JP2013160052A5 - - Google Patents

Download PDF

Info

Publication number
JP2013160052A5
JP2013160052A5 JP2012019926A JP2012019926A JP2013160052A5 JP 2013160052 A5 JP2013160052 A5 JP 2013160052A5 JP 2012019926 A JP2012019926 A JP 2012019926A JP 2012019926 A JP2012019926 A JP 2012019926A JP 2013160052 A5 JP2013160052 A5 JP 2013160052A5
Authority
JP
Japan
Prior art keywords
heat exchanger
intake duct
inlet
intake
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012019926A
Other languages
Japanese (ja)
Other versions
JP2013160052A (en
JP5959861B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012019926A priority Critical patent/JP5959861B2/en
Priority claimed from JP2012019926A external-priority patent/JP5959861B2/en
Publication of JP2013160052A publication Critical patent/JP2013160052A/en
Publication of JP2013160052A5 publication Critical patent/JP2013160052A5/ja
Application granted granted Critical
Publication of JP5959861B2 publication Critical patent/JP5959861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

なお、図に示すように、吸気加熱装置6の代わりに抽気管45を備えているものもある。
抽気管45は、圧縮機11で圧縮された吸気の一部を熱交換器34に導く配管であり、吸気加熱装置6の代わりに抽気管45を備えているものでは、抽気管45を介して熱交換器34に暖かい(熱い)吸気が供給され、抽気管45を介して圧縮機11から導かれた吸気と、ダクト15の入口15aから取り込まれた吸気(ここでは0℃の吸気)とを熱交換させて、ダクト15の入口15aから取り込まれた吸気に熱を与えて、ダクト15の入口15aから取り込まれた吸気が(ここでは10℃まで)加熱されることになる。
Note that, as shown in FIG. 7 , some of them include a bleed pipe 45 instead of the intake air heating device 6.
The extraction pipe 45 is a pipe that guides a part of the intake air compressed by the compressor 11 to the heat exchanger 34. In the case where the extraction pipe 45 is provided instead of the intake air heating device 6, the extraction pipe 45 is connected via the extraction pipe 45. Warm (hot) intake air is supplied to the heat exchanger 34, and intake air introduced from the compressor 11 through the extraction pipe 45 and intake air taken in from the inlet 15a of the duct 15 (here, 0 ° C. intake air). Heat is exchanged to give heat to the intake air taken in from the inlet 15a of the duct 15, and the intake air taken in from the inlet 15a of the duct 15 is heated (up to 10 ° C. in this case).

Claims (1)

吸気ダクトの入口から取り込まれ、前記吸気ダクトを介して導かれた空気を圧縮する圧縮機、前記圧縮機で圧縮された空気に燃料を混合して燃焼させる燃焼器、および前記燃焼器で発生した燃焼ガスによって駆動されるタービンを有するガスタービンと、
前記ガスタービンにより駆動される発電機と、
吸気冷却兼加熱装置と、を備え、
前記吸気冷却兼加熱装置は、
前記発電機を冷却する媒体と熱交換する第1の熱交換器と、
前記第1の熱交換器により昇温した媒体を降温する冷凍機と、
前記冷凍機により降温した媒体と前記吸気ダクトの入口から取り込まれ前記吸気ダクトを介して前記圧縮機の吸気入口に導かれる空気とを熱交換する前記吸気ダクト内に設けられた第2の熱交換器と、
前記第1の熱交換器により昇温された媒体を前記冷凍機に導き、前記冷凍機により降温された媒体を前記第2の熱交換器に導くとともに前記第2の熱交換器により昇温された媒体を前記第1の熱交換器に導く第1の流路と、
前記第1の熱交換器において昇温した媒体を前記第2の熱交換器に導き、前記吸気ダクトの入口から取り込まれ前記吸気ダクトを介して前記圧縮機の吸気入口に導かれる空気を加熱し前記第2の熱交換器において降温した媒体を前記第1の熱交換器に導く第2の流路と、を備えたガスタービン発電設備の運転方法であって、
前記吸気ダクトの入口から取り込まれた空気の温度が第1の温度よりも高い場合、前記第1の流路を介して、前記冷凍機において降温した媒体を前記吸気ダクト内に設けられた前記第2の熱交換器に導き、前記吸気ダクトの入口から取り込まれ、前記吸気ダクトを介して前記圧縮機の吸気入口に導かれる空気を冷却し、
前記吸気ダクトの入口から取り込まれた空気の温度が前記第1の温度よりも低い第2の温度よりも低い場合、前記第2の流路を介して、前記第1の熱交換器において前記発電機を冷却する媒体と熱交換されて昇温した媒体を前記第2の熱交換器に導き、前記吸気ダクトの入口から取り込まれ、前記吸気ダクトを介して前記圧縮機の吸気入口に導かれる空気を加熱するようにしたことを特徴とするガスタービン発電設備の運転方法。
A compressor that compresses air taken in from the inlet of the intake duct and guided through the intake duct, a combustor that mixes fuel with the air compressed by the compressor and burns, and generated in the combustor A gas turbine having a turbine driven by combustion gas;
A generator driven by the gas turbine;
An intake air cooling and heating device,
The intake air cooling and heating device is
A first heat exchanger for exchanging heat with a medium for cooling the generator;
A refrigerator for lowering the temperature of the medium heated by the first heat exchanger;
Second heat exchange provided in the intake duct for exchanging heat between the medium cooled by the refrigerator and the air taken in from the inlet of the intake duct and guided to the intake inlet of the compressor through the intake duct And
The medium heated by the first heat exchanger is guided to the refrigerator, the medium cooled by the refrigerator is guided to the second heat exchanger, and the temperature is increased by the second heat exchanger. A first flow path for leading the medium to the first heat exchanger;
The medium heated in the first heat exchanger is led to the second heat exchanger, and the air taken in from the inlet of the intake duct and led to the intake inlet of the compressor through the intake duct is heated. A gas turbine power generation facility operating method comprising: a second flow path that guides a medium cooled in the second heat exchanger to the first heat exchanger,
If the temperature of the air taken in from the inlet of the intake duct is higher than the first temperature, via the first channel, the second a medium cooled in the refrigerator provided in the intake duct 2 is led to the heat exchanger, and is taken in from the inlet of the intake duct, and cools the air led to the intake inlet of the compressor through the intake duct,
When the temperature of the air taken in from the inlet of the intake duct is lower than a second temperature lower than the first temperature, the power generation is performed in the first heat exchanger via the second flow path. Air that has been heated and exchanged with a medium that cools the machine is led to the second heat exchanger, is taken in from the inlet of the intake duct, and is led to the intake inlet of the compressor through the intake duct A method for operating a gas turbine power generation facility, characterized in that:
JP2012019926A 2012-02-01 2012-02-01 Gas turbine power generation equipment Active JP5959861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019926A JP5959861B2 (en) 2012-02-01 2012-02-01 Gas turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019926A JP5959861B2 (en) 2012-02-01 2012-02-01 Gas turbine power generation equipment

Publications (3)

Publication Number Publication Date
JP2013160052A JP2013160052A (en) 2013-08-19
JP2013160052A5 true JP2013160052A5 (en) 2015-02-19
JP5959861B2 JP5959861B2 (en) 2016-08-02

Family

ID=49172544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019926A Active JP5959861B2 (en) 2012-02-01 2012-02-01 Gas turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP5959861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076073A (en) * 2019-11-11 2021-05-20 川崎重工業株式会社 Gas engine system
CN112302807A (en) * 2020-11-21 2021-02-02 西安热工研究院有限公司 Gas turbine air inlet double-loop cooling system and method utilizing cooling capacity allowance of refrigerating station

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341740A (en) * 1998-05-21 1999-12-10 Toshiba Corp Cooling apparatus and method for power plant
JP2002364383A (en) * 2001-06-04 2002-12-18 Ishikawajima Harima Heavy Ind Co Ltd Intake air cooling device for gas turbine
JP4089187B2 (en) * 2001-08-31 2008-05-28 株式会社日立製作所 Thermoelectric supply system
US7716930B2 (en) * 2007-01-29 2010-05-18 General Electric Company Integrated plant cooling system
JP5291576B2 (en) * 2009-08-28 2013-09-18 三菱重工業株式会社 Intake air temperature control device for gas turbine, and gas turbine and gas turbine combined cycle power plant equipped with the same

Similar Documents

Publication Publication Date Title
JP2014515084A5 (en)
EP2617649A3 (en) Small engine cooled cooling air system
WO2013165487A3 (en) Gas turbine engine with geared turbofan and oil thermal management system with unique heat exchanger structure
EP2527603A3 (en) Flade Duct Turbine Cooling And Power And Thermal Management
RU2011133554A (en) INSTALLATION OPERATING ON THE BRIGHTON CYCLE, SYSTEM OPERATING ON THE CLOSED BRIGHTON CYCLE, AND THE METHOD OF ROTATION OF THE DETAILER SHAFT
JP2012246927A5 (en)
JP2014109279A5 (en)
RU2013125143A (en) SUPPLY SYSTEM FOR GAS-TURBINE SYSTEM, GAS-TURBINE SYSTEM AND METHOD OF OPERATION OF A GAS TURBINE
JP2011080464A5 (en)
JP2014099297A5 (en)
SA112330409B1 (en) Intake air cooling apparatus for stationary internal combustion engine
WO2015050579A3 (en) Gas turbine engine with geared turbofan and oil thermal management system with unique heat exchanger structure
WO2011082949A3 (en) Combined cycle power plant and method of operating such power plant
RU2012151221A (en) GAS TURBINE, SYSTEM CONTAINING A GAS TURBINE AND METHOD FOR REDUCING HEAT AND MECHANICAL STRESSES ACTING ON A LOAD CONNECTION IN A GAS TURBINE
RU2015107230A (en) HYBRID SYSTEM
JP2013139784A (en) Method and apparatus for operating gas turbine engine
JP2018532941A5 (en)
RU2015129695A (en) METHOD AND INSTALLATION FOR SUBMIT BLOWING IN A DOMAIN FURNACE
JP2013160052A5 (en)
JP5959861B2 (en) Gas turbine power generation equipment
GB201013061D0 (en) Gas turbine apparatus with improved exergy recovery
RU2599082C1 (en) Gas turbine expander power plant of compressor station of main gas line
JP2014517207A5 (en)
RU2561777C2 (en) Fuel gas heating system with cogeneration unit
GB201116637D0 (en) Combined heat and power system