JP2015004123A - Production method of silver particle - Google Patents

Production method of silver particle Download PDF

Info

Publication number
JP2015004123A
JP2015004123A JP2013263595A JP2013263595A JP2015004123A JP 2015004123 A JP2015004123 A JP 2015004123A JP 2013263595 A JP2013263595 A JP 2013263595A JP 2013263595 A JP2013263595 A JP 2013263595A JP 2015004123 A JP2015004123 A JP 2015004123A
Authority
JP
Japan
Prior art keywords
silver
silver particles
amine
particle size
reaction system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013263595A
Other languages
Japanese (ja)
Other versions
JP6189740B2 (en
Inventor
久保 仁志
Hitoshi Kubo
仁志 久保
勇一 牧田
Yuichi Makita
勇一 牧田
優輔 大嶋
Yusuke Oshima
優輔 大嶋
英和 松田
Hidekazu Matsuda
英和 松田
紀章 中村
Noriaki Nakamura
紀章 中村
淳一 谷内
Junichi Yanai
淳一 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013263595A priority Critical patent/JP6189740B2/en
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to KR1020187009441A priority patent/KR20180039174A/en
Priority to CN201480029945.4A priority patent/CN105263656B/en
Priority to PCT/JP2014/063281 priority patent/WO2014189025A1/en
Priority to MYPI2015703775A priority patent/MY174074A/en
Priority to DE112014002552.6T priority patent/DE112014002552B4/en
Priority to KR1020157034618A priority patent/KR102019536B1/en
Priority to TW103117859A priority patent/TWI579074B/en
Publication of JP2015004123A publication Critical patent/JP2015004123A/en
Application granted granted Critical
Publication of JP6189740B2 publication Critical patent/JP6189740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of silver particles, by which the particle diameter can be standardized while the size can be controlled within a range of ten and several of nanometers to one hundred and several tens of nanometers.SOLUTION: The present invention relates to a production method of silver particles by mixing a thermally decomposable silver compound and an amine to produce a silver-amine complex that is a precursor, and then heating a reaction system including the precursor, in which the moisture content in the reaction system before heating is 30-100 pts.wt. based on 100 pts.wt. of the silver compound. According to the present invention, it is possible to control the particle diameter and produce uniform silver particles.

Description

本発明は、銀粒子の製造方法に関する。詳しくは、十数nm〜百数十nmの範囲内の粒径の銀粒子を製造するにあたって、大きさを制御しつつ、粒径の揃った銀粒子を製造する方法に関する。   The present invention relates to a method for producing silver particles. Specifically, the present invention relates to a method for producing silver particles having a uniform particle size while controlling the size in producing silver particles having a particle size in the range of several tens of nanometers to one hundred and several tens of nanometers.

銀(Ag)は、貴金属の一種として、古くから装飾品としての利用が知られている金属であるが、優れた導電性、光反射率を有すると共に、触媒作用や抗菌作用等の特異な特性も有することから、電極・配線材料、反射膜材料、触媒、抗菌材等の各種の工業的用途への利用が期待される金属である。これらの各種用途への銀の利用形態として、銀粒子を適宜の溶媒に分散・懸濁させたものがある。例えば、半導体デバイス等の電子部品に実装される配線板の電極・配線形成や接着材・接合材、導電性接着材・導電性接合材、熱伝導材において、銀粒子をペースト化し、この金属ペーストを塗布・焼成することで所望の電極・配線・接合部・パターンを形成することができる。   Silver (Ag) is a kind of noble metal that has long been known for use as a decorative product, but has excellent conductivity, light reflectivity, and unique properties such as catalytic action and antibacterial action. Therefore, the metal is expected to be used for various industrial applications such as electrodes / wiring materials, reflective film materials, catalysts, and antibacterial materials. As a utilization form of silver for these various uses, there is one in which silver particles are dispersed and suspended in an appropriate solvent. For example, this metal paste is formed by pasting silver particles into electrodes / wiring formation, adhesives / bonding materials, conductive adhesives / conductive bonding materials, and heat conductive materials of wiring boards mounted on electronic components such as semiconductor devices. The desired electrode, wiring, joint, and pattern can be formed by applying and baking.

銀粒子の製造方法として一般に知られているのは液相還元法である。液相還元法による銀粒子の製造方法では、溶媒に前駆体となる銀化合物を溶解し、ここに還元剤を添加することで銀を析出させる。このとき、析出する銀粒子が凝集して粗大化するのを抑制するため、保護剤と称される化合物を添加するのが通例である。保護剤は、還元析出した銀粒子に結合し、銀粒子が相互に接触するのを抑制するため、銀粒子の凝集防止となる。   A generally known method for producing silver particles is a liquid phase reduction method. In the method for producing silver particles by the liquid phase reduction method, a silver compound as a precursor is dissolved in a solvent, and silver is precipitated by adding a reducing agent thereto. At this time, in order to prevent the precipitated silver particles from aggregating and coarsening, it is usual to add a compound called a protective agent. The protective agent binds to the silver particles that have been reduced and deposited, and suppresses the silver particles from contacting each other, thereby preventing aggregation of the silver particles.

液相還元法による銀粒子の製造方法は、溶媒中の銀化合物濃度や還元剤の種類及び添加量の調整、更に、保護剤の適切な選択により、効率的に銀粒子を製造することができる。しかし、液相還元法により製造される銀粒子は、通常数μm以上と大きい傾向があり、また、溶媒中の反応物質の濃度勾配により、粒径分布がバラつく傾向がある。   The method for producing silver particles by the liquid phase reduction method can produce silver particles efficiently by adjusting the concentration of the silver compound in the solvent, the type and amount of the reducing agent, and further selecting an appropriate protective agent. . However, silver particles produced by the liquid phase reduction method tend to be usually as large as several μm or more, and the particle size distribution tends to vary due to the concentration gradient of the reactants in the solvent.

そこで、液相還元法に替わる銀粒子の製造方法として、銀錯体の熱分解法が報告されている(特許文献1)。この方法は、基本としてシュウ酸銀(Ag)等の熱分解性を有する銀化合物の特性を利用する。かかる銀化合物と、保護剤になる有機化合物とで錯体を形成し、これを前駆体として加熱し、銀粒子を得る方法である。上記特許文献1では、保護剤としてアミンをシュウ酸銀に添加し、銀−アミン錯体を形成させて、これを所定温度に加熱し、熱分解により銀粒子を製造している。この熱分解法によれば、数nm〜十数nmの極めて微小な銀微粒子を製造でき、また、比較的粒径の揃った銀微粒子を製造可能である。 Then, the thermal decomposition method of a silver complex is reported as a manufacturing method of the silver particle replaced with a liquid phase reduction method (patent document 1). This method basically utilizes the characteristics of a silver compound having thermal decomposability such as silver oxalate (Ag 2 C 2 0 4 ). In this method, a complex is formed by such a silver compound and an organic compound that serves as a protective agent, and this is heated as a precursor to obtain silver particles. In Patent Document 1, an amine is added to silver oxalate as a protective agent to form a silver-amine complex, which is heated to a predetermined temperature, and silver particles are produced by thermal decomposition. According to this thermal decomposition method, extremely fine silver fine particles of several nm to several tens of nm can be produced, and silver fine particles having a relatively uniform particle diameter can be produced.

特開2010−265543号公報JP 2010-265543 A

上記の通り、銀粒子の利用分野は広がる傾向にあり、そのため十nm以下の微小な粒径を有する銀微粒子だけでなく、用途によっては中程度以上の大きさ(例えば、数十nm程度)の銀粒子が求められる。この要求に応えるには、使用目的に応じて得られる銀粒子の大きさを制御できる製造方法が必要となる。しかし、上記した従来の銀粒子の製造方法は、粒径制御の観点からは不十分であった。液相還元法では、数μm程度の大きい銀粒子しか製造できず、他方、熱分解法は、数nm〜十数nmの微小な銀粒子向きの製造方法であった。   As described above, the field of use of silver particles tends to expand. Therefore, not only silver fine particles having a fine particle size of 10 nm or less, but also medium or larger sizes (for example, about several tens of nm) depending on applications. Silver particles are required. In order to meet this demand, a production method capable of controlling the size of the silver particles obtained according to the purpose of use is required. However, the conventional method for producing silver particles described above is insufficient from the viewpoint of particle size control. In the liquid phase reduction method, only large silver particles of about several μm can be produced. On the other hand, the thermal decomposition method is a production method for fine silver particles of several nm to several tens of nm.

そして、銀粒子の今後の利用範囲拡大のためには、用途ごとに異なる多様な平均粒径に対応可能なことに加え、製造される銀粒子の粒径に関しても、バラつきの少ないことが要求される。この点、熱分解法による銀粒子は、ある程度粒径の揃ったものとなるが、上記のように、製造に適した粒径は銀化合物の種類に依存した微小な大きさであった。このため、熱分解法で、粒径の大きめの銀粒子(例えば、粒径数十nm以上)を製造した場合、粒径の揃ったものとするのは困難であった。例えば、銀化合物としてシュウ酸銀アミン錯体を用いると、粒径十数nm前後の大きさに関しては、比較的粒径の揃った銀粒子が得られるものの、もっと大きな数十nm等の銀粒子を製造すると、粒径分布にバラつきが生じやすい。   And in order to expand the range of future use of silver particles, in addition to being able to cope with a variety of average particle sizes that differ depending on the application, it is required that the particle size of the silver particles to be produced also has little variation. The In this regard, the silver particles obtained by the thermal decomposition method have a certain particle size, but as described above, the particle size suitable for production was a minute size depending on the type of silver compound. For this reason, when silver particles having a large particle size (for example, a particle size of several tens of nanometers or more) are produced by a thermal decomposition method, it is difficult to obtain a uniform particle size. For example, when a silver oxalate amine complex is used as the silver compound, although silver particles having a relatively uniform particle size can be obtained with respect to the size of about tens of nanometers, larger silver particles such as tens of nanometers can be obtained. When manufactured, the particle size distribution tends to vary.

そこで、本発明は、銀粒子の製造方法について、粒径の揃ったものとしつつ、大きさを十数nm〜百数十nmの範囲内で制御できる銀粒子の製造方法を提供する。   Therefore, the present invention provides a method for producing silver particles, the size of which can be controlled within the range of tens of nanometers to hundreds of tens of nanometers, with the silver particles having a uniform particle size.

本発明者等は、上記課題を解決する方法として、まず、熱分解法による銀粒子製造方法を基礎に検討を行うこととした。上記の通り、熱分解法では、比較的粒径の揃った銀粒子の製造が可能であり、液相還元法よりも粒径調整が容易と考えたからである。   As a method for solving the above-mentioned problems, the present inventors have first studied based on a method for producing silver particles by a pyrolysis method. As described above, the thermal decomposition method can produce silver particles having a relatively uniform particle size, and it is considered that the particle size adjustment is easier than the liquid phase reduction method.

ここで、本発明者等は、熱分解法による銀粒子の生成機構について、閉鎖溶液系での単分散微粒子の析出機構である、一般的なラメール則を参照し、次のように考察した。尚、ここでは、ヘキシルアミンが配位したシュウ酸銀錯体を熱分解し、銀粒子を製造した場合を例にとる。一定の加熱速度でヘキシルアミン配位−シュウ酸銀錯体を加熱すると、80〜90℃、すなわち錯体の分解温度(約110℃)より、やや低い温度で銀の「核生成」が開始する。そして、加熱を継続し、分解温度近傍(90℃〜110℃)まで上昇させる際、生成した核の表面で錯体の分解が進行し、「核成長」する。そして、この分解温度までの加熱による核生成・成長により銀粒子が生成する。   Here, the present inventors considered the generation mechanism of silver particles by the thermal decomposition method with reference to the general Lamer rule, which is the precipitation mechanism of monodisperse fine particles in a closed solution system, as follows. Here, a case where silver particles are produced by thermally decomposing a silver oxalate complex coordinated with hexylamine is taken as an example. When the hexylamine coordination-silver oxalate complex is heated at a constant heating rate, silver “nucleation” starts at 80 to 90 ° C., that is, slightly lower than the decomposition temperature of the complex (about 110 ° C.). And when heating is continued and it raises to the decomposition temperature vicinity (90 degreeC-110 degreeC), decomposition | disassembly of a complex advances on the surface of the produced | generated nucleus, and "nuclear growth" is carried out. And silver particle produces | generates by the nucleation and growth by heating to this decomposition temperature.

このような銀粒子の生成機構を考慮するとき、生成する銀粒子の粒径は、加熱速度により変化するものと考えられる。つまり、加熱速度を早くすることで粒径の小さな銀粒子が生成し、加熱速度が遅い場合には粒径の大きな銀粒子が生成するものと考えられる。しかし、加熱速度を調整したとき、全体的に上記のような傾向は見られるが、粒径分布のバラつきのない、均一な銀粒子を得ることは容易でない。本発明者等は、かかる粒径のバラつきの発生要因の一つとして、加熱工程における反応系内の温度差を考慮し、銀−アミン錯体の加熱を均一に進行させる本発明に想到した。   In consideration of such a silver particle generation mechanism, the particle diameter of the generated silver particles is considered to change depending on the heating rate. That is, it is considered that silver particles having a small particle size are generated by increasing the heating rate, and silver particles having a large particle size are generated when the heating rate is low. However, when the heating rate is adjusted, the above-mentioned tendency is observed as a whole, but it is not easy to obtain uniform silver particles having no variation in particle size distribution. The inventors of the present invention have conceived the present invention in which the heating of the silver-amine complex is uniformly advanced in consideration of the temperature difference in the reaction system in the heating step as one of the causes of the variation in the particle size.

即ち本発明は、熱分解性を有する銀化合物とアミンとを混合して前駆体である銀−アミン錯体を製造し、前記前駆体を含む反応系を加熱することで銀粒子を製造する方法であって、前記加熱前、反応系の水分含有量は、前記銀化合物100重量部に対して30〜100重量部である銀粒子の製造方法に関する。   That is, the present invention is a method for producing silver particles by mixing a silver compound having heat decomposability and an amine to produce a precursor silver-amine complex and heating the reaction system containing the precursor. And before the said heating, the water content of a reaction system is related with the manufacturing method of the silver particle which is 30-100 weight part with respect to 100 weight part of said silver compounds.

かかる本発明は、熱分解法による銀粒子製造方法を基礎としつつ、銀−アミン錯体の加熱段階において、反応系中に所定範囲の水分を存在させるものである。反応系中の水分は、錯体を分解させる加熱工程において、加熱を均一に進行させるべく、いわゆる緩衝剤として作用する。すなわち、水を積極的に介在させて、反応系内の熱の緩衝剤として作用させることで、加熱時の反応系内における温度差が緩和し、銀粒子の核生成や核成長が均一に進行しやすくなる。   The present invention is based on a method for producing silver particles by thermal decomposition, and allows a predetermined range of moisture to be present in the reaction system in the heating stage of the silver-amine complex. The water in the reaction system acts as a so-called buffering agent in the heating step for decomposing the complex so that the heating can proceed uniformly. In other words, by actively interposing water and acting as a heat buffer in the reaction system, the temperature difference in the reaction system during heating is reduced, and the nucleation and growth of silver particles proceed uniformly. It becomes easy to do.

反応系の水分含有量は、銀化合物100重量部に対して30〜100重量部の範囲内であることが必要である。水分含有量の好適範囲は30〜95重量部であり、さらに好適な範囲は30〜80重量部である。水分量が少ない(30重量部未満)と、得られる銀粒子の粒径は微小なものに限られ、狙った粒径の銀粒子を製造できない。一方、水分量が多い(100重量部を超える)と、銀粒子の粒径がバラつく傾向となる。   The water content of the reaction system needs to be in the range of 30 to 100 parts by weight with respect to 100 parts by weight of the silver compound. A preferable range of the water content is 30 to 95 parts by weight, and a more preferable range is 30 to 80 parts by weight. When the amount of water is small (less than 30 parts by weight), the particle size of the obtained silver particles is limited to a very small particle size, and silver particles having a targeted particle size cannot be produced. On the other hand, when the amount of water is large (exceeding 100 parts by weight), the particle size of silver particles tends to vary.

この反応系の水分含有量とは、加熱工程の直前段階における水分量であり、それまでに反応系に添加された水の量を考慮する必要がある。後述するように、銀化合物は予め水を添加した湿潤状態で使用する場合があるが、この予め添加した水の量も、水分量に含められる。このため、銀化合物や均一化剤に予め添加された量だけで、水分含有量の規定範囲内となる場合、別途反応系の水分量を調節することなく、そのまま加熱することができる。一方、予め添加された量が、水分含有量の下限値(30重量部)より少なければ、別途単独で水を添加する等、水分量の調整が必要となる。水を添加するタイミングは、加熱工程の前であればよく、銀−アミン錯体の形成前、あるいは錯体形成後の、いずれの段階で添加してもよい。   The water content of the reaction system is the water content immediately before the heating step, and it is necessary to consider the amount of water added to the reaction system so far. As will be described later, the silver compound may be used in a wet state to which water has been added in advance, but the amount of water added in advance is also included in the amount of water. For this reason, when only the amount added in advance to the silver compound or the homogenizing agent falls within the specified range of the water content, it can be heated as it is without separately adjusting the water content of the reaction system. On the other hand, if the amount added in advance is less than the lower limit (30 parts by weight) of the water content, it is necessary to adjust the amount of water, such as adding water separately. The timing of adding water may be before the heating step, and may be added at any stage before formation of the silver-amine complex or after formation of the complex.

以上説明した本発明の製造方法において、銀粒子の前駆体である銀−アミン錯体は熱分解性を有するものとする。原料としては、熱分解性を有する銀化合物が用いられ、シュウ酸銀、硝酸銀、酢酸銀、炭酸銀、酸化銀、亜硝酸銀、安息香酸銀、シアン酸銀、クエン酸銀、乳酸銀等を適用できる。   In the manufacturing method of this invention demonstrated above, the silver-amine complex which is a precursor of silver particle shall have thermal decomposability. As the raw material, a thermally decomposable silver compound is used, and silver oxalate, silver nitrate, silver acetate, silver carbonate, silver oxide, silver nitrite, silver benzoate, silver cyanate, silver citrate, silver lactate, etc. are applied it can.

上記銀化合物のうち、特に好ましいのは、シュウ酸銀(Ag)又は炭酸銀(AgCO)である。シュウ酸銀や炭酸銀は、還元剤を要することなく比較的低温で分解して銀粒子を生成することができる。また、分解により生じる二酸化炭素はガスとして放出されることから、溶液中に不純物を残留させることも無い。尚、シュウ酸銀については、爆発性を有する粉末状の固体であることから、水又は有機溶媒(アルコール、アルカン、アルケン、アルキン、ケトン、エーテル、エステル、カルボン酸、脂肪酸、芳香族、アミン、アミド、ニトリル等)を分散溶媒として混合し、湿潤状態にしたものを利用するのが好ましい。湿潤状態とすることで爆発性が著しく低下し、取り扱い性が容易となる。このとき、シュウ酸銀100重量部に対して、10〜200重量部の分散溶媒を混合したものが好ましい。但し、上記のとおり、本発明は反応系の水分量を厳密に規定しているため、水の混合は、規定量を超えない範囲にする必要がある。 Among the silver compounds, silver oxalate (Ag 2 C 2 O 4 ) or silver carbonate (Ag 2 CO 3 ) is particularly preferable. Silver oxalate and silver carbonate can be decomposed at a relatively low temperature without requiring a reducing agent to produce silver particles. Further, since carbon dioxide generated by the decomposition is released as a gas, no impurities remain in the solution. Since silver oxalate is an explosive powdery solid, water or an organic solvent (alcohol, alkane, alkene, alkyne, ketone, ether, ester, carboxylic acid, fatty acid, aromatic, amine, It is preferable to use a mixture obtained by mixing amide, nitrile, etc.) as a dispersion solvent and making it wet. By making it wet, explosiveness is remarkably lowered and handling becomes easy. At this time, what mixed 10-200 weight part dispersion | distribution solvent with respect to 100 weight part of silver oxalates is preferable. However, as described above, since the present invention strictly regulates the amount of water in the reaction system, the mixing of water needs to be within a range not exceeding the specified amount.

そして、銀化合物と反応させるアミンは、炭化水素基の炭素数の総和が4〜10であることが好ましく、4〜8が特に好ましい。このように、炭化水素基の炭素数の総和について好ましい範囲を規定するのは、銀化合物に配位するアミンによって、形成する銀−アミン錯体の安定性、分解温度が変化し、生成する銀粒子の粒径を変化させるからである。炭素数の総和が4未満のアミンを適用すると、得られる銀粒子は粒径数十nm〜数μmで、粒子径分布のバラツキが大きくなりやすい。炭素数の総和が10を超えるアミンを適用すると、合成時に銀−アミン錯体が熱分解し難く、銀粒子以外の未反応物が多く残存しやすい。   And as for the amine made to react with a silver compound, it is preferable that the total of carbon number of a hydrocarbon group is 4-10, and 4-8 are especially preferable. Thus, the preferable range for the total number of carbon atoms of the hydrocarbon group is defined by the silver particles produced by changing the stability and decomposition temperature of the silver-amine complex formed by the amine coordinated to the silver compound. This is because the particle size of the material is changed. When an amine having a total carbon number of less than 4 is applied, the resulting silver particles have a particle size of several tens of nanometers to several μm, and variations in particle size distribution tend to increase. When an amine having a total number of carbon atoms exceeding 10 is applied, the silver-amine complex is hardly thermally decomposed during synthesis, and many unreacted substances other than silver particles are likely to remain.

また、アミン中のアミノ基の数としては、アミノ基が1つである(モノ)アミンや、アミノ基を2つ有するジアミンを適用できる。アミノ基に結合する炭化水素基の数は1つであるアミン、すなわち1級アミン(RNH)が好ましい。アミノ基を2つ有するジアミンでは、少なくとも1以上のアミノ基が1級アミンのものが好ましい。3級アミンは、銀化合物との錯体を形成しにくい傾向がある。アミノ基に結合する炭化水素基は、環状構造を含まない直鎖構造や分枝構造である鎖式炭化水素が好ましく、不飽和炭化水素を含まない飽和炭化水素が特に好ましい。 As the number of amino groups in the amine, (mono) amine having one amino group or diamine having two amino groups can be applied. An amine having one hydrocarbon group bonded to an amino group, that is, a primary amine (RNH 2 ) is preferable. In the diamine having two amino groups, at least one amino group is preferably a primary amine. Tertiary amines tend not to form complexes with silver compounds. The hydrocarbon group bonded to the amino group is preferably a straight chain or branched chain hydrocarbon that does not contain a cyclic structure, and particularly preferably a saturated hydrocarbon that does not contain an unsaturated hydrocarbon.

本発明で好ましいアミンの具体例としては、以下のものが挙げられる。
Specific examples of preferred amines in the present invention include the following.

上記の通り、アミンの種類(炭化水素基の炭素数総和)によって銀−アミン錯体の分解温度は相違することから、本発明においては、アミンの種類の選定によって銀粒子の粒径を制御することができる。本発明における構成に従い、例えば、ヘキシルアミンを適用する場合、粒径50〜190nmの銀粒子の製造が可能である。また、オクチルアミンを適用する場合、ヘキシルアミンを適用する場合よりも微細な銀粒子を形成することができ、粒径15〜50nmの銀粒子の製造が可能である。また、本発明で銀化合物と反応させるアミンは2種以上を適用することができる。2種以上のアミンを適用することで、それぞれのアミンに対して中間的な安定性の錯体が形成され、それに応じた粒径の銀粒子を製造できる。例えば、ヘキシルアミンとオクチルアミンを同量使用した場合、両者の製造可能な粒径範囲に対して中間的な粒径の銀粒子を製造できる。   As described above, since the decomposition temperature of the silver-amine complex varies depending on the type of amine (total number of carbon atoms of the hydrocarbon group), in the present invention, the particle size of silver particles is controlled by selecting the type of amine. Can do. According to the configuration of the present invention, for example, when hexylamine is applied, silver particles having a particle diameter of 50 to 190 nm can be produced. Further, when octylamine is applied, finer silver particles can be formed than when hexylamine is applied, and silver particles having a particle diameter of 15 to 50 nm can be produced. Moreover, the amine made to react with a silver compound in this invention can apply 2 or more types. By applying two or more kinds of amines, intermediate stability complexes are formed for the respective amines, and silver particles having a particle size corresponding to the complex can be produced. For example, when hexylamine and octylamine are used in the same amount, silver particles having an intermediate particle size can be produced with respect to the particle size range in which both can be produced.

銀化合物とアミンとの混合比率は、銀化合物の銀イオン(Ag)のモル数(molAg+)に対するアミノ基のモル数(molNH2)の比(molNH2/molAg+)を、1.6以上とするのが好ましい。アミンが不足すると、未反応の銀化合物が残留するおそれがあり、十分な銀粒子が製造できず、また、銀粒子の粒径分布にバラつきが生じる。一方、アミン添加量の上限は、特に限定の必要がないものの、得られる銀粒子の純度を考慮すると、6以下が好ましい。 The mixing ratio of the silver compound and the amine is the ratio of the number of moles of amino groups (mol NH2 ) to the number of moles of silver ions (Ag + ) of the silver compound (mol Ag + ) (mol NH2 / mol Ag + ). The above is preferable. If the amine is insufficient, unreacted silver compounds may remain, and sufficient silver particles cannot be produced, and the particle size distribution of the silver particles varies. On the other hand, the upper limit of the amine addition amount is not particularly limited, but is preferably 6 or less in consideration of the purity of the obtained silver particles.

本発明における反応系は、銀−アミン錯体と、適正範囲の水分で構成されていれば良く、他の添加物がなくとも粒径の揃った銀粒子を製造可能である。但し、錯体の更なる安定化を図った添加剤の添加を排除するものではない。本発明で適用可能な添加剤としては、オレイン酸、ミリスチン酸、パルミトレイン酸、リノール酸等が挙げられる。これらの添加剤は、銀イオン(Ag)のモル数(molAg+)に対する添加剤のモル数(mol添加剤)の比(mol添加剤/molAg+)で、0.01〜0.1とするのが好ましい。
The reaction system in the present invention only needs to be composed of a silver-amine complex and an appropriate range of moisture, and silver particles having a uniform particle diameter can be produced without other additives. However, the addition of an additive that further stabilizes the complex is not excluded. Examples of the additive applicable in the present invention include oleic acid, myristic acid, palmitoleic acid, linoleic acid and the like. These additives, silver ions (Ag +) number of moles of (mol Ag +) moles of additives to the ratio of (mol Additives) (mol additive / mol Ag +), and 0.01 to 0.1 It is preferable to do this.

反応系は、水分含有量が適切な範囲にあると確認した後、加熱して銀粒子を析出させる。加熱温度は、銀−アミン錯体の分解温度以上とするのが好ましい。上述の通り、銀−アミン錯体の分解温度は、銀化合物に配位するアミンの種類によって相違する。上記で示した、本発明に好適なアミンを適用する場合、分解温度は90〜130℃となる。   The reaction system confirms that the water content is in an appropriate range, and then heats to precipitate silver particles. The heating temperature is preferably equal to or higher than the decomposition temperature of the silver-amine complex. As described above, the decomposition temperature of the silver-amine complex varies depending on the type of amine coordinated to the silver compound. When the amine suitable for the present invention shown above is applied, the decomposition temperature is 90 to 130 ° C.

この反応系の加熱工程において、加熱速度は析出する銀粒子の粒径に影響を及ぼす。即ち、本発明では、銀−アミン錯体を形成するアミン(銀化合物と反応させるアミン)の種類と、加熱工程の加熱速度、という2系統の手段で銀粒子の粒径を調製できる。この2つの手段により、平均粒径10〜200nmの範囲で、狙った粒径の銀粒子を製造できる。粒径10〜100nmでは、特に粒径の揃った銀粒子を得やすく、粒径15〜50nmでは、さらに粒径が揃いやすい。尚、加熱工程における加熱速度は、上記の分解温度まで、2〜50℃/minの範囲で調整することが好ましい。また、5℃/min以上が温度制御しやすい。   In the heating process of this reaction system, the heating rate affects the particle size of the silver particles to be precipitated. That is, in the present invention, the particle size of the silver particles can be prepared by two systems, that is, the type of amine that forms a silver-amine complex (amine that reacts with the silver compound) and the heating rate of the heating step. By these two means, silver particles having a targeted particle diameter can be produced within an average particle diameter of 10 to 200 nm. When the particle size is 10 to 100 nm, it is particularly easy to obtain silver particles having a uniform particle size, and when the particle size is 15 to 50 nm, the particle size is more likely to be uniform. In addition, it is preferable to adjust the heating rate in a heating process in the range of 2-50 degrees C / min to said decomposition temperature. Further, temperature control at 5 ° C./min or more is easy.

上記加熱工程を経て銀粒子が析出する。この反応系に対しては、適宜に洗浄、固液分離を経て銀粒子を取り出すことができる。場合により、銀粒子同士の固着が見られることがあるが、これは容易に解砕・分離可能である。また、回収した銀粒子は、適宜の溶媒に分散させたインク、ペースト、スラリー状態、又は乾燥させた粉末状態で保管、利用可能である。   Silver particles precipitate through the heating step. With respect to this reaction system, silver particles can be taken out through appropriate washing and solid-liquid separation. In some cases, the silver particles may be fixed to each other, but this can be easily crushed and separated. The recovered silver particles can be stored and used in ink, paste, slurry, or dried powder dispersed in an appropriate solvent.

以上説明した本発明の製造方法によれば、銀粒子の大きさを容易に制御することができる。また、得られる銀粒子は、粒径の揃った均一なものとなる。   According to the production method of the present invention described above, the size of the silver particles can be easily controlled. Further, the obtained silver particles are uniform in size.

本実施形態における銀粒子製造工程を説明する図。The figure explaining the silver particle manufacturing process in this embodiment. 第1実施形態の試験No.1〜4の銀粒子のSEM写真。Test No. 1 of the first embodiment. The SEM photograph of 1-4 silver particles. 第1実施形態の試験No.5、6の銀粒子のSEM写真。Test No. 1 of the first embodiment. SEM photographs of silver particles 5 and 6. 第1実施形態の試験No.7〜11の銀粒子のSEM写真。Test No. 1 of the first embodiment. The SEM photograph of 7-11 silver particles. 第1実施形態の試験No.14の銀粒子のSEM写真。Test No. 1 of the first embodiment. SEM photograph of 14 silver particles. 第1実施形態の試験No.15、16の銀粒子のSEM写真。Test No. 1 of the first embodiment. SEM photographs of 15 and 16 silver particles. 第1実施形態の試験No.17〜21の銀粒子のSEM写真。Test No. 1 of the first embodiment. The SEM photograph of 17-21 silver particles. 第1実施形態の試験No.6、10、11の銀粒子の粒径分布図。The particle size distribution figure of the silver particle of Test No.6,10,11 of 1st Embodiment. 第2実施形態の試験No.22の銀粒子のSEM写真。Test No. 2 of the second embodiment. SEM photograph of 22 silver particles.

以下、本発明の好適な実施形態について説明する。本実施形態では、図1の工程に沿って各種条件を変更しつつ銀粒子を製造し、その性状を評価した。   Hereinafter, preferred embodiments of the present invention will be described. In the present embodiment, silver particles were produced while changing various conditions along the process of FIG. 1, and their properties were evaluated.

本実施形態では、熱分解性の銀化合物としてシュウ酸銀(Ag)1.5g(銀イオン(Ag)9.9mmol)又は炭酸銀(AgCO)1.38g(銀イオン(Ag+)10mmol)を使用した。シュウ酸銀については、乾燥品のまま使用する場合と、水0.3g(シュウ酸銀100重量部に対して20重量部)を加えて湿潤状態にしたものを用意した。この銀化合物に、下記表に示したアミンを加え、銀−アミン錯体を製造した。銀化合物とアミンとの混合は室温で行い、白色のクリーム状になるまで混練した。添加剤としてオレイン酸を使用する場合は、上記で製造した銀−アミン錯体に添加した。 In this embodiment, 1.5 g of silver oxalate (Ag 2 C 2 O 4 ) (silver ion (Ag + ) 9.9 mmol) or 1.38 g of silver carbonate (Ag 2 CO 3 ) as a thermally decomposable silver compound ( Silver ion (Ag +) 10 mmol) was used. As for silver oxalate, there were prepared a case where it was used in a dry state and a wet state by adding 0.3 g of water (20 parts by weight with respect to 100 parts by weight of silver oxalate). To this silver compound, the amine shown in the following table was added to produce a silver-amine complex. The silver compound and amine were mixed at room temperature and kneaded until a white cream was formed. When oleic acid was used as an additive, it was added to the silver-amine complex produced above.

以上で製造した反応系には、必要に応じ水を添加し、水分量を所定範囲内とした。具体的には、反応系の水分量を20重量部とする場合、原料が湿潤シュウ酸銀(水20重量部)であれば、別途水を添加することなく下記の加熱を行った。同原料を用いて反応系の水分量を47重量部とする場合は、水を添加し水分量を調整した。   Water was added to the reaction system produced above as necessary to keep the water content within a predetermined range. Specifically, when the water content in the reaction system was 20 parts by weight, the following heating was performed without adding water separately if the raw material was wet silver oxalate (20 parts by weight of water). When the water content of the reaction system was 47 parts by weight using the same raw material, water was added to adjust the water content.

そして、反応系を室温から加熱して銀−アミン錯体を分解し銀粒子を析出させた。このときの加熱温度は錯体の分解温度として110℃を想定し、これを到達温度とした。また、加熱速度は、10℃/minとした。   And the reaction system was heated from room temperature, the silver-amine complex was decomposed | disassembled, and silver particle was deposited. The heating temperature at this time assumed 110 degreeC as a decomposition temperature of a complex, and made this the ultimate temperature. The heating rate was 10 ° C./min.

この加熱工程では、分解温度近傍から二酸化炭素の発生が確認された。二酸化炭素の発生がとまるまで加熱を継続し、銀粒子が懸濁した液体を得た。銀粒子の析出後、反応液にメタノールを添加して洗浄し、これを遠心分離した。この洗浄と遠心分離は2回行った。   In this heating process, generation of carbon dioxide was confirmed from around the decomposition temperature. Heating was continued until the generation of carbon dioxide stopped to obtain a liquid in which silver particles were suspended. After precipitation of silver particles, methanol was added to the reaction solution for washing, and this was centrifuged. This washing and centrifugation were performed twice.

回収した銀粒子について、その粒径(平均粒径)と粒径分布を検討した。この評価では、まず、銀粒子についてSEM観察、写真撮影を行い、画像中の銀粒子の粒径を測定(約100〜200個)し、平均値を算出した。更に、粒径分布の相対的なバラつきの指標として、下記式より変動係数(CV)を求め、変動係数が30%以下を「合格:○」、30%超40%以下を「不合格:△」、40%超を「不良:×」とした。図8に粒径分布図を示す。
変動係数(%)=(標準偏差/平均粒径)×100
About the collect | recovered silver particle, the particle size (average particle diameter) and particle size distribution were examined. In this evaluation, first, SEM observation and photography were performed on the silver particles, the particle size of the silver particles in the image was measured (about 100 to 200 particles), and the average value was calculated. Furthermore, as a relative variation index of the particle size distribution, a coefficient of variation (CV) is obtained from the following formula, and when the coefficient of variation is 30% or less, “pass: ○”, and when it exceeds 30% and 40% or less, “fail: Δ ”, More than 40% was defined as“ defect: x ”. FIG. 8 shows a particle size distribution diagram.
Coefficient of variation (%) = (standard deviation / average particle size) × 100

本実施形態で製造した銀粒子の評価結果をその製造条件と共に表2に示す。図8に粒径分布図を示したサンプルについては、標準偏差、変動係数の計算値も示す(表3)。   The evaluation results of the silver particles produced in this embodiment are shown in Table 2 together with the production conditions. For the sample whose particle size distribution diagram is shown in FIG. 8, the standard deviation and the calculated coefficient of variation are also shown (Table 3).

表2の内容について説明する。まず、本発明は、銀−アミン錯体の熱分解により銀粒子を製造する熱分解法を基礎とするものであるが、反応系に所定量の水の共存を必須とする。反応系の水の含有量についての結果を見ると(試験No.1〜4、7〜11)、水含有量30重量部未満(試験No.7、8)では、銀粒子の大きさが銀−アミン錯体の種類に依存する微小なもの(平均粒径10nm未満)に限られ、十数nm〜百数十nm程度で狙った粒径の銀粒子を得るという、本発明の目的を達成することができない。これに対し、含水量が適切なもの(試験No.1、2、6、9)は粒径の揃った銀粒子を製造でき、本発明の有効性が確認できる。一方、水が必要であることは上記の通りであるが、その上限も存在していることが確認できる(試験No.3、4、10、11)。水分量は、銀粒子の粒径を粗大にすることに加えて粒径のバラつきの要因ともなる。   The contents of Table 2 will be described. First, the present invention is based on a thermal decomposition method in which silver particles are produced by thermal decomposition of a silver-amine complex, but requires a predetermined amount of water to coexist in the reaction system. Looking at the results regarding the water content of the reaction system (Test Nos. 1 to 4 and 7 to 11), when the water content is less than 30 parts by weight (Test Nos. 7 and 8), the size of the silver particles is silver. -To achieve the object of the present invention to obtain silver particles having a target particle size of about 10 to several tens of nanometers, limited to minute ones (average particle size less than 10 nm) depending on the type of amine complex. I can't. On the other hand, those having an appropriate water content (Test Nos. 1, 2, 6, and 9) can produce silver particles having a uniform particle size, and the effectiveness of the present invention can be confirmed. On the other hand, it is as above-mentioned that water is required, but it can confirm that the upper limit also exists (test No. 3, 4, 10, 11). In addition to making the particle size of the silver particles coarse, the amount of water becomes a factor of variation in the particle size.

銀−アミン錯体生成のためのアミンとしては、アルキル基の炭素数の総和が4〜10であるアミンを用いて、粒径の揃った銀粒子を製造できることが確認できた。アミンとして、n−ヘキシルアミンとn−オクチルアミンの混合アミンを用いた場合(試験No.6、12〜14)、n−ヘキシルアミンの混合割合が高いほど、粒径の大きな銀粒子が製造される(試験No.6、14)。混合アミンを用いると、中間的な粒径の銀粒子を製造できる。この実施形態では、分解温度までの加熱速度が共通であることから、アミンの選択による粒径調整が可能であることが確認できる。また、銀−アミン錯体生成のためのアミンの混合量(試験No.5、6)は、銀イオンのモル数に対するアミノ基のモル数の比1.6以上において、粒径の揃った銀粒子が得られている(試験No.6)。   As an amine for producing a silver-amine complex, it was confirmed that silver particles having a uniform particle diameter can be produced using an amine having a total of 4 to 10 carbon atoms in an alkyl group. When a mixed amine of n-hexylamine and n-octylamine is used as the amine (Test No. 6, 12-14), the higher the mixing ratio of n-hexylamine, the larger the silver particle size is produced. (Test Nos. 6 and 14). When mixed amine is used, silver particles having an intermediate particle size can be produced. In this embodiment, since the heating rate up to the decomposition temperature is common, it can be confirmed that the particle size can be adjusted by selecting an amine. Further, the amount of amine mixed for producing a silver-amine complex (Test Nos. 5 and 6) is such that the ratio of the number of moles of amino groups to the number of moles of silver ions is 1.6 or more. Is obtained (Test No. 6).

尚、添加剤であるオレイン酸の要否については(試験No.6、15、16)、オレイン酸のような添加剤の添加は必須ではないことが確認できる。オレイン酸は、好適な粒度分布を維持する上で有効であると考えられるが、その添加がなくとも好適な銀粒子を製造することができる。   In addition, about the necessity of the oleic acid which is an additive (test No. 6, 15, 16), it can confirm that addition of additives, such as an oleic acid, is not essential. Oleic acid is thought to be effective in maintaining a suitable particle size distribution, but suitable silver particles can be produced without the addition of oleic acid.

第2実施形態:上記の通り、銀−アミン錯体生成のためのアミンによって、銀粒子の粒径が変化するが、本発明では粒径調整の手段として、反応系の加熱速度からも対応可能である。そこで、次に、上記の試験No.6について加熱速度を変更して銀粒子を製造した。第1実施形態では加熱速度を10℃/minとしたが、ここでは加熱速度を2℃/minとした(試験No.22)。ここで製造された銀粒子についての評価結果を表4に示す。 Second Embodiment : As described above, the particle size of the silver particles varies depending on the amine for producing the silver-amine complex, but in the present invention, it is possible to cope with the heating rate of the reaction system as a means for adjusting the particle size. is there. Therefore, next, the above test No. The heating rate was changed about 6 and the silver particle was manufactured. In the first embodiment, the heating rate is 10 ° C./min, but here the heating rate is 2 ° C./min (Test No. 22). The evaluation results for the silver particles produced here are shown in Table 4.

表4から、加熱速度の変更によっても、粒径の調整が可能であることがわかる。加熱速度を遅くすることで、銀粒子の粒径は大きくなる傾向がある。このように、本発明では製造目的の銀粒子の粒径に対して、アミンの選定と加熱速度の調整の異なるアプローチから調整が可能である。尚、このようにして加熱速度を調整しても良好な粒度分布が崩れることはない。   From Table 4, it can be seen that the particle size can be adjusted by changing the heating rate. By reducing the heating rate, the particle size of the silver particles tends to increase. As described above, in the present invention, it is possible to adjust the particle size of the silver particles to be manufactured from different approaches of selecting an amine and adjusting the heating rate. Even when the heating rate is adjusted in this way, a good particle size distribution will not be lost.

以上説明したように、本発明によれば、粒径を制御しつつ、均一な銀粒子を製造することができる。本発明は、電極・配線材料、接着材・接合材、導電性接着材・導電性接合材、熱伝導材、反射膜材料、触媒、抗菌材等の各種用途へ使用される銀粒子について、効率的に高品質なものを製造することができる。   As described above, according to the present invention, uniform silver particles can be produced while controlling the particle size. The present invention relates to silver particles used in various applications such as electrodes / wiring materials, adhesives / bonding materials, conductive adhesives / conductive bonding materials, thermal conductive materials, reflective film materials, catalysts, antibacterial materials, etc. High quality products can be manufactured.

Claims (6)

熱分解性を有する銀化合物とアミンとを混合して前駆体である銀−アミン錯体を製造し、前記前駆体を含む反応系を加熱することで銀粒子を製造する方法であって、
前記加熱前、反応系の水分含有量は、前記銀化合物100重量部に対して30〜100重量部である銀粒子の製造方法。
A method for producing silver particles by mixing a silver compound having thermal decomposability and an amine to produce a precursor silver-amine complex, and heating a reaction system containing the precursor,
Before the heating, the water content of the reaction system is 30 to 100 parts by weight with respect to 100 parts by weight of the silver compound.
熱分解性を有する銀化合物は、シュウ酸銀、硝酸銀、酢酸銀、炭酸銀、酸化銀、亜硝酸銀、安息香酸銀、シアン酸銀、クエン酸銀、乳酸銀のいずれか1種である請求項1記載の銀粒子の製造方法。   The silver compound having thermal decomposability is any one of silver oxalate, silver nitrate, silver acetate, silver carbonate, silver oxide, silver nitrite, silver benzoate, silver cyanate, silver citrate, and silver lactate. The method for producing silver particles according to 1. アミン中の炭素数の総和が4〜10である請求項1又は請求項2記載の銀粒子の製造方法。   The method for producing silver particles according to claim 1 or 2, wherein the total number of carbon atoms in the amine is 4 to 10. アミン中の炭化水素基は、鎖式飽和炭化水素からなる請求項1〜3のいずれかに記載の銀粒子の製造方法。   The method for producing silver particles according to claim 1, wherein the hydrocarbon group in the amine is composed of a chain saturated hydrocarbon. アミンは、銀化合物中の銀イオンに対してモル比で1.6倍以上添加する請求項1〜請求項4のいずれかに記載の銀粒子の製造方法。   The method for producing silver particles according to any one of claims 1 to 4, wherein the amine is added in a molar ratio of 1.6 times or more with respect to silver ions in the silver compound. 反応系の加熱温度は、銀−アミン錯体の分解温度以上とする請求項1〜請求項5のいずれかに記載の銀粒子の製造方法。   The method for producing silver particles according to any one of claims 1 to 5, wherein the heating temperature of the reaction system is not less than the decomposition temperature of the silver-amine complex.
JP2013263595A 2013-05-24 2013-12-20 Method for producing silver particles Active JP6189740B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013263595A JP6189740B2 (en) 2013-05-24 2013-12-20 Method for producing silver particles
CN201480029945.4A CN105263656B (en) 2013-05-24 2014-05-20 The manufacture method of silver particles
PCT/JP2014/063281 WO2014189025A1 (en) 2013-05-24 2014-05-20 Method for producing silver particles
MYPI2015703775A MY174074A (en) 2013-05-24 2014-05-20 Method for producing silver particles
KR1020187009441A KR20180039174A (en) 2013-05-24 2014-05-20 Method for producing silver particles
DE112014002552.6T DE112014002552B4 (en) 2013-05-24 2014-05-20 Process for producing silver particles
KR1020157034618A KR102019536B1 (en) 2013-05-24 2014-05-20 Method for producing silver particles
TW103117859A TWI579074B (en) 2013-05-24 2014-05-22 Method of manufacturing silver particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013109524 2013-05-24
JP2013109524 2013-05-24
JP2013263595A JP6189740B2 (en) 2013-05-24 2013-12-20 Method for producing silver particles

Publications (2)

Publication Number Publication Date
JP2015004123A true JP2015004123A (en) 2015-01-08
JP6189740B2 JP6189740B2 (en) 2017-08-30

Family

ID=51933578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263595A Active JP6189740B2 (en) 2013-05-24 2013-12-20 Method for producing silver particles

Country Status (7)

Country Link
JP (1) JP6189740B2 (en)
KR (2) KR20180039174A (en)
CN (1) CN105263656B (en)
DE (1) DE112014002552B4 (en)
MY (1) MY174074A (en)
TW (1) TWI579074B (en)
WO (1) WO2014189025A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066501A (en) * 2015-10-02 2017-04-06 アルプス電気株式会社 Method for producing coated silver particle, liquid composition, coated silver particle, coated silver particle-containing composition, conductive member, method for producing conductive member, electric/electronic component and electric/electronic equipment
CN106601368A (en) * 2016-12-02 2017-04-26 天津宝兴威科技股份有限公司 Method for preparing conducting film on substrate surface based on silver nanoparticle ink
KR20200103105A (en) 2018-01-09 2020-09-01 가부시키가이샤 노리타케 캄파니 리미티드 Method for producing silver nanoparticles and silver paste containing silver nanoparticles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732520B1 (en) * 2013-12-11 2015-06-10 田中貴金属工業株式会社 Silver particle production method and silver particles produced by the method
CN105625028A (en) * 2016-04-01 2016-06-01 吴江市林旺纺织厂 Radiation-proof textile fiber and preparation method thereof
WO2018030174A1 (en) * 2016-08-10 2018-02-15 バンドー化学株式会社 Method for producing metallic silver fine particles
JP7320515B2 (en) 2018-08-30 2023-08-03 田中貴金属工業株式会社 Silver ink for low temperature firing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214695A (en) * 2007-03-05 2008-09-18 Shoei Chem Ind Co Method for producing ultra-fine particle of silver
JP2012018957A (en) * 2010-07-06 2012-01-26 Konica Minolta Holdings Inc Organic photoelectric conversion element, method of manufacturing the same, and solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200925178A (en) * 2007-12-07 2009-06-16 Univ Nat Taiwan Polymeric polyamine and method for stabilizing silver nanoparticles using the same
JP5003895B2 (en) * 2007-12-13 2012-08-15 戸田工業株式会社 Silver fine particles and method for producing the same, and method for producing a conductive film
JP5574761B2 (en) * 2009-04-17 2014-08-20 国立大学法人山形大学 Coated silver ultrafine particles and method for producing the same
CN102114546A (en) * 2011-03-29 2011-07-06 兰州金川新材料科技股份有限公司 Method for preparing spherical silver powder
JP6001861B2 (en) * 2012-01-11 2016-10-05 株式会社ダイセル Silver nanoparticle production method, silver nanoparticle, and silver coating composition
CN102528075B (en) * 2012-03-15 2013-12-18 中南大学 Method for preparing ultrafine silver powder by directly performing thermal decomposition on silver nitrate
JP5647650B2 (en) * 2012-08-07 2015-01-07 田中貴金属工業株式会社 Method for producing silver fine particle ink

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214695A (en) * 2007-03-05 2008-09-18 Shoei Chem Ind Co Method for producing ultra-fine particle of silver
JP2012018957A (en) * 2010-07-06 2012-01-26 Konica Minolta Holdings Inc Organic photoelectric conversion element, method of manufacturing the same, and solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066501A (en) * 2015-10-02 2017-04-06 アルプス電気株式会社 Method for producing coated silver particle, liquid composition, coated silver particle, coated silver particle-containing composition, conductive member, method for producing conductive member, electric/electronic component and electric/electronic equipment
CN106601368A (en) * 2016-12-02 2017-04-26 天津宝兴威科技股份有限公司 Method for preparing conducting film on substrate surface based on silver nanoparticle ink
KR20200103105A (en) 2018-01-09 2020-09-01 가부시키가이샤 노리타케 캄파니 리미티드 Method for producing silver nanoparticles and silver paste containing silver nanoparticles

Also Published As

Publication number Publication date
MY174074A (en) 2020-03-09
DE112014002552B4 (en) 2020-08-06
CN105263656B (en) 2018-01-23
DE112014002552T5 (en) 2016-03-10
JP6189740B2 (en) 2017-08-30
KR20180039174A (en) 2018-04-17
WO2014189025A1 (en) 2014-11-27
CN105263656A (en) 2016-01-20
KR20160007562A (en) 2016-01-20
KR102019536B1 (en) 2019-09-06
TW201509567A (en) 2015-03-16
TWI579074B (en) 2017-04-21

Similar Documents

Publication Publication Date Title
JP6189740B2 (en) Method for producing silver particles
US10071426B2 (en) Coated metal fine particle and manufacturing method thereof
US8293144B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
JP5975440B2 (en) Method for producing coated silver fine particles and coated silver fine particles produced by the production method
JP2012072418A (en) Fine coated copper particles and method for producing the same
KR102068386B1 (en) Method of synthesizing nano-sized particles
KR102085744B1 (en) Method for producing silver particles
TW201719678A (en) Nickel powder and nickel paste
US20180355191A1 (en) Method for producing electro-conductive paste
JP6270831B2 (en) Method for producing silver particles
CN105992663B (en) The manufacturing method of metallic nano-particle
JP5485122B2 (en) Sulfur-containing nickel particles and method for producing the same
JP2017014545A (en) Nickel fine particle-containing composition and manufacturing method therefor
JP6099160B2 (en) Complex compounds and suspensions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170803

R150 Certificate of patent or registration of utility model

Ref document number: 6189740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170727

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250