炉2が逆になるだけで、図2について述べたと同様である。
Performing operation for a predetermined time as described above, heat in the heat storage furnace 2 A (solar energy) is sufficiently accumulated, the temperature of the air flowing through the flow path 45 A, 42 of the outgoing side of the heat storage furnace 2 A rises Then, it approaches the heat resistant use temperature of the circulation fan 6a. On the other hand, regenerative furnace 2 B in the heat (solar energy) is the consumption, of the air flowing through the flow path 44 B, 41 of the outlet side of the heat storage furnace 2 B temperature decreases, the steam produced in the heat exchanger 3 The temperature drops.
In such a time, the heat storage furnace 2 B step X (heat storage process) is switched to the step Y operation of (radiating step) are carried out respectively in regenerative furnace 2 A (second step). That is, as shown in FIG. 3, the on-off valve 5a, 5d, 5e, 5h the closed state, the on-off valve 5b, 5c, 5f, and 5g to the open state, flow circulating air between the receiver 1 and the regenerative furnace 2 B A gas circulation system including a channel 42 → a channel 40 → a channel 44 B (including a branch channel 440) → a channel 45 B (including a branch channel 450), and air to the heat exchanger 3 and the regenerative furnace 2 A A gas circulation system consisting of a flow path 43 to be circulated, a flow path 45 A (including a branch flow path 451), a flow path 44 A (including a branch flow path 441), and a flow path 41 is formed. Then, although the heat storage process and the heat radiation process in both gas circulation system is conducted, the details of which regenerative furnace 2 B and regenerative furnace 2 A is only reversed, the same as described for FIG.

以上のような操業を一定時間行い、蓄熱炉2に熱(太陽エネルギー)が十分蓄えられて、蓄熱炉2の出側の流路45,42を流れる空気の温度が上昇して循環ファン6aの耐熱使用温度に近づき、一方、蓄熱炉2の熱(太陽エネルギー)が消費されて、蓄熱炉2の出側の流路44,41を流れる空気の温度が低下し、熱交換器3で製造される蒸気の温度が低下してくると、再び図2の操業、すなわち、蓄熱炉2で前記工程X(蓄熱工程)が、蓄熱炉2bで前記工程Y(放熱工程)がそれぞれ行われる操業に切り替える。
以上のようなステップを繰り返すことで、太陽光線がレシーバー1に到達している限りは、太陽光線のエネルギーを回収し、蒸気を生産し続けることができる。
Performs operations such as predetermined time or more, the heat in the heat storage furnace 2 B (solar energy) is sufficiently accumulated, the temperature of the air flowing through the flow path 45 B, 42 of the outlet side of the heat storage furnace 2 B rises circulates approaches the heat operating temperature of the fan 6a, whereas, is consumed heat of the heat storage furnace 2 a (solar energy), the temperature of the air flowing through the flow path 44 a, 41 of the outgoing side of the heat storage furnace 2 a is reduced, heat When the temperature of the vapor produced in the exchanger 3 is lowered again operation of FIG. 2, i.e., the heat storage furnace 2 a process X (heat storage step) is, the step Y (the heat radiation step) in regenerative furnace 2b Switch to operations where
By repeating the above steps, as long as the sunbeam reaches the receiver 1, it is possible to recover the energy of the sunbeam and continue to produce steam.

図4(ア),(イ)は、本発明法の操業形態例を示しており、横軸は時間、縦軸は蓄熱炉2と蓄熱炉2が蓄熱、放熱、保熱のどの状態にあるかを示している。
図4(ア)の操業形態では、太陽からの受光が可能な時間帯のみ、蓄熱炉2と蓄熱炉2で蓄熱と放熱を交互に行い、蒸気を連続的に生成させている。一方、太陽からの受光ができない時間帯では、蓄熱炉2と蓄熱炉2ともに保熱状態であり、空気の循環は行われず、蒸気は生成されない。
Figure 4 (a), (b) shows an operational embodiment of the present invention method, the horizontal axis represents time and the vertical axis represents regenerative furnace 2 B heat storage and regenerative furnace 2 A, the heat radiation, which states the heat-retaining Is shown.
Figure In operation the form of 4 (A), only the times can be received from the sun, alternately performs heat radiation and the heat storage in the heat storage furnace 2 B and regenerative furnace 2 A, and steam continuously generate. Meanwhile, during a time period that can not be received from the sun, it is both heat retaining state regenerative furnace 2 B and regenerative furnace 2 A, air circulation is not performed, the steam is not generated.

一方、図4(イ)の操業形態は、次のようにして行われる。蓄熱炉2では、夜間Aから昼間Aの初期まで保熱を行い、昼間Aにおいて、午前中、日が昇り、レシーバー1の受光量が一定程度以上になってから蓄熱を開始し、午後、日が傾いて、レシーバー1の受光量が一定程度以下になったら蓄熱を停止し、保熱状態とする。保熱状態では空気の循環は行われず、蒸気は生成されない。一方、蓄熱炉2からの放熱は、夜間A、昼間Aを通して24時間連続的に行う。この場合、24時間連続した放熱が可能となるよう、循環ファン6bは送風量を下げた運転が行われる。翌日は、蓄熱炉2からの放熱を夜間B、昼間Bを通して24時間連続的に行い、一方、蓄熱炉2では、夜間Bから昼間Bの初期まで保熱を行い、昼間Bにおいて、午前中、日が昇り、レシーバー1の受光量が一定程度以上になってから蓄熱を開始し、午後、日が傾いて、レシーバー1の受光量が一定程度以下になったら蓄熱を停止し、保熱状態とする。図4(イ)の操業形態では、蓄熱炉2と蓄熱炉2で蓄熱と放熱を一日単位で交互に行うことにより、昼夜を問わず蒸気を連続的に生産し続けることができる。 On the other hand, the operation mode of FIG. 4 (a) is performed as follows. In regenerative furnace 2 A, do the coercive heat from nighttime A to the initial daytime A, in the daytime A, in the morning, the day is rising, the amount of light received by the receiver 1 starts the heat storage from equal to or greater than a certain degree, afternoon, When the sun goes down and the amount of light received by the receiver 1 falls below a certain level, the heat storage is stopped and the heat is kept. In the heat retaining state, air is not circulated and no steam is generated. On the other hand, the heat radiation from the heat storage furnace 2 B at night A, carried out 24 hours continuously throughout the day A. In this case, the circulation fan 6b is operated with a reduced air flow so that heat can be continuously dissipated for 24 hours. The next day, regenerative furnace 2 heat dissipation from A nighttime B, Day 24 hour continuous conducted through B, whereas, in the regenerative furnace 2 B, performs heat retaining from night B to the initial day B, during the day B, AM Heat storage starts after the sun rises and the amount of light received by the receiver 1 exceeds a certain level. After the afternoon and day, when the amount of light received by the receiver 1 falls below a certain level, the heat storage stops and the heat is retained. State. In operation according to FIG. 4 (b), may be a regenerative furnace 2 A by performing alternately on a daily basis the radiator and the heat storage in the heat storage furnace 2 B, keeps continuously produced steam day and night.

1 レシーバー
2,2,2 蓄熱炉
3 熱交換器
4 循環流路
5,5a,5b,5c,5d,5e,5f,5g,5h 開閉弁
6,6a,6b 循環ファン
7 加熱装置
8 水タンク
9 ポンプ
10 給水配管
40,41,42,43,44,44,45,45 流路
440,441,450,451 分岐流路
S 集光装置
DESCRIPTION OF SYMBOLS 1 Receiver 2, 2 A , 2 B Regenerative furnace 3 Heat exchanger 4 Circulation flow path 5, 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h On-off valve 6, 6a, 6b Circulation fan 7 Heating device 8 Water tank 9 pump 10 water supply pipe 40,41,42,43,44 A, 44 B, 45 A , 45 B passage 440,441,450,451 branch channel S light collector

Claims (8)

熱媒ガスgを、複数の鏡体を備えた集光装置により太陽光線が集光されるレシーバー(1)と、内部に通気性蓄熱体を備えた蓄熱炉(2)との間で循環させ、この循環中、レシーバー(1)に集光された太陽光線で熱媒ガスgを加熱するとともに、該熱媒ガスgの熱を蓄熱炉(2)に蓄熱する工程(X)と、
熱媒ガスgを、前記工程(X)を経た蓄熱炉(2)と熱交換器(3)との間で循環させ、この循環中、蓄熱炉(2)に蓄えられた熱を熱媒ガスgに放熱するとともに、該熱媒ガスgを熱交換器(3)で水と熱交換させて蒸気を生成させる工程(Y)を有することを特徴とする太陽熱を利用した蒸気生成方法。
The heat medium gas g is circulated between a receiver (1) where sunlight rays are collected by a light collecting device including a plurality of mirrors and a heat storage furnace (2) provided with a breathable heat storage body inside. In the circulation, the heating medium gas g is heated with solar rays condensed on the receiver (1), and the heat of the heating medium gas g is stored in the heat storage furnace (2) (X),
The heat transfer gas g is circulated between the heat storage furnace (2) and the heat exchanger (3) that have undergone the step (X), and during this circulation, the heat stored in the heat storage furnace (2) is transferred to the heat transfer gas. A method for generating steam using solar heat, comprising the step (Y) of generating heat by radiating heat to g and heat-exchanging the heat medium gas g with water in a heat exchanger (3).
複数基の蓄熱炉(2)を用い、各蓄熱炉(2)で工程(X)と工程(Y)を交互に行うとともに、複数基の蓄熱炉(2)で工程(Y)を順番に行うことにより、蒸気を連続的に生成させることを特徴とする請求項1に記載の太陽熱を利用した蒸気生成方法。   Using a plurality of regenerative furnaces (2), the steps (X) and (Y) are alternately performed in each regenerative furnace (2), and the steps (Y) are sequentially performed in the plurality of regenerative furnaces (2). The steam generation method using solar heat according to claim 1, wherein the steam is continuously generated. 熱交換器(3)で生成した蒸気をさらに加熱装置(7)で加熱することを特徴とする請求項1又は2に記載の太陽熱を利用した蒸気生成方法。   The steam generated by the heat exchanger (3) is further heated by a heating device (7), and the steam generating method using solar heat according to claim 1 or 2. 請求項1〜3のいずれかに記載の方法で生成した蒸気で蒸気タービン及び発電機を駆動し、発電を行うことを特徴とする太陽熱発電方法。   A solar thermal power generation method, wherein a steam turbine and a generator are driven by steam generated by the method according to claim 1 to generate power. 熱媒ガスgを循環させる循環流路(4)に、複数の鏡体を備えた集光装置により集光された太陽光線で熱媒ガスgを加熱するレシーバー(1)と、内部に通気性蓄熱体を備え、熱媒ガスgの通過により蓄熱又は放熱が行われる複数基の蓄熱炉(2)と、熱媒ガスgと水との熱交換で蒸気を生成させる熱交換器(3)が配置されるとともに、
循環流路(4)は、各蓄熱炉(2)について蓄熱工程と放熱工程の切り替えが可能であって、且つ蓄熱工程中の蓄熱炉(2)とレシーバー(1)との間で熱媒ガスgを循環させるガス循環系と、放熱工程中の蓄熱炉(2)と熱交換器(3)との間で熱媒ガスgを循環させるガス循環系を同時に形成させることが可能な、複数の開閉弁(5)及び循環ファン(6)を備えた配管機構を有することを特徴とする太陽熱を利用した蒸気生成装置。
A receiver (1) for heating the heat medium gas g with solar rays collected by a condensing device having a plurality of mirror bodies in the circulation channel (4) for circulating the heat medium gas g, and a breathability inside. A plurality of heat storage furnaces (2) that include a heat storage body and store or release heat by passage of the heat medium gas g, and a heat exchanger (3) that generates steam by heat exchange between the heat medium gas g and water. And placed
The circulation channel (4) is capable of switching between the heat storage process and the heat dissipation process for each heat storage furnace (2), and between the heat storage furnace (2) and the receiver (1) during the heat storage process. a gas circulation system that circulates g, and a gas circulation system that circulates the heating medium gas g between the heat storage furnace (2) and the heat exchanger (3) during the heat radiation step can be simultaneously formed. A steam generator using solar heat, comprising a piping mechanism comprising an on-off valve (5) and a circulation fan (6).
熱交換器(3)で生成した蒸気をさらに加熱する加熱装置(7)を備えることを特徴とする請求項5に記載の太陽熱を利用した蒸気生成装置。   The steam generator using solar heat according to claim 5, further comprising a heating device (7) for further heating the steam generated by the heat exchanger (3). 各蓄熱炉(2)の一端側に接続される流路(44)は2つの分岐流路(440),(441)を有し、このうち分岐流路(440)がレシーバー(1)の熱媒ガス出側の流路(40)に接続され、分岐流路(441)が熱交換器(3)の熱媒ガス入側の流路(41)に接続され、
各蓄熱炉(2)の他端側に接続される流路(45)は2つの分岐流路(450),(451)を有し、このうち分岐流路(450)がレシーバー(1)の熱媒ガス入側の流路(42)に接続され、分岐流路(451)が熱交換器(3)の熱媒ガス出側の流路(43)に接続され、
流路(42)又は(40)と流路(43)又は(41)には、それぞれ循環ファン(6)が設けられ、
各分岐流路(440),(441),(450),(451)には、それぞれ開閉弁(5)が設けられることを特徴とする請求項5又は6に記載の太陽熱を利用した蒸気生成装置。
The flow path (44) connected to one end of each regenerative furnace (2) has two branch flow paths (440) and (441), of which the branch flow path (440) is the heat of the receiver (1). Connected to the flow path (40) on the medium gas outlet side, the branch flow path (441) is connected to the flow path (41) on the heat medium gas input side of the heat exchanger (3),
The flow path (45) connected to the other end of each regenerative furnace (2) has two branch flow paths (450) and (451), of which the branch flow path (450) is the receiver (1). Connected to the flow path (42) on the heat medium gas inlet side, the branch flow path (451) is connected to the flow path (43) on the heat medium gas outlet side of the heat exchanger (3),
A circulation fan (6) is provided in each of the flow path (42) or (40) and the flow path (43) or (41),
Steam generation using solar heat according to claim 5 or 6, characterized in that each branch channel (440), (441), (450), (451) is provided with an on-off valve (5), respectively. apparatus.
請求項5〜7のいずれかに記載の蒸気生成装置と、該蒸気生成装置で生成した蒸気で駆動する蒸気タービン及び発電機を備えることを特徴とする太陽熱発電装置。   A solar thermal power generation apparatus comprising: the steam generation apparatus according to claim 5; a steam turbine driven by steam generated by the steam generation apparatus; and a generator.
JP2011197733A 2011-09-10 2011-09-10 Steam generation method and apparatus using solar heat Active JP5799692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197733A JP5799692B2 (en) 2011-09-10 2011-09-10 Steam generation method and apparatus using solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197733A JP5799692B2 (en) 2011-09-10 2011-09-10 Steam generation method and apparatus using solar heat

Publications (2)

Publication Number Publication Date
JP2013061080A true JP2013061080A (en) 2013-04-04
JP5799692B2 JP5799692B2 (en) 2015-10-28

Family

ID=48185902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197733A Active JP5799692B2 (en) 2011-09-10 2011-09-10 Steam generation method and apparatus using solar heat

Country Status (1)

Country Link
JP (1) JP5799692B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010748A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Trough-type solar heat collection device
JP2016166705A (en) * 2015-03-10 2016-09-15 三菱日立パワーシステムズ株式会社 Solar heat storage device
KR102248574B1 (en) * 2019-12-04 2021-05-06 한밭대학교 산학협력단 Continuous operation hydrate slurry cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543388A (en) * 1978-09-18 1980-03-27 Badger Co Method of and apparatus for harnessing solar energy
JPH11257761A (en) * 1998-03-13 1999-09-24 Takao Ishihara Solar cell cogeneration system
JP2007132330A (en) * 2005-11-10 2007-05-31 Kokusai Gijutsu Kaihatsu Co Ltd Solar power generation plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543388A (en) * 1978-09-18 1980-03-27 Badger Co Method of and apparatus for harnessing solar energy
JPH11257761A (en) * 1998-03-13 1999-09-24 Takao Ishihara Solar cell cogeneration system
JP2007132330A (en) * 2005-11-10 2007-05-31 Kokusai Gijutsu Kaihatsu Co Ltd Solar power generation plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010748A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Trough-type solar heat collection device
JP2016166705A (en) * 2015-03-10 2016-09-15 三菱日立パワーシステムズ株式会社 Solar heat storage device
KR102248574B1 (en) * 2019-12-04 2021-05-06 한밭대학교 산학협력단 Continuous operation hydrate slurry cooling system

Also Published As

Publication number Publication date
JP5799692B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
ES2667853T3 (en) Solar thermal energy generation system and solar thermal energy generation method
US7296410B2 (en) Solar power system and method for power generation
US7051529B2 (en) Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
US10030636B2 (en) Solar thermal energy storage system
AU2009312347B2 (en) Solar thermal power plant and dual-purpose pipe for use therewith
WO2011086215A1 (en) Molten salt solar panel and method for reducing the thermal gradient of said panel
US9080788B2 (en) Solar power system and method of operation
CN102859190A (en) Solar thermal power plant
CN111677640A (en) Trough type photo-thermal power generation system for decoupling heat collection, heat storage and heat release power generation and operation method
JP2014001641A (en) Solar heat gas turbine power generation system
JP5799692B2 (en) Steam generation method and apparatus using solar heat
CN110068155A (en) A kind of fused salt linear Fresnel heat collecting field anti-condensation system and its method
Way Storing the sun: molten salt provides highly efficient thermal storage
JP2016217223A (en) Solar thermal gas turbine power generation system
US8820076B2 (en) Solar heat collecting apparatus and solar power generation system
JP2013096384A (en) Solar thermal power generation method and facility
CN107989759B (en) Solid heat storage power generation system and photo-thermal power station
JP2020090944A (en) Solar power generation system
JP2013105927A (en) Power generating facility utilizing solar energy and operational method thereof
JP6600605B2 (en) Solar thermal power generation system and solar thermal power generation method
CN207472114U (en) A kind of regenerative apparatus of gas and fused salt contact heat-exchanging
JP6973238B2 (en) Solar thermal power generation system
JP2012117716A (en) Solar power generation system
JP2016044851A (en) Steam generation system
EP2410177B1 (en) Air- and steam-technology combined solar plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R150 Certificate of patent or registration of utility model

Ref document number: 5799692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350