JP2015010728A - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP2015010728A
JP2015010728A JP2013134563A JP2013134563A JP2015010728A JP 2015010728 A JP2015010728 A JP 2015010728A JP 2013134563 A JP2013134563 A JP 2013134563A JP 2013134563 A JP2013134563 A JP 2013134563A JP 2015010728 A JP2015010728 A JP 2015010728A
Authority
JP
Japan
Prior art keywords
fin
tube
fins
slits
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013134563A
Other languages
English (en)
Other versions
JP6153785B2 (ja
Inventor
青木 泰高
Yasutaka Aoki
泰高 青木
秀哲 立野井
Hideaki Tatsunoi
秀哲 立野井
克弘 齊藤
Katsuhiro Saito
克弘 齊藤
陽一 上藤
Yoichi Kamifuji
陽一 上藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013134563A priority Critical patent/JP6153785B2/ja
Publication of JP2015010728A publication Critical patent/JP2015010728A/ja
Application granted granted Critical
Publication of JP6153785B2 publication Critical patent/JP6153785B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】上流側に集中して着霜した場合であっても風量を確保することにより、暖房効率を向上させることができる熱交換器を提供すること。
【解決手段】熱交換器1は、平行に配列され、内部を冷媒が流れる複数のチューブ10と、チューブ10に対して直交して配列されるとともに、チューブ10を収容する複数のスリット(210,220)が形成された複数のフィン20と、を備える。複数のスリット(210,220)は、個々のフィン20において同じ側に、チューブ10を挿入するための挿入口(210A,220A)を有する。チューブ10から上流側へと突出する第1フィン21と、第1フィン21に対して下流側へと後退する第2フィン22とが配列されることにより、フィン20間のピッチが熱交換器1の上流端で拡大される。
【選択図】図2

Description

本発明は、チューブを挿入するためのスリットがフィンに形成された熱交換器に関する。
空気調和機を構成する蒸発器や凝縮器として、平行に配列される複数のチューブ(偏平管)と、チューブに対して直交する方向に平行に配列される複数の板状のフィンとを備えた熱交換器が用いられる。フィンに形成された複数のスリットの各々に、チューブが挿入される。
特許文献1の熱交換器のフィンには、一方の側と他方の側とから交互に切り欠かれるように、複数のスリットが形成される。特許文献1のフィンは、風の流れの上流側でチューブと位置を揃えて配置される。
特許文献2の熱交換器のフィンには、同じ側から切り欠かれるように、複数のスリットが形成される。特許文献2のフィンは、チューブから上流側に突出するように配置される。
室外機の熱交換器は、暖房運転時に蒸発器として機能する。そのため、寒冷時に暖房運転を行った場合、室外機の熱交換器は、低温の冷媒により、例えば−5℃にまで温度が低下するので、空気中の水分が凝固し、霜としてフィンおよびチューブに付着する。
このように着霜すると、霜が熱抵抗となって空気と冷媒との熱交換を阻害するので、暖房能力が低下する。また、着霜によってフィンとチューブとの間の通風路が狭められ、風量が低下することでも暖房能力が低下する。
そこで、外気温が低いときの暖房運転時には、霜を溶かす除霜運転を定期的に行う。
特開平2−154987号公報 特開2012−163323号公報
着霜は、一般に、フィンとチューブとの間を流れる風の上流側から起こり、上流側に集中する。上流側に集中して着霜すると、所定の暖房能力を得るために必要な風量を確保できない。
特許文献2のように、チューブから上流側にフィンを突出させると、特許文献1のようにフィンとチューブの位置が揃っているのに比べ、チューブ内の低温冷媒からフィンの上流側への熱伝達が抑制される。そのため、フィンの上流側への着霜がやや抑制されるが、それでもなお、上流側に集中して着霜しうる。そうすると、風量を確保できないために、下流側に十分な熱交換能力を残していても、暖房能力を回復させるために除霜運転せざるを得ない。除霜運転中は、暖房運転が中断されるので、除霜運転が行われることによって暖房効率が低下してしまう。
そこで、本発明は、フィンの上流側に集中して着霜した場合であっても風量を確保することにより、暖房効率を向上させることができる熱交換器を提供することを目的とする。
本発明の熱交換器は、平行に配列され、内部を冷媒が流れる複数のチューブと、チューブに対して直交して配列されるとともに、チューブを収容する複数のスリットが形成された複数のフィンと、を備える。
そして、本発明は、複数のスリットが、個々のフィンにおいて同じ側に、チューブを挿入するための挿入口を有し、フィンとチューブとの間を流れる風の上流側へとチューブから突出するフィンと、そのフィンに対して風の下流側へと後退するフィンとが配列されることにより、上流端ではフィンの間のピッチが拡大されることを特徴とする。
ここで、本発明は、複数のチューブが平行から少しずれていても許容する。また、本発明は、複数のフィンがチューブに対して直交から少しずれた角度で交差していても許容する。
また、フィンの各々に形成される複数のスリットは、フィン単体において、いずれか一方の側に向きを揃えて形成されるものとする。
本発明では、チューブから上流側に突出するフィンと、そのフィンに対して下流側へと後退するフィンとが配列されることにより、フィン間のピッチが熱交換器の上流端で拡大される。
そのため、フィンの上流側に集中的に着霜した場合でも、フィンとチューブとの間に、所定の風量を確保するのに足りる広さの通風路が残されるので、通風により供給される空気と冷媒との熱交換が、主としてフィンの下流側で継続される。
したがって、フィンの上流側に集中的に着霜してもすぐには暖房能力が低下せず、暖房運転を長時間に亘り継続可能となる。その結果、除霜運転の頻度を減らすことができるので、暖房効率を向上させることができる。
また、本発明によれば、個々のフィンにおける複数のスリットの挿入口の向きが揃うために、スリットの挿入口の向きを違えるように複数のフィンを配列しない限りは、配列されたフィンの同じ側から各チューブをスリット内に挿入することができる。このため、複数のフィンと複数のチューブとを容易に組み立てることができる。
さらに、個々のフィンにおいて同じ側に複数のスリットの挿入口が位置するために、複数のスリットが形成されたフィンに残された部分として、スリットが並ぶ方向に連続する連続部が形成される。そのため、フィンやチューブの表面に凝縮した水や、除霜運転により融解された水、あるいは霜が、スリットに挿入されたチューブに妨げられることなく、連続部を通じて熱交換器の外部へと迅速に排出される。
したがって、水や霜に起因する熱抵抗の増大により、熱交換能力が低下することを避けることができる上、除霜運転後、暖房運転を再開するときにフィンおよびチューブの表面に融解水が残存することが抑制されるので、水の再凝固により短時間で風量不足に陥ることを避けることができる。
本発明の熱交換器では、フィンとして、相対的に長い複数のスリットが形成された第1フィンと、相対的に短い複数のスリットが形成された第2フィンとが用いられ、第1フィンおよび第2フィンのいずれも、スリットの挿入口を上流側に向けて配置されることが好ましい。
上記構成では、第1フィンのスリットおよび第2フィンのスリットにチューブが挿入されると、チューブの上流側の側面から、少なくとも第1フィンが突出する。このとき、第1フィンのスリットと第2フィンのスリットとの長さの相違に基づいて、第1フィンの上流側の端部に対して第2フィンの上流側の端部が下流側へと後退する。このため、フィン間のピッチが、熱交換器の上流端では、第2フィンを挟んで対向する第1フィンと第1フィンとの間のピッチに拡大される。
上記構成においては、各フィンがスリットの挿入口を上流側に向けて配置されており、それらのフィンのうち少なくとも第1フィンは、チューブから上流側に突出する。したがって、少なくとも第1フィンでは、スリット内の挿入口側に、チューブに臨む空隙が残されており、フィンの上流側の端部はチューブに接触していない。このため、チューブからフィンの上流側への熱伝達が抑制されるので、上流側での着霜を抑えることができる。
本発明の熱交換器では、フィンとして、複数のスリットが形成されることでフィンに残された連続部におけるチューブの挿入方向の寸法が相対的に長い第1フィンと、複数のスリットが形成されることでフィンに残された連続部におけるチューブの挿入方向の寸法が相対的に短い第2フィンとが用いられ、第1フィンおよび第2フィンのいずれも、連続部を上流側に向けて配置されることが好ましい。
上記構成では、第1フィンおよび第2フィンの各々の連続部がチューブに対して上流側に位置するため、第1フィンおよび第2フィンのいずれも、チューブから上流側に突出する。そして、第1フィンの連続部の寸法よりも第2フィンの連続部の寸法が短いために、第1フィンの上流側の端部に対して第2フィンの上流側の端部が下流側へと後退する。このため、フィン間のピッチが、熱交換器の上流端では、第2フィンを挟んで対向する第1フィンと第1フィンとの間のピッチに拡大される。
フィンやチューブの表面に凝縮した水や、除霜運転により融解された水、あるいは霜は上流側に集中するため、各フィンが連続部を上流側に向けて配置されることにより、スリットに挿入されたチューブに妨げられることなく、連続部を通じて熱交換器の外部へと迅速に排出される。
本発明の熱交換器では、挿入口側でチューブから突出するフィンの突出長と、複数のスリットが形成されることでフィンに残された連続部におけるチューブの挿入方向の寸法とが相違し、フィンには、挿入口を上流側に向けて配置されるものと、連続部を上流側に向けて配置されるものとがあることが好ましい。
上記のようにフィンがスリットの向きを違えて配列されると、挿入口側におけるフィンの突出長と、連続部の寸法との相違に基づいて、フィン間のピッチが上流端、下流端の双方において拡大される。
上記構成によれば、フィン間のピッチ拡大を1種類のフィンにより実現できるので、部品点数が増加しない。
本発明の熱交換器では、チューブには、相対的に上流側に配置されるものと、相対的に下流側に配置されるものとがあり、フィンには、相対的に長い複数のスリットと、相対的に短い複数のスリットとが形成され、隣り合うフィンは、チューブの配列ピッチに対応する分だけ、チューブの配列方向に位置をずらして配置されるとともに、チューブの位置に対応して、チューブの挿入方向においても位置をずらして配置されることが好ましい。
ここで、上流側を前、下流側を後と定義する。
スリットの挿入口を上流側に向けてフィンが配置される場合を考えると、詳しくは後述するように、隣り合うフィンのうち、前に配置されたフィンの長いスリットの奥まで、後に配置されたチューブが挿入されるとともに、そのフィンの短いスリットの奥まで、前に配置されたチューブが挿入される。一方、後に配置されたフィンの長いスリットには、奥に空隙を残して、前に配置されたチューブが挿入されるとともに、そのフィンの短いスリットの奥まで、後に配置されたチューブが挿入される。
上記構成によれば、フィンの位置が前後にずれていることで、フィン間のピッチが拡大されることに加えて、チューブの位置が前後にずれていることで、チューブ間のピッチも拡大される。そのため、フィンおよびチューブの間の通風路がより狭まりにくくなるので、風量をより十分に確保できる。
また、フィンをチューブの配列方向にもずらしていることで、1種類のフィンにより、チューブ間ピッチの拡大、およびフィン間ピッチの拡大を実現できる。
本発明によれば、1種類のフィンを使用し、配列されたチューブの同じ側から各フィンを組み付けることができるので、部品点数、工数を抑えながら、暖房効率の向上を図ることができる。
さらに、チューブが挿入された状態でスリットの奥に残される空隙は、空隙の付近においてチューブとフィンとの間の熱伝達を抑制する役割、および、風の流れのバイパス経路となって通風路の閉塞を避ける役割をも果たす。このことは、特に、空隙付近にルーバーが位置する場合に有効である。
本発明の熱交換器では、フィンに、ルーバーが形成されることが好ましい。
ルーバーにより伝熱性能が高まるので、冷暖房の能力を向上させることができる。
本発明の熱交換器によれば、フィンの上流側に集中して着霜した場合であっても風量を確保することにより、暖房効率を向上させることができる。
第1実施形態である熱交換器の概略構成を示す正面図である。 熱交換器のチューブおよびフィンを示す斜視図である。 熱交換器のチューブおよびフィンを示す平面図である。 第1実施形態に用いる2種類のフィンを示す図である。 第2実施形態のチューブおよびフィンを示し、(a)は斜視図、(b)は平面図である。 第2実施形態に用いる2種類のフィンを示す図である。 第3実施形態のチューブおよびフィンを示し、(a)は斜視図、(b)は平面図である。 第3実施形態に用いるフィンを示す図である。 第4実施形態のチューブおよびフィンを示し、(a)は斜視図、(b)および(c)は平面図である。 第5実施形態のチューブおよびフィンを示す斜視図である。 第5実施形態のチューブおよびフィンが組み付けられた状態を模式的に示す側面図である。 図11に示すチューブおよびフィンを分解して示す図である。ルーバーの図示は省略する。 第5実施形態のチューブおよびフィンを示す平面図である。 第5実施形態に用いるフィンを示す図である。 本発明の変形例を示す図である。
以下、添付図面を参照しながら、本発明の実施形態について説明する。
〔第1実施形態〕
図1に示すように、本実施形態の熱交換器1は、互いに平行に配列される複数のチューブ10と、各チューブ10に対して直交する方向に平行に配列される複数の板状のフィン20と、チューブ10の長さ方向の両端にそれぞれ接続されるタンク15,16とを備える。
タンク15には、冷媒が導入される導入部150が設けられる。タンク16には、冷媒を排出する排出部160が設けられる。
チューブ10、フィン20、およびタンク15,16は、アルミニウム合金や銅合金などから形成される。
図示しない冷媒回路から導入部150を通じてタンク15内に導入された冷媒は、各チューブ10の内部を流れ、タンク16の排出部160から冷媒回路へと排出される。
図1に示されたフィン20の端面およびチューブ10の側面に向けて、図示しないファンにより、図1の紙面直交方向に送風される。送風される空気は、格子状に組み付けられたフィン20およびチューブ10の間を流れる。
熱交換器1は、チューブ10内を流れる冷媒と、フィン20およびチューブ10の間を流れる空気との間で熱交換させる。熱交換器1は、冷凍サイクルを用いるヒートポンプ空気調和機の室外ユニットに、タンク15,16およびフィン20が起立した姿勢で組み込まれる。
チューブ10は、押し出し、ロール成形などにより形成された偏平な管であり、図2に示すように、幅が広い面を互いに対向させて配列される。
チューブ10の内部は、チューブ10の長さ方向に沿って仕切り11により区画される。
チューブ10とフィン20とは、ろう付け接合される。
フィン20には、図4(a)および(b)に示すように、第1フィン21および第2フィン22の2種類がある。これらの第1フィン21および第2フィン22は、いずれも矩形状の平板から打ち抜かれる。
第1フィン21は、図3(a)に示すように、チューブ10の幅Wtよりも広い幅Wf1に形成される。
第1フィン21には、図2に示すようにチューブ10を収容する複数のスリット210が形成される。
スリット210は、チューブ10の厚みthに対応する開口幅に形成される。スリット210は、チューブ10が挿入される方向に沿って、チューブ10の幅Wtよりも長い溝長Lg1に形成される(図4(a))。
複数のスリット210は、第1フィン21を幅方向の同じ側から切り欠くように形成されることにより、第1フィン21において同じ側に、チューブ10を挿入するための挿入口210Aを有する。スリット210は等間隔に形成される。
第1フィンにおいて挿入口210Aとは反対側には、複数のスリット210が形成されることで第1フィン21に残された部分として、図4(a)に示すように、スリット210が並ぶ方向に連続する連続部213が形成される。
第2フィン22も、図3(a)に示すように、チューブ10の幅Wtよりも広い幅Wf2に形成される。ただし、第2フィン22の幅Wf2は、第1フィン21の幅Wf1よりも狭い。
第2フィン22には、図2に示すように、チューブ10を収容する複数のスリット220が形成される。
スリット220は、第1フィン21のスリット210と同様に、チューブ10の厚みthに対応する開口幅に形成されるとともに、チューブ10の長さ方向に沿って、チューブ10の幅Wtよりも長い溝長Lg2(図4(b))に形成される。ただし、溝長Lg2は、スリット210の溝長Lg1よりも短い。
複数のスリット220は、第2フィン22を幅方向の同じ側から切り欠くように形成されることにより、第2フィン22において同じ側に、チューブ10を挿入するための挿入口220Aを有する。スリット220も等間隔に形成される。
第2フィンにおいて挿入口220Aとは反対側には、複数のスリット220の残余の部分として、図4(b)に示すように、スリット220が並ぶ方向に連続する連続部223が形成される。
第1フィン21の挿入口210Aからスリット210の奥までチューブ10が挿入されると、チューブ10の幅Wtよりもスリット210の溝長Lg1が長いために、図3(a)に示すように、第1フィン21がチューブ10から突出長Lp1だけ突出する。
第1フィン21のスリット210内の挿入口210A側は、チューブ10に臨む空隙S(図2)として残される。
また、第2フィン22の挿入口220Aからスリット220の奥までチューブ10が挿入されると、チューブ10の幅Wtよりも第2スリット220の溝長Lg2が長いために、図3(a)に示すように、第2フィン22がチューブ10から突出長Lp2だけ突出する。
第2フィン22のスリット220内の挿入口220A側は、チューブ10に臨む空隙S(図2)として残される。突出長Lp2は、第1フィン21の突出長Lp1よりも短い。
第1フィン21および第2フィン22は、スリット210,220内に空隙Sが残される挿入口210A,220A側では、チューブ10と接触していない。
図2に示すように、第1フィン21は、スリット210の挿入口210Aを上流側に向けて配置される。第2フィン22も、スリット220の挿入口220Aを上流側に向けて配置される。
すると、第1フィン21のスリット210と、第2フィン22のスリット220との向きが揃うため、配列された第1フィン21および第2フィン22の同じ側から各チューブ10をスリット210,220内に挿入することができる。
このため、チューブ10と組み付けるときに第1フィン21および第2フィン22の姿勢を転回させたり、配列された第1フィン21および第2フィン22の両側にチューブ10を供給することが不要なので、第1フィン21および第2フィン22とチューブ10とを容易に組み立てることができる。
第1フィン21および第2フィン22は、チューブ10の長さ方向において交互に配列される。
これらの第1フィン21および第2フィン22のスリット210,220内にチューブ10が挿入されると、チューブ10の上流側の側面101から、第1フィン21および第2フィン22がより上流側へと突出する。このとき、第1フィン21の突出長Lp1よりも第2突出長Lp2が短いために、第1フィン21の上流側の端部211に対して第2フィン22の上流側の端部221が下流側へと後退している。
そのため、熱交換器1における上流端では、第2フィン22が欠落し、第1フィン21のみが存在する。つまり、フィン20(第1フィン21および第2フィン22)の間のピッチP1は、熱交換器1の上流端では、第2フィン22を挟んで対向する第1フィン21と第1フィン21の間のピッチP2に拡大される。ピッチP2はピッチP1の2倍である。
本実施形態の熱交換器1は、空気調和機の暖房運転時には蒸発器として機能する。
そのとき、熱交換器1に対して、図2の白抜き矢印の方向に送られる空気(外気)は、フィン20およびチューブ10を介してチューブ10内の冷媒と熱交換されることで冷却される。そのため、空気中の水蒸気が凝縮してフィン20やチューブ10の表面に結露したり、外気温が低いときには凝固してフィン20やチューブ10の表面に霜として付着する。
ここで、フィン20およびチューブ10により囲まれる通風路25を空気が流れる方向における着霜の分布は一様でない。
フィン20の上流側から通風路25に流入した空気は、通風路25を流れるうちに冷媒との熱交換によって冷却されるので、上流側ほど、フィン20と空気との温度差が大きい。このため、上流側における熱交換量は下流側における熱交換量よりも大きい。
したがって、着霜は一般に、空気の流れの上流側から起こり、着霜に伴って除湿される空気が下流側に流れるために、上流側に集中する。
一方、上流側で着霜によって霜が熱抵抗となって空気と冷媒との熱交換を阻害するため、熱交換量が低下すると、上流側での着霜が緩和され、除湿作用も緩和されるために、水分を保持した空気が下流側にも流れる。
よって、着霜は、上流側に集中しつつ、風下に向けて成長する。
フィン20に霜が付着すると、霜が熱抵抗となって空気と冷媒との熱交換を阻害するので、暖房能力が低下する。
また、霜により、通風路25が狭められ、風量が低下することでも暖房能力が低下する。
着霜による暖房能力の低下を避けるため、外気温が低いときの暖房運転時には、フィン20に付着した霜を融解させる除霜運転を定期的に行う。
除霜運転中は、冷媒回路を冷房運転時の回路とする。このとき、熱交換器1を凝縮器として機能させ、高温の冷媒を流すことで霜を融解させる。
除霜運転により霜が融解されると、融解水はフィン20およびチューブ10を伝って下方へと流れ落ち、熱交換器1の底部から外部へと排出される。
暖房運転時に蒸発器として機能させ、除霜運転時に凝縮器として機能させる熱交換器1では、暖房効率の低下に繋がる二つの課題がある。
第一に、フィン20の上流側に集中して霜が付着すると、上流側で通風路25が狭められるために、所定の暖房能力を得るのに必要な風量を確保できない。
そうすると、下流側に十分な熱交換能力を残していても、暖房能力を回復させるために除霜運転せざるを得ない。除霜運転中は、暖房運転が中断されるので、除霜運転が行われることによって暖房効率が低下する。
第二に、除霜運転を終えて暖房運転を再開するときに、フィン20やチューブ10の表面に融解水が残存する。ここで、フィン20およびチューブ10の表面張力による水の滞留が、融解水の残存を助長する。
融解水が残存した状態で暖房運転が再開されると、融解水が冷却されて再凝固するので、通風路25が狭められ、短時間で風量不足に陥る。
本実施形態では、上述のように、スリット210およびスリット220の溝長Lg1,Lg2が異なるためにチューブ10からの突出長Lp1,Lp2も異なる第1フィン21および第2フィン22が配列される。これにより、フィン20間のピッチP1が、熱交換器1の上流端ではピッチP2に拡大される。
そのため、図3(b)に示すように、第1フィン21および第2フィン22の上流側に集中して霜Frが付着した場合でも、第1フィン21および第2フィン22とチューブ10との間に、所定の風量を確保するのに足りる広さの通風路25が残される。これにより、通風によって供給される空気と冷媒との熱交換が、主として、第1フィン21および第2フィン22のさほど着霜していない下流側で継続される。
したがって、第1フィン21および第2フィン22の上流側に集中的に着霜してもすぐには暖房能力が低下せず、暖房運転を長時間に亘り継続可能となる。
ここで、本実施形態では、上流端に配置されるスリット210,220内の挿入口210A、220A側に、チューブ10に臨む空隙Sが残されるので、第1フィン21および第2フィン22の端部211,221がチューブ10に接触していない。このため、チューブ10から第1フィン21および第2フィン22の上流側への熱伝達が低められる(抑制される)ので、上流側での着霜を抑えることができる。
さらに、本実施形態では、個々のフィン20において複数のスリットが同じ向きに形成されるために、スリットが並ぶ方向に連続する連続部213,223が形成される。これらの連続部213,223を通じて、凝縮水や融解水が、スリット210,220に挿入された各チューブ10に妨げられることなく流れ落ち、熱交換器1の外部に迅速に排出される。
したがって、暖房運転が再開されるときにチューブ10やフィン20の表面に水が残存するのを抑制することができる。そのため、水の再凝固により短時間で風量不足に陥ることがなく、除霜運転が頻回に繰り返されるのを避けられる。
以上の通り、第一の課題および第二の課題とも解決されるので、暖房効率を向上させることができる。
第1実施形態では、第1フィン21および第2フィン22の双方がチューブ10から上流側に突出するが、第1フィン21および第2フィン22のいずれか一方のフィンのみがチューブ10から上流側に突出し、他方のフィンはチューブ10から上流側に突出していなくてもよい。つまり、第1フィン21の突出長Lp1、あるいは第2フィン22の突出長Lp2が「0」であってもよい。
このように構成しても、チューブ10から上流側に突出する一方のフィンと、そのフィンに対して下流側へと後退する他方のフィンとが配列されることにより、フィン20間のピッチが熱交換器1の上流端で拡大される。
ここで、第1フィン21および第2フィン22のうちの一方のフィンの突出長が「0」であったとしても、いずれのフィン21,22もチューブ10の全幅に亘り接触するので、所定の伝熱性能を確保することができる。
〔第2実施形態〕
次に、図5および図6を参照し、本発明の第2実施形態について説明する。
第2実施形態以降では、既出の実施形態で説明した事項とは相違する点を中心に説明する。既出の実施形態で説明した構成と同様の構成には同じ符号を付している。
第2実施形態でも、2種類のフィンがチューブ10の長さ方向において交互に配列される。
第2実施形態では、連続部313,323の幅寸法が異なる第1フィン31および第2フィン32(図6(a)(b))を使用する。
第1フィン31には、幅方向の同じ側に挿入口210Aを有する複数のスリット310が形成される。これらのスリット310の残余部である連続部313は、スリット310が並ぶ方向に連続する。
第2フィン32にも、幅方向の同じ側に挿入口220Aを有する複数のスリット320が形成される。これらのスリット320の残余部である連続部323は、スリット320が並ぶ方向に連続する。
第2実施形態でも、第1実施形態と同様に、スリット310,320の向きを揃えて第1フィン31および第2フィン22が配置される。このため、スリット310およびスリット320の挿入口210A,220Aに各チューブ10を同じ向きで挿入することができるので、組み立てが容易である。
図6(a)および(b)に示すように、チューブ10の挿入方向における第1フィン31の連続部313の寸法Lc1は、同じくチューブ10の挿入方向における第2フィン32の連続部323の寸法Lc2よりも長い。
第1フィン31のスリット310および第2フィン32のスリット320は、いずれもチューブ10の幅Wt以上の長さLgに形成される。
第2実施形態では、第1実施形態とは逆に、連続部313,323を上流側に向けて、第1フィン31および第2フィン32が配置される。
第1フィン31および第2フィン32のスリット310,320に挿入されたチューブ10の側面101から、第1フィン31および第2フィン32が上流側に突出する。
ここで、連続部313の寸法Lc1よりも連続部323の寸法Lc2が小さいために、第1フィン31の上流側の端部211に対して第2フィン32の上流側の端部221が下流側へと後退している。
そのため、第1実施形態と同様に、フィン間のピッチP1が、熱交換器の上流端では、第1フィン31と第1フィン31の間のピッチP2に拡大される。
熱交換器の上流端でフィン間のピッチが拡大されることにより、第1実施形態で説明したように、フィンの上流側に集中して霜Frが付着した場合でも、風量を確保するのに必要な広さの通風路25が残される。これにより、空気と冷媒との熱交換が、主として第1フィン31および第2フィン32の下流側で継続されるので、暖房運転を長時間に亘り継続可能となる。
また、本実施形態においても、凝縮水や融解水が、各チューブ10に妨げられることなく、連続部313,323を通じて流れ落ち、熱交換器1の外部へと迅速に排出される。
ここで、フィンの上流側に集中して付着した霜Frが、上流側に位置する連続部313,323に沿って滑り落ちるので、通風路25が狭まるのを遅らせることができる。
〔第3実施形態〕
次に、図7および図8を参照し、本発明の第3実施形態について説明する。
第3実施形態では、1種類のフィン40を使用する(図8)。
フィン40には、幅方向の同じ側に挿入口210Aを有する複数のスリット400が形成される。これらのスリット400の残余部である連続部403は、スリット400が並ぶ方向に連続する。チューブ10が挿入される方向における連続部403の寸法は、Lcとされる。
スリット400の溝長Lgは、図7(b)に示すように、チューブ10の幅Wtよりも長い。そのため、スリット400の奥までチューブ10が挿入されると、フィン40の挿入口210A側がチューブ10から突出長Lpだけ突出する。連続部403の寸法Lcは、突出長Lpよりも長くなるように設定される。
複数のフィン40は、隣接するもの同士でスリット400の向きが互い違いとなるように配列される。
それらのフィン40は、配列されたチューブ10に対して、一方の側と他方の側から交互に組み付けられる。すると、熱交換器の上流端および下流端では、チューブ10の長さ方向において、挿入口210Aおよび連続部403が交互に配置される。
ここで、フィン40の突出長Lpよりも、連続部403の寸法Lcの方が長いために、上流側に位置する連続部403の端部211に対して、上流側に位置する挿入口210Aの位置(端部221の位置)は下流側へと後退している。
そのため、フィン40の間のピッチP1が、熱交換器の上流端では連続部403と連続部403との間のピッチP2に拡大される。
さらに、本実施形態では、熱交換器の下流端でも、フィン40間のピッチP1が連続部403と連続部403との間のピッチP2に拡大される。
本実施形態によれば、フィン40間のピッチ拡大を1種類のフィン40により実現できるので、部品点数が増加しない、
熱交換器の上流端には、フィン40の配列の1個おきに挿入口210Aが位置しており、スリット400内の挿入口210A側に残される空隙Sにおいてフィン40はチューブ10に接触しない。このことで、チューブ10からフィン40の上流側への熱伝達が低められ、着霜が抑えられるので、除霜運転を先延ばしすることができる。
また、フィン40の上流側および下流側の双方に位置する連続部403を通じて、凝縮水や融解水、あるいは霜を下方へと導き、熱交換器の外部へと迅速に排出することができる。
ところで、上記とは逆に、フィン40の突出長Lpを連続部403の寸法Lcより長くすることもできる。その場合も第3実施形態と同様の作用効果が得られる。
〔第4実施形態〕
次に、図9を参照し、本発明の第4実施形態について説明する。
第4実施形態では、熱伝達率を高めるために、フィン40の下流側にルーバー45を設ける例を示す。
ルーバー45は、複数の切り起こし片451から形成される。
切り起こし片451は、フィン40の平坦な部分に対して傾斜し、フィン40の長さ方向(チューブ10の配列方向)に沿って延出する。
また、切り起こし片451は、ルーバー45が形成される領域の上流側と下流側とで傾斜の向きが対称となるように形成される。
フィン40は、第3実施形態と同様に、スリット400の向きが互い違いとなるように配置される。本実施形態では、各フィン40における下流側にルーバー45を配置するために、挿入口210A側にルーバー45が形成されたフィン40Aと、連続部403側にルーバー45が形成されたフィン40Bとの2種類のフィンが使用される。ルーバー45が形成される位置を除いて、フィン40A,40Bは同じ形態、寸法に形成される。
ルーバー45によってフィン40A,40Bの下流側における熱伝達率が高められるので、図9(c)に示すように、フィン40,40Bの上流側における着霜の集中が緩和される。
本実施形態によれば、熱交換器の上流端におけるフィン40間ピッチの拡大と、ルーバー45による伝熱性能の向上との相乗により、暖房運転をより長時間に亘り継続することができる。
その他、第3実施形態による効果と同様の効果が得られる。
ルーバー45は、第1実施形態または第2実施形態において形成することもできる。
〔第5実施形態〕
次に、図10〜図14を参照し、本発明の第5実施形態について説明する。
本実施形態では、ルーバー45が下流側に配置されていても1種類のフィン50(図14)により、フィン50間のピッチ拡大を実現する。
フィン50には、複数の第1スリット51および複数の第2スリット52が交互に形成される。
複数の第1スリット51のいずれも、フィン50の同じ側に挿入口51Aを有する。
複数の第2スリット52のいずれも、第1スリット51の挿入口51Aと同じ側に挿入口52Aを有する。
第1スリット51の長さLg1は、第2スリット52の長さLg2よりも長い。
これらの第1スリット51および第2スリット52は、フィン50の長さ方向に等しいピッチPgをおいて形成される。ピッチPgは、チューブ10の配列ピッチに対応する。
これらの第1スリット51および第2スリット52の残余部として、連続部53がフィン50の長さ方向に連続している。
各フィン50は、第1スリット51および第2スリット52の挿入口51A,52Aを上流側に向けて配置される。ルーバー45はフィン50の下流側に配置される。
図11および図12に示すように、各チューブ10が、上流側、下流側に交互に、所定の寸法ΔWだけ位置をずらして配列される。ここで、上流側を前、下流側を後と定義する。
また、各フィン50は、チューブ10の配列方向(上下方向)に、第1、第2スリット51,52のピッチPg分、相対的に高い位置と低い位置とに交互に配列される(図10)。
図11および図12では、隣り合うフィン50のうち後に配置される一方を実線で示し、前に配置される他方を一点鎖線で示す。一方のフィン50(実線)の第1スリット51と他方のフィン50(一点鎖線)の第2スリット52との高さは一致し、一方のフィン50(実線)の第2スリット52と他方のフィン50(一点鎖線)の第1スリット51との高さは一致する。
上記のように、上下方向に位置をずらすことに加えて、各フィン50は、図11に示すように、前後に交互に位置をずらして配列される。各フィン50は、チューブ10と同等の寸法ΔWだけ前後にずれている。
本実施形態では、チューブ10の位置が前後に交互にずれており、相対的に前に配置されたチューブ10に対して、相対的に後に配置されたチューブ10が下流側へと後退するので、チューブ10間のピッチPtが2Ptに拡大される(図11)。
また、フィン50の位置も前後に交互にずれており、相対的に前に配置されたフィン50に対して、相対的に後に配置されたフィン50が下流側へと後退するので、図13に示すように、フィン50間のピッチP1がピッチP2に拡大される。
フィン50の位置が前後にずれていることで、図10に示すように、ルーバー45の位置も前後にずれている。
図11に示すように、フィン50とチューブ10とを組み付けると、隣り合うフィン50のうち、前に配置されたフィン50(一点鎖線)の第1スリット51の奥まで、後に配置されたチューブ10が挿入されるとともに、そのフィン50の第2スリット52の奥まで、前に配置されたチューブ10が挿入される。
一方、後に配置されたフィン50(実線)の第1スリット51には、奥に空隙S2を残して、前に配置されたチューブ10が挿入されるとともに、そのフィン50の第2スリット52の奥まで、後に配置されたチューブ10が挿入される。空隙S2は、ルーバー45付近に位置する。
チューブ10が前後にずれていると、後に配置されたチューブ10がフィン50の上流側の端部211,221に対して後方に離間する。このため、フィン50の上流側における熱交換量が、チューブ10が前後にずれていない場合よりも低くなるので、上流側における着霜を抑えられる。
本実施形態によれば、フィン50間のピッチ拡大に加えて、チューブ10間のピッチも拡大されるので、フィン50およびチューブ10の間の通風路25がより狭まりにくくなり、風量をより十分に確保できる。
また、熱伝達率が大きいために着霜しやすいルーバー45の位置も前後にずれていることによっても、通風路25が狭まりにくいので、暖房運転をより長時間に亘り継続することができる。
さらに、フィン50をチューブ10の配列方向にもずらしていることで、1種類のフィン50により、チューブ10間のピッチ拡大、およびフィン50間のピッチ拡大を共に実現できる。
本実施形態によれば、1種類のフィン50を使用し、配列されたチューブ10の同じ側から各フィン50を組み付けることができるので、部品点数、工数を抑えながら、暖房効率の向上を図ることができる。
本実施形態は、第1実施形態と同様に、各フィン50が挿入口51A,52Aを上流側に向けて配置されており、各フィン50の上流側の端部211,221がチューブ10に接触していない。このため、チューブ10からフィン50の上流側への熱伝達が低められるので、上流側での着霜を抑えることができる。
また、上記各実施形態と同様に、連続部53を通じて凝縮水や融解水、霜を下方へと導いて迅速に排出することができる。ここで、ルーバー45の近傍に連続部53が配置されるために、ルーバー45に付着した霜を効率よく滑り落とすことができる。
その上、相対的に後に配置されるフィン50の第1スリット51の奥側に空隙S2が残されており、空隙S2では、フィン50がチューブ10に接触しない。このため、空隙S2の近傍に位置するルーバー45への過度な着霜が抑制されるので、通風路25が狭まりにくい。また、ルーバー45への着霜量が多くても、空隙S2が風の流れのバイパス経路となるので、通風路25の閉塞を避けられる。
勿論、ルーバー45の採用により、暖房時のみならず、冷房時の伝熱性能をも向上させることができる。
ルーバー45は、フィン50の任意の箇所に形成することができるが、本実施形態のように下流側に形成することにより、上流側と下流側の着霜量のバランスをとるのが好ましい。
ところで、第5実施形態においては、各フィン50が挿入口51A,52Aを上流側に向けて配置されるが、これとは逆に、連続部53を上流側に向けて各フィン50が配置されていてもよい。そうすると、上流側に集中して付着した霜を、上流側に位置する連続部53に沿って速やかに下方へと滑り落とすことができる。その他、第5実施形態と同様の効果を得ることができる
第5実施形態では、チューブ10を交互に前後にずらし、また、フィン50も交互に、上下および前後にずらしているが、チューブ10およびフィン50の配置は、種々の改変が可能である。例えば、チューブ10の前後の位置を、前、後、後、前、後、後のように設定したり、フィン50の前後の位置を、前、後、後、前、後、後のように設定することも可能である。
さらに、チューブ10の前後の位置を3段階に設定したり、フィン50の前後の位置を3段階に設定したりすることも可能である。
上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択し
たり、他の構成に適宜変更することが可能である。
本発明においては、図15に示すように、第1フィン21、第2フィン22、第2フィン22、第1フィン21,第2フィン22、第2フィン22・・・のように、フィンの配列において、第1フィン21を2つ置きに配置することもできる。
要するに、チューブ10から上流側へのフィンの突出長を各フィンで異ならせることにより、熱交換器の上流端でフィンが間引かれ、フィンの分布が粗となると、フィン間のピッチ拡大を図ることができるので、本発明の目的が達せられる。
また、本発明は、形状、寸法が異なる3種類以上のフィンを用いることも許容する。
1 熱交換器
10 チューブ
11 仕切り
15,16 タンク
20,40,40A,40B,50 フィン
21,31 第1フィン
22,32 第2フィン
25 通風路
45 ルーバー
51 第1スリット
52 第2スリット
53 連続部
101 側面
150 導入部
160 排出部
210 スリット
210A 挿入口
211 端部
213 連続部
220 スリット
220A 挿入口
221 端部
223 連続部
310 スリット
313 連続部
320 スリット
323 連続部
400 スリット
403 連続部
451 切り起こし片
Fr 霜
Lc1,Lc2,Lc 寸法
Lg1,Lg2,Lg 溝長
Lp1,Lp2,Lp 突出長
P1,P2 フィン間のピッチ
Pg スリットのピッチ
Pt チューブ間のピッチ
S,S2 空隙
Wf1,Wf2 フィンの幅
Wt チューブの幅
ΔW 寸法

Claims (6)

  1. 平行に配列され、内部を冷媒が流れる複数のチューブと、
    前記チューブに対して直交して配列されるとともに、前記チューブを収容する複数のスリットが形成された複数の板状のフィンと、を備え、
    複数の前記スリットは、個々の前記フィンにおいて同じ側に、前記チューブを挿入するための挿入口を有し、
    前記フィンと前記チューブとの間を流れる風の上流側へと前記チューブから突出する前記フィンと、そのフィンに対して前記風の下流側へと後退する前記フィンが配列されることにより、上流端では前記フィンの間のピッチが拡大される、
    ことを特徴とする熱交換器。
  2. 前記チューブには、相対的に上流側に配置されるものと、相対的に下流側に配置されるものとがあり、
    前記フィンには、相対的に長い複数の前記スリットと、相対的に短い複数の前記スリットとが形成され、
    隣り合う前記フィンは、前記チューブの配列ピッチに対応する分だけ、前記チューブの配列方向に位置をずらして配置されるとともに、前記チューブの挿入方向においても位置をずらして配置される、
    請求項1に記載の熱交換器。
  3. 前記フィンとして、
    相対的に長い複数の前記スリットが形成された第1フィンと、相対的に短い複数の前記スリットが形成された第2フィンとが用いられ、
    前記第1フィンおよび前記第2フィンのいずれも、前記挿入口を上流側に向けて配置される、
    請求項1に記載の熱交換器。
  4. 前記フィンとして、
    複数の前記スリットが形成されることで前記フィンに残された連続部における前記チューブの挿入方向の寸法が相対的に長い第1フィンと、複数の前記スリットが形成されることで前記フィンに残された連続部における前記挿入方向の寸法が相対的に短い第2フィンとが用いられ、
    前記第1フィンおよび前記第2フィンのいずれも、前記連続部を上流側に向けて配置される、
    請求項1に記載の熱交換器。
  5. 前記チューブから突出する前記フィンの突出長と、複数の前記スリットが形成されることで前記フィンに残された連続部における前記チューブの挿入方向の寸法とが相違し、
    前記フィンには、
    前記挿入口を上流側に向けて配置されるものと、前記連続部を上流側に向けて配置されるものとがある、
    請求項1に記載の熱交換器。
  6. 前記フィンには、ルーバーが形成される、
    請求項1から5のいずれか一項に記載の熱交換器。
JP2013134563A 2013-06-27 2013-06-27 熱交換器 Active JP6153785B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013134563A JP6153785B2 (ja) 2013-06-27 2013-06-27 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134563A JP6153785B2 (ja) 2013-06-27 2013-06-27 熱交換器

Publications (2)

Publication Number Publication Date
JP2015010728A true JP2015010728A (ja) 2015-01-19
JP6153785B2 JP6153785B2 (ja) 2017-06-28

Family

ID=52304050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134563A Active JP6153785B2 (ja) 2013-06-27 2013-06-27 熱交換器

Country Status (1)

Country Link
JP (1) JP6153785B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060596A (ja) * 2018-12-17 2019-04-18 ダイキン工業株式会社 熱交換器及びそれを備えた空気調和装置
US20200256597A1 (en) * 2017-09-25 2020-08-13 Daikin Industries, Ltd. Heat exchanger and air conditioning device provided with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185885U (ja) * 1984-04-16 1985-12-09 三菱重工業株式会社 熱交換器
JPS6446587A (en) * 1987-08-10 1989-02-21 Matsushita Refrigeration Heat exchanger
JPH1089870A (ja) * 1996-09-18 1998-04-10 Nippon Light Metal Co Ltd 熱交換器の製造方法及び熱交換器
JP2001165586A (ja) * 1999-12-07 2001-06-22 Mitsubishi Electric Corp 熱交換器および該熱交換器を備えた空調冷凍装置
JP2012163323A (ja) * 2011-01-21 2012-08-30 Daikin Industries Ltd 熱交換器および空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185885U (ja) * 1984-04-16 1985-12-09 三菱重工業株式会社 熱交換器
JPS6446587A (en) * 1987-08-10 1989-02-21 Matsushita Refrigeration Heat exchanger
JPH1089870A (ja) * 1996-09-18 1998-04-10 Nippon Light Metal Co Ltd 熱交換器の製造方法及び熱交換器
JP2001165586A (ja) * 1999-12-07 2001-06-22 Mitsubishi Electric Corp 熱交換器および該熱交換器を備えた空調冷凍装置
JP2012163323A (ja) * 2011-01-21 2012-08-30 Daikin Industries Ltd 熱交換器および空気調和機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200256597A1 (en) * 2017-09-25 2020-08-13 Daikin Industries, Ltd. Heat exchanger and air conditioning device provided with same
US11692748B2 (en) 2017-09-25 2023-07-04 Daikin Industries, Ltd. Heat exchanger and air conditioning apparatus including the same
JP2019060596A (ja) * 2018-12-17 2019-04-18 ダイキン工業株式会社 熱交換器及びそれを備えた空気調和装置

Also Published As

Publication number Publication date
JP6153785B2 (ja) 2017-06-28

Similar Documents

Publication Publication Date Title
JP5863956B2 (ja) 熱交換器、熱交換器の製造方法、及び、空気調和機
JP6165360B2 (ja) 熱交換器および空気調和機
JP5177306B2 (ja) 熱交換器及び空気調和機
JP5196043B2 (ja) 熱交換器および空気調和機
EP3091322B1 (en) Fin and tube-type heat exchanger and refrigeration cycle device provided therewith
EP2908082B1 (en) Heat exchanger
WO2014207785A1 (ja) 熱交換器、熱交換器構造体、及び、熱交換器用のフィン
US20170030662A1 (en) Heat exchanger
JPWO2016013100A1 (ja) 熱交換器およびこの熱交換器を備えた空調冷凍装置
US9528779B2 (en) Heat exchanger
JP2006170600A (ja) 熱交換器
JP2007046868A (ja) 蒸発器
JP6153785B2 (ja) 熱交換器
WO2016181509A1 (ja) コルゲートフィン型熱交換器、冷凍サイクル装置、コルゲートフィンの製造装置、及びコルゲートフィン型熱交換器の製造方法
WO2012098913A1 (ja) 熱交換器及び空気調和機
US9605908B2 (en) Heat exchanger
JP2022163494A (ja) 熱交換器
JP6491544B2 (ja) エバポレータ
JP5815128B2 (ja) 熱交換器、及び空気調和機
JP6582373B2 (ja) 熱交換器
WO2024053236A1 (ja) 熱交換器
JP6859093B2 (ja) 蒸発器
JP3886244B2 (ja) 熱交換器
JP2013072593A (ja) 熱交換器
KR20100110058A (ko) 열교환기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6153785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350