JP2015010527A - Gas turbine intake air cooling device and gas turbine installation - Google Patents

Gas turbine intake air cooling device and gas turbine installation Download PDF

Info

Publication number
JP2015010527A
JP2015010527A JP2013135744A JP2013135744A JP2015010527A JP 2015010527 A JP2015010527 A JP 2015010527A JP 2013135744 A JP2013135744 A JP 2013135744A JP 2013135744 A JP2013135744 A JP 2013135744A JP 2015010527 A JP2015010527 A JP 2015010527A
Authority
JP
Japan
Prior art keywords
intake
gas turbine
duct
intake air
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013135744A
Other languages
Japanese (ja)
Other versions
JP6155114B2 (en
Inventor
誉史 清川
Takashi Kiyokawa
誉史 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013135744A priority Critical patent/JP6155114B2/en
Publication of JP2015010527A publication Critical patent/JP2015010527A/en
Application granted granted Critical
Publication of JP6155114B2 publication Critical patent/JP6155114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gas turbine intake air cooling device capable of reducing influence of an atmospheric temperature rise on cooling water even when sea water or river water is used as the cooling water for intake air cooling with sensible heat.SOLUTION: A gas turbine intake air cooling device for cooling intake air of a gas turbine 1 in an intake duct 6 comprises circulation water piping 4 for returning cooling water taken in from the sea or a river to the sea or the river via the intake duct 6. Heat pipes 5 are provided in an underground buried portion 4a of the circulation water piping 4 between a water intake part and the intake duct 6 and in an in-duct arrangement portion 4b of the circulation water piping, which is introduced in the intake duct 6. The circulation water piping 4 is configured to supply the cooling water passed through the underground buried portion 4a to the in-duct arrangement portion 4b.

Description

本発明は、ガスタービンの吸気を冷却する水冷式のガスタービン吸気冷却装置およびガスタービン設備に関する。   The present invention relates to a water-cooled gas turbine intake cooling device and gas turbine equipment for cooling intake air of a gas turbine.

ガスタービンを運転するにあたり、圧縮機に取込まれる吸気を冷却し発電効率を上げる試みが以前からなされている。従来技術では、ガスタービン吸気フィルタ室の吸気口の全面をカバーするように設置されたメディアに給水を供給し、このメディアを吸気が通過する際に水の蒸発潜熱で吸気を冷却する方法(特許文献1)や、LNGを吸気ダクト中に配置した蒸発電熱管群に導き、LNGの気化熱で吸気を冷却する方法(特許文献2)も提案されている。   At the time of operating a gas turbine, attempts have been made to improve the power generation efficiency by cooling the intake air taken into the compressor. In the prior art, water is supplied to a medium installed so as to cover the entire intake port of the gas turbine intake filter chamber, and when the intake air passes through this medium, the intake air is cooled by the latent heat of evaporation of the water (patented) Document 1) and a method of cooling LNG by evaporating heat of LNG by guiding LNG to an evaporation electric tube group arranged in an intake duct (Patent Document 2) have also been proposed.

特開2011-12655号公報JP 2011-12655 Gazette 特開平6-42369号公報JP-A-6-42369

ところで、ガスタービンの吸気冷却を顕熱による熱交換を利用した水冷式の吸気冷却装置とし、さらに冷却水に海水や河川水を用いる場合、取水された冷却水は大気温度の影響を受けているため、実際に冷却に使用したい夏季や高温時には外気と取水の温度差が小さく、十分な冷却効果が得られないという課題があった。   By the way, when the intake air cooling of the gas turbine is a water-cooled intake air cooling device using heat exchange by sensible heat and seawater or river water is used as the cooling water, the intake cooling water is affected by the atmospheric temperature. Therefore, there is a problem that the temperature difference between the outside air and the water intake is small during summer and high temperatures that are actually desired for cooling, and a sufficient cooling effect cannot be obtained.

そこで、本発明の目的は、顕熱による吸気冷却の冷却水として海水や河川水を用いる場合でも、大気温度の上昇による冷却水への影響を低減することができるガスタービン吸気冷却装置及びガスタービン設備を提供することにある。   Accordingly, an object of the present invention is to provide a gas turbine intake air cooling device and a gas turbine that can reduce the influence on the cooling water due to an increase in the atmospheric temperature even when seawater or river water is used as the cooling water for intake air cooling by sensible heat. To provide facilities.

上記目的を達成するために、本発明は、吸気ダクト内でガスタービンの吸気を冷却するガスタービン吸気冷却装置において、海又は河川から取水した冷却水を前記吸気ダクトを経由して前記海又は河川に戻す循環水配管を備え、前記循環水配管の取水源から前記吸気ダクトまでの間の地中埋設部、および前記吸気ダクト内に導入された前記循環水配管のダクト内配置部にヒートパイプを設けたことを特徴とする。   In order to achieve the above object, the present invention provides a gas turbine intake air cooling device that cools the intake air of a gas turbine in an intake duct, wherein cooling water taken from the sea or river is supplied to the sea or river via the intake duct. A circulating water pipe that returns to the ground, and a heat pipe is provided in the underground buried part between the intake of the circulating water pipe and the intake duct, and in the duct arranged part of the circulating water pipe introduced into the intake duct. It is provided.

本発明によれば、顕熱による吸気冷却の冷却水として海水や河川水を用いる場合でも、大気温度の上昇による冷却水への影響を低減することができるガスタービン吸気冷却装置及びガスタービン設備の提供が可能となる。   According to the present invention, even when seawater or river water is used as cooling water for intake air cooling by sensible heat, the effects of the gas turbine intake air cooling apparatus and gas turbine equipment that can reduce the influence on the cooling water due to an increase in the atmospheric temperature. Provision is possible.

本発明の一実施例であるガスタービン設備の全体概略図。1 is an overall schematic diagram of a gas turbine facility that is an embodiment of the present invention. ヒートパイプの構造概略図。The structure schematic of a heat pipe. 本発明の他の実施例であるガスタービン設備の全体概略図。The whole schematic diagram of the gas turbine equipment which is the other example of the present invention.

以下、本発明の実施例について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の一実施例である、ガスタービン吸気冷却装置を用いたガスタービン設備の概略図である。   FIG. 1 is a schematic view of a gas turbine facility using a gas turbine intake air cooling device according to an embodiment of the present invention.

以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
図1は第1実施形態における吸気冷却装置を適用したガスタービンの概略構成を示した側面模式図である。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic side view showing a schematic configuration of a gas turbine to which an intake air cooling apparatus according to a first embodiment is applied.

ガスタービン設備の基本構成としては、図1に示すように、吸気を圧縮する圧縮機2と、燃焼ガスを生成する燃焼器3と、燃焼ガスにより駆動されるタービン1である。   As shown in FIG. 1, the basic configuration of the gas turbine equipment includes a compressor 2 that compresses intake air, a combustor 3 that generates combustion gas, and a turbine 1 that is driven by the combustion gas.

大気より取込まれる吸気は、吸気ダクト6を通り、圧縮機2に供給される。圧縮機2を通過して圧縮された空気は、燃焼用空気として燃焼器3に供給される。燃焼器3で燃料を燃焼させて発生した高温高圧の燃焼ガスはタービン1に供給され、同タービン1内で膨張する際にタービン1を回転させて軸出力が発生する。   The intake air taken from the atmosphere passes through the intake duct 6 and is supplied to the compressor 2. The air compressed through the compressor 2 is supplied to the combustor 3 as combustion air. High-temperature and high-pressure combustion gas generated by burning fuel in the combustor 3 is supplied to the turbine 1, and when expanding in the turbine 1, the turbine 1 is rotated to generate shaft output.

吸気フィルタ室10内には、吸気口7から取り込まれる大気中の粉塵等を捕集して除去する吸気フィルタ9が収容設置される。   In the intake filter chamber 10, an intake filter 9 that collects and removes atmospheric dust and the like taken from the intake port 7 is accommodated and installed.

そして、吸気ダクト6は吸気フィルタ室10の下流端と圧縮機2とを接続する空気流路を形成する。   The intake duct 6 forms an air flow path connecting the downstream end of the intake filter chamber 10 and the compressor 2.

また、吸気ダクト6には、その中途位置に吸気音を低減させる吸気サイレンサ8が設置されている。   The intake duct 6 is provided with an intake silencer 8 for reducing intake noise at a midway position.

循環水配管4は海または河川から取水し、地中を通り、吸気ダクト内を通り、地上を通り海または河川へ戻るようにルーティングされる。なお、本実施例では、冷却水の取水部から吸気ダクトまでの間の区間で地中に埋設される循環水配管部分を地中埋設部4a、吸気ダクト6内に導入された循環水配管部分をダクト内配置部4bと称する。   The circulating water pipe 4 takes water from the sea or river, and is routed through the ground, through the intake duct, through the ground, and back to the sea or river. In this embodiment, the circulating water pipe portion embedded in the ground in the section from the intake portion of the cooling water to the intake duct is the circulating water piping portion introduced into the underground portion 4 a and the intake duct 6. Is referred to as an in-duct arrangement portion 4b.

このように、取水源から取水した冷却水を吸気ダクト経由で、再び海又は河川に戻すように構成した循環水配管4には、ヒートパイプ5が設置されている。ヒートパイプ5の設置個所は、循環水配管4の地中埋設部4a、並びに吸気ダクト内に導入されたダクト内配置部4bの二か所であり、それぞれには複数のヒートパイプが設けられる。   Thus, the heat pipe 5 is installed in the circulating water piping 4 configured to return the cooling water taken from the water intake source to the sea or river again via the intake duct. There are two places where the heat pipes 5 are installed: an underground buried part 4a of the circulating water pipe 4 and an in-duct arrangement part 4b introduced into the intake duct, each of which is provided with a plurality of heat pipes.

ヒートパイプ5は前述の通り、循環水配管4の地中埋設部4aとダクト内配置部4bの二か所に設置されている。地中埋設部4aでは地中と該取水の温度差によって取水した冷却水を冷却する。地中埋設部4aのヒートパイプ5により冷却された冷却水は、ダクト内配置部4bに導かれ、このダクト内配置部4bに設けられたヒートパイプ5を介して吸気ダクト内の外気を冷却する。   As described above, the heat pipes 5 are installed at two locations, the underground buried portion 4a and the in-duct arrangement portion 4b of the circulating water piping 4. In the underground buried portion 4a, the cooling water taken is cooled by the temperature difference between the ground and the water taken. The cooling water cooled by the heat pipe 5 of the underground buried portion 4a is guided to the in-duct arrangement portion 4b and cools the outside air in the intake duct via the heat pipe 5 provided in the in-duct arrangement portion 4b. .

ヒートパイプ5の構造を図2に示す。ヒートパイプ内部は減圧され、少量の作動流体11が封入されている。作動流体11は高温部12では蒸発し、周囲の熱をうばった後、温度の違いによって生まれる圧力差によって低温部13へと移動する。作動流体11は低温部13にて液体に戻り、周囲に熱を放出する。その後、液体環流用ウィック14に生じる毛細管現象によって高温部へと運ばれる。   The structure of the heat pipe 5 is shown in FIG. The inside of the heat pipe is depressurized and a small amount of working fluid 11 is enclosed. The working fluid 11 evaporates in the high temperature part 12 and moves to the low temperature part 13 due to the pressure difference generated by the temperature difference after receiving the ambient heat. The working fluid 11 returns to a liquid at the low temperature part 13 and releases heat to the surroundings. Then, it is carried to a high temperature part by the capillary phenomenon which arises in the wick 14 for liquid recirculation | reflux.

ヒートパイプ内の作動流体11は、自然現象によって対流し熱を伝達するため、運用するために外部からのエネルギーを必要としない。   Since the working fluid 11 in the heat pipe convects and transfers heat by a natural phenomenon, it does not require external energy to operate.

循環水配管4内は下流側の温度が上流側に対し低くなっている。その温度差によって圧力差が生じ、自然循環するようになっている。   In the circulating water pipe 4, the temperature on the downstream side is lower than that on the upstream side. A pressure difference is generated due to the temperature difference, and natural circulation occurs.

以上のような性質のヒートパイプを循環水配管4の地中埋設部4a及びダクト内配置部4bに設置することで、海水より温度の低い地中では海水を地中埋設部4aのヒートパイプ5によって冷却し、吸気ダクト6内では温度の高い吸気(特に夏季の大気温度は海水や河川水より高温)をダクト内配置部4bのヒートパイプ5により冷却する。   By installing the heat pipe having the above properties in the underground buried portion 4a and the in-duct arrangement portion 4b of the circulating water piping 4, the sea water is heated in the ground at a temperature lower than that of the sea water. In the intake duct 6, the intake air having a high temperature (especially, the atmospheric temperature in summer is higher than seawater or river water) is cooled by the heat pipe 5 of the in-duct arrangement portion 4b.

一般に、海水や河川水から取水した冷却水をそのまま吸気ダクト内で顕熱を利用して吸気冷却(間接的な熱交換)させた場合、特に吸気冷却を行いたい夏季には大気と冷却水の温度差が小さくなることが想定され、十分な冷却効果を得られないことがある。これに対して、本実施例では冷却水を地中埋設部4aで冷却した上でダクト内配置部4bに供給しているので、取水した冷却水をそのまま用いる場合よりも大気と冷却水の温度差をより大きく取ることが可能となり、特に夏季における吸気冷却の効果を向上させることができる。さらに、本実施例ではヒートパイプ5を介して熱交換を行うため、小さな温度差でも冷却することが可能となる。   In general, when cooling water taken from seawater or river water is directly subjected to intake air cooling (indirect heat exchange) using sensible heat in the intake duct, the air and cooling water are used especially in the summer when intake air cooling is desired. It is assumed that the temperature difference is small, and a sufficient cooling effect may not be obtained. On the other hand, in this embodiment, the cooling water is cooled by the underground buried portion 4a and then supplied to the in-duct arrangement portion 4b. Therefore, the temperature of the atmosphere and the cooling water is higher than when the taken cooling water is used as it is. The difference can be made larger, and the effect of intake air cooling in the summer can be improved. Furthermore, since heat exchange is performed through the heat pipe 5 in this embodiment, it is possible to cool even a small temperature difference.

図3は、本発明の他の実施例であるガスタービン設備の全体概略図を示す。本実施例では、吸気フィルタ9を吸気口7の直ぐ後、つまり吸気ダクト6の入口側に配置し、この吸気フィルタ9の下流側にダクト内配設部4bを配置した例である。   FIG. 3 is an overall schematic view of a gas turbine facility according to another embodiment of the present invention. In this embodiment, the intake filter 9 is disposed immediately after the intake port 7, that is, on the inlet side of the intake duct 6, and the in-duct arrangement portion 4 b is disposed on the downstream side of the intake filter 9.

本実施例によれば、吸気フィルタ9で大気中の粉塵等を捕集された後の空気がダクト内配設部4bに供給されるため、ダクト内配設部4bに設けられるヒートパイプ5の冷却性能の低下を低減することが可能となる。   According to the present embodiment, the air after dust in the atmosphere is collected by the intake filter 9 is supplied to the in-duct arrangement portion 4b, so that the heat pipe 5 provided in the in-duct arrangement portion 4b It is possible to reduce a decrease in cooling performance.

1 ガスタービン
2 圧縮機
3 燃焼器
4 循環水配管
4a 地中埋設部
4b ダクト内配設部
5 ヒートパイプ
6 吸気ダクト
7 吸気口
8 吸気サイレンサ
9 吸気フィルタ
10 吸気フィルタ室
11 ヒートパイプ内作動流体
12 ヒートパイプ高温部
13 ヒートパイプ低温部
14 液体環流用ウィック
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Compressor 3 Combustor 4 Circulating water piping 4a Underground burying part 4b Arrangement part 5 in a duct 5 Heat pipe 6 Intake duct 7 Inlet 8 Intake silencer 9 Intake filter 10 Intake filter chamber 11 Working fluid 12 in heat pipe Heat pipe high temperature part 13 Heat pipe low temperature part 14 Wick for liquid recirculation

Claims (5)

吸気ダクト内でガスタービンの吸気を冷却するガスタービン吸気冷却装置において、
海又は河川から取水した冷却水を前記吸気ダクトを経由して前記海又は河川に戻す循環水配管を備え、前記循環水配管の取水部から前記吸気ダクトまでの間の地中埋設部、および前記吸気ダクト内に導入された前記循環水配管のダクト内配置部にヒートパイプを設けたことを特徴とするガスタービン吸気冷却装置。
In the gas turbine intake air cooling device that cools the intake of the gas turbine in the intake duct,
A circulating water pipe that returns cooling water taken from the sea or river to the sea or river via the intake duct, and a buried underground part between the intake part of the circulating water pipe and the intake duct, and A gas turbine intake air cooling device, characterized in that a heat pipe is provided in an in-duct arrangement portion of the circulating water pipe introduced into the intake duct.
請求項1に記載のガスタービン吸気冷却装置において、
前記循環水配管は、前記地中埋設部を経由した冷却水を前記ダクト内配置部に供給するように構成したことを特徴とするガスタービン吸気冷却装置。
The gas turbine intake air cooling device according to claim 1,
The gas turbine intake air cooling device, wherein the circulating water pipe is configured to supply cooling water that has passed through the underground buried portion to the in-duct arrangement portion.
吸気ダクトによって導入された吸気を圧縮する圧縮機と、該圧縮機で圧縮された空気と燃料とを燃焼させる燃焼器と、該燃焼器で生成した燃焼ガスにより駆動されるタービンとを備えたガスタービン設備において、
海又は河川から取水した水を前記吸気ダクトを経由して前記海又は河川に戻す循環水配管を備え、前記循環水配管の取水部から前記吸気ダクトまでの間の地中埋設部、および前記吸気ダクト内に導入された前記循環水配管のダクト内配置部にヒートパイプを設けたことを特徴とするガスタービン設備。
A gas comprising a compressor that compresses intake air introduced by an intake duct, a combustor that combusts air and fuel compressed by the compressor, and a turbine that is driven by combustion gas generated by the combustor. In turbine equipment,
A circulating water pipe for returning water taken from the sea or river to the sea or river via the intake duct, and an underground buried part between the intake part of the circulating water pipe and the intake duct; and the intake air A gas turbine facility characterized in that a heat pipe is provided in an in-duct arrangement portion of the circulating water pipe introduced into the duct.
請求項3に記載のガスタービン設備において、
前記循環水配管は、前記地中埋設部を経由した冷却水を前記ダクト内配置部に供給するように構成したことを特徴とするガスタービン設備。
In the gas turbine equipment according to claim 3,
The said circulating water piping is comprised so that the cooling water which passed through the said underground burying part may be supplied to the said arrangement | positioning part in a duct, The gas turbine equipment characterized by the above-mentioned.
請求項4に記載のガスタービン設備において、
前記吸気ダクトの入口側に吸気フィルタを設置し、該吸気フィルタの下流側に前記地中埋設部を配置したことを特徴とするガスタービン設備。
In the gas turbine equipment according to claim 4,
The gas turbine equipment, wherein an intake filter is installed on an inlet side of the intake duct, and the underground portion is arranged on a downstream side of the intake filter.
JP2013135744A 2013-06-28 2013-06-28 Gas turbine intake cooling system and gas turbine equipment Active JP6155114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135744A JP6155114B2 (en) 2013-06-28 2013-06-28 Gas turbine intake cooling system and gas turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013135744A JP6155114B2 (en) 2013-06-28 2013-06-28 Gas turbine intake cooling system and gas turbine equipment

Publications (2)

Publication Number Publication Date
JP2015010527A true JP2015010527A (en) 2015-01-19
JP6155114B2 JP6155114B2 (en) 2017-06-28

Family

ID=52303905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135744A Active JP6155114B2 (en) 2013-06-28 2013-06-28 Gas turbine intake cooling system and gas turbine equipment

Country Status (1)

Country Link
JP (1) JP6155114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092283A (en) * 2017-06-02 2017-08-25 四川瑞晟石油设备开发有限公司 A kind of greenhouse cooling device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312056A (en) * 1992-05-07 1993-11-22 Mitsubishi Heavy Ind Ltd Intake air cooling system of gas turbine
JPH0797933A (en) * 1993-09-29 1995-04-11 Toshiba Corp Intake air cooling device of gas turbine
JPH09144565A (en) * 1995-11-20 1997-06-03 Mitsubishi Heavy Ind Ltd Suction cooling device for gas turbine
JPH10331605A (en) * 1997-05-30 1998-12-15 Toshiba Corp Power generating device utilizing deep sea water
JPH10339171A (en) * 1997-06-11 1998-12-22 Toshiba Corp Thermal power generation equipment
JPH1136887A (en) * 1997-07-18 1999-02-09 Toshiba Corp Intake air cooler for gas turbine
JP2006349226A (en) * 2005-06-14 2006-12-28 Toshiba Corp Cold utilization system for deep sea water
JP2011214476A (en) * 2010-03-31 2011-10-27 Mitsubishi Heavy Ind Ltd Intake air cooling device and operating method for the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312056A (en) * 1992-05-07 1993-11-22 Mitsubishi Heavy Ind Ltd Intake air cooling system of gas turbine
JPH0797933A (en) * 1993-09-29 1995-04-11 Toshiba Corp Intake air cooling device of gas turbine
JPH09144565A (en) * 1995-11-20 1997-06-03 Mitsubishi Heavy Ind Ltd Suction cooling device for gas turbine
JPH10331605A (en) * 1997-05-30 1998-12-15 Toshiba Corp Power generating device utilizing deep sea water
JPH10339171A (en) * 1997-06-11 1998-12-22 Toshiba Corp Thermal power generation equipment
JPH1136887A (en) * 1997-07-18 1999-02-09 Toshiba Corp Intake air cooler for gas turbine
JP2006349226A (en) * 2005-06-14 2006-12-28 Toshiba Corp Cold utilization system for deep sea water
JP2011214476A (en) * 2010-03-31 2011-10-27 Mitsubishi Heavy Ind Ltd Intake air cooling device and operating method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092283A (en) * 2017-06-02 2017-08-25 四川瑞晟石油设备开发有限公司 A kind of greenhouse cooling device

Also Published As

Publication number Publication date
JP6155114B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
US20210356117A1 (en) Humid air turbine power, water extraction, and refrigeration cycle
JP4929004B2 (en) Gas turbine power generation system
US20140126991A1 (en) Systems and methods for active component life management for gas turbine engines
JP2011080464A5 (en)
Caresana et al. Use of a test-bed to study the performance of micro gas turbines for cogeneration applications
JP2010164052A (en) Compressor clearance control system using bearing oil waste heat
CN103097675B (en) Silencing apparatus
US20100054926A1 (en) System and method for thermal management of a gas turbine inlet
JP2010164053A (en) Compressor clearance control system using turbine exhaust
JP2013170579A (en) Gas turbine inlet system with solid-state heat pump
JP2010038536A (en) Heat recovery system for turbomachine, and method of operating heat recovery steam system for turbomachine
JP2017527728A (en) Gas turbine generator cooling
JP2011202657A (en) Chiller condensate system
RU2014118983A (en) REGENERATIVE GAS-TURBO-DETANDER INSTALLATION OF OWN NEEDS OF A COMPRESSOR STATION
JP6155114B2 (en) Gas turbine intake cooling system and gas turbine equipment
WO2016051758A1 (en) Gas turbine
JP2010229920A (en) Exhaust-duct protection device and gas-turbine compound power generation plant
KR101614155B1 (en) Reducing condensation water structure of stirling engine
RU2605878C1 (en) Turbo-expansion system of heat utilization of circulating water on condensation units of steam turbines of thermal power station
JP2013160052A5 (en)
GB201116637D0 (en) Combined heat and power system
RU2295643C1 (en) Thermal power station
RU2291966C1 (en) Thermal power station
RU2312228C1 (en) Thermal power station transformer
RU2014129237A (en) COMPRESSOR STATION OF A MAIN GAS PIPELINE WITH A GAS TURBO-DETANDER ENERGY PLANT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6155114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250