JP2015001310A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015001310A
JP2015001310A JP2013124407A JP2013124407A JP2015001310A JP 2015001310 A JP2015001310 A JP 2015001310A JP 2013124407 A JP2013124407 A JP 2013124407A JP 2013124407 A JP2013124407 A JP 2013124407A JP 2015001310 A JP2015001310 A JP 2015001310A
Authority
JP
Japan
Prior art keywords
temperature
air
indoor
heat exchanger
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013124407A
Other languages
Japanese (ja)
Other versions
JP5975937B2 (en
Inventor
潔 吉村
Kiyoshi Yoshimura
潔 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013124407A priority Critical patent/JP5975937B2/en
Priority to GB1406482.8A priority patent/GB2516336B/en
Priority to CN201410236215.3A priority patent/CN104236027B/en
Priority to CN201420286678.6U priority patent/CN203940582U/en
Priority to MX2014007073A priority patent/MX342141B/en
Publication of JP2015001310A publication Critical patent/JP2015001310A/en
Application granted granted Critical
Publication of JP5975937B2 publication Critical patent/JP5975937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of preventing dew condensation in a blow-out opening and freezing of an indoor heat exchanger while suppressing excessive cooling.SOLUTION: A control device 30 of an air conditioner 100 determines the revolutions per minute (Nf) when an air temperature difference (ΔT) as the difference between an air temperature (Tin) and a set temperature (Tset) is greater than a thermo-threshold value (T1) and rotates an indoor fan 7 on the basis of the determined revolutions per minute (Nf). It stops the indoor fan when the air temperature difference (ΔT) exceeds a fan threshold value (T2), a heat exchanger temperature (Te) exceeds a cold-warm threshold value (T3), and air humidity (Hin) is less than a dry-wet threshold value (H1). It further rotates the indoor fan 7 again when an excessive cooling temperature (ΔTedp) as a difference between the heat exchanger temperature (Te) and a dew point temperature (Tdp) is less than the excessive cooling threshold value (T4) after the indoor fan is stopped, or when a re-rotation time has elapsed after the stop of the indoor fan.

Description

本発明は空気調和機、特に、除湿機能を有する空気調和機に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner having a dehumidifying function.

従来の除湿機能を備えた空気調和機として、容量可変の圧縮機と、熱源側熱交換器(室外熱交換に相当する)と、膨張機構と、風量可変の利用側ファン(室内ファンに相当する)を備えた利用側熱交換器(室内熱交換器に相当する)とを有し、制御装置が、まず、室温制御ループにおいて、室内吸込み空気温度が設定温度に近づくように圧縮機周波数を制御し、室内吸込み空気温度が設定温度も近づいた後に、湿度制御ループに切り替えて、圧縮機の周波数を増大させると同時に、室内送風機の毎分回転数を低下させ(風量を下げて)、顕熱能力を落として(冷房負荷を小さくして)、潜熱能力を確保し、冷えすぎ防止を図る空気調和機の運転制御装置が開示されている(例えば、特許文献1参照。)。   As a conventional air conditioner having a dehumidifying function, a variable capacity compressor, a heat source side heat exchanger (corresponding to outdoor heat exchange), an expansion mechanism, and an air volume variable utilization side fan (corresponding to an indoor fan) ), And the control device first controls the compressor frequency so that the indoor intake air temperature approaches the set temperature in the room temperature control loop. Then, after the indoor intake air temperature approaches the set temperature, switch to the humidity control loop to increase the frequency of the compressor and at the same time reduce the rotational speed of the indoor blower per minute (decrease the air volume) and sensible heat An operation control device for an air conditioner is disclosed that reduces the capability (decreases the cooling load), ensures the latent heat capability, and prevents overcooling (see, for example, Patent Document 1).

特許第2909955号公報(第5−6頁、図6)Japanese Patent No. 2909955 (page 5-6, FIG. 6)

しかしながら、特許文献1に記載された空気調和機の運転制御装置では、室内吸込み空気温度が設定温度に到達したところで、湿度制御ループに切り替えて室内送風機の風量を落としている。そうすると、風量の低下によって吹出し空気温度が下がるため、吹き出し口の周囲の湿度が高い場合には、吹き出し口に結露が生じ易くなり、空調対象空間に結露水が落下する問題があった。
また、室内吸込み空気温度が低い場合、室内熱交換器の温度が下がり過ぎて0℃以下となるおそれがあり、室内熱交換器に付着した凝縮水が凍結して、室内熱交換器を破損するおそれがあるという問題があった。
However, in the air conditioner operation control device described in Patent Document 1, when the indoor intake air temperature reaches the set temperature, the air flow of the indoor blower is reduced by switching to the humidity control loop. Then, since the temperature of the blown air is lowered due to the decrease in the air volume, when the humidity around the blowout port is high, condensation tends to occur at the blowout port, and there is a problem that the dew condensation water falls into the air-conditioning target space.
In addition, when the indoor intake air temperature is low, the temperature of the indoor heat exchanger may decrease too much and become 0 ° C. or less, and the condensed water adhering to the indoor heat exchanger will freeze and damage the indoor heat exchanger. There was a problem of fear.

本発明は、上記のような問題を解決するためになされたもので、冷え過ぎを抑えながら、吹き出し口の結露防止および室内熱交換器の凍結防止が図られた空気調和機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides an air conditioner that prevents condensation at the air outlet and prevents freezing of the indoor heat exchanger while suppressing overcooling. Objective.

本発明に係る空気調和機は、冷媒を圧縮する圧縮機周波数を変更可能な圧縮機、室外空気との間で熱交換する室外熱交換器、および冷媒を膨張する膨張弁が設けられた室外機と、室内に設置され、室内空気との間で熱交換する室内熱交換器、室内熱交換器に向けて室内空気を供給する室内ファン、室内からの吸い込んだ室内空気の温度を検出する室内吸い込み空気温度センサー、室内からの吸い込んだ室内空気の湿度を検出する室内吸い込み空気湿度センサー、前記室内熱交換器の温度を検出する熱交換器温度センサー、および少なくとも前記圧縮機および前記室内ファンを制御する制御装置が設けられた室内機と、を有し、前記制御装置は、前記室内吸い込み空気湿度センサーが検出した空気温度(Tin)と予め設定された温度である設定温度(Tset)との差である空気温度差(ΔT)が、予め定められた温度であるサーモ閾値(T1)よりも大きいとき、前記室内吸い込み空気湿度センサーが検出した空気湿度(Hin)と前記熱交換器温度センサーが検知した熱交換器温度(Te)との関係から毎分回転数(Nf)を決定し、当該決定された毎分回転数(Nf)で前記室内ファンを回転した冷房運転を行い、前記冷房運転において、前記空気温度差(ΔT)が、前記サーモ閾値(T1)よりも低温の予め定められた温度であるファン閾値(T2)を超え、前記熱交換器温度センサーが検知した温度である熱交換器温度(Te)が予め定められた温度である寒暖閾値(T3)を超え、かつ、前記空気湿度(Hin)が予め定められた湿度である乾湿閾値(H1)未満であるとき、前記室内ファンを停止し、さらに、前記室内ファンを停止した後、熱交換器温度(Te)と吸い込んだ室内空気の露点温度(Tdp)との差を過冷却温度(ΔTedp)として、該過冷却温度(ΔTedp)が予め定めた温度である過冷却閾値(T4)未満である場合、または、前記室内ファンを停止してから予め定められた時間である再回転時間が経過している場合、前記室内ファンを再度回転することを特徴とする。   An air conditioner according to the present invention includes an outdoor unit provided with a compressor capable of changing a compressor frequency for compressing a refrigerant, an outdoor heat exchanger for exchanging heat with outdoor air, and an expansion valve for expanding the refrigerant. Indoor heat exchanger that is installed indoors and exchanges heat with indoor air, an indoor fan that supplies indoor air toward the indoor heat exchanger, and an indoor air intake that detects the temperature of the indoor air An air temperature sensor, an indoor intake air humidity sensor for detecting the humidity of indoor air sucked from the room, a heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger, and at least controlling the compressor and the indoor fan An indoor unit provided with a control device, and the control device is configured to have an air temperature (Tin) detected by the indoor intake air humidity sensor and a preset temperature. When the air temperature difference (ΔT), which is a difference from the temperature (Tset), is larger than a thermo threshold (T1), which is a predetermined temperature, the air humidity (Hin) detected by the indoor intake air humidity sensor and the A cooling operation in which the rotational speed (Nf) per minute is determined from the relationship with the heat exchanger temperature (Te) detected by the heat exchanger temperature sensor, and the indoor fan is rotated at the determined rotational speed (Nf) per minute. In the cooling operation, the air temperature difference (ΔT) exceeds a fan threshold (T2), which is a predetermined temperature lower than the thermothreshold (T1), and is detected by the heat exchanger temperature sensor. The heat exchanger temperature (Te), which is a measured temperature, exceeds a predetermined temperature threshold (T3), and the air humidity (Hin) is less than a predetermined humidity threshold (H1), which is a predetermined humidity. is there Then, after stopping the indoor fan, and further stopping the indoor fan, the difference between the heat exchanger temperature (Te) and the dew point temperature (Tdp) of the sucked indoor air is defined as the supercooling temperature (ΔTedp). When the supercooling temperature (ΔTedp) is less than the supercooling threshold (T4), which is a predetermined temperature, or when the re-rotation time, which is a predetermined time, has elapsed since the indoor fan was stopped The indoor fan is rotated again.

本発明によれば、制御装置が、空気湿度(Hin)と熱交換器温度(Te)との関係から毎分回転数(Nf)を決定し、当該決定された毎分回転数(Nf)で前記室内ファンを回転して冷房運転を行い、空気温度差(ΔT)がファン閾値(T2)を超え、熱交換器温度(Te)が寒暖閾値(T3)を超え、かつ、空気湿度(Hin)が乾湿閾値(H1)未満であるとき、室内ファンを停止し、さらに、前記室内ファンを停止した後、過冷却温度(ΔTedp)が過冷却閾値(T4)未満である場合、または、前記室内ファンを停止してから再回転時間が経過している場合、室内ファンを再度回転する。
したがって、冷え過ぎを抑えることができると共に、吹出口の周辺における結露防止および室内熱交換器の凍結防止を図ることができる。
According to the present invention, the control device determines the rotational speed (Nf) per minute from the relationship between the air humidity (Hin) and the heat exchanger temperature (Te), and at the determined rotational speed (Nf) per minute. The indoor fan is rotated for cooling operation, the air temperature difference (ΔT) exceeds the fan threshold (T2), the heat exchanger temperature (Te) exceeds the cold / warm threshold (T3), and the air humidity (Hin) Is less than the dry / wet threshold (H1), the indoor fan is stopped, and after the indoor fan is stopped, the supercooling temperature (ΔTedp) is less than the supercooling threshold (T4), or the indoor fan If the re-rotation time has elapsed since the stop, the indoor fan is rotated again.
Therefore, it is possible to suppress overcooling, prevent condensation around the outlet, and prevent the indoor heat exchanger from freezing.

本発明の実施の形態1に係る空気調和機を説明するものであって、冷媒回路の構成を模式的に示す冷媒回路図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a refrigerant circuit diagram illustrating an air conditioner according to Embodiment 1 of the present invention and schematically showing a configuration of a refrigerant circuit. 本発明の実施の形態1に係る空気調和機の一部(室内機)を示す側面視の断面図。Sectional drawing of the side view which shows some air conditioners (indoor unit) which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機を説明するものであって、一部(制御装置)の構成を示すブロック図。BRIEF DESCRIPTION OF THE DRAWINGS The air conditioner which concerns on Embodiment 1 of this invention is demonstrated, Comprising: The block diagram which shows a part (control apparatus) structure. 本発明の実施の形態1に係る空気調和機を説明する制御フローを示すフローチャート。The flowchart which shows the control flow explaining the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機を説明する制御フローを示すフローチャート。The flowchart which shows the control flow explaining the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機を説明するものであって、空気温度差から決まる圧縮機周波数の値を示すテーブル。The table explaining the air conditioner concerning Embodiment 1 of the present invention, and showing the value of the compressor frequency determined from the air temperature difference. 本発明の実施の形態1に係る空気調和機を説明するものであって、空気湿度と熱交換器温度とから決まる室内ファンの毎分回転数の値(指数)を示すテーブル。The air conditioner which concerns on Embodiment 1 of this invention, Comprising: The table which shows the value (index | exponent) of the rotation speed per minute of the indoor fan determined from air humidity and heat exchanger temperature. 本発明の実施の形態1に係る空気調和機を説明するものであって、相対湿度と吸込み乾球温度とから決まる露点温度を示すテーブル。The air conditioner which concerns on Embodiment 1 of this invention, Comprising: The table which shows the dew point temperature determined from relative humidity and suction dry-bulb temperature. 本発明の実施の形態2に係る空気調和機を説明する一部(室内機)を示す側面視の断面図。Sectional drawing of the side view which shows a part (indoor unit) explaining the air conditioner which concerns on Embodiment 2 of this invention.

[実施の形態1]
図1〜図3は本発明の実施の形態1に係る空気調和機を説明するものであって、図1は冷媒回路の構成を模式的に示す冷媒回路図、図2は一部(室内機)を示す側面視の断面図、図3は一部(制御装置)の構成を示すブロック図である。なお、各図は模式的に示すものであって、本発明は図示された形態に限定されるものではない。
[Embodiment 1]
1 to 3 illustrate an air conditioner according to Embodiment 1 of the present invention. FIG. 1 is a refrigerant circuit diagram schematically showing a configuration of a refrigerant circuit, and FIG. FIG. 3 is a block diagram showing a configuration of a part (control device). In addition, each figure is shown typically and this invention is not limited to the form shown in figure.

(冷媒回路)
図1において、空気調和機100は、互いに冷媒配管によって接続された室外機10と室内機20とを有している。
室外機10には、冷媒を圧縮する運転周波数(以下「圧縮機周波数」と称す)を変更可能な圧縮機1と、冷媒の流れ方向を変更するための四方弁2と、室外空気との間で熱交換する室外熱交換器3と、室外熱交換器3に向けて室外空気を供給する室外ファン4と、冷媒を膨張する膨張弁5とが設けられ、一方、室内機20には、室内空気との間で熱交換する室内熱交換器6と、室内熱交換器6に向けて室内空気を供給する室内ファン7とが設けられている。
(Refrigerant circuit)
In FIG. 1, an air conditioner 100 includes an outdoor unit 10 and an indoor unit 20 that are connected to each other by a refrigerant pipe.
The outdoor unit 10 includes a compressor 1 capable of changing an operating frequency for compressing the refrigerant (hereinafter referred to as “compressor frequency”), a four-way valve 2 for changing the flow direction of the refrigerant, and outdoor air. Are provided with an outdoor heat exchanger 3 for exchanging heat, an outdoor fan 4 for supplying outdoor air toward the outdoor heat exchanger 3, and an expansion valve 5 for expanding the refrigerant. An indoor heat exchanger 6 that exchanges heat with the air and an indoor fan 7 that supplies indoor air toward the indoor heat exchanger 6 are provided.

そして、室内を冷房する場合には、圧縮機1から吐出された冷媒は、四方弁2、室外熱交換器3、膨張弁5、室内熱交換器6の順に流れ、再度四方弁2を経由して圧縮機1に戻る冷媒回路が形成され、冷凍サイクルが実行される。
一方、室内を暖房する場合には、圧縮機1から吐出された冷媒は、四方弁2、室内熱交換器6、膨張弁5、室外熱交換器3の順に流れ、再度四方弁2を経由して圧縮機1に戻る冷媒回路が形成され、冷凍サイクルが実行される。
When the room is cooled, the refrigerant discharged from the compressor 1 flows in the order of the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 5, and the indoor heat exchanger 6, and again passes through the four-way valve 2. Thus, a refrigerant circuit returning to the compressor 1 is formed, and the refrigeration cycle is executed.
On the other hand, when heating the room, the refrigerant discharged from the compressor 1 flows in the order of the four-way valve 2, the indoor heat exchanger 6, the expansion valve 5, and the outdoor heat exchanger 3, and again passes through the four-way valve 2. Thus, a refrigerant circuit returning to the compressor 1 is formed, and the refrigeration cycle is executed.

(室内機)
図2において、室内機20は、室内90の天井91に形成された据付用凹部92に据え付けられた「天井埋め込み型」であって、下面22が開口した矩形状の筐体21を具備し、筐体21の天面23の中央に室内ファンモータ7aが設置され、室内ファンモータ7aに室内ファン翼7bが固定され、室内ファンモータ7aおよび室内ファン翼7bが室内ファン7を構成している。
そして、室内ファン翼7bを包囲するように室内熱交換器6が配置されている。このとき、室内熱交換器6は4つの部分に分けられ、かかる部分は、それぞれ筐体21の側面24(4面)に平行に配置され、側面24との間に風路25(4個所)が形成されている。
(Indoor unit)
In FIG. 2, the indoor unit 20 is a “ceiling embedded type” installed in an installation recess 92 formed in the ceiling 91 of the room 90, and includes a rectangular casing 21 having an open lower surface 22. The indoor fan motor 7 a is installed at the center of the top surface 23 of the housing 21, the indoor fan blade 7 b is fixed to the indoor fan motor 7 a, and the indoor fan motor 7 a and the indoor fan blade 7 b constitute the indoor fan 7.
And the indoor heat exchanger 6 is arrange | positioned so that the indoor fan blade | wing blade 7b may be surrounded. At this time, the indoor heat exchanger 6 is divided into four parts, each of which is arranged in parallel to the side surface 24 (four surfaces) of the housing 21, and the air passage 25 (four locations) between the side surface 24. Is formed.

したがって、室内ファン7によって、開口した下面22から吸引された室内空気は、室内熱交換器6を通過した後、風路25を経由して、開口した下面22の側面24の近い範囲から室内90に吹き出される。
なお、開口した下面22には、矩形板状の化粧パネル26が着脱自在に設置され、化粧パネル26の側縁に沿って、風路25に対応した位置に、吹出口29が形成され、吹出口29に包囲された形で、中央範囲に吸込口27が形成されている。また、吸込口27と室内ファン翼7bとの間には、室内空気を効率的に室内ファン翼7bに案内するラッパ状(朝顔状)のシュラウド28が配置されている。
Accordingly, the indoor air sucked from the opened lower surface 22 by the indoor fan 7 passes through the indoor heat exchanger 6, and then passes through the air passage 25 to the indoor 90 from a range near the side surface 24 of the opened lower surface 22. Is blown out.
In addition, a rectangular plate-shaped decorative panel 26 is detachably installed on the opened lower surface 22, and an air outlet 29 is formed at a position corresponding to the air passage 25 along the side edge of the decorative panel 26. A suction port 27 is formed in the central area in a form surrounded by the outlet 29. Further, a trumpet (morning glory) shroud 28 for efficiently guiding indoor air to the indoor fan blade 7b is disposed between the suction port 27 and the indoor fan blade 7b.

(センサー)
さらに、シュラウド28には、吸い込んだ室内空気の温度を検出する室内吸い込み空気温度センサー(以下「空気温度センサー」と称す)31と、吸い込んだ室内空気の湿度を検出する室内吸い込み空気湿度センサー(以下「空気湿度センサー」と称す)32とが設置され、室内熱交換器6には、室内熱交換器6の温度を検出する室内熱交換器温度センサー(以下「熱交換器温度センサー」と称す)33が設置されている。
そして、空気温度センサー31、空気湿度センサー32、および熱交換器温度センサー33の検出結果に基づいて、室内ファン7の毎分回転数や圧縮機1の回転周波数を制御する制御装置30が、室内機20に設置されている。
なお、空気温度センサー31および空気湿度センサー32の設置は、吸い込んだ室内空気の温度および湿度を検出することができる位置であれば、何れの位置であってもよい。
また、制御装置30を室外機10に設置してもよい。
(sensor)
Further, the shroud 28 includes an indoor intake air temperature sensor (hereinafter referred to as “air temperature sensor”) 31 that detects the temperature of the intake indoor air, and an indoor intake air humidity sensor (hereinafter referred to as “air temperature sensor”) that detects the humidity of the intake indoor air. The indoor heat exchanger 6 detects the temperature of the indoor heat exchanger 6 (hereinafter referred to as “heat exchanger temperature sensor”). 33 is installed.
Based on the detection results of the air temperature sensor 31, the air humidity sensor 32, and the heat exchanger temperature sensor 33, the control device 30 that controls the number of revolutions per minute of the indoor fan 7 and the rotation frequency of the compressor 1 It is installed in the machine 20.
The air temperature sensor 31 and the air humidity sensor 32 may be installed at any position as long as the temperature and humidity of the sucked indoor air can be detected.
Further, the control device 30 may be installed in the outdoor unit 10.

(制御装置)
制御装置30は、空気温度センサー31、空気湿度センサー32、および熱交換器温度センサー33の検出結果に基づいて、室内ファン7の毎分回転数Nfや圧縮機1の圧縮機周波数Hzを制御するものであって、下記制御フローに示す各ステップを実行するための手段(空気温度差ΔTの演算手段、空気温度差ΔTとサーモ閾値T1との比較手段、圧縮機周波数Hzの決定手段、圧縮機1への回転または停止の指令手段、室内ファン7の毎分回転数Nfの決定手段、空気温度差ΔTとファン閾値T2との比較手段、空気湿度Hinと乾湿閾値H1との比較手段、過冷却温度ΔTedpの演算手段、過冷却温度ΔTedpと過冷却閾値T4との比較手段、室内ファン7の停止時間と再回転時間との比較手段、空気温度差ΔTと乾燥サーモ閾値T5との比較手段)を有している。
(Control device)
The control device 30 controls the rotational speed Nf of the indoor fan 7 and the compressor frequency Hz of the compressor 1 based on the detection results of the air temperature sensor 31, the air humidity sensor 32, and the heat exchanger temperature sensor 33. Means for executing the steps shown in the following control flow (calculating means for air temperature difference ΔT, comparing means for comparing air temperature difference ΔT with thermothreshold T1, determining means for compressor frequency Hz, compressor Instruction means for rotation to 1 or stop, means for determining the rotation speed Nf of the indoor fan 7, means for comparing the air temperature difference ΔT and the fan threshold T2, means for comparing the air humidity Hin and the dry / humidity threshold H1, supercooling Means for calculating the temperature ΔTedp, means for comparing the supercooling temperature ΔTedp and the supercooling threshold T4, means for comparing the stop time and the re-rotation time of the indoor fan 7, the air temperature difference ΔT and the drying thermothreshold T5 And a comparison means).

(制御フロー)
図4および図5は本発明の実施の形態1に係る空気調和機を説明する制御フローを示すフローチャートである。
図4および図5を用いて、空気調和機100が冷房運転(室内熱交換器6に冷熱を供給して室内90を冷却する)を行う際の、制御フロー(動作)について説明する。
空気調和機100に電源が投入(ON)されると(S1)、空気温度センサー31は室内吸い込み空気温度(以下「空気温度」と称す)Tinの検出を、空気湿度センサー32は室内吸い込み相対湿度(以下「空気湿度」と称す)Hinの検出を、熱交換器温度センサー33は室内熱交換器6の温度(以下「熱交換器温度Te」と称す)の検出を、それぞれ開始する(S2)。
(Control flow)
4 and 5 are flowcharts showing a control flow for explaining the air conditioner according to Embodiment 1 of the present invention.
A control flow (operation) when the air conditioner 100 performs the cooling operation (cooling is supplied to the indoor heat exchanger 6 to cool the room 90) will be described with reference to FIGS. 4 and 5.
When the air conditioner 100 is turned on (S1) (S1), the air temperature sensor 31 detects the indoor intake air temperature (hereinafter referred to as “air temperature”) Tin, and the air humidity sensor 32 detects the indoor intake relative humidity. The detection of Hin (hereinafter referred to as “air humidity”) and the heat exchanger temperature sensor 33 respectively start detection of the temperature of the indoor heat exchanger 6 (hereinafter referred to as “heat exchanger temperature Te”) (S2). .

(サーモOFF)
そこで、空気温度Tinと設定されている温度(以下「設定温度」と称す)Tsetとの空気温度差ΔTを求め(S3)、空気温度差ΔTと予め定めたサーモ閾値T1(例えば、1.5℃)との大小を比較する(S4)。
そして、空気温度差ΔTがサーモ閾値T1以下のとき、すなわち、空気温度Tinが設定温度Tsetに到達し、調和空気の吹出を必要としない場合、圧縮機1を停止(OFF)したままにし(S5)、図示しないリモコン等によって、運転停止を指令する停止釦が押されない限り(S6)、空気温度Tin、空気湿度Hinおよび熱交換器温度Teを検出するステップ(S2)に戻り、それ以降のステップを実行する。一方、停止釦が押されたときは、空気調和機100の運転を停止する(END)。なお、圧縮機1を停止(OFF)することを「サーモOFF」と称す。
(Thermo OFF)
Therefore, an air temperature difference ΔT between the air temperature Tin and a set temperature (hereinafter referred to as “set temperature”) Tset is obtained (S3), and the air temperature difference ΔT and a predetermined thermothreshold T1 (for example, 1.5 (S4).
When the air temperature difference ΔT is equal to or smaller than the thermothreshold value T1, that is, when the air temperature Tin reaches the set temperature Tset and it is not necessary to blow out conditioned air, the compressor 1 is kept stopped (OFF) (S5). ) Unless the stop button for commanding the operation stop is pressed by a remote controller (not shown), the process returns to the step (S2) for detecting the air temperature Tin, the air humidity Hin and the heat exchanger temperature Te, and the subsequent steps. Execute. On the other hand, when the stop button is pressed, the operation of the air conditioner 100 is stopped (END). Note that stopping (OFF) the compressor 1 is referred to as “thermo OFF”.

(サーモON)
一方、空気温度差ΔTがサーモ閾値T1を超えるとき、すなわち、空気温度Tinが設定温度Tsetに到達していない場合、圧縮機1を駆動する電力の周波数(以下「圧縮機周波数Hz」と称す)を、空気温度差ΔTの大きさに応じて決定し(S7)、当該決定された圧縮機周波数Hzで圧縮機1を回転(ON)する(S8)。なお、圧縮機1を起動(ON)することを「サーモON」と称す。
すなわち、圧縮機1を起動(ON)した場合には、圧縮機周波数Hzを制御するインバータ制御を実施して、空気温度差ΔTが大きい場合には、圧縮機周波数Hzを大きくして空調能力を大きくし、反対に、空気温度差ΔTが小さい場合には、圧縮機周波数Hzを小さくして空調能力を小さくしている(図6参照)。
(Thermo ON)
On the other hand, when the air temperature difference ΔT exceeds the thermothreshold value T1, that is, when the air temperature Tin has not reached the set temperature Tset, the frequency of power for driving the compressor 1 (hereinafter referred to as “compressor frequency Hz”). Is determined according to the magnitude of the air temperature difference ΔT (S7), and the compressor 1 is rotated (ON) at the determined compressor frequency Hz (S8). Note that starting (ON) the compressor 1 is referred to as “thermo ON”.
That is, when the compressor 1 is started (ON), inverter control for controlling the compressor frequency Hz is performed. When the air temperature difference ΔT is large, the compressor frequency Hz is increased to increase the air conditioning capacity. On the contrary, when the air temperature difference ΔT is small, the compressor frequency Hz is reduced to reduce the air conditioning capacity (see FIG. 6).

(湿度判定:高湿度の場合)
そこで、空気湿度Hinが高湿度(例えば、78%)を超えているか否かを判定する(S9)。
そして、高湿度であると判定された場合には、室内ファン7の毎分回転数Nfを、空気湿度Hinと熱交換器温度Teとの関係から予め定められた毎分回転数Nf(図7参照)に決定し(S10)、当該決定された毎分回転数Nfで室内ファンモータ7aを回転する(S11)。そして、図示しないリモコン等によって、運転停止を指令する停止釦が押されない限り(S12)、空気温度Tin、空気湿度Hinおよび熱交換器温度Teを検出するステップ(S2)に戻り、それ以降のステップを実行する。一方、停止釦が押されたときは、空気調和機100の運転を停止する(END)。
(Humidity judgment: high humidity)
Therefore, it is determined whether or not the air humidity Hin exceeds high humidity (for example, 78%) (S9).
When it is determined that the humidity is high, the rotation speed Nf of the indoor fan 7 per minute is determined from the relationship between the air humidity Hin and the heat exchanger temperature Te and the rotation speed Nf per minute (see FIG. 7). (S10), and the indoor fan motor 7a is rotated at the determined rotation speed Nf per minute (S11). Then, unless a stop button for commanding operation stop is pressed by a remote controller (not shown) (S12), the process returns to the step (S2) for detecting the air temperature Tin, the air humidity Hin and the heat exchanger temperature Te, and the subsequent steps. Execute. On the other hand, when the stop button is pressed, the operation of the air conditioner 100 is stopped (END).

(湿度判定:低湿度の場合)
一方、低湿度であると判定された場合には、室内ファン7の毎分回転数Nfを、空気湿度Hinと熱交換器温度Teとの関係から予め定められた毎分回転数Nf(図6参照)に決定し(S13)、当該決定された毎分回転数Nfで室内ファンモータ7aを回転する(S14)。
そこで、空気温度Tin、空気湿度Hinおよび熱交換器温度Teを検出し(S15)、空気温度差ΔT(ΔT=Tin−Tset)を求める(S16)。
(Humidity judgment: low humidity)
On the other hand, when it is determined that the humidity is low, the number of revolutions Nf of the indoor fan 7 is determined as the number of revolutions Nf per minute determined in advance from the relationship between the air humidity Hin and the heat exchanger temperature Te (FIG. 6). (S13), and the indoor fan motor 7a is rotated at the determined rotation speed Nf per minute (S14).
Therefore, the air temperature Tin, the air humidity Hin, and the heat exchanger temperature Te are detected (S15), and the air temperature difference ΔT (ΔT = Tin−Tset) is obtained (S16).

(室内ファンの停止)
次に、空気温度差ΔTが予め定めたファン閾値T2(例えば、1.0℃)を超え(ΔT>1.0℃)、熱交換器温度Teが予め定めた寒暖閾値T3(例えば、1.0℃)を超えて比較的暖かく(例えば、Te>8℃)、さらに空気湿度Hinが予め定めた乾湿閾値H1(例えば、68%)未満で比較的乾燥している(例えば、Hin<68%)場合には(S17)、室内ファン7を停止する(S18)。
一方、前記条件(「ΔT>T2」かつ「Te>T3」かつ「Hin<H1」)を満たさない場合、室内ファン7の回転を継続して、空気温度Tin、空気湿度Hinおよび熱交換器温度Teを検出するステップ(S13)に戻り、それ以降のステップを実行する。
(Indoor fan stop)
Next, the air temperature difference ΔT exceeds a predetermined fan threshold T2 (eg, 1.0 ° C.) (ΔT> 1.0 ° C.), and the heat exchanger temperature Te is a predetermined cooling / heating threshold T3 (eg, 1.. 0 ° C.) and relatively warm (eg, Te> 8 ° C.), and the air humidity Hin is relatively dry (eg, Hin <68%) when the air humidity Hin is less than a predetermined wet / dry threshold H1 (eg, 68%). ) (S17), the indoor fan 7 is stopped (S18).
On the other hand, if the conditions (“ΔT> T2” and “Te> T3” and “Hin <H1”) are not satisfied, the indoor fan 7 continues to rotate, and the air temperature Tin, the air humidity Hin, and the heat exchanger temperature Returning to the step of detecting Te (S13), the subsequent steps are executed.

(室内ファンの再回転)
さらに、室内ファン7を停止したところで(S18)、空気温度Tin、空気湿度Hinおよび熱交換器温度Teを検出し(S19)、吸い込んだ室内空気の露点温度Tdp、および熱交換器温度Teと露点温度Tdpとの差(以下「過冷却温度」と称す)ΔTedp(ΔTedp=Te−Tdp)を演算する(S20)。なお、露点温度Tdpは、空気線図から得られる近似式によって計算しても良いし、例えば、図8に示すようなテーブル(空気温度(乾球温度)Tinおよび空気湿度(相対湿度)Hinに対して整理されている)によって判定しても良い。
(Re-rotation of indoor fan)
Further, when the indoor fan 7 is stopped (S18), the air temperature Tin, the air humidity Hin and the heat exchanger temperature Te are detected (S19), and the dew point Tdp, the heat exchanger temperature Te and the dew point of the sucked indoor air are detected. A difference (hereinafter referred to as “supercooling temperature”) ΔTedp (ΔTedp = Te−Tdp) from the temperature Tdp is calculated (S20). The dew point temperature Tdp may be calculated by an approximate expression obtained from an air diagram. For example, a table (air temperature (dry bulb temperature) Tin and air humidity (relative humidity) Hin as shown in FIG. 8) may be used. It is also possible to make a determination based on the above.

そこで、過冷却温度ΔTedpが予め定めた過冷却閾値T4(例えば、−3.0℃)未満、あるいは、室内ファン7の停止(S18)から、予め定めた再回転時間(例えば、30秒)を経過した場合(S21)、室内熱交換器6の凍結を防止する目的で、室内ファン7を再度回転する(S22)。
そして、空気温度Tinを検出して(S23)、空気温度差ΔTを求め(S24)、空気温度差ΔTと予め定めた乾燥サーモ閾値T5(例えば、−0.5℃)との大小を比較する(S25)。
Therefore, when the supercooling temperature ΔTedp is less than a predetermined supercooling threshold T4 (for example, −3.0 ° C.) or when the indoor fan 7 is stopped (S18), a predetermined re-rotation time (for example, 30 seconds) is set. When the time has elapsed (S21), the indoor fan 7 is rotated again for the purpose of preventing the indoor heat exchanger 6 from freezing (S22).
And air temperature Tin is detected (S23), air temperature difference (DELTA) T is calculated | required (S24), and the magnitude of air temperature difference (DELTA) T and predetermined dry thermothreshold T5 (for example, -0.5 degreeC) is compared. (S25).

そこで、空気温度差ΔTが乾燥サーモ閾値T5以下のとき、すなわち、空気温度Tinが設定温度Tsetよりも低温になった場合、圧縮機1を停止(OFF)する(S26)。そして、停止釦が押されない限り、空気温度Tin、空気湿度Hinおよび熱交換器温度Teを検出するステップ(S2)に戻り、それ以降のステップを実行する。
一方、空気温度差ΔTが乾燥サーモ閾値T5超えのとき、すなわち、空気温度Tinが設定温度Tsetに到達したか、僅かに設定温度Tsetより低い場合、室内ファン7の毎分回転数Nfを、空気湿度Hinと熱交換器温度Teとの関係から予め定められた毎分回転数Nf(図6参照)に決定するステップ(S13)に戻り、それ以降のステップを実行する。
Therefore, when the air temperature difference ΔT is equal to or smaller than the dry thermothreshold T5, that is, when the air temperature Tin becomes lower than the set temperature Tset, the compressor 1 is stopped (OFF) (S26). Then, unless the stop button is pressed, the process returns to the step (S2) of detecting the air temperature Tin, the air humidity Hin and the heat exchanger temperature Te, and the subsequent steps are executed.
On the other hand, when the air temperature difference ΔT exceeds the drying thermothreshold value T5, that is, when the air temperature Tin has reached the set temperature Tset or slightly lower than the set temperature Tset, the rotational speed Nf of the indoor fan 7 per minute Returning to the step (S13) of determining the number of revolutions per minute Nf (see FIG. 6) from the relationship between the humidity Hin and the heat exchanger temperature Te, the subsequent steps are executed.

(圧縮機周波数)
図6〜図8は本発明の実施の形態1に係る空気調和機を説明するものであって、図6は空気温度差から決まる圧縮機周波数の値を示すテーブル、図7は空気湿度と熱交換器温度とから決まる室内ファンの毎分回転数Nfの値(指数)を示すテーブル、図8は相対湿度と吸込み乾球温度とから決まる露点温度を示すテーブルである。
図6において、空気温度差ΔTが大きいほど、毎分回転数Nfを大きくし、室内空気の冷房を促進している。そして、空気温度差ΔTが乾燥サーモ閾値T5(例えば、−0.5)になったところで、圧縮機1を停止している。
(Compressor frequency)
6 to 8 illustrate the air conditioner according to Embodiment 1 of the present invention. FIG. 6 is a table showing compressor frequency values determined from the air temperature difference, and FIG. 7 is air humidity and heat. FIG. 8 is a table showing the dew point temperature determined by the relative humidity and the suction dry bulb temperature. The table shows the value (index) of the number of revolutions Nf of the indoor fan determined by the exchanger temperature.
In FIG. 6, the greater the air temperature difference ΔT, the greater the number of revolutions Nf per minute, thereby promoting the cooling of room air. The compressor 1 is stopped when the air temperature difference ΔT reaches the dry thermothreshold T5 (for example, −0.5).

(毎分回転数)
図7において、熱交換器温度Teが最も低温で、空気湿度Hinが最も高湿度の場合の、室内ファン7の毎分回転数Nfを「100」と、熱交換器温度Teを4水準に区分し、かつ、熱交換器温度Teを5水準に区分して、それぞれの区分における室内ファン7の毎分回転数Nfを前記「100」に対する指数によって表示している。
すなわち、高湿度であると判定された場合(78%<Hin)、低湿度であると判定された(Hin≦78%)場合に比較して、室内ファン7の毎分回転数Nfは大きくなり、空気湿度Hinが高くなるほど、室内ファン7の略段階的に大きくなっている。また、同じ空気湿度Hinにおいては、熱交換器温度Teが低い程、室内ファン7の毎分回転数Nfは大きくなっている。
ここで、空気湿度Hinの乾湿閾値H1は、試験により結露しないような湿度と風量の関係を把握してテーブル(図6)を作成している。また、熱交換器温度Teの閾値は、下限側は、室内熱交換器6が凍結しないように「0℃」に余裕を持たせた「4℃」を下限とするようにして、可能な限り潜熱能力を確保するべく室内熱交換器6の温度を下げる方向で設定している。
(Number of revolutions per minute)
In FIG. 7, when the heat exchanger temperature Te is the lowest and the air humidity Hin is the highest, the indoor fan 7 has a rotation speed Nf of “100” and the heat exchanger temperature Te is divided into four levels. In addition, the heat exchanger temperature Te is divided into five levels, and the number of revolutions Nf of the indoor fan 7 in each of the divisions is indicated by an index with respect to “100”.
That is, when it is determined that the humidity is high (78% <Hin), compared with the case where the humidity is determined to be low (Hin ≦ 78%), the rotational speed Nf of the indoor fan 7 is increased. As the air humidity Hin increases, the indoor fan 7 increases in a stepwise manner. Further, at the same air humidity Hin, the lower the heat exchanger temperature Te, the higher the rotational speed Nf of the indoor fan 7 per minute.
Here, the dry humidity threshold H1 of the air humidity Hin is created as a table (FIG. 6) by grasping the relationship between the humidity and the air volume so that no condensation occurs in the test. Further, the lower limit of the threshold value of the heat exchanger temperature Te is set to a lower limit of “4 ° C.” with a margin of “0 ° C.” so that the indoor heat exchanger 6 does not freeze. In order to ensure the latent heat capability, the temperature of the indoor heat exchanger 6 is set to decrease.

(露点温度)
図8は、数式に代えて、相対湿度と吸込み乾球温度とから決まる露点温度の値をテーブルで示したものであって、相対湿度(空気湿度Hinに相違等する)が高く(高湿)なる程、また、吸込み乾球温度(空気温度Tinに相違)が高く(高温)なるほど、露点温度(Tdp)の値が高くなっている。
(Dew point temperature)
FIG. 8 shows a table of dew point temperature values determined from the relative humidity and the suction dry bulb temperature instead of the mathematical expression, and the relative humidity (differing in air humidity Hin or the like) is high (high humidity). The dew point temperature (Tdp) is higher as the suction dry bulb temperature (differed in the air temperature Tin) is higher (higher temperature).

(作用効果)
空気調和機100は、「T>1.0℃」かつ「Te>8℃」かつ「Hin<68%」を満足する場合に、室内ファン7を停止している(S18)のは、低湿度かつ室内熱交換器6の凍結のおそれが無く、空気温度差ΔT(空気温度Tinと設定温度Tsetの差)が小さい場合に、さらに顕熱能力を落として除湿を行なうために、圧縮機1の運転を継続しながら、室内ファン7を停止することで、熱交換器温度Teをさらに下げている。すなわち、室内ファン7が停止している時には、室内熱交換器6において、吸込み空気との間で熱交換しないため、除湿できないが、室内ファン7を運転する際に熱交換器温度Teが下がっているため、小さな風量でも潜熱能力を確保することができる。
(Function and effect)
When the air conditioner 100 satisfies “T> 1.0 ° C.”, “Te> 8 ° C.”, and “Hin <68%”, the indoor fan 7 is stopped (S18) because of low humidity. In addition, when there is no fear of freezing the indoor heat exchanger 6 and the air temperature difference ΔT (difference between the air temperature Tin and the set temperature Tset) is small, in order to further reduce the sensible heat capacity and perform dehumidification, The heat exchanger temperature Te is further lowered by stopping the indoor fan 7 while continuing the operation. That is, when the indoor fan 7 is stopped, the indoor heat exchanger 6 does not exchange heat with the intake air, and thus cannot be dehumidified. However, when the indoor fan 7 is operated, the heat exchanger temperature Te decreases. Therefore, latent heat capability can be secured even with a small air volume.

さらに、一旦、停止した室内ファン7を再度回転させている(S22)のは、熱交換器温度Teが露点温度Tdpより小さく(より低温に)保つことで、室内空調負荷が小さい時でも潜熱能力を確保することが可能となり、さらに、時間条件も設けることで、万が一、熱交換器温度センサー33が故障していた場合であっても、室内熱交換器6が凍結することを防止することができる。   Further, the stopped indoor fan 7 is rotated again (S22) because the heat exchanger temperature Te is kept lower (lower temperature) than the dew point temperature Tdp, so that the latent heat capacity can be maintained even when the indoor air conditioning load is small. In addition, by providing a time condition, it is possible to prevent the indoor heat exchanger 6 from freezing even if the heat exchanger temperature sensor 33 is out of order. it can.

以上のように、空気調和機100は、空気温度Tin、空気湿度Hinおよび熱交換器温度Teを検知して、これらに基づいて圧縮機周波数および室内ファン7の毎分回転数を制御するようにしているので、室内負荷が小さい時にでも潜熱能力を確保することができ、さらに、露点温度Tdpを求めて、露点温度Tdpと熱交換器温度Teとを比較することによって室内ファン7を再回転しているから、結露防止や熱交換器の凍結のおそれを防止を図ることができる。   As described above, the air conditioner 100 detects the air temperature Tin, the air humidity Hin, and the heat exchanger temperature Te, and controls the compressor frequency and the number of revolutions per minute of the indoor fan 7 based on these. Therefore, the latent heat capability can be secured even when the indoor load is small, and the indoor fan 7 is re-rotated by obtaining the dew point temperature Tdp and comparing the dew point temperature Tdp with the heat exchanger temperature Te. Therefore, it is possible to prevent condensation and prevent the heat exchanger from freezing.

[実施の形態2]
図9は本発明の実施の形態2に係る空気調和機を説明する一部(室内機)を示す側面視の断面図である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。また、図9は模式的に示すものであって、本発明は図示された形態に限定されるものではない。
図9において、空気調和機200の室内機220には、実施の形態1における室内機20の化粧パネル26に、室内90の床面(図示しない)の温度を検知する床温度センサー34が備えたものである。
[Embodiment 2]
FIG. 9 is a side sectional view showing a part (indoor unit) for explaining an air conditioner according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 1, or an equivalent part, and one part description is abbreviate | omitted. Further, FIG. 9 is schematically shown, and the present invention is not limited to the illustrated form.
In FIG. 9, the indoor unit 220 of the air conditioner 200 includes a floor temperature sensor 34 that detects the temperature of the floor surface (not shown) of the indoor 90 on the decorative panel 26 of the indoor unit 20 in the first embodiment. Is.

(床温度センサー)
床温度センサー34は、床面から発する赤外線を検知して、非接触で床面の温度(以下「床温度Tf」と称す)を検出するサーモパイル形であるが、本発明は、その型式や形状等を限定するものではない。
(Floor temperature sensor)
The floor temperature sensor 34 is a thermopile type that detects infrared rays emitted from the floor surface, and detects the temperature of the floor surface (hereinafter referred to as “floor temperature Tf”) in a non-contact manner. It does not limit etc.

(体感温度)
ところで、人体が感じる体感温度には、周囲の空気温度に加え、空気の湿度や、床面ないし壁面から得られる輻射温度が大きく影響する。このため、空気調和機200は、空気調和機(実施の形態1)100の制御装置30が、空気温度Tin等に基づいて制御をしていたのに対し、空気調和機(実施の形態2)200の制御装置30は、空気温度Tinに代えて、体感温度Taを用いるものである。
すなわち、体感温度Taは、空気温度Tin、空気湿度Hin、床温度Tfの函数である式「Ta=Tin+α×(Hin−60)+β×(Tf−Tin)」で求められる。
このとき、αは空気湿度Hinを考慮する際の補正係数(デメンションは[℃/%])で、βは、空気温度Tinおよび床温度Tfを考慮する際の補正係数であり、試験により快適性指標から考慮した0から1の値を入れる(0<α<1.0、0<β<1.0)。
(Experience temperature)
By the way, in addition to the ambient air temperature, the air temperature and the radiation temperature obtained from the floor surface or wall surface greatly affect the sensible temperature felt by the human body. For this reason, the air conditioner 200 is controlled by the control device 30 of the air conditioner (Embodiment 1) 100 based on the air temperature Tin or the like, whereas the air conditioner (Embodiment 2). The control device 30 of 200 uses a sensible temperature Ta instead of the air temperature Tin.
That is, the sensation temperature Ta is obtained by an expression “Ta = Tin + α × (Hin−60) + β × (Tf−Tin)”, which is a function of the air temperature Tin, the air humidity Hin, and the floor temperature Tf.
In this case, α is a correction coefficient (dimension is [° C./%]) when considering the air humidity Hin, and β is a correction coefficient when considering the air temperature Tin and the floor temperature Tf. A value from 0 to 1 considered from the index is entered (0 <α <1.0, 0 <β <1.0).

例えば、αが0.003[℃/%]で、βが0.25であるとして、具体的な数値を用いて効果を説明する。Tin=26℃、Hin=50%、Tf=25℃のとき、Ta=25.45℃となる。これは空気湿度Hinが低く、輻射温度(床温度Tf)が低い場合、周囲の空気温度Tinよりも体感温度Taは低く感じるように補正を加えた結果となっている。すなわち、この場合、体感温度Taを用いることによって空気温度差ΔTは、空気温度Tinを用いる場合よりも小さくなる((Ta−Tset)<(Tin−Tset))。
したがって、このように補正された体感温度Taを、空気調和機100における空気温度Tinの代わりに用いることで、前述の通り、圧縮機1の圧縮機周波数Hzは、低めの温度で制御することにより、圧縮機1の運転時間を短く、または圧縮機周波数を小さくすることができるため、省エネの運転が可能となる。
For example, assuming that α is 0.003 [° C./%] and β is 0.25, the effect will be described using specific numerical values. Ta = 25.45 ° C. when Tin = 26 ° C., Hin = 50%, and Tf = 25 ° C. This is a result of correction so that when the air humidity Hin is low and the radiation temperature (floor temperature Tf) is low, the sensory temperature Ta is felt lower than the ambient air temperature Tin. That is, in this case, by using the sensible temperature Ta, the air temperature difference ΔT becomes smaller than when the air temperature Tin is used ((Ta−Tset) <(Tin−Tset)).
Therefore, by using the sensory temperature Ta corrected in this way instead of the air temperature Tin in the air conditioner 100, as described above, the compressor frequency Hz of the compressor 1 is controlled at a lower temperature. Since the operation time of the compressor 1 can be shortened or the compressor frequency can be reduced, energy-saving operation can be performed.

反対に、αが0.003[℃/%]で、βが0.25であるとして、Tin=26℃,Hin=70%,Tf=27℃のとき、体感温度Taは26.55℃となる。空気湿度Hinが高くなる。すなわち、この場合、体感温度Taを用いることによって空気温度差ΔTは、空気温度Tinを用いる場合よりも大きくなる((Ta−Tset)>(Tin−Tset))。
したがって、空気湿度Hinが高く、床温度Tfも高いため、実際の空気温度Tinよりも不快に感じるために、体感温度Taは空気温度Tinよりも高く補正している。この体感温度Taに基づいて制御することにより、より快適な運転が可能となる。
Conversely, when α is 0.003 [° C./%] and β is 0.25, when Tin = 26 ° C., Hin = 70%, Tf = 27 ° C., the sensory temperature Ta is 26.55 ° C. Become. Air humidity Hin becomes high. That is, in this case, the air temperature difference ΔT becomes larger by using the sensible temperature Ta than when the air temperature Tin is used ((Ta−Tset)> (Tin−Tset)).
Therefore, since the air humidity Hin is high and the floor temperature Tf is also high, the sensory temperature Ta is corrected to be higher than the air temperature Tin in order to feel uncomfortable than the actual air temperature Tin. By controlling based on the sensible temperature Ta, more comfortable driving is possible.

(制御装置)
空気調和機200の制御装置30は、空気調和機100の制御装置30(図3参照)に床温度センサー34を接続し、体感温度Taの演算手段と、空気温度Tinの体感温度Taへの置き換え手段とを具備するものに同じであるから、図示を省略する。
(Control device)
The control device 30 of the air conditioner 200 connects the floor temperature sensor 34 to the control device 30 (see FIG. 3) of the air conditioner 100, and replaces the sensory temperature Ta with the means for calculating the sensory temperature Ta and the sensory temperature Ta of the air temperature Tin. Since it is the same as what comprises a means, illustration is abbreviate | omitted.

1 圧縮機、2 四方弁、3 室外熱交換器、4 室外ファン、5 膨張弁、6 室内熱交換器、7 室内ファン、7a 室内ファンモータ、7b 室内ファン翼、10 室外機、20 室内機、21 筐体、22 下面、23 天面、24 側面、25 風路、26 化粧パネル、27 吸込口、28 シュラウド、29 吹出口、30 制御装置、31 空気温度センサー、32 空気湿度センサー、33 熱交換器温度センサー、34 床温度センサー、90 室内、91 天井、92 据付用凹部、100 空気調和機(実施の形態1)、200 空気調和機(実施の形態2)、220 室内機(実施の形態2)。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Outdoor heat exchanger, 4 Outdoor fan, 5 Expansion valve, 6 Indoor heat exchanger, 7 Indoor fan, 7a Indoor fan motor, 7b Indoor fan blade, 10 Outdoor unit, 20 Indoor unit, 21 Housing, 22 Lower surface, 23 Top surface, 24 Side surface, 25 Air channel, 26 Cosmetic panel, 27 Suction port, 28 Shroud, 29 Air outlet, 30 Control device, 31 Air temperature sensor, 32 Air humidity sensor, 33 Heat exchange Temperature sensor, 34 floor temperature sensor, 90 indoors, 91 ceiling, 92 installation recess, 100 air conditioner (Embodiment 1), 200 air conditioner (Embodiment 2), 220 indoor unit (Embodiment 2) ).

Claims (2)

冷媒を圧縮する圧縮機周波数を変更可能な圧縮機、室外空気との間で熱交換する室外熱交換器、および冷媒を膨張する膨張弁が設けられた室外機と、
室内に設置され、室内空気との間で熱交換する室内熱交換器、室内熱交換器に向けて室内空気を供給する室内ファン、室内からの吸い込んだ室内空気の温度を検出する室内吸い込み空気温度センサー、室内からの吸い込んだ室内空気の湿度を検出する室内吸い込み空気湿度センサー、前記室内熱交換器の温度を検出する熱交換器温度センサー、および少なくとも前記圧縮機および前記室内ファンを制御する制御装置が設けられた室内機と、を有し、
前記制御装置は、前記室内吸い込み空気湿度センサーが検出した空気温度(Tin)と予め設定された温度である設定温度(Tset)との差である空気温度差(ΔT)が、予め定められた温度であるサーモ閾値(T1)よりも大きいとき、前記室内吸い込み空気湿度センサーが検出した空気湿度(Hin)と前記熱交換器温度センサーが検知した熱交換器温度(Te)との関係から毎分回転数(Nf)を決定し、当該決定された毎分回転数(Nf)で前記室内ファンを回転した冷房運転を行い、
前記冷房運転において、前記空気温度差(ΔT)が、前記サーモ閾値(T1)よりも低温の予め定められた温度であるファン閾値(T2)を超え、前記熱交換器温度センサーが検知した温度である熱交換器温度(Te)が予め定められた温度である寒暖閾値(T3)を超え、かつ、前記空気湿度(Hin)が予め定められた湿度である乾湿閾値(H1)未満であるとき、前記室内ファンを停止し、
さらに、前記室内ファンを停止した後、熱交換器温度(Te)と吸い込んだ室内空気の露点温度(Tdp)との差を過冷却温度(ΔTedp)として、該過冷却温度(ΔTedp)が予め定めた温度である過冷却閾値(T4)未満である場合、または、前記室内ファンを停止してから予め定められた時間である再回転時間が経過している場合、前記室内ファンを再度回転することを特徴とする空気調和機。
A compressor capable of changing the compressor frequency for compressing the refrigerant, an outdoor heat exchanger for exchanging heat with outdoor air, and an outdoor unit provided with an expansion valve for expanding the refrigerant;
Indoor heat exchanger that is installed indoors and exchanges heat with indoor air, indoor fan that supplies indoor air to the indoor heat exchanger, indoor intake air temperature that detects the temperature of the indoor air sucked from the room Sensor, indoor intake air humidity sensor for detecting the humidity of indoor air sucked from the room, heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger, and control device for controlling at least the compressor and the indoor fan And an indoor unit provided with
In the control device, an air temperature difference (ΔT) which is a difference between an air temperature (Tin) detected by the indoor intake air humidity sensor and a preset temperature (Tset) which is a preset temperature is a predetermined temperature. When the temperature is greater than the thermothreshold (T1), the rotation is performed every minute based on the relationship between the air humidity (Hin) detected by the indoor intake air humidity sensor and the heat exchanger temperature (Te) detected by the heat exchanger temperature sensor. A number (Nf) is determined, and the cooling operation is performed by rotating the indoor fan at the determined number of revolutions per minute (Nf).
In the cooling operation, the air temperature difference (ΔT) exceeds a fan threshold (T2) which is a predetermined temperature lower than the thermothreshold (T1), and is a temperature detected by the heat exchanger temperature sensor. When a certain heat exchanger temperature (Te) exceeds a temperature threshold (T3) that is a predetermined temperature, and the air humidity (Hin) is less than a dry / humidity threshold (H1) that is a predetermined humidity, Stop the indoor fan,
Furthermore, after the indoor fan is stopped, the difference between the heat exchanger temperature (Te) and the dew point temperature (Tdp) of the sucked indoor air is defined as the supercooling temperature (ΔTedp), and the supercooling temperature (ΔTedp) is determined in advance. If the temperature is less than the supercooling threshold (T4), or if the re-rotation time, which is a predetermined time after the indoor fan is stopped, has elapsed, the indoor fan is rotated again. Air conditioner characterized by.
前記室内機は、前記室内の床面の温度を検出する床温度センサーを有し、
前記制御装置は、前記床温度センサーが検出した温度である床温度(Tf)と、前記空気温度(Tin)、および前記空気湿度(Hin)に基づいて、
Ta=Tin+α×(Hin−60)+β×(Tf−Tin)、
αは、空気湿度Hinを考慮する際の補正係数(デメンションは[℃/%])、
βは、空気温度Tinおよび床温度Tfを考慮する際の補正係数、
から体感温度(Ta)を求め、
前記空気温度(Tin)に代えて前記体感温度(Ta)に基づいて、前記圧縮機および前記室内ファンを制御することを特徴とする請求項1記載の空気調和機。
The indoor unit has a floor temperature sensor for detecting the temperature of the floor surface in the room,
Based on the floor temperature (Tf), the air temperature (Tin), and the air humidity (Hin), which are temperatures detected by the floor temperature sensor,
Ta = Tin + α × (Hin−60) + β × (Tf−Tin),
α is a correction factor when taking air humidity Hin into consideration (dimension is [° C./%]),
β is a correction coefficient when considering the air temperature Tin and the floor temperature Tf,
From the body temperature (Ta)
The air conditioner according to claim 1, wherein the compressor and the indoor fan are controlled based on the temperature (Ta) instead of the air temperature (Tin).
JP2013124407A 2013-06-13 2013-06-13 Air conditioner Active JP5975937B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013124407A JP5975937B2 (en) 2013-06-13 2013-06-13 Air conditioner
GB1406482.8A GB2516336B (en) 2013-06-13 2014-04-10 Air-conditioning apparatus
CN201410236215.3A CN104236027B (en) 2013-06-13 2014-05-30 Air conditioner
CN201420286678.6U CN203940582U (en) 2013-06-13 2014-05-30 Air conditioner
MX2014007073A MX342141B (en) 2013-06-13 2014-06-12 Air-conditioning apparatus.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013124407A JP5975937B2 (en) 2013-06-13 2013-06-13 Air conditioner

Publications (2)

Publication Number Publication Date
JP2015001310A true JP2015001310A (en) 2015-01-05
JP5975937B2 JP5975937B2 (en) 2016-08-23

Family

ID=50844815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124407A Active JP5975937B2 (en) 2013-06-13 2013-06-13 Air conditioner

Country Status (4)

Country Link
JP (1) JP5975937B2 (en)
CN (2) CN203940582U (en)
GB (1) GB2516336B (en)
MX (1) MX342141B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091237A (en) * 2016-06-01 2016-11-09 广东美的制冷设备有限公司 The anti-condensation progress control method of air-conditioning and device
JP2017083143A (en) * 2015-10-30 2017-05-18 ダイキン工業株式会社 Air conditioner
WO2019058873A1 (en) * 2017-09-25 2019-03-28 ダイキン工業株式会社 Refrigeration device
JP2019163920A (en) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 Air conditioner and air conditioning control method
JP2020532703A (en) * 2017-09-04 2020-11-12 海尓集団公司 Methods, devices, and air conditioners for controlling air conditioners
WO2023062952A1 (en) * 2021-10-15 2023-04-20 パナソニックIpマネジメント株式会社 Spraying system and control device
WO2023098066A1 (en) * 2021-12-02 2023-06-08 青岛海尔空调器有限总公司 Method and apparatus for controlling condensation prevention of air conditioner and air conditioner

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975937B2 (en) * 2013-06-13 2016-08-23 三菱電機株式会社 Air conditioner
CN104501360B (en) * 2014-12-17 2017-06-06 广东美的制冷设备有限公司 Air-conditioner and its dehumidification control method
CN104697116B (en) * 2015-03-06 2018-03-27 美的集团武汉制冷设备有限公司 The control method of air conditioner, the control system of air conditioner and air conditioner
CN104764115B (en) * 2015-03-31 2018-03-20 广东美的暖通设备有限公司 Multiple on-line system
CN104896663B (en) * 2015-05-25 2017-08-04 广东美的制冷设备有限公司 Method of adjustment, adjustment system and the air conditioner of air conditioner air supply mode
CN104949263B (en) * 2015-05-28 2017-10-27 广东美的制冷设备有限公司 Control method, device and the air conditioner of air conditioner
CN105091235A (en) * 2015-08-18 2015-11-25 无锡乐华自动化科技有限公司 Temperature control method utilizing indoor and outdoor temperature difference
CN106765861A (en) * 2015-11-25 2017-05-31 广东美的制冷设备有限公司 Air conditioning control method and device
CN105571069B (en) * 2016-01-04 2019-11-22 广东美的暖通设备有限公司 Air-conditioning indoor fan control method and air-conditioning
CN107143994B (en) * 2016-03-01 2019-12-20 广东美的制冷设备有限公司 Air conditioner condensation prevention control method and air conditioner indoor unit
WO2018042515A1 (en) * 2016-08-30 2018-03-08 三菱電機株式会社 Air conditioning device
JP6387197B1 (en) * 2017-04-28 2018-09-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner
KR20190002790A (en) 2017-06-29 2019-01-09 삼성전자주식회사 Air conditioner and method for control of air conditioner
CN107421061B (en) * 2017-07-06 2020-04-24 青岛海尔空调器有限总公司 Anti-condensation control method and device for air conditioner
KR102420504B1 (en) * 2017-07-12 2022-07-14 삼성전자주식회사 Air conditioner and method for control of air conditioner
JP7026209B2 (en) * 2017-09-04 2022-02-25 海尓集団公司 Methods, devices, and air conditioners for controlling air conditioners
WO2019104789A1 (en) * 2017-11-29 2019-06-06 广东美的制冷设备有限公司 Air conditioner, and control method and apparatus therefor
JP6717798B2 (en) * 2017-12-01 2020-07-08 株式会社Subaru Car charging system
CN109282448B (en) * 2018-09-19 2020-04-14 珠海格力电器股份有限公司 Air conditioner control method and air conditioner capable of not stopping after reaching set temperature
US11002454B2 (en) 2019-07-23 2021-05-11 Lennox Industries Inc. Detection of refrigerant side faults
CN112443946B (en) * 2019-08-29 2022-11-08 大金工业株式会社 Air conditioner and dehumidification control method thereof
CN111706980B (en) * 2020-06-03 2021-07-23 青岛海尔空调器有限总公司 Method and device for anti-condensation control and air conditioner
CN112650315B (en) * 2020-09-09 2021-11-05 江苏振宁半导体研究院有限公司 Temperature control method of temperature controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038357A (en) * 1996-07-19 1998-02-13 Hitachi Ltd Air conditioner
JPH10339500A (en) * 1997-06-09 1998-12-22 Toshiba Corp Air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293236A (en) * 1988-09-30 1990-04-04 Toshiba Corp Air conditioner
JP2909955B2 (en) * 1995-06-27 1999-06-23 ダイキン工業株式会社 Operation control device for air conditioner
JP2000018679A (en) * 1998-07-06 2000-01-18 Matsushita Electric Ind Co Ltd Controller for air conditioner
KR100512278B1 (en) * 2002-09-10 2005-09-02 엘지전자 주식회사 Method for power saving motion for dehumidification of air canditioner
CN101526260B (en) * 2009-04-20 2011-07-20 广东志高空调有限公司 Variable-frequency air-conditioner control method and control device thereof
CN102967027B (en) * 2012-12-14 2015-03-04 四川长虹空调有限公司 Control method for inverter heat pump air conditioner
JP6185251B2 (en) * 2013-02-12 2017-08-23 シャープ株式会社 Air conditioner
JP5975937B2 (en) * 2013-06-13 2016-08-23 三菱電機株式会社 Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038357A (en) * 1996-07-19 1998-02-13 Hitachi Ltd Air conditioner
JPH10339500A (en) * 1997-06-09 1998-12-22 Toshiba Corp Air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083143A (en) * 2015-10-30 2017-05-18 ダイキン工業株式会社 Air conditioner
CN106091237A (en) * 2016-06-01 2016-11-09 广东美的制冷设备有限公司 The anti-condensation progress control method of air-conditioning and device
JP2020532703A (en) * 2017-09-04 2020-11-12 海尓集団公司 Methods, devices, and air conditioners for controlling air conditioners
JP7026210B2 (en) 2017-09-04 2022-02-25 海尓集団公司 Methods, devices, and air conditioners for controlling air conditioners
WO2019058873A1 (en) * 2017-09-25 2019-03-28 ダイキン工業株式会社 Refrigeration device
JP2019060590A (en) * 2017-09-25 2019-04-18 ダイキン工業株式会社 Refrigeration unit
JP2019163920A (en) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 Air conditioner and air conditioning control method
WO2023062952A1 (en) * 2021-10-15 2023-04-20 パナソニックIpマネジメント株式会社 Spraying system and control device
JP7466118B2 (en) 2021-10-15 2024-04-12 パナソニックIpマネジメント株式会社 Spray system and control method
WO2023098066A1 (en) * 2021-12-02 2023-06-08 青岛海尔空调器有限总公司 Method and apparatus for controlling condensation prevention of air conditioner and air conditioner

Also Published As

Publication number Publication date
CN104236027A (en) 2014-12-24
JP5975937B2 (en) 2016-08-23
CN104236027B (en) 2017-01-04
MX2014007073A (en) 2014-12-12
CN203940582U (en) 2014-11-12
MX342141B (en) 2016-09-14
GB2516336A (en) 2015-01-21
GB201406482D0 (en) 2014-05-28
GB2516336B (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5975937B2 (en) Air conditioner
EP3183509B1 (en) Air conditioner and control method thereof
JP6300921B2 (en) Air conditioning ventilator
JP6185251B2 (en) Air conditioner
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
JP7026781B2 (en) Air conditioning system
JP2008175490A (en) Air conditioner
JP2011127802A (en) Air conditioner
JP6956594B2 (en) Air conditioner
JP2010091209A (en) Air conditioner
JP2010096383A (en) Air conditioner
JP6557101B2 (en) Air conditioner
KR20120050325A (en) Method for removing water of air conditioner
JP2011127800A (en) Air conditioner
JP5950897B2 (en) Air conditioner
JP2005016830A (en) Air-conditioner
JP6501912B2 (en) Air conditioner
JPWO2023286298A5 (en)
JP5435161B2 (en) Air conditioner
WO2016063437A1 (en) Air conditioning apparatus
JP2011052848A (en) Ceiling-embedded air conditioner
JP7193750B2 (en) air conditioner
JP2006125797A (en) Air conditioning control method and air conditioning control system
CN115315595B (en) Ventilation air conditioning system
JP7232998B2 (en) Control device, air conditioning system and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160719

R150 Certificate of patent or registration of utility model

Ref document number: 5975937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250